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Abstract 16 

Designing effective control policies requires efficient quantification of the nonlinear response of air 17 

pollution to emissions. However, neither the current observable indicators nor the current indicators based 18 

on response-surface modeling (RSM) can fulfill this requirement. Therefore, this study developed new 19 

observable RSM-based indicators and applied them to ambient fine particle (PM2.5) and ozone (O3) 20 

pollution control in China. The performance of these observable indicators in predicting O3 and PM2.5 21 

chemistry was compared with that of the current RSM-based indicators. H2O2×HCHO/NO2 and total 22 

ammonia ratio, which exhibited the best performance among indicators, were proposed as new observable 23 

O3- and PM2.5-chemistry indicators, respectively. Strong correlations between RSM-based and traditional 24 

observable indicators suggested that a combination of ambient concentrations of certain chemical species 25 

can serve as an indicator to approximately quantify the response of O3 and PM2.5 to changes in precursor 26 
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emissions. The observable RSM-based indicator for O3 (observable peak ratio) effectively captured the 27 

strong NOx-saturated regime in January and the NOx-limited regime in July, as well as the strong NOx-28 

saturated regime in northern and eastern China and their key regions, including the Yangtze River Delta 29 

and Pearl River Delta. The observable RSM-based indicator for PM2.5 (observable flex ratio) also captured 30 

strong NH3-poor condition in January and NH3-rich condition in April and July, as well as NH3-rich in 31 

northern and eastern China and the Sichuan Basin. Moreover, analysis of these newly developed 32 

observable response indicators suggested that the simultaneous control of NH3 and NOx emissions 33 

produces greater benefits in provinces with higher PM2.5 exposure by up to 12 µg m−3 PM2.5 per 10 % NH3 34 

reduction compared with NOx control only. Control of volatile organic compound (VOC) emissions by as 35 

much as 40 % of NOx controls is necessary to obtain the co-benefits of reducing both O3 and PM2.5 36 

exposure at the national level when controlling NOx emissions. However, the VOC-to-NOx ratio required 37 

to maintain benefits varies significantly from 0 to 1.2 in different provinces, suggesting that a more 38 

localized control strategy should be designed for each province. 39 

 40 
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1. Introduction 43 

Air pollution has attracted great attention because of its harmful effects on human health (Cohen et 44 

al., 2017), climate (Myhre et al., 2013), agriculture and ecosystems (Fuhrer et al., 2016), and visibility 45 

(Friedlander et al., 1977). In particular, ambient fine particles (PM2.5) and ozone (O3) are among the top 46 

risk factors for global mortality (Forouzanfar et al., 2015; Cohen et al., 2017) and have increased the need 47 

to effectively control anthropogenic sources in order to reduce the ambient concentrations of PM2.5 and 48 

O3 (Wang et al., 2017). The challenge is that the dominant contributions to ambient PM2.5 and O3 arise 49 

from a series of chemical reactions among precursors, including sulfur dioxide (SO2), nitrogen oxides 50 

(NOx), ammonia (NH3) and volatile organic compounds (VOCs) (Seinfeld and Pandis, 2012). The 51 

complexity of the chemical reactions and pathways associated with variations in meteorological 52 

conditions and precursor levels results in strong nonlinear responses of PM2.5 and O3 to their precursor 53 

emission changes (West et al., 1999; Hakami et al., 2004; Cohan et la., 2005; Pun et al., 2007; Megaritis 54 

et al., 2013). Such nonlinearity issues are a major challenge for policy-makers to design an effective 55 

control strategy. 56 

Chemical species in the atmosphere are often highly correlated with one another, since their 57 

concentrations are affected by common atmospheric physical processes (e.g., mixing and transport) and 58 

chemical reactions. Concentrations of pollutants such as O3 and PM2.5 are typically determined based on 59 

the ambient levels of their gaseous precursors, implying that O3 and PM2.5 chemistry can be identified 60 

through a combination of concentrations of some of their related chemical species (i.e., indicators). The 61 

empirical kinetic modeling approach (EKMA) developed by the U.S. EPA quantifies the relationships of 62 

O3 with its precursor concentrations based on O3 chemistry (Freas et al., 1978; Gipson et al., 1981). The 63 

EKMA plot can aid inference of control strategy effectiveness (e.g., NOx or VOC control) according to 64 

VOC-to-NOx ratios. Several studies have developed “observable” indicators by relating O3 to reactive 65 
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nitrogen concentrations and species related to atmospheric oxidation.  Such indicators include NOy, 66 

H2O2/HNO3, HCHO/NO2 and H2O2/(O3+NO2) (Milford et al., 1994; Sillman, 1995; Tonnesen and Dennis, 67 

2000; Sillman and He, 2002), which can be used to identify NOx-saturated or -limited regimes. The O3 68 

indicators can be derived from surface-monitoring observations (Peng et al., 2006), modeling simulations 69 

(Wang et al., 2010), or even satellite retrievals (Jin et al., 2017; Sun et al., 2018), and then examined using 70 

three-dimensional chemical transport models (CTMs) (Jiménez et al., 2004; Zhang et al., 2009; Liu et al., 71 

2010; Ye et al., 2016). Regarding PM2.5 chemistry (more specifically for inorganic PM2.5 sensitivities to 72 

NH3 and NOx), indicators such as the degree of sulfate neutralization (DSN), gas ratio (GR), and adjusted 73 

gas ratio (AdjGR) have been developed (defined in Text S1) to identify NH3-poor or -rich conditions 74 

(Ansari and Pandis, 1998; Takahama et al., 2004; Pinder et al., 2008; Dennis et al., 2008). The indicator-75 

based method can be efficient in determining the chemical regime in the current scenarios and in 76 

qualitatively estimating O3 and PM2.5 sensitivities to small perturbations in precursor emissions or ambient 77 

concentrations without involving complex CTMs. However, traditional indicator methods are unable to 78 

quantify the extent of the chemistry regime (Pinder et al., 2008); hence, the traditional observable 79 

indicators provide policy-makers limited information for reducing O3 and PM2.5 pollution. 80 

The sensitivity of O3 and PM2.5 to precursor emissions can be explored by running multiple brute-81 

force CTM simulations. For instance, the response surface model (RSM) developed from brute-force 82 

simulations can generate a wide range of O3 and PM2.5 responses to precursor emissions ranging from 83 

fully controlled to doubled emissions (i.e., -100 % to 100 % change relative to the baseline emission) 84 

(Xing et al., 2011; Wang et al., 2011). Based on the RSM, the chemical response indicators of Peak Ratio 85 

(PR) and Flex Ratio (FR) have been designed to identify regimes of O3 and PM2.5 chemistry, respectively 86 

(see Xing et al., 2018 for detailed description of PR and FR). In contrast to the observable indicators, the 87 

PR and FR are meaningful values that represent the exact transition point at which a chemistry regime 88 
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converts to another regime. With the recent development of the polynomial function-based RSM (pf-89 

RSM), the PR and FR can be easily calculated (Xing et al., 2018). However, this method is built on at 90 

least 20 CTM simulations; in other words, the estimating the PR and FR requires considerable computing 91 

resources. As a result, RSM use remains limited despite recent improvements in RSM efficiency (Xing et 92 

al., 2017).  93 

Over the preceding decade, China’s air quality has undergone substantial changes. In particular, the 94 

enactment of the Air Pollution Prevention and Control Action Plan from 2013 to 2017 greatly reduced 95 

PM2.5 exposure (Zhao et al., 2018; Ding et al., 2019a). However, during this period, significant increases 96 

in O3 concentrations were observed in most Chinese cities (Li et al., 2018). The rate of increase in O3 97 

concentration (based on the 90th percentile of daily maximum of 8-hr running average) was approximately 98 

27 %, 19 %, and 8 % in the North China Plain (NCP), Yangtze River Delta (YRD), and Pearl River Delta 99 

(PRD), respectively (Ding et al., 2019b). Greater control over anthropogenic sources must be enforced to 100 

reduce PM2.5 and O3 concentrations (Lu et al., 2018). Notably, accurate quantification of the nonlinear 101 

responses of O3 and PM2.5 to their precursor emissions is critical and a prerequisite for effective mitigation 102 

of air pollution in China. 103 

The design of an effective O3 and PM2.5 control strategy requires efficient quantification of air 104 

pollutant sensitivity to precursor emissions. Indicator studies have demonstrated that the nonlinear 105 

response of O3 and PM2.5 to precursors can be estimated by using ambient concentrations of related 106 

chemical species. It is expected that the response indicators originally derived from RSM predictions (i.e., 107 

PR and FR) can also be calculated using a combination of ambient concentrations of certain chemical 108 

species, enabling these indicators to become “observable” indicators rather than being dependent on 109 

numerous CTM simulations. To support the needs of policy design for O3 and PM2.5 control, this study 110 

developed effective indicators that not only represent O3 and PM2.5 chemistry but also aid in determining 111 
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the most feasible emission reduction path, similar to the benefits provided by RSM-based indicators. The 112 

flow of this study is presented in Fig. 1. The new observable response indicators were developed by 113 

investigating the link between observable and RSM-based indicators in China. 114 

The remainder of this paper is structured as follows: Section 2 presents the detailed methods for 115 

CTM modeling, RSM configuration and response indicator development. Section 3 presents the 116 

evaluation of the performance of observable indicators in predicting the chemistry regime and the 117 

development of the observable response indicators and discusses their policy implications. Section 4 118 

summarizes the main conclusions of this study. 119 

2. Method 120 

2.1. Configuration of the CTM and RSM 121 

In this study, the Community Multi-scale Air Quality (CMAQ) model (version 5.2) was used to 122 

simulate the baseline concentrations of O3 and PM2.5 and their responses in numerous emission control 123 

scenarios with different emission change ratios. The simulation was conducted on a domain covering 124 

China with 27 km × 27 km horizontal resolution (Fig. 2). In 2017, January, April, July, and October were 125 

simulated to represent winter, spring, summer, and fall, respectively. An annual level was estimated as the 126 

average of the levels in these four months. The concentration data was analyzed based on the monthly 127 

average for afternoon O3 (12:00–18:00 China Standard Time when O3 was the highest across a day), and 128 

monthly average for 24-h PM2.5. To approximate exposure concentrations, we also estimated population-129 

weighted O3 and PM2.5 at the regional or national level by averaging the gridded concentrations weighted 130 

by the population in each grid cell. The gridded population data were obtained from the 1 km × 1 km 131 

LandScan population dataset in 2016 (Oak Ridge National Laboratory, 2013). 132 

The anthropogenic emission data were developed by Tsinghua University by using a bottom-up 133 

method (Ding et al., 2019a), with updated activity data from the 2017 China statistical yearbook as well 134 
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as the latest application rates of end-of-pipe control technologies based on the governmental bulletin and 135 

reports. The anthropogenic emissions were gridded into 27 km × 27 km horizontal resolution to match the 136 

CMAQ model (Fig. S1). The 2017 biogenic emissions over China were generated using the Model for 137 

Emissions of Gases and Aerosols from Nature (MEGAN; version 2.04). The meteorology field, driven by 138 

the Weather Research and Forecasting Model (WRF; version 3.7), followed the same configuration as that 139 

in our previous study (Ding et al., 2019a,b), and thus included the Morrison double-moment microphysics 140 

scheme, the RRTMG radiation scheme, Kain-Fritsch cumulus cloud parameterization, the Pleim-Xiu land-141 

surface physics scheme, and the ACM2 PBL physics scheme. We used NCEP FNL (Final) Operational 142 

Global Analysis data for the initial and boundary conditions in the WRF. The comparison with observation 143 

data from the National Climatic Data Center suggested agreeable performance of the WRF model for 144 

simulating wind speed, humidity and temperature (Table S1). The CMAQ model performance in 145 

reproducing O3 and PM2.5 concentrations was evaluated by comparison with the ground-based 146 

observations (Fig. S2), which suggested acceptable CMAQ model performance that met the recommended 147 

benchmark (Ding et al., 2019a,b). The normalized mean biases of CMAQ in predicting PM2.5 and O3 are 148 

-16.4% and -12.5% compared with monitoring data obtained from the China National Environmental 149 

Monitoring Centre. The mean fractional biases for PM2.5 and O3 prediction are -14.2% and -11.1%, 150 

respectively (within the benchmark of ±60%). The mean fractional errors for PM2.5 and O3 prediction are 151 

21.6% and 17.0% respectively (within the benchmark of 75%). The RSM was developed based on multiple 152 

CTM simulations for various emission-control scenarios according to the brute-force method. Identical to 153 

our previous RSM studies (Xing et al., 2017, 2018), the responses of O3 and PM2.5 to precursor emissions 154 

were analyzed using the baseline case and 40 control scenarios using the Latin Hypercube Sample method 155 

for four control variables, namely the emission ratios of NOx, SO2, NH3, and VOCs. Though the responses 156 

of O3 and PM2.5 to local or regional emissions vary significantly as suggested in our previous study (Xing 157 
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et al., 2011), we applied the same change ratio of each pollutant emission to all regions across China in 158 

this study. This approach is consistent with the implementation of a multi-regional joint control strategy, 159 

which is reasonable for China. The same level of local and regional emission reduction has been 160 

recommended to achieve China’s aggressive air quality goals (Xing et al., 2019). 161 

The control matrix is provided in Table S2. The range of emission changes is set as 0 to 2 to be 162 

consistent with our previous studies in which the pf-RSM performance has been well examined (Xing et 163 

al., 2011; Wang et al., 2011; Xing et al., 2018; Ding et al., 2019b). The pf-RSM performance in predicting 164 

PM2.5 and O3 responses has been evaluated in detail using leave-one-out cross validation as well as the 165 

out-of-sample validation method, with normalized errors all within 5% for both PM2.5 and O3 across the 166 

domain. Relatively large biases occurred for marginal cases, where emissions are controlled by nearly 167 

100% and predicted concentrations are very small.  These cases have limited influence on the shape of 168 

nonlinear curve of the response function. However, the RSM is developed from a suite of CMAQ 169 

simulations, and so uncertainties in the chemical mechanism used in CMAQ might influence the O3 and 170 

PM2.5 predictions. 171 

2.2. RSM-based indicators of O3 and PM2.5 chemistry 172 

Based on the developed pf-RSM, the nonlinear responses of O3 and PM2.5 concentrations to 173 

precursor emissions can be represented as follows: 174 

∆𝐶𝑜𝑛𝑐 = ∑ 𝑋𝑖 ∙ (𝛥𝐸𝑁𝑂𝑥)𝑎𝑖 ∙ (𝛥𝐸𝑆𝑂2)𝑏𝑖 ∙ (𝛥𝐸𝑁𝐻3)𝑐𝑖 ∙ (𝛥𝐸𝑉𝑂𝐶𝑠)𝑑𝑖𝑛
𝑖=1   (1) 175 

where ∆𝐶𝑜𝑛𝑐 is the change in O3 or PM2.5 concentration from the baseline concentration calculated from 176 

a polynomial function of four variables (𝛥𝐸𝑁𝑂𝑥, 𝛥𝐸𝑆𝑂2, 𝛥𝐸𝑁𝐻3, 𝛥𝐸𝑉𝑂𝐶𝑠); ΔENOx, ΔESO2, ΔENH3, and ΔEVOCs 177 

are the change ratios of NOx, SO2, NH3, and VOC emissions (i.e., Emissions / Baseline_Emissions), 178 

respectively, relative to the baseline emissions (baseline = 0); and 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, and 𝑑𝑖 are the nonnegative 179 

integer powers of ΔENOx, ΔESO2, ΔENH3, and ΔEVOCs, respectively.  𝑋𝑖 is the coefficient of term i for the 14 180 
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(n) terms listed in Table 1.   181 

The terms used to represent PM2.5 and O3 responses were determined in designing the pf-RSM 182 

(Table 1). The high-degree terms of NOx, VOCs and NH3 represent their strong nonlinear contributions to 183 

O3 or PM2.5. The interaction terms of NOx and VOC for PM2.5 and O3 represent the nonlinearity in 184 

atmospheric oxidations, whereas those of NOx and NH3 for PM2.5 represent aerosol thermodynamics (Xing 185 

et al., 2018). 186 

𝑋𝑖 was fitted by 40 CTM control scenarios for each spatial grid cell. The  𝑋𝑖 values in the pf-RSM 187 

for annual-averaged population-weighted O3 and PM2.5 concentrations in 31 provinces in China are 188 

provided in Table S3 and Table S4, respectively. The terms with first degree for NOx, SO2, NH3, and 189 

VOCs represent the first derivative of PM2.5 and O3 response to each precursor emission. O3 was more 190 

sensitive to NOx (term X5) and VOCs (term X6) than to SO2 (term X13) or NH3 (term X14), and O3 191 

sensitivity was negative to NOx but positive to VOCs in most provinces. PM2.5 sensitivities to the four 192 

precursors (terms X1, X2, X5 and X11 for VOCs, NH3, SO2, and NOx, respectively) were comparable, 193 

whereas PM2.5 sensitivity to NOx could be negative or positive. 194 

The nonlinearities of O3 and PM2.5 to precursors were mainly determined by high-order and 195 

interaction terms. To illustrate such nonlinearities further, we used a series of isopleths, as shown in Fig. 196 

3, as an example to present the national-averaged PM2.5 response to SO2 and NH3, NOx and NH3, as well 197 

as PM2.5 and O3 responses to NOx and VOCs in different months. Strong nonlinearity was noted in PM2.5 198 

sensitivity to NH3, and in O3 and PM2.5 sensitivities to NOx. PM2.5 sensitivity to NH3 increased alongside 199 

the transition of PM2.5 chemistry from the NH3-rich condition (typically at high NH3 emission ratios) to 200 

the NH3-poor condition (typically at low NH3 emission ratios). O3 and PM2.5 sensitivities to NOx were 201 

negative under the NOx-saturated regime (typically at high NOx emission ratios) but became positive 202 

under the NOx-limited regime (typically at low NOx emission ratios). In addition, the transition points 203 
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(corresponding to the NOx or NH3 ratios at which the chemical regime for O3 or PM2.5 chemistry changed) 204 

varied by time (Fig. 3) and space (see the isopleths at different provinces in Figs S3-S6). In general, the 205 

NH3-poor condition appears in winter because of low NH3 evaporation and little agriculture activity which 206 

is a dominant NH3 source. The strong NOx-saturated condition appears in winter when photolysis is less 207 

active than in other seasons, and concentrates in industrial regions with abundant NOx emissions. 208 

To further quantify the aforementioned nonlinearity, two RSM-based response indicators (i.e., the 209 

PR for O3 and FR for PM2.5) were calculated as described in our previous studies (Xing et al., 2011, 2018; 210 

Wang et al., 2011).  211 

For O3, the PR can be directly calculated as follows: 212 

𝑃𝑅 = 1 + 𝛥𝐸𝑁𝑂𝑥|𝜕∆𝐶𝑜𝑛𝑐𝑂3
𝜕𝛥𝐸𝑁𝑂𝑥

=0
   𝐸𝑁𝑂𝑥𝜖[𝑎, 𝑏]  (2) 213 

where  
𝜕∆𝐶𝑜𝑛𝑐𝑂3

𝜕𝛥𝐸𝑁𝑂𝑥
 is the first derivative of the 𝛥𝐶𝑜𝑛𝑐𝑂3 to 𝛥𝐸𝑁𝑂𝑥, which can be derived as follows: 214 

5 ∗ X1 ∗ 𝛥𝐸𝑁𝑂𝑥
4 + 4 ∗ X2 ∗ 𝛥𝐸𝑁𝑂𝑥

3 + 3 ∗ X3 ∗ 𝛥𝐸𝑁𝑂𝑥
2 + 2 ∗ X4 ∗ 𝛥𝐸𝑁𝑂𝑥 + X5 = 0   (3) 215 

The PR is the NOx emissions (represented as 1 + ΔENOx) that produce maximum O3 concentration 216 

under the baseline VOC emissions. For  PR < 1, the baseline condition is NOx saturated, and the level of 217 

simultaneous control of VOCs to prevent an increase in O3 levels from the NOx controls must be 218 

understood.  This level is defined by the ratio of VOCs to NOx (i.e., VNr) corresponding to the PR and is 219 

calculated as follows: 220 

𝑉𝑁𝑟 = 𝑟|𝜕∆𝐶𝑜𝑛𝑐𝑂3
𝜕𝛥𝐸𝑁𝑂𝑥

=0
     𝑤ℎ𝑒𝑛 𝑃𝑅 < 1 , 𝑟 =

𝛥𝐸𝑉𝑂𝐶
𝛥𝐸𝑁𝑂𝑥

⁄   (4) 221 

where  
𝜕∆𝐶𝑜𝑛𝑐𝑂3

𝜕𝛥𝐸𝑁𝑂𝑥
 is the first derivative of the 𝛥𝐶𝑜𝑛𝑐𝑂3 to 𝛥𝐸𝑁𝑂𝑥 . When 𝛥𝐸𝑉𝑂𝐶 = 𝑟 × 𝛥𝐸𝑁𝑂𝑥 , and 𝛥𝐸𝑆𝑂2 222 

and 𝛥𝐸𝑁𝐻3 are 0, 
𝜕∆𝐶𝑜𝑛𝑐𝑂3

𝜕𝛥𝐸𝑁𝑂𝑥
 can be written as follows: 223 

5 ∗ X1 ∗ 𝛥𝐸𝑁𝑂𝑥
4 + 4 ∗ X2 ∗ 𝛥𝐸𝑁𝑂𝑥

3 + 3 ∗ X3 ∗ 𝛥𝐸𝑁𝑂𝑥
2 + 2 ∗ X4 ∗ 𝛥𝐸𝑁𝑂𝑥 + X5  +  X6 ∗ r +  2 ∗ X7 ∗224 
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r2 ∗ 𝛥𝐸𝑁𝑂𝑥 + 3 ∗ X8 ∗ r3 ∗ 𝛥𝐸𝑁𝑂𝑥
2  + 2 ∗ X9 ∗ r ∗ 𝛥𝐸𝑁𝑂𝑥

2 + 4 ∗ X10 ∗ r3 ∗ 𝛥𝐸𝑁𝑂𝑥
3 + 6 ∗ X11 ∗ r ∗225 

𝛥𝐸𝑁𝑂𝑥
5 + 3 ∗ X12 ∗ r ∗ 𝛥𝐸𝑁𝑂𝑥

2 = 0   (5) 226 

Since the 𝛥𝐸𝑁𝑂𝑥  is close to 0 when the controls are taken from the baseline, we ignore the terms of 𝛥𝐸𝑁𝑂𝑥  227 

in the first derivative function above, then it can be written as follows, 228 

X5  +  X6 ∗ r = 0  (6) 229 

The VNr therefore can be calculated using the following equation: 230 

𝑉𝑁𝑟 = − 
X5

X6
  (7) 231 

For PM2.5, the FR can be directly calculated from the polynomial function of PM2.5 by estimating 232 

the second derivative of the PM2.5 response to NH3 emissions without considering interaction with other 233 

pollutants (Xing et al., 2018). In this study, we selected a simplified method to calculate the FR, estimated 234 

as the corresponding NH3 emission ratio when the PM2.5 sensitivity to NH3 and NOx emissions is equal 235 

under the baseline conditions (similar to the definition in Wang et al (2011), but here we calculated the 236 

sensitivity of PM2.5 instead of nitrate in this study): 237 

𝐹𝑅 = 1 + 𝛥𝐸𝑁𝐻3|𝜕∆𝐶𝑜𝑛𝑐𝑃𝑀
𝜕𝛥𝐸𝑁𝐻3

=
𝜕∆𝐶𝑜𝑛𝑐𝑃𝑀

𝜕𝛥𝐸𝑁𝑂𝑥

   𝛥𝐸𝑁𝐻3𝜖[𝑎, 𝑏], 𝛥𝐸𝑁𝑂𝑥 = 0,  (8) 238 

where 
𝜕∆𝐶𝑜𝑛𝑐𝑃𝑀

𝜕𝛥𝐸𝑁𝐻3
 and 

𝜕∆𝐶𝑜𝑛𝑐𝑃𝑀

𝜕𝛥𝐸𝑁𝑂𝑥
 are the first derivatives of the 𝛥𝐶𝑜𝑛𝑐𝑃𝑀 to 𝛥𝐸𝑁𝐻3 and 𝛥𝐸𝑁𝑂𝑥, respectively, 239 

and 𝛥𝐸𝑁𝐻3 can be obtained as follows: 240 

3 ∗ X4 ∗ 𝛥𝐸𝑁𝐻3
2 + (2 ∗ X3 − X10) ∗ 𝛥𝐸𝑁𝐻3 + X2 − X11 = 0    (9) 241 

The FR is the NH3 emissions (represented as 1 + ΔENH3) that correspond to the inflection point 242 

between NH3-rich and -poor conditions under baseline NOx emissions. A FR greater than 1 indicates that 243 

the baseline condition is NH3 poor, and a FR less than 1 indicates that the baseline condition is NH3 rich.  244 

The extra benefit in PM2.5 reduction (denoted as ∆𝐶_𝑁𝐻3) from simultaneous NH3 controls in the same 245 

percentage as the required NOx controls can be quantified as follows: 246 
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∆𝐶_𝑁𝐻3 = (
𝜕∆𝐶𝑜𝑛𝑐𝑃𝑀2.5

𝜕𝛥𝐸𝑁𝑂𝑥
|𝛥𝐸𝑁𝐻3=𝛥𝐸𝑁𝑂𝑥

) − (
𝜕∆𝐶𝑜𝑛𝑐𝑃𝑀2.5

𝜕𝛥𝐸𝑁𝑂𝑥
|𝛥𝐸𝑁𝐻3=0) (10) 247 

where 248 

𝜕∆𝐶𝑜𝑛𝑐𝑃𝑀2.5

𝜕𝛥𝐸𝑁𝑂𝑥
|𝛥𝐸𝑁𝐻3=𝛥𝐸𝑁𝑂𝑥

  is the first derivative of the 𝛥𝐶𝑜𝑛𝑐𝑃𝑀2.5  response to 𝛥𝐸𝑁𝑂𝑥  when 𝛥𝐸𝑁𝐻3 =249 

𝛥𝐸𝑁𝑂𝑥, and 250 

𝜕∆𝐶𝑜𝑛𝑐𝑃𝑀2.5

𝜕𝐸𝑁𝑂𝑥
|𝐸𝑁𝐻3=0 is the first derivative of the 𝛥𝐶𝑜𝑛𝑐𝑃𝑀2.5 response to 𝛥𝐸𝑁𝑂𝑥 when 𝛥𝐸𝑁𝐻3 = 0. 251 

∆𝐶_𝑁𝐻3 can be calculated as follows: 252 

∆𝐶_𝑁𝐻3 = 𝑋2  (11) 253 

2.3. Observable indicators of O3 and PM2.5 chemistry 254 

Zhang et al. (2009) summarized the various observable indicators with their corresponding transition 255 

values to identify O3 and PM2.5 chemistry: O3 indicators were H2O2/HNO3, H2O2/(O3+NO2), NOy, O3/NOx, 256 

O3/NOy, O3/NOz, HCHO/NOy, and HCHO/NO2, and the PM2.5 indicators were the DSN, GR, and AdjGR 257 

(defined in Text S1); these indicators have been used extensively in previous research (Liu et al., 2010; 258 

Wang et al., 2011; Ye et al., 2016). In the current study, we evaluated all the aforementioned indicators 259 

except DSN (DSN is included in the definition of the AdjGR, thus it was not considered as a separate 260 

indicator in this study). The orignal transition values, summarized by Zhang et al (2009), are listed in 261 

Table 2. In the present study, we examined these transition values and compared their performance in 262 

predicting O3 and PM2.5 chemistry. Because the RSM-based indicators, PR and FR, are calculated using 263 

the multiple CTM simulations that use state-of-the-science representations of O3 and PM2.5 chemistry, 264 

these indicators were assumed to represent the true condition for comparison with the condition predicted 265 

using observable indicators. The performance of each observable indicator is described by its success rate, 266 

which is the ratio of the number of correct predictions to the total number of predictions. A correct 267 

prediction is indicated by the observable indicator providing consistent results for O3 or PM2.5 chemistry 268 
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as suggsted by PR or FR. The comparison is only conducted for spatial grid cells with valid PR or FR 269 

values within the range of 0 (fully controlled emissions) to 2 (double emissions). 270 

As RSM-based indicators, the PR and FR have meaningful values that can be used to illustrate the 271 

extent of the chemistry regime. The linkage of observable indicators with the PR and FR was investigated 272 

by performing a linear-log regression of the value of the original observable indicator and the values of 273 

the PR or FR as follows: 274 

𝑙𝑜𝑔(𝑌) = 𝐴 ∙ 𝑋 + 𝐵 (12) 275 

where 𝑌 is an observable indicator for O3 or PM2.5, 𝑋 is the RSM-based indicator (i.e., PR for O3 or FR 276 

for PM2.5), and the coefficients 𝐴  and 𝐵  are estimated based on statistical regression. Therefore, the 277 

observable response indicators (𝑋′) can be calculated as follows: 278 

𝑋′ =
𝑙𝑜𝑔(𝑌)−𝐵

𝐴
 (13) 279 

The observable response indicators have the same policy implication as that of PR or FR, but they 280 

can be directly calculated from the baseline concentrations of certain chemical species rather than being 281 

derived from multiple CTM simulations.  Therefore, these indicators are considerably more efficient than 282 

are traditional RSM-based indicators. 283 

3. Results 284 

3.1. Evaluating observable indicator performance in predicting chemistry regimes 285 

3.1.1. O3 286 

Observable indicators and the PR are compared in Fig. 4, and the performance of observable 287 

indicators in predicting O3 chemistry is summarized in Table 2. In general, strong correlation was noted 288 

between the observable indicators and PR. The indicator with the highest annual success rate was 289 

H2O2/HNO3 approximately 73.4 %, with a value of 0.2 for the transition from NOx-saturated to NOx-290 
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limited conditions. However, the original transition value of 0.2 for H2O2/HNO3 tended to be too low, 291 

particularly in April, July, and October (see Fig. 4a). This study found that the annual success rate of 292 

H2O2/HNO3 could be increased to 80.5 % if 0.3 was used as the transition value. This finding was 293 

consistent with corresponding findings in previous studies, which have suggested the transition values of 294 

H2O2/HNO3 within the range of 0.2-3.6 at different locations and in different seasons (Sillman, 1995; 295 

Sillman et al, 1997; Lu and Chang, 1998; Tonnesen and Dennis, 2000; Hammer et al, 2002; Liang et al, 296 

2006; Zhang et al., 2009). H2O2/(O3+NO2), with a transition value of 0.02, also exhibited a high annual 297 

success rate of 66.4 %; this rate could be increased to 71.1 % by applying a transition value of 0.005 298 

because the original transition value was too high, particularly in January, April, and October (see Fig. 4b). 299 

HCHO/NOy and HCHO/NO2 exhibited relatively low performance, particularly in April and July, because 300 

the original transition values appeared to be too high (Fig. 4h and i). However, the performance of 301 

HCHO/NOy and HCHO/NO2 could be greatly improved by using lower transition values, with increased 302 

annual success rates as high as 76 %. The change of the transition values implies that such indicators 303 

cannot fully consider all factors that determine the O3 chemistry by using concentrations of just two 304 

species. The transition values of the indicators NOy, O3/NOx, O3/NOy, and O3/NOz were suitable for 305 

estimating annual levels if only one unique transition value was applied for all months (apparently, these 306 

transition values for O3/NOx, O3/NOy and O3/NOz in January, and NOx in April and July may have been 307 

too low). However, their success rates (all < 70 %) were not as high as those of other indicators. The 308 

inferior performance of the three O3-involved indicators (O3/NOx, O3/NOy and O3/NOz) may have been 309 

associated with the considerable effects of background O3, which cannot be removed easily. 310 

Because H2O2/(O3+NO2) and HCHO/NO2 exhibited good performance in predicting O3 chemistry, 311 

this study proposed a new indicator combining these two indicators, namely H2O2×HCHO/NO2, with a 312 

transition value of 0.3. The results suggested that this new indicator has the highest annual success rate, 313 
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namely 87.3 %, among all the indicators. Studies (Sillman, 1995; Tonnesen and Dennis, 2000) have 314 

suggested that HCHO is approximately proportional to the VOC reactivity (i.e., the weighted sum of the 315 

reactions of VOCs with OH) and that HCHO/NO2 closely approximates the competition between OH 316 

reactions with VOC and NO2 that is central to O3 chemistry. H2O2 derives from a key radical termination 317 

pathway under low NOx conditions (HO2 + HO2 →  H2O2 + O2). Comparison of H2O2 with NOy or HNO3, 318 

which derives from a key  radical termination pathway under high NOx conditions, OH + NO2 → HNO3) 319 

represents the relative abundance of VOCs to NOx. The new hybrid indicator incorporates information 320 

from the two individual indicators and could potentially be more robust.  321 

3.1.2 PM2.5 322 

We selected the GR and AdjGR as observable indicators for PM2.5 chemistry to identify NH3-poor 323 

or NH3-rich conditions. Comparison of GR and AdjGR with the FR is detailed in Fig. 5. AdjGR 324 

performance was much higher than that of the GR, with a larger annual success rate of 74.1 % compared 325 

with the GR’s 55.6 % (see Table 3). The transition value of the GR appeared to be too low in all months 326 

(Fig. 5a). This result was consistent with those of previous studies; the AdjGR tends to be a more robust 327 

indicator because in contrast to the GR, it does not require an assumption of full sulfate neutralization 328 

(Zhang et al., 2009). The improvement of AdjGR compared to GR is the greatest in January and the 329 

smallest in July (Table 3).  This is consistent with Pinder et al. (2008) who showed that accounting for 330 

DSN is important under cold temperatures but GR and AdjGR converge for higher temperatures. 331 

This study designed a new indicator, total ammonia ratio (TAR), where the sulfate concentration is 332 

involved in the calculation, as follows: 333 

𝑇𝐴𝑅 =
[𝑇𝐴]2

[𝑇𝑁]×[𝑇𝑆]
=

[𝑁𝐻3]×[𝑁𝐻4
+]

([𝐻𝑁𝑂3]+[𝑁𝑂3
−])×[𝑆𝑂4

2−]
, (14) 334 

where [𝑇𝑁]  and [𝑇𝑆]  are the total molar concentrations of nitrate ([𝐻𝑁𝑂3] + [𝑁𝑂3
−])  and sulfate 335 
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([𝑆𝑂4
2−]), respectively, and TAR is the relative abundance of total ammonia to nitrate and sulfate, regarded 336 

as the product of [𝑇𝐴]/[𝑇𝑁]  and [𝑇𝐴]/[𝑇𝑆] . To simplify the calculation, [𝑇𝐴]2  is assumed to be the 337 

product of the molar concentration of ammonia gas [𝑁𝐻3] and ammonium [𝑁𝐻4
+]. 338 

The performance of TAR in predicting PM2.5 chemistry was slightly higher than that of AdjGR, as 339 

demonstrated by the higher success rate of TAR than that of AdjGR in all months. The annual success rate 340 

of TAR was 79.6 %, with a transition value of 10 (Table 3). 341 

3.2 Developing the observable responsive indicators  342 

3.2.1 O3 343 

Fig. 6 presents the log-linear regressions of the O3 observable indicators on the PR indicator derived 344 

from the RSM. In general, all observable indicators exhibited strong correlations with the PR (all except 345 

NOy presented positive correlations with the PR), with varying R2 values (0.08 – 0.75). The indicators 346 

including NOy, O3/NOx, O3/NOy, and O3/NOz, which had relatively low success rates, exhibited weaker 347 

correlation with the PR (R2 < 0.31; Fig. 6c-f). The newly developed H2O2×HCHO/NO2 indicator exhibited 348 

the strongest correlation with the PR (R2 = 0.75), implying that the log-linear combination of the H2O2, 349 

HCHO, and NO2 baseline concentrations could approximate the responsive PR indicator to quantify O3 350 

chemistry. Other indicators can also be used to approximately estimate the PR based on the regression 351 

coefficients shown in Fig. 6; however, their correlations with the PR were not as strong as those with 352 

H2O2×HCHO/NO2. 353 

To evaluate the ability of the observable PR (oPR; estimated based on H2O2×HCHO/NO2) to 354 

represent the spatial and temporal variation of O3 chemistry, the spatial distribution of the PR and oPR in 355 

the four study months was compared across the simulated domain (Fig. 7). The oPR successfully captured 356 

the strong NOx-saturated regime in January (PR < 1) and the NOx-limited (PR > 1) regime in July. 357 
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In addition, the PR and oPR suggested a consistently strong NOx-saturated regime in northern and 358 

eastern China and key regions such as the YRD and PRD. The domain-averaged oPRs were 0.97, 1.52, 359 

1.73, and 1.37 in January, April, July, and October, respectively; these values are similar to the PRs (0.77, 360 

1.24, 1.38, and 1.17, respectively). Thus, the oPR may approximate the PR to quantify the O3 chemistry, 361 

even on a large spatial and temporal scale. 362 

3.2.2. PM2.5 363 

The correlations between PM2.5 observable indicators and the responsive FR indicator derived from 364 

the RSM were investigated (Fig. 8). The AdjGR has the lowest R2 (0.40) because of its high variations for 365 

the NH3-poor condition (Fig. 5b). A stronger positive correlation was noted between the GR and FR (R2 366 

= 0.57); however, the success rate of the GR was the lowest among all the indicators (the success rate of 367 

the GR increased when the transition value was set as the median value of the GR, namely 5, at an FR of 368 

1). The TAR exhibited the strongest positive correlation with the FR (R2 = 0.60), implying that the FR can 369 

be approximately estimated by the log-linear combination of baseline concentrations of ammonia gas, 370 

nitric acid gas, particulate ammonium, sulfate, and nitrate.  371 

The capability of the observable FR (oFR; estimated based on the TAR indicator) in representing 372 

the spatial and temporal variation of PM2.5 chemistry is illustrated in Fig. 9. Both the FR and oFR 373 

suggested strong NH3-poor condition (FR > 1) in January and NH3-rich condition (FR < 1) in April and 374 

July. The oFR suggested strong NH3-rich condition in northern and eastern China and the Sichuan Basin; 375 

these findings were consistent with those for the FR. The domain-averaged oFRs were 1.56, 1.05, 0.86, 376 

and 1.24 in January, April, July, and October, respectively, with the strongest NH3-poor condition in 377 

January and NH3-rich condition in July. These findings were comparable with the FRs of 1.47, 1.16, 0.95, 378 

and 1.19 for the four study months, respectively, suggesting that the oFR can approximate the FR to 379 

quantify the PM2.5 chemistry and its spatial and temporal variations. 380 
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3.3. Policy implications 381 

3.3.1. O3 382 

The responsive PR indicator may help policy-makers to understand the status and extent of O3 383 

chemistry in the current scenarios. A lower PR (< 1) suggested a NOx-saturated regime. Moreover, the 384 

VNr could be used to inform policy-makers about the level of simultaneous control of VOCs required to 385 

prevent an increase in O3 levels from NOx controls. In general, the VNr is negatively correlated with the 386 

PR because a lower PR implies a stronger NOx-saturated regime, which in turn requires more simultaneous 387 

VOC control with NOx. By contrast, a higher PR implies a weaker NOx-saturated or even NOx-limited 388 

regime, which requires less or no simultaneous control of VOCs with NOx. The negative correlation 389 

between VNr and the PR was quantified by the simple linear regression of VNr on PR (Fig. S7). A high 390 

R2 (approximately 0.82) suggested that the VNr originally derived from the RSM can also be 391 

approximately estimated from the PR or oPR. 392 

Figure 10 presents a comparison of the VNr derived from the RSM, with the VNr calculated based 393 

on the oPR, estimated by the H2O2×HCHO/NO2 indicator and denoted as oVNr. Consistent spatial and 394 

temporal variations were found for VNr and oVNr. Additional simultaneous VOC control is required in 395 

January and in northern and eastern China, and is highly correlated with the low PR (Fig. 7). The domain-396 

averaged oVNr values were estimated to be 0.95, 0.43, 0.38, and 0.47 in January, April, July, and October, 397 

respectively, with the highest and lowest oVNr values noted in January and July, respectively. That is 398 

comparable with VNr in the four study months (i.e., 0.82, 0.46, 0.34, and 0.57, respectively). 399 

The annual-averaged VNr and PR were also calculated for each province in China (Fig. 11). VNr 400 

was negatively correlated with the PR at the provincial level. The northern provinces, namely Heilongjiang, 401 

Xinjiang, and Liaoning required the highest VNr (1-1.2) because their PRs were very low (0.3-0.4). In the 402 

NCP, including the province of Tianjin, Hebei, Henan, Shandong, Shanxi, Inner Mongolia, and Beijing, 403 
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high VNr (0.7-0.9) was required to overcome the stronger NOx-saturated regime (PR = 0.4-0.6). The 404 

coastal provinces, namely Fujian, and Guangdong, and middle-eastern provinces, namely Jiangxi and 405 

Hunan, also demonstrated relatively high PRs (>0.7) and low VNr (<0.3). 406 

3.3.2. PM2.5 407 

Using the responsive FR indicator or its observable oFR indicator can rapidly identify NH3-rich or 408 

NH3-poor conditions, and this information can aid policy-makers in estimating the additional PM2.5 benefit 409 

associated with simultaneous control of NH3 and NOx emissions (ΔC_NH3). As discussed in Section 2.2, 410 

ΔC_NH3 can be calculated from the RSM using the first derivative of the PM2.5 responsive function to 411 

NH3. Therefore, ΔC_NH3 must be strongly associated with the secondary inorganic aerosol (SNA) 412 

concentration, as suggested in Fig. S8, which demonstrates a strong correlation between SNA 413 

concentration and ΔC_NH3. The linear regression with high R2 (>0.71) implies that the ΔC_NH3 can be 414 

approximately calculated based on the SNA concentration. 415 

The ΔC_NH3 estimated based on the SNA concentration (oΔC_NH3; based on the regression 416 

function in Fig. S8) was compared with that derived from the RSM (Fig. 12). The oΔC_NH3 typically 417 

captured the spatial and temporal variation of ΔC_NH3, suggesting large benefits in January and October, 418 

particularly in eastern China and the Sichuan Basin. The domain-averaged ΔC_NH3 values were 419 

approximately 0.31, 0.22, 0.16, and 0.38 µg m-3 PM2.5 per 10 % NH3 reduction in January, April, July, and 420 

October respectively. In April and July, oΔC_NH3 presented consistent results approximately 0.21 and 421 

0.16 µg m-3 PM2.5, respectively, per 10 % NH3 reduction, but slightly underestimated the benefits in 422 

January and October (0.24 and 0.22 µg m-3 PM2.5, respectively, per 10 % NH3 reduction). 423 

At the annual level, ΔC_NH3 was compared with the population-weighted PM2.5 concentration in 424 

each province (Fig. 13). ΔC_NH3 ranged from 2 to 12 µg m-3 PM2.5 per 10 % NH3 reduction. In addition, 425 

the provinces with higher PM2.5 exposure exhibited additional benefits from NH3 reductions (i.e., high 426 
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ΔC_NH3), particularly in Hunan, Shandong, Tianjin, Jiangxi, Anhui, Henan, and Hubei where ΔC_NH3 427 

was > 8 µg m-3 PM2.5 per 10 % NH3 reduction. These benefits from simultaneous NH3 control were 428 

substantial enough to be considered in these regions for achieving the national ambient PM2.5 target (35 429 

µg m-3). 430 

3.3.3. Cobenefits of NOx and VOC control in reducing O3 and PM2.5 431 

NOx and VOCs are major precursors for O3 and PM2.5, and effectively controlling their emissions 432 

can lead to cobenefits in reducing O3 and PM2.5. The PR results suggest strong NOx-saturated regimes in 433 

northern and eastern China including key regions such as the Sichuan Basin, YRD, and PRD, where 434 

simultaneous VOC control with a certain VOC-to-NOx ratio is required to prevent increases in O3 levels 435 

from the NOx controls. PM2.5 senstivity to NOx can be negative under a strong NOx-saturated regime; this 436 

effect is not as significant as it is for O3 (Fig. 3). We quantified the nonlinearity of PM2.5 sensitivity to NOx 437 

by using the same PR concept but for PM2.5 response (Text S2); Fig. S9 presents the spatial distribution 438 

of the PR to identify PM2.5 sensitivity to NOx emission in the four study months. The PR values for PM2.5 439 

were > 1 in April, July, and October in all grid cells across China, suggesting that NOx control is always 440 

beneficial for PM2.5 reduction during these months. Even in January, the PR for PM2.5 (0.4-0.8 in eastern 441 

and northern China) remains larger than that for O3 (0.2-0.6 in eastern and northern China), implying that 442 

the suggested VNr for O3 was high enough to overcome the potential limitations on PM2.5 reduction from 443 

NOx control.  444 

To explore the cobenefits of reducing O3 and PM2.5 after simultaneous control of NOx and VOCs, 445 

we investigated the effectiveness of six control pathways with various VOC-to-NOx ratios including 0, 446 

0.2, 0.4, 0.6, 0.8 and 1.0 (Fig. 14). In general, O3 and PM2.5 concentrations can be reduced in all months 447 

through simultaneous control of NOx and VOC emissions, although different VNr and control levels are 448 

required in different months. In January (under strongly NOx-saturated conditions), reductions in PM2.5 449 
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and O3 require VOC emission controls in addition to NOx controls to prevent potential disbenefits 450 

associated with the nonlinear chemistry. The smaller VNr required for PM2.5 (~0.4) than for O3 (~1.0) in 451 

this case might be associated with the smaller PR for PM2.5 as well as the additional benefit of VOC 452 

controls in reducing secondary organic aerosols. Apparently, a larger VNr control ratio and greater 453 

emission control is required in January compared with other months.  In Fig. 14(a), only one pathway can 454 

achieve simultaneous reduction in O3 and PM2.5 concentrations (i.e., the pathway with VNr equal to 1 and 455 

at the far end of the pathway, with reduction rates > 80%). In April and October, simultaneous VOC 456 

controls were still required for O3 (VNr = 0.2-0.6) but not for PM2.5. In July when NOx-limited regime 457 

was dominant, the NOx control was critical because the VOC controls had little effect on either O3 or 458 

PM2.5. At the annual level, the simultaneous VOC controls (40 % of the NOx controls) led to cobenefits in 459 

reducing both O3 and PM2.5 at the national level. However, VNr varied significantly in different seasons, 460 

suggesting that considering the seasonality of O3 and PM2.5 chemistry is necessary for design of a season-461 

specific control strategy. 462 

4. Summary and conclusion 463 

Compared with conducting multiple CTM simulations, the indicator method proved more efficient 464 

in identifying the chemical regime in the current scenarios. However, the traditional indicators are not as 465 

useful as the RSM-based PR and FR indicators for policy-makers to infer feasible emission reduction 466 

paths. Therefore, this study quantified the relationship between RSM-based and traditional-observable 467 

indicators and developed new observable response indicators, the oPR and oFR, which can be used to 468 

quantify the nonlinearity of O3 and PM2.5 response to precursor emissions. Similar to the traditional 469 

indicators, the oPR and oFR can be easily calculated using a combination of ambient concentrations of 470 

certain chemical species obtained from surface-monitored observations, modeling simulations, or even 471 

satellite retrievals. In addition, the observable responsive indicators can not only rapidly identify the 472 
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chemical regime but also provide policy-makers with useful information, such as simultaneous VOC 473 

controls to prevent increases in O3 levels from NOx controls under the NOx-saturated regime (i.e., VNr), 474 

as well as the additional benefit of simultaneously reducing NH3 alongside NOx control in PM2.5 reductions 475 

(i.e., ∆C_NH3). Since the indicators are developed from simulations with spatially uniform emission 476 

controls across the country, they are especially useful for providing quick estimates of the potential 477 

benefits or risks from uniform controls. These estimates can also provide a basis to design more localized 478 

control strategies for particular regions. 479 

This study proposed a new O3-chemistry indicator, namely H2O2×HCHO/NO2, and PM2.5-chemistry 480 

indicator, namely the TAR, both of which exhibited the highest success rates among all the indicators. 481 

This study also suggested that the log-linear combinations of baseline H2O2, HCHO, and NO2 482 

concentrations could provide an approximate PR to quantify O3 chemistry spatially and temporally. 483 

Similarly, the log-linear combination of baseline concentrations of ammonia gas, nitric acid gas, 484 

particulate ammonium, sulfate and nitrate can be used to approximately estimate the FR for PM2.5 485 

chemistry. The VNr was highly correlated with the PR, suggesting that a stronger NOx-saturated regime 486 

requires greater VOC control accompanied by NOx control. The positive correlation between ΔC_NH3 487 

and the population-weighted PM2.5 concentration suggested that a province with high PM2.5 exposure can 488 

gain greater benefits from NH3 reduction. Finally, simultaneous control of NOx and VOC could reduce 489 

both O3 and PM2.5 throughout the year, and an effective control pathway (VNr = 0.4) could lead to the 490 

cobenefits of reducing both O3 and PM2.5. However, VNr varied significantly among the seasons and 491 

provinces, suggesting the necessity of considering the seasonality of chemistry and of designing a more 492 

localized control strategy for each province. We note that the discrepency between the observable indicator 493 

and the responsive indicator might also be influcenced by uncertainties in the chemical mechanism of 494 

CMAQ as well as prediction errors of the pf-RSM. The new indicators were designed based on the existing 495 
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chemical mechanism, and the transition values might be refined in the future as our understanding of 496 

atmospheric chemical processes improves.  497 

In conclusion, the two unique aspects of this study are as follows. First, quantification of the 498 

correlation of observable indicators with responsive indicators (Fig. 5 and 7) implied that the traditional 499 

observable indicators, based on monitored or satellite-retrieved concentrations, can be used to quantify 500 

the nonlinearity of PM2.5 and O3 to precursor emission and provide useful policy implications. Second, 501 

this study reported a promising method for efficiently establishing PM2.5- and O3- responsive functions to 502 

precursors for traditional responsive or reduced-form modeling studies. This study suggested that the PR 503 

or FR (a combination of coefficients in the polynomial functions in the pf-RSM) can be approximately 504 

estimated using the ambient concentration of certain chemical species. Similarly, all coefficients in 505 

polynomial functions can be calculated based on a set of ambient concentrations of certain chemical 506 

species. The simple log-linear regression method used in this study demonstrated the possibility that even 507 

in the presence of uncertainties in prediction, more advanced data analytics technologies such as deep 508 

learning may improve performance in future. 509 
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 681 

Table 1. Terms in the pf-RSM design for O3 and PM2.5 682 

Term O3 PM2.5 

1 NOx
5 VOC 

2 NOx
4 NH3 

3 NOx
3 NH3

2 

4 NOx
2 NH3

3 

5 NOx SO2 

6 VOC VOC2 

7 VOC2 NOxVOC 

8 VOC3 NOx
2VOC 

9 NOxVOC NOx
4VOC 

10 NOxVOC3 NOxNH3 

11 NOx
5VOC NOx 

12 NOx
2VOC NOx

2 

13 SO2 NOx
3 

14 NH3 NOx
4 

 683 

  684 



29 
 

 685 

Table 2. Summary of observable indicators and their performances in predicting O3 chemistry 686 

Indicator  success rate at TV (%)  success rate at TV’ (%) 

 TV* Jan Apr Jul Oct ANN TV’ Jan Apr Jul Oct ANN 

H2O2/HNO3 0.2 68.8 74.9 89.0 60.8 73.4 0.3 77.9 83.0 90.4 70.6 80.5 

H2O2/(O3+NO2) 0.02 81.1 41.9 85.4 57.4 66.4 0.005 69.2 73.3 88.8 53.3 71.1 

NOy 5 38.9 47.8 87.8 40.9 53.8 - - - - - - 
O3/NOx 15 56.5 75.8 58.8 71.7 65.7 - - - - - - 
O3/NOy 7 60.7 65.8 23.3 68.2 54.5 - - - - - - 
O3/NOz 7 43.5 75.0 76.4 67.0 65.5 - - - - - - 
HCHO/NOy 0.28 83.9 32.5 19.4 50.9 46.7 0.1 66.7 77.7 86.3 75.6 76.6 

HCHO/NO2 1 87.3 49.7 27.4 73.8 59.6 0.5 75.7 77.2 69.1 82.2 76.1 

H2O2×HCHO/NO2 - - - - - - 0.3 92.3 81.6 89.5 86.0 87.3 

* TV- transition value as summaried in Zhang et al (2009); TV’ - transition value proposed in this study 687 

 688 

  689 
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 690 

Table 3. Summary of observable indicators and their performances in predicting PM2.5 chemistry 691 

Indicator  success rate (%) 

 TV Jan Apr Jul Oct ANN 

Gas ratio (GR) 1* 51.7 59.3 69.6 41.7 55.6 

Adjusted Gas ratio (AdjGR) 1* 81.8 73.3 74.0 67.5 74.1 

Total Ammonia Ratio (TAR) 10** 86.2 77.5 80.6 74.0 79.6 

* TV- transition value as proposed in Zhang et al (2009); 692 

** TV- transition value as proposed in this study 693 
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 696 

Figure 1. Flow of observable response indicator development and application   697 
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 698 

 699 

Figure 2. Simulation domain over mainland China (27 × 27-km2 resolution, 182 × 232 grid cells). The 700 

31 provinces are BJ-Beijing; TJ-Tianjin; HEB- Hebei; SX-Shanxi; IM-Inner Mongolia; LN- Liaoning; 701 

JL- Jilin; HLJ-Helongjiang; SH- Shanghai; JS-Jiangsu; ZJ-Zhejiang; AH- Anhui; FJ- Fujian; JX- 702 

Jiangxi; SD- Shandong; HEN- Henan; HUB-Hubei; HUN- Hunan; GD-Guangdong; GX- Guangxi; HN-703 

Hainan; CQ- Chongqing; SC- Sichuan; GZ-Guizhou; YN- Yunnan; TB- Tibet; SHX-Shaanxi; GS-704 

Gansu; QH-Qinghai; NX- Ningxia; and XJ-Xinjiang) 705 
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 PM2.5: SO2(x) vs NH3(y) PM2.5: NOX(x) vs VOC(y) PM2.5: NOX(x) vs NH3 (y) O3: NOX(x) vs VOC(y) 
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Figure 3. Isopleth of population-weighted PM2.5 and daytime O3 to precursor emission change in 707 

different months. (The x- and y- axes represent precursor emission rates with a baseline of 1, applied to 708 

all grid cells in China; background colors represent the population-weighted PM2.5 and daytime O3 709 

concentrations in China, with units of µg m-3 for PM2.5 and ppb for O3)  710 
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NO2 

 

Transition 

value =1 
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Figure 4. Performance of observable indicators in predicting O3 chemistry. The x-axis represents the PR 711 

values where the transition value is 1, and the y-axis represents the observable indicators. The blue dots 712 

represent the grids where O3 chemistry is successfully predicted by the observable indicator; the red dots 713 

represent the grids where the observable indicator fails to predict O3 chemistry. The numbers in the four 714 

corners represent the grid number in each section; the number in July is much lower than those in the 715 

other months because most grids are located at the NOx-limited regime with PR > 2 in July. 716 
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Indicator Jan Apr Jul Oct 

(a) Gas 

ratio (GR) 
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Adjusted 
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(c) Total 
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Figure 5. Performance of observable indicators in predicting PM2.5 chemistry. The x-axis represents the 718 

FR values where the transition value is 1, and the y-axis represents the observable indicators. The blue 719 

dots represent the grids where PM2.5 chemistry is successfully predicted by the observable indicator; the 720 

red dots represent the grids where the observable indicator fails to predict PM2.5 chemistry. The numbers 721 

in the four corners represent the grid number in each section; the number in January is much lower than 722 

those in the other months because most grids are located at the NH3-poor condition with FR>2 in 723 

January. 724 
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Figure 6. Development of observable responsive indicators for O3 chemistry based on log-linear 726 

regressions between observable indicators and the PR.727 
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 (a) Peak Ratio (PR) (b) Observable Peak Ratio (oPR) 
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Figure 7. Comparison of the PR derived from the RSM with that calculated from concentrations for O3 728 

chemistry. The oPR was estimated based on H2O2×HCHO/NO2. 729 
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 730 

Figure 8. Development of observable responsive indicators for PM2.5 chemistry based on log-linear 731 

regressions between observable indicators and the FR732 
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 (a) Flex Ratio (FR) (b) Observable Flex Ratio (oFR) 
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Figure 9. Comparison of the FR derived from the RSM with that calculated from concentrations for 733 

PM2.5 chemistry. The oPR was estimated based on TAR.  734 
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Figure 10. Comparison of VNr with oVNr. 735 

736 
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Figure 11. Comparison of the annual-averaged PR with VNr in each province in China 738 
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Figure 12. Comparion of the benefit in reducing PM2.5 from simultaneous NH3 reduction (∆C_NH3) 741 

with that calculated from concentrations (o∆C_NH3)  742 
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Figure 13. Comparison of annual-averaged benefit in reducing PM2.5 from simultaneous NH3 reduction 745 

(∆C_NH3) and population-weighted PM2.5 concentration in each province in China  746 
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Figure 14. Control effectiveness with different NOx and VOC ratios in reducing population-weighted 748 

PM2.5 and O3 concentrations (in µg m-3) in China (NOx is from no control to 80 % reduction) 749 


