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ABSTRACT 
A five-year Clean Air Action Plan was implemented in 2013 to reduce air pollutant emissions and improve 

ambient air quality in Beijing. Assessments of this Action Plan is an essential part of the decision-making 

process to review the efficacy of the Plan and to develop new policies. Both statistical and chemical 

transport modelling were applied to assess the efficacy of this Action Plan. However, inherent uncertainties 25 

in these methods mean that new and independent methods are required to support the assessment process. 

Here, we improved a novel machine learning-based random forest technique to quantify the effectiveness 

of Beijing’s Acton Plan by decoupling the impact of meteorology on ambient air quality. Our results 

demonstrate that meteorological conditions have an important impact on the year to year variations in 

ambient air quality. Further analysis show that the favorable meteorological conditions in winter 2017 30 

contributed to a lower PM2.5 mass concentration (58 µg m-3) than predicted from the random forest model 

(61 µg m-3), which is higher than the target of the Plan (2017 annual PM2.5 < 60 µg m-3). However, over the 

whole period (2013 to 2017), impact of meteorological conditions on the trend of ambient air quality are 

small. It is the primary emission control, because of the Action Plan, that has led to the significant reduction 

in PM2.5, PM10, NO2, SO2 and CO from 2013 to 2017, which are approximately 34%, 24%, 17%, 68%, and 35 

33% after meteorological correction. The marked decrease in PM2.5 and SO2 is largely attributable to a 

reduction in coal combustion. Our results indicate that the Action Plan is highly effective in reducing the 

primary pollution emissions and improving air quality in Beijing. The Action Plan offers a successful 

example for developing air quality policies in other regions of China and other developing countries.  

 40 
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1. INTRODUCTION 

In recent decades, China has achieved rapid economic growth and become the world’s second largest 

economy. However, it has paid a high price in the form of serious air pollution problems caused by the 

rapid industrialization and urbanization associated with its fast economic growth (Lelieveld et al., 45 

2015;Zhang et al., 2012;Guan et al., 2016). According to the World Bank, air pollution costs China’s 

economy $159 billion (~9.9 % of GDP equivalent) in welfare losses and was associated with 1.6 million 

deaths in China in 2013 (Xia et al., 2016;World Bank and IHME, 2016). Accordingly, air pollution has 

been receiving much attention from both the public and policymakers in China, especially in Beijing - the 
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capital of China with around 22 million inhabitants- which has suffered extremely high levels of air 50 

pollutants (Rohde and Muller, 2015;Guo et al., 2013;Zhu et al., 2012).  To tackle air pollution problems, 

China’s State Council released the action plan in 2013 which set new targets to reduce the concentration of 

air pollutants across China (CSC, 2013). Within the plan, a series of policies, control and action plans with 

a focus on Beijing-Tianjin-Heibei, the Yangtze River Delta and the Pearl River Delta regions were 

proposed. To implement the national Action Plan and further improve air quality, Beijing Municipal 55 

Government (BMG) formulated and released the “Beijing 2013-2017 Clean Air Action Plan” (the “Action 

Plan”), which set a target for the mean concentration of fine particles (PM2.5, particulate matter with 

aerodynamic diameter less than 2.5 µm) to be below 60 µg m-3 by 2017 (BMG, 2013). Since then, the five-

year period of 2013-2017 has seen the implementation of numerous regulations and policies in Beijing. 

It is of great interest to the government, policymakers and the general public to know whether the Action 60 

Plan is working to meet the set targets. Research in this area is often termed as air quality accountability 

study (HEI, 2003;Henneman et al., 2017;Cheng et al., 2018). This is highly challenging because the actions 

taken to reduce the air pollutants as well as the meteorological conditions affect the air quality levels during 

a particular period (Henneman et al., 2017;Cheng et al., 2018;Liu et al., 2017;Grange et al., 2018). 

Therefore, it is essential to decouple the meteorological impact from ambient air quality data to see the real 65 

benefits in air quality by different actions.  

Chemical transport models are widely used to evaluate the response of air quality to emission control 

policies (Wang et al., 2014;Daskalakis et al., 2016;Souri et al., 2016). However, there are major 

uncertainties in emission inventories and in the models themselves, which inevitably affect the outputs of 

chemical transport models (Li et al., 2017;Gao et al., 2018). Statistical analysis of ambient air quality data 70 

is another commonly used method to decouple the meteorological effects on air quality (Henneman et al., 

2017;Liang et al., 2015), including Kolmogorov-Zurbenko (KZ) filter model and deep neural network 

(Wise and Comrie, 2005;Comrie, 1997;Eskridge et al., 1997;Hogrefe et al., 2003;Gardner and Dorling, 

2001). But they usually gave a poor fitting, suggesting a poor performance of the KZ filter model, or did 

not allow us to investigate the effect of input variables in neural network models (therefore it is referred as 75 

a “black- box” model) (Gardner and Dorling, 2001;Henneman et al., 2015). More recently, new approaches 

based on classification trees are being developed, which are suitable for air quality weather detrending, 

including the boosted regression trees (BRT) and random forest (RF) algorithms (Carslaw and Taylor, 

2009;Grange et al., 2018). These machine learning based techniques have a better performance compared 

to the traditional statistical and air quality models by reducing variance/bias and error in high dimensional 80 

data sets (Grange et al., 2018; Zhan et al., 2018a,b). However, similar to the deep learning algorithms such 

as neural networks, it is hard to interpret the working mechanism inside these models and as well as the 

results. Recent published R-packages can partly explain and visualise random forest models such as the 

importance of input variables and their interactions (Liaw and Wiener, 2018;Paluszynska, 2017).    

Here, we developed a novel machine learning technique based upon the random forest algorithm and the 85 

latest R-packages to quantify the role of meteorological conditions in air quality thus evaluate the 

effectiveness of the Action Plan in reducing air pollution levels in Beijing. The results were compared with 

the latest emission inventory as well as results from previous study which used a chemical transport model 

- the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) model (Wong 

et al., 2012;Xiu and Pleim, 2001). 90 

2. MATERIALS AND METHODS 

2.1 Data Sources 

Hourly air quality data for six key air pollutants (PM2.5, PM10, NO2, SO2, O3, and CO) was collected across 

12 national air quality monitoring stations in Beijing. Hourly meteorological data including wind speed 

(ws), wind direction (wd), temperature (temp), relative humidity (RH) and pressure (press.) recorded at 95 
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Beijing International Airport were downloaded using the “worldMet”- R package (Carslaw, 2017b). Data 

was analyzed in R Studio with a series of packages, including the “openair”, “normalweatherr”, and 

“randomForestExplainer” (Liaw and Wiener, 2018;Carslaw and Ropkins, 2012;Carslaw, 

2017a;Paluszynska, 2017). 

2.2 Modelling 100 

Figure 1 shows a conceptual diagram of the data modelling and analysis which consists of three steps: 

1) Random forest (RF) model development:  

A decision tree-based random forest regression model describes the relationship between hourly 

concentrations of an air pollutant and it predictor variables (including time variation such as month 1 to 12, 

day of the year from 1 to 365 and hour of a day from 0 to 23, and meteorological parameters such as 105 

temperature, pressure, and relative humidity). The RF regression model is an ensemble-model which 

consists of hundreds of individual decision tree models.  

 

As shown in Figure 1, we firstly construct the RF model from a training data set (e.g., 70% of the all data 

available) of observed concentrations of a pollutant and its predictor variables and then validate the model 110 

by unseen data sets (testing data sets).  

 

The original data sets contain hourly concentration of a particular air pollutant and its predictor variables 

that include time variables (ttrend, the day of the year (from day 1 to 365), week/weekend (Monday to 

Sunday), hour (0 to 23)) and meteorological parameters (wind speed, wind direction, pressure, temperature, 115 

and relative humidity). These time variables represent effects upon concentrations of air pollution by 

diurnal, weekday/weekend day and seasonal cycles and ttrend
 represents the trend in time which captures the 

long-term change of air pollutant due to changes in policies/regulations, which was calculated as:  

𝑡𝑡𝑟𝑒𝑛𝑑 = 𝑦𝑒𝑎𝑟𝑖 +  
𝑡𝐽𝐷−1

𝑁𝑖
+  

𝑡𝐻

24𝑁𝑖
  

where, Ni is the number of days in a year i, tH: diurnal hour time (0-23); tJD: day of the year (1-365) (Carslaw 120 

and Taylor, 2009).  

The data sets were randomly divided into two data sets with a fraction of 0.7: 1) a training data set to 

construct the random forest model and 2) a testing data set to test the model performance for unseen data 

sets. The model is defined as a good performance if the correlations between observed and predicted values 

for both training and testing data sets are high (r2 >0.8). 125 

 

In the construction of a RF model, the bagging algorithm (which uses bootstrap aggregating) randomly 

sample observations and their predictor variables with replacement from a training data set. A single 

regression decision tree is grown in different decision rules based on the best fitting between the observed 

concentrations of a pollutant and their predictor variables. The predictor variables are selected randomly to 130 

gives the best split for each tree node. The hourly predicted concentrations of a pollutant are given by the 

final decision as the outcome of the weighted average of all individual decision tree. By averaging all 

predictions from bootstrap samples, bagging process decreases variance, thus helping the model to avoid 

over-fitting. To validate the model for unseen data sets, a test data set which represents 30% of entire data 

sets is input into the random forest model which has been constructed from training data sets. The 135 

performance, validation and explanation of the models are supplied in details in the section S3, Figure S1-

S5. 

 

2) Weather normalisation:  

A weather normalization technique predicts the concentration of an air pollutant at a specific measured time 140 

point but with various meteorological conditions (termed as “weather normalised concentration”). 

Meteorological normalization technique was firstly introduced by Grange et al. (2018). Both time variable 

(month, hour) and meteorological parameters, except the trend variable were re-sampled randomly and was 

added into the random forest model as input variables to predict the concentration of a pollutant (Grange et 
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al., 2018;Grange and Carslaw, 2019). The final concentration of that pollutant, referred hereafter as 145 

meteorological normalised concentration, is by aggregating 1000 predictions produced from the RF model. 

By this way, the model results in a predicted concentration of pollutant by normalization of the impact of 

seasonal and weather variations. However, it is unable to investigate the seasonal variation of trends for a 

comparison with the trend of primary emissions. Therefore, we enhanced the meteorological normalization 

procedure.   150 

 

In our algorithm, only weather data (MET data) sets were re-sampled. We also enhanced the code to re-

sample the MET data for a long term period rather than MET data during the conducted study. In particular, 

thirty-year MET in Beijing (1988-2017) was used to enable a better representation of average 

meteorological conditions. MET data variables at a specific selected hour of a particular day in the input 155 

data sets was replaced randomly by the MET data at that hour for a period of 2 weeks before and after that 

selected data in the 30 year MET data set (1988-2017).  For example, the MET data at 8:00 15/01/2015 

could be randomly replaced by the MET data at 8:00 am in any date from 1st to 30th January of any year in 

1988-2017. 

 160 

3) Theil-Sen regression:  
Theil-Sen regression technique estimates the concentration of an air pollutant after meteorological 

normalization to calculate their long-term trends. The Theil-Sen approach, which computes the slopes of 

all possible pairs of pollutant concentrations and takes the median value, has been commonly used for long-

term trend analysis over recent years. By selecting the median of the slopes, the Theil-Sen estimator gives 165 

us more accurate confidence intervals even with non-normally distributed data and non-constant error 

variance (Sen, 1968). The Theil-Sen function is provided via the “openair” package in R. 

 

3. RESULTS AND DISCUSSIONS 

3.1 Observed Levels of Air Pollution in Beijing During 2013-2017 170 

Annual concentration of PM2.5 and PM10 in Beijing measured from the 12 national air quality monitoring 

stations declined by 34 and 19 % from 88 and 110 µg m-3 in 2013 to 58 and 89 µg m-3 in 2017, respectively. 

Similarly, the annual mean levels of NO2 and CO decreased by 16 and 33 % from 54 µg m-3 and 1.4 mg m-

3 to 45 µg m-3 and 0.9 mg m-3 while the annual concentration of SO2 showed a dramatic drop by 68 % from 

23 µg m-3 in 2013 to 8.0 µg m-3 in 2017. Along with the decrease of annual mean concentration, the number 175 

of haze days (defined as PM2.5 > 75 µg m-3 here) also decreased (Figure S6).  These results confirm a 

significant improvement of air quality and that Beijing officially achieved its PM2.5 target under the Action 

Plan (annual average PM2.5 target for Beijing is 60 µg m-3 in 2017).  On the other hand, the annual mean 

concentration of PM2.5 is still substantially higher than the China’s national ambient air quality standard 

(NAAQS-II) of 35 µg m-3 (Table S1) and the WHO Guideline of 10 µg m-3. While PM10, PM2.5, SO2, NO2 180 

and CO showed a decreasing trend, the annual average concentration of O3 increased slightly by 4.9 % from 

58 µg m-3 in 2013 to 61 µg m-3 in 2017.  The number of days exceeding NAAQS-II standards for O3-8h 

averages (160 µg m-3) during the period 2013-2017 was 329, accounting for 18 % of total days.  

 

3.2  Air Quality Trends After Weather Normalization 185 

A key aspect in evaluating the effectiveness of air quality policies is to quantify the impact of emission 

reduction and meteorological conditions on air quality (Carslaw and Taylor, 2009; Henneman et al., 2017), 

the key factors regulating air quality. By applying a random forest algorithm, we decoupled the effect of 

meteorological condition to show the normalized air quality parameters – under the condition of the 30-

year average (1988-2017) meteorological conditions (Figure 2). The temporal variations of ambient 190 

concentrations of monthly average PM2.5, PM10, CO, and NO2 do not offer a clear trend from 2013 to 2017 

because of the spikes in the winters. However, after the weather normalization, we can clearly see the 

decreasing true trend (Figure 2). The trends of the normalized air quality parameters represent the effects 

of emission control and, in some cases, associated chemical processes (for example, for ozone, PM2.5, PM10). 
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SO2 showed a dramatic decrease while ozone increased year by year (Figure 2). The normalized annual 195 

average levels of PM2.5, PM10, SO2, NO2, and CO decreased by 7.4, 7.6, 3.1, 2.5, and 94 µg m-3 year-1, 

respectively, whereas the level of O3 increased by 1.0 µg m-3 year-1.  

 

Table 1 compares the trends of air pollutants before and after normalization (the meteorological conditions 

were randomly selected in the model for the past 30 years (1988-2017)). The annual average concentration 200 

of fine particles (PM2.5) after weather normalization was 61 µg m-3 in 2017, which was higher than their 

observed level of 58 µg m-3 by about 5.2%. This suggests that Beijing would have missed its PM2.5 target 

of 60 µg m-3 if not for the favorable meteorological conditions in winter 2017 and the emission reduction 

contributed to 10 out of the 13 µg m-3 (77%) PM2.5 reduction (71 to 58 µg m-3) from 2016 to 2017. Overall, 

the emission control led to a 34%, 24%, 17%, 68%, and 33% reduction in normalized mass concentration 205 

of PM2.5, PM10, NO2, SO2 and CO from 2013 to 2017 (Table 1).  

When meteorological conditions were randomly selected from 2013-2017 (instead of 1998-2017) in the RF 

model, the normalised level of PM2.5 in 2017 was 60 µg m-3. This indicates that our modelling results are 

robust. Additional uncertainty in the meteorological normalised levels of PM2.5 obtained from a random 

forest model is discussed later in Section 3.3. 210 

 
The observed PM2.5 mass concentration reduced by 30 µg m-3 from 2013 to 2017, whereas the normalized 

values by 32 µg m-3. Similarly, the observed PM10 and SO2 mass concentration reduced by 30 and 15.5 µg 

m-3 from 2013 to 2017, whereas the normalized values by 33 and 17.9 µg m-3. These results suggest that the 

effect of emission reduction would have contributed to an even better improvement in air quality from 2013 215 

to 2017 (except ozone) if not for meteorological variations year by year. 

Figure 3 shows that the Action Plan has been highly effective in improving air quality of Beijing at both 

the urban, suburban and rural sites, particularly for SO2 (16-18 % year-1), CO (8-9 % year-1), and PM2.5 (6-

8 % year--). The Action Plan also led to a decrease in PM10 and NO2 but to a lesser extent than that of CO, 

SO2 and PM2.5, indicating that PM10 and NO2 were significantly affected by other less well controlled 220 

sources. For example, Figure 2 suggested that the high levels of PM10 in spring were mostly affected by the 

frequent Asian dust events. Urban sites showed a bigger decrease in PM2.5, PM10, and SO2 concentrations 

in comparison to the rural and suburban sites.  

3.3 Impact of Meteorological Conditions on PM2.5 levels: A Comparison with Results from 

CMAQ-WRF Model 225 

We compared our RF modelling results with those from an independent method by Cheng et al. (2018) who 

evaluated the de-weathered trend by simulating the monthly average PM2.5 mass concentrations in 2017 by 

the CMAQ model with meteorological conditions of 2013, 2016 and 2017 from the WRF model. The WRF-

CMAQ results show that the annual average PM2.5 concentration of Beijing in 2017 is 61.8 and 62.4 µg m-

3 if under the 2013 and 2016 meteorological conditions, both of which higher than the measured value – 58 230 

µg m-3. Thus, the modelled results are similar to those from the machine learning techniques, which gave a 

weather-normalized PM2.5 mass concentration of 61 µg m-3 in 2017.  

Figure 4 also shows that the PM2.5 concentrations would have been significantly higher in November and 

December in 2017 if under the meteorological conditions of 2016. In contrast, the PM2.5 concentrations 

would have been lower in spring 2017 of under the MET data of 2016 or 30-year normalised MET data. 235 

Since severe PM2.5 pollution and haze events almost always occur in winter in Northern China (Cai et al., 

2017), the more favourable meteorological conditions in the two months contributed appreciably to the 

lower measured annual average PM2.5 level in 2017. It also suggests the monthly levels of PM2.5 strongly 

depend upon the monthly variation of weather.  
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Comparison of model uncertainties from the two methods 240 

Figure 5 compares observation and prediction of monthly concentrations of PM2.5 by the WRF-CMAQ 

model and the RF model. The correlation coefficient r2 between monthly value was 0.82, whereas that from 

the random forest method is >0.99 for both the training and test data sets. The difference between monthly 

observed PM2.5 value and those simulated by the WRF-CMAQ model ranged from 3 to 33.6%, resulting in 

7.8% difference in yearly value. By contrast, the deviation between observed and predicted PM2.5 value 245 

ranges from 0.4-7.9% with an average of 1.5%. In the modelled concentration of PM2.5 from the random 

forest technique, the standard variation of those 1000 predictions by a random forest is 0.35, accounted 

0.6% of PM2.5 concentrations in 2017. 

 

3.4  Evaluating the Effectiveness of the Mitigations Measures in the Clean Air Action Plan 250 

The weather normalised air quality trend (Figure 2) allows us to assess the effectiveness of various policy 

measures to improve air quality to some extent. In particular, the SO2 normalized trend clearly shows that 

the peak concentrations in the winter months decreased from 60 µg m-3 in Jan 2013 to less than 10 µg m-3 

in Dec 2017 (Figure 2). This indicates that the control of emissions from winter-specific sources was highly 

successful in reducing SO2 concentrations. The Multi-resolution Emission Inventory for China (MEIC) 255 

shows a major decrease in SO2 emissions from heating (both industrial and centralized heating) and 

residential (mainly coal combustion) (Figure S7), which is consistent with the trend analyses. On the other 

hand, the “based line” SO2 concentration – the lowest ones in the summer (Figure 2) – also reduced 

somewhat during the same period. The “based line” SO2 mainly came from non-seasonal (winter) sources 

including power plants, industry, and transportation (Figure S7). Overall, the MEIC estimated that SO2 260 

emissions decreased by 71 % from 2013 to 2017 (Figure S7), which is close to the 67% decrease in 

normalized SO2 (Table 1). According to the Beijing Statistical Year Books (2012-2017), coal consumption 

in Beijing declined remarkably by 56 % in 6 years as shown in Figure 6 (Karplus et al., 2018;BMBS, 2013-

2017). The slightly faster decrease in SO2 concentrations relative to coal consumption (Figure S8) was 

likely due to the adoption of clean coal technologies that were enforced by the “Action Plan for 265 

Transformation and Upgrading of Coal Energy Conservation and Emission Reduction (2014-2020)” 

(Karplus et al., 2018;Chang et al., 2016). In summary, energy re-structure, e.g., replacement of coal with 

natural gas (Figure 6; Section S2), is the most effective measure in reducing ambient SO2 pollution in 

Beijing. 

 270 

Coal combustion is not only a major source of SO2, but also an important source of NOx and primary 

particulate matter (PM) in Beijing (Streets and Waldhoff, 2000;Zíková et al., 2016;Lu et al., 2013;Huang 

et al., 2014). Precursor gases such as SO2 and NOx from coal combustion also contribute to secondary 

aerosol formation (Lang et al., 2017). MEIC emission inventory showed that 8.8-29 % of NOx was emitted 

from heating, power and residential activities, primarily associated with coal combustion. As shown in 275 

Figure S8, the normalized NO2 concentration is also decreasing, but much slower than that of SO2. Most 

notably, the level of SO2 dropped rapidly in 2014 but the level of NO2 decrease by a small proportion. The 

different trends between SO2 and NO2 indicate that other sources (e.g. traffic emissions, Figure S8) have a 

greater influence on ambient concentration of NO2 than coal combustion, although the chemistry of the 

NO/NO2/O3 system will tend to “buffer” changes in NO2 causing non-linearity in NOx-NO2 relationships 280 

(Marr and Harley, 2002). NO2 decreased more rapidly from January 2015, particularly by 17%, 18%, 10%, 

15% (Figure 2) in the first six months of 2015, which suggests that emission control measures implemented 

in 2015 were effective, including regulations on spark ignition light vehicles to meet the national fifth phase 

standard, and expanded traffic restrictions to certain vehicles, including banning entry of high polluting and 

non-local vehicles to the city within the sixth ring road during daytime, and phasing out of 1 million old 285 

vehicles (Yang Z, 2015) (Section S2).  
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Normalized PM2.5 decreased faster than NO2, but slower than SO2 (Figure S8). Yearly peak normalized 

PM2.5 concentrations decreased from 2013-14 to 2015-2016 but slighted rebounded in 2016-2017. The 

monthly normalized peak PM2.5 concentration reduced from 115 µg m-3 in Jan 2013 to 60 µg m-3 in Dec 290 

2017. The biggest drop is seen in winter 2017, which decreased by more than half from the peak value in 

winter 2016, suggesting that “no coal zone” policy (Section S2) to reduce pollutant emission from winter 

specific sources (i.e., heating and residential sectors) were highly effective in reducing PM2.5. The 

normalized “based line” concentration – lowest values in each year – also decreased from 71 µg m-3 in 

summer 2013 to 42 µg m-3 in summer 2017. This suggests that non-heating emission sources, such as 295 

industry, industrial heating and power plants also contributed to the decrease in PM2.5 from 2013 to 2017. 

These are broadly consistent with the PM2.5 and SO2 emission trends in MEIC (Figure S7). A small peak in 

both PM2.5 and CO in June/July seen in Figure 2 from 2013 to 2016 attributed to agricultural burning almost 

disappeared over the period of the measurements and simulations in 2017, suggesting the ban on open 

burning is effective. 300 

 

The normalized trend of PM10 is similar to that of PM2.5, except that the rate of decrease is slower. The trend 

agrees well with PM10 primary emission for the summer (Figure S7).  The biggest drop in peak monthly 

PM10 concentration is seen in winter 2017, which decreased by more than half from the peak value in winter 

2016, suggesting that “no coal zone” policy (Section S2) to reduce pollutant emission from winter specific 305 

sources (i.e., heating and residential sectors) were highly effective in reducing PM10, similar to that of PM2.5. 

The rate of decrease of peak PM10 emission is slower than that of PM10, which may suggest an 

underestimation of the decrease in MEIC. The normalized “based line” concentration – lowest values in 

each year (Figure 2) – also decreased from substantially from 2013 to 2017. This indicates that non-heating 

emission sources, such as industry, industrial heating and power plants also contributed to the decrease in 310 

PM10. This is consistent with those trend in MEIC (Figure S7). The peaks in the spring are attributed to 

Asian dust events. 

 

The normalized CO trend shows that the peak CO concentration reduced by approximately 50% from 2013 

to 2017 with the largest drop from 2016 to 2017 (Figure 2). The decreasing trend in total emission of CO 315 

in MEIC is slower from 2015 to 2017, suggesting that the emission may be overestimated in these two 

years. During 2013-2016, the CO level decreased by 26 % and 34 % for both winter and summer 

(“baseline”). Similar to the normalized PM2.5 trend, a small peak of CO concentration occurred in Jun-July 

during 2013-2016, which is likely associated with open biomass burning around the Beijing region. This 

peak disappeared in 2017. A major decrease in normalized CO levels in winter 2017 is attributed to the 320 

“no-coal zone” policy (see below Section S2; Figure S7).  

 

3.5  Implications and Future Perspectives 

We have applied a machine learning based model to successfully identify the key mitigation measures 

contributing to the reduction of air pollutant concentrations in Beijing. However, three challenges remain. 325 

Firstly, it is not always straightforward to link a specific mitigation measure to improvement in air quality 

quantitatively. This is because often more than two measures were implemented at a similar timescale, 

making it difficult to disentangle the impacts. Secondly, we were not able to compare the calculated benefit 

for each mitigation measure with the intended one designed by the government due to a lack of official 

data. If data on the intended benefits are known, this will further enhance the value of this type of study. 330 

Thirdly, the ozone level increased slightly during 2013-2017, especially for the summer periods (Table 1). 

Because ozone is a secondary pollutant, it is not possible to directly compare the trend with emission of 

precursor pollutants. The mechanisms of this increase are complex and out of the scope of this study. 
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Our results confirmed that the “Action Plan” has been highly effective in improving real (normalized) air 335 

quality of Beijing (Figure 3). However, it would have failed to meet the target for annual average PM2.5 

concentrations if not for better than average air pollutant dispersion (meteorological) conditions in 2017. 

This suggests that future target setting should consider meteorological conditions. Major challenges remain 

in reducing the PM2.5 levels to below Beijing’s own targets, as well as China’s national air quality standard 

and WHO guidelines. Another challenge is to reduce the NO2 and O3 levels, which show little decrease or 340 

even an increase from 2013 to 2017. The lessons learned in Beijing thus far may prove beneficial to other 

cities as they develop their own clean air strategies. 
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TABLE LEGENDS: 

 

Table 1: A comparison of the annual average concentrations of air pollutants before and after weather 
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Figure 1: A diagram of long-term trend analysis model 535 

Figure 2: Air quality and primary emissions trends 

Figure 3: Yearly change of air quality in different area of Beijing 

Figure 4: Relative change in monthly PM2.5 levels in 2017 under different weather conditions 
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Table 1.  A comparison of the annual average concentrations of air pollutants before and after weather 

normalization. 

 545 

Pollutants PM2.5 PM10 NO2 SO2 CO O3 

year Obs. Nor. Obs. Nor. Obs. Nor. Obs. Nor. Obs. Nor. Obs. Nor. 

2013 88 93 110 123 54 58 23 26.3 1.4 1.5 58 59 

2014 84 85 119 121 57 56 20 20 1.2 1.3 55 56 

2015 80 75 107 106 50 50 13 13 1.3 1.2 58 59 

2016 71 71 98 101 47 48 10 10 1.1 1.1 63 60 

2017 58 61 90 93 45 48 7.5 8.4 0.9 1.0 60 61 

Note: Obs: observed concentration. Nor.: Concentration after weather normalization. Unit: µg m-3 for all 

pollutants, except CO (mg m-3) 
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 550 
Figure 1: A diagram of long-term trend analysis model 
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Figure 2. Air quality and primary emissions trends. Trends of monthly average air quality parameters 

before and after normalization of weather conditions (first vertical axis), and the primary emissions from 

the MEIC inventory (secondary vertical axis). De-trend means weather normalized. The red line shows the 565 

Theil-Sen trend after weather normalization. The black and blue dot lines represent weather normalized and 

ambient (observed) concentration of air pollutants. The red dot line represents total primary emissions. The 

levels of air pollutants after removing the weather’s effects decreased significantly with median slopes of 

7.2, 5.0, 3.5, 2.4, and 120 µg m-3 year-1 for PM2.5, PM10, SO2, NO2, and CO, respectively, while the level of 

O3 slightly increased by 1.5 µg m-3 year-1. 570 
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Figure 3. Yearly change of air quality in different area of Beijing. This figure presents yearly average 

changes of weather normalized air pollutant concentrations at rural, suburban and urban sites of Beijing 585 

from 2013 to 2017.  Specifically, average yearly changes are for SO2 (-14%, -15%, -16 % year-1- for rural, 

suburban, and urban areas, respectively), CO (-9%, -9%, -8% year-1), PM2.5 (-7%, -8%, -9% year-1), PM10 

(-6%, -5%, -7% year-1), NO2 (-2%, -6%, -5% year-1) and O3 (1%, 0.3%, 2% year-1). The error on the bar 

shows the minimum and maximum yearly change. 
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 615 

Figure 4. Relative change in monthly PM2.5 levels in 2017 under different weather conditions. This figures 

presents relative changes (%) in monthly average modelled PM2.5 concentrations in 2017 if under the 2016 

(red) and 2013 (green) meteorological condition using CMAQ model and under averaged 30 years of 

meteorological condition using the machine learning technique. A positive value indicates PM2.5 

concentration would have been higher in 2017 if under the 2013 or 2016 meteorological conditions. Under 620 

the meteorological condition of 2016, monthly PM2.5concentration in 2017 would have been approximately 

28% lower in January but 53% to 82% higher in November and December. This suggests that 2017 

meteorological conditions were very favourable for better air quality comparing to those in 2016. If under 

the meteorological condition of 2013, monthly PM2.5 concentration in 2017 would have been higher in 

January (22%) and February (36%) but only slightly higher in November (12%) and December (14%). 625 
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Figure 5. Comparison of MRF-CMAQ and RF models’ performance 640 

 

 

 

 
 645 

Figure 6. Primary energy consumption in Beijing. Petroleum consumption remained stable (21-23 million 

tonnes coal equivalent (Mtce)) over the years while natural gas and primary electric power increased 

significantly by 1.8 times and reached 23 Mtce in 2016. Coal consumption declined remarkably by 56.4% 

from 15.7 Mtce in 2013 to 6.8 Mtce in 2016. The proportion of coal in primary energy consumption in 2016 

was 9.8 %, within its target of 10 % set by the Beijing government. 650 
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