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Responses to the reviewers 

 

General response: We thank both reviewers for providing detailed comments. We have 

addressed all the comments made and revised the manuscript accordingly.   

Review 1 

General comment: The major issue I see with this manuscript is in the lack of detail in model 

descriptions, evaluations, and data sources, all of which are lacking throughout the manuscript. 

I’ve laid out specific concerns below. Overall, a general lack of detail makes it difficult to trust 

the results and conclusions about the effectiveness of the various control actions. 

Response: We agree with the reviewer that model description, evaluation and data sources are 

important in a scientific paper.  

 

Exactly for this reason, we evaluated the model extensively in this work. In page 7 of the 

supplement, we have provided two figures (Figure S2 and S3; note that they are now Figure 

S3 and S4) to compare the model predicted variables with observed ones (i.e., for the 30% of 

the dataset that were not used for constructing the model). In page 7 of the supplement, we also 

provided the correlation coefficients between predicted hourly and observed concentrations for 

all the parameters. In Figure S3 and Figure 5, we provided the regression equations as well as 

the correlation coefficients. In page 3, line 109 to 111 of the original main text, we explained 

that “we firstly construct the RF model from a training data set (e.g., 70% of the all data 
available) of observed concentrations of a pollutant and its predictor variables and then validate 

the model by unseen data sets (testing data sets)”. Furthermore, in Figure 5 of the original 

manuscript, we compared the model predicted monthly concentration of PM2.5 by the RF model 

and the WRF-CMAQ model against the observed values. Therefore, the RF model results were 

evaluated against observations.   

 

We have indeed calculated other parameters for model evaluation, for example RMSE, but we 

did not report it because the figures and the r2 already showed the good performance of the 

model. However, we respond in more detail below and have included more parameters in the 

revised manuscript.  

 

Line 161-168: “Table S2, Figure S3-S4 and Section S3 provided information on the 

performance of our model using a number of statistical measures including mean square error 

(MSE)/ root mean square error (RMSE), correlation coefficients (r2), FAC2 (fraction of 

predictions with a factor of two), MB (mean bias), MGE (mean gross error), NMB (normalised 

mean bias), NMGE (normalised mean gross error), COE (Coefficient of Efficiency), IOA 

(Index of Agreement) as suggested in a number of recent papers (Emery et al. 2017, Henneman 

et al., 2017, and Dennis et al., 2010). These results confirm that the model perform very well 

in comparison with traditional statistical methods and air quality models (Henneman et al., 

2015)”. 
 

The reviewer also questioned that there is a lack of detail on the data sources. We have 

explained in the original text that data were collected from the 12 national air quality 

monitoring stations in Beijing. In the revised manuscript, we made this clearer: “Hourly air 



quality data for six key air pollutants (PM2.5, PM10, NO2, SO2, O3, and CO) was collected by 12 

national air quality monitoring stations in Beijing by the China National Environmental 

Monitoring Network (CNEM). Hourly air quality data were downloaded from the CNEM 

website - http://106.37.208.233:20035. Since air quality data are removed from the website on 

a daily basis, data were automatically downloaded to a local computer and combined to form 

the whole dataset for this paper.” All data are now available at 

https://github.com/tuanvvu/Air_Quality_Trend_Analysis (last access 5 June 2019). 

 

With regards to the model descriptions, we did not generate this algorithm from scratch. We 

used the Grange et al. (2018) model as a basis. In the revised manuscript, we emphasized that 

in this work we modified the Grange et al. (2018) algorithm in order to understand the seasonal 

variation of air pollutants. We have revised our method section to make it clearer as below: 

 

 “A weather normalisation technique predicts the concentration of an air pollutant at a specific 

measured time point (e.g., 09:00 on 01/01/2015) with randomly selected meteorological 

conditions. This technique was firstly introduced by Grange et al. (2018). In their method, a 

new dataset of input predictor features including time variables (day of the year, the day of the 

week, hour of the day, but not the Unix time variable) and meteorological parameters (wind 

speed, wind direction, temperature and RH) is firstly generated (i.e., re-sampled) randomly 

from the original observation dataset. For example, for a particular day (e.g., 01/01/2011), the 

model randomly selects the time variables (excluding Unix time) and weather parameters at 

any day from the data set of predictor features during the whole study period. This is repeated 

1,000 times to provide the new input data set for a particular day. The input data set is then fed 

to the random forest model  to predict the concentration of a pollutant at a particular day 

(Grange et al., 2018; Grange and Carslaw, 2019). This gives a total of 1,000 predicted 

concentrations for that day. The final concentration of that pollutant, referred hereafter as 

weather normalised concentration, is calculated by averaging the 1000 predicted 

concentrations. This method normalises the impact of both seasonal and weather variations. 

Therefore, it is unable to investigate the seasonal variation of trends for a comparison with the 

trend of primary emissions. For this reason, we enhanced the meteorological normalisation 

procedure.   

 

In our algorithm, we firstly generated a new input data set of predictor features, which includes 

original time variables and re-sampled weather data (wind speed, wind direction, temperature, 

and relative humidity).  Specifically, weather variables at a specific selected hour of a particular 

day in the input data sets were generated by randomly selecting from the observed weather data 

(i.e., 1988-2017 or 2013-2017) at that particular hour of different dates within a four-week 

period (i.e., 2 weeks before and 2 weeks after that selected date).  For example, the new input 

weather data at 08:00 15/01/2015 are randomly selected from the observed data at 08:00 am 

on any date from 1st to 29th January of any year in 1988-2017 or 2013-2017. The selection 

process was repeated automatically 1,000 times to generate a final input data set. Each of the 

1,000 data was then fed to the random forest model to predict the concentration of a pollutant. 

The 1,000 predicted concentrations were then averaged to calculate the final weather 

normalised concentration for that particular hour, day, and year. This way, unlike Grange et 

al., (2018), we only normalise the weather conditions but not the seasonal and diurnal 

variations. Furthermore, we are able to re-sample observed weather data for a longer period 

(for example, 1998-2017), rather than only the study period. This new approach enables us 

investigate the seasonality of weather normalised concentrations and compare them with 

primary emissions from inventories”. (Line 171-204). 

 

http://106.37.208.233:20035/
https://github.com/tuanvvu/Air_Quality_Trend_Analysis


 

We provided the R code in the following website so that an experienced statistician will be able 

to test the model. https://github.com/tuanvvu/Air_Quality_Trend_Analysis    

 

 

Specific comments and responses  

1. Comment: abstract- “improved a novel machine learning-based random forest technique”. 
How?         

Response: In our study, we enhanced the weather normalisation technique using the random 

forest technique algorithm of Grange et al. (2018). We explained this in detail in the revised 

manuscript. Please see response to general comment above. 

 

We have revised the text in the abstract to “applied machine learning-based random forest 

technique”. (line 30 in the revised manuscript). 

 

2. Comment: Line 75- “But they usually gave a poor fitting, suggesting a poor performance 
of the KZ filter model, or did not allow us to investigate the effect of input variables in 

neural network models (therefore it is referred as a “black- box” model): A poor fit does 
not necessarily reflect a poor performance; performance is dictated by the goals of the 

modeling, whereas fit is a measure of the ability to reproduce training data. 

Response: The reviewer argued that “fit is a measure of the ability to reproduce training data”. 
In our case, “fit” is a measure of the ability to reproduce testing data, rather than the training 

data. The training data are used to train the model. We agree that “performance is dictated by 
the goals of the modelling” but we do not think a model has a good performance if it failed to 

predict the testing data (e.g., observations).  When modelling a time-series data set of 

pollutants, the performance of the model is usually evaluated by MSE (or RMSE) and R2. Other 

parameters are also used, which are now included in a new table - Table S2 in the supplement 

to show the performance of our RF model. 

 

We changed the sentence to “Among these models, the deep neural network models showed a 

better performance (i.e., higher correlation coefficient, lower root mean square error – RMSE) 

but did not allow us to investigate the effect of input variables”. (line 84-87) 

 

 

3. Comment: Line 79: Again, “performance” here is not defined. I recommend 

Response: The reviewer wrote “I recommend” but we did not find what exactly the reviewer 

is recommending.  

 

We explained in the revised manuscript that “performance” represents higher correlation 

coefficient, and lower root mean square error to  make this clearer. 

 

4. Comment: Line 79: Should mention the increased propensity of over-fitting with these 

models for completeness 

Response: In this study, the over-fitting is checked by the testing data sets. The further 

investigation of over-fitting problem from the random forest algorithm is out of the scope of 

this study. We have discussed the over-fitting of decision tree models in the revised main text 

(Line 94-97): “Also, the decision trees models are prone to over-fitting, especially when the 

number of tree nodes is large (Kotsiantis, 2013). An over-fitting problem of a random forest 

model is checked by its performance using an unseen training data set”. 

 

https://github.com/tuanvvu/Air_Quality_Trend_Analysis


5. Comment: Line 110: Recommend showing in Figure 1 that you used 70% of the data for 

training, 30% for model evaluation. In addition, I recommend reading Oreskes et al. (1994) 

for distinction between evaluation/validation on environmental datasets. Oreskes, N., 

Shrader-Frechette, K., & Belitz, K. (1994). Verification, Validation, and Confirmation of 

Numerical Models in the Earth Sciences. Science, 263(5147), 641–646.  

Response: We followed the comment and added the information in the Figure 1. We also 

change the term “validation” into “evaluation”. Thanks for the recommended article. Oreskes 

et al. (1994) discussed the concept of model evaluation and validation in the Earth Sciences. In 

our specific case (regression modelling of a time series data sets), the valuation/evaluation of 

model are on cross-validation based on the out-of-bag technique and evaluation of the predicted 

concentration using a testing data set. Specifically, in the random forest algorithm that we 

applied, the algorithm used the out-of-bag technique: each decision tree is trained using a 

bootstrapped subset of observations. This means that for every tree there is a separate subset 

of observations (called OOB observations) not being used to train that tree. The model uses 

OOB observations as a test set to cross-validate the performance of the random forest. This is 

why we used the testing data set to evaluate the predicted values from models. 

 

6. Comment: Line 95: “press.” has a period, whereas the other abbreviations do not. 
Response: It is changed to pressure. We also removed abbreviations for other parameters.  

 

7. Comment: Line 104: it => its 

Response: We corrected it. 

 

8. Comment: With a holdout analysis, there are many comparisons to be made beyond Rˆ2 
that tell us more about model fit. Many of the studies cited in the introduction include 

detailed evaluations, including with slope, intercept, and root mean square error. These 

should be included at the very least. There may be still other metrics that are informative 

for the evaluation in this particular application. 

Response:  Figure 5 and Figure S3 in the original supplement (now becoming Figure S4) have 

already showed information on some of the information suggested. In the revised manuscript, 

we provided more parameters, including the RMSE and other parameters recommended in the 

papers suggested by the reviewer (comment 17) in the supplement in Table S2.   

 

9. Comment: sample => samples 

Response: We corrected it. 

 

10. Comment: Line 140-150: Was this a separate random forest model from the initial model 

described in the “Random Forest (RF) model development” section?  
Response: No. In the revised manuscript, we re-wrote the section to make this clearer.  In our 

study, we applied the RF which was already built using R codes from Grange et al. (2018). 

Their codes were originally based on the R package “ranger” by Wright et al. (2018) 
(https://github.com/imbs-hl/ranger)” Please see response to general comment above. 
 

11. Comment: Line 152: This statement (“only either data (MET data) sets were re-sampled”) 
directly contradicts the statement in the paragraph above.            

Response: This appears to be a misunderstanding. We have re-written the whole section to 

make this clear. Please see response to general comment above. 

 

12. Comment: Lines 162-8: Please state what you are regressing using the Theil-Sen estimator 

https://github.com/imbs-hl/ranger)


Response: It is the concentration of a pollutant after weather normalisation. The Theil-Sen 

estimator is usually used for long-term trend analysis of a pollutant. We used this estimator to 

find the slope of the concentration trend of a pollutant. We modified the text to make it clear. 

(Line 207-208): “The Theil-Sen regression technique was performed on the concentration of 

air pollutants after meteorological normalisation to investigate the long-term trend of 

pollutants”. 
 

13. Comment: Lines 207-210: The conclusion that this evidence indicates a robust model 

requires more exploration. What about the meteorology from 1998-2013 would result in 

the 2µg m 3 increase in detrended PM2.5 in 2017? 

Response: We are unable to understand the question. We did not mention in any part of our 

model “2µg m 3”. Thus, we cannot directly respond to this comment. We compared the model 

predicted concentrations against the observations (test dataset) in Figure S3 and S4, which 

showed the performance/bias of the model. Matrices for model performance are also shown in 

Table S2.  We’ve revised the section to avoid confusion (Line 279-282): 

 

“When meteorological conditions were randomly selected from 2013-2017 (instead of 1998-

2017) in the RF model, the normalised level of PM2.5 in 2017 was 60 µg m-3, which is 1 µg m-

3 difference to that using 1998-2017 data. This difference is due to the variation of the long-

term climatology (1998-2017) to the 5 year period (2013-2017)” 

 

14. Comment: Line ∼220: This could also indicate that formation/deposition/reaction of 

PM10 and NO2 are affected differently than the other pollutants. From the evidence 

provided, it is difficult to fully embrace the claim that PM10 and NO2 were affected by 

sources that were not controlled. Figure 2 presents no evidence relating to dust events that 

I can see. 

Response: We agree and revised this to: 

“The Action Plan also led to a decrease in PM10 and NO2 but to a lesser extent than that of CO, 

SO2 and PM2.5, indicating that PM10 and NO2 were affected by other less well controlled 

sources or different atmospheric processes”. (Line 292-294).  

 

15. Comment: Line 223: Figure 3 does present differences between urban/rural/suburban, but 

there is no information on how many sites and their location. I recommend including a map 

so that distance to roadways/industries/spatial representativeness can be determined 

Response: Site information is given in Shi et al. (2019). However, to make this clearer, we’ve 
added a figure and a Table S1 in the supplementary to show in detail the different type of sites 

(Figure S1).  

 



 
Figure S1. Map of 12 monitoring stations in Beijing. 

 

We were not sure why the reviewer mentioned industrial sites. There is no industrial site in 

Beijing so we were unable to include this in the figure.  

 

16. Comment: Line 230: This evaluation is difficult to interpret. Are the average WRF-CMAQ 

values calculated in the same grid cells as the monitors? Presumably, CMAQ modeling 

used emissions for year 2017 (state this explicitly if so), what about years 2013 and 2016 

make them reasonable comparison years for detrended PM2.5? 

Response: WRF-CMAQ modelling has been described in Cheng et al. (2018). The average 

WRF-CMAQ values were calculated for the whole of Beijing. Yes, the CMAQ modelling used 

the emissions for year 2017. This is now clarified in the text (Line 119-120): “Monthly 
emission inventories of air pollutants were from Multi-resolution Emission Inventory for China 

(http://www.meicmodel.org/), and for the whole Beijing region”. 
 

The 2013 year was chosen because it is the start-year of the Action Plan. 2016 was chosen to 

see the immediate effect of the 2017 measures in comparison the year before. More detailed 

explanation is given in Cheng et al. (2018). 

 

17. Comment: Line 241-247: For model evaluation, I recommend including the recommended 

statistics from extensive publication on appropriate evaluation approaches like in Emery et 

al. 2017, Henneman et al., 2017, and Dennis et al., 2010. Emery, C., Liu, Z., Russell, A., 

Talat Odman, M., Yarwood, G., & Kumar, N. (2016). Recommendations on Statistics and 

Benchmarks to Assess Photochemical Model Performance. Journal of the Air & Waste 

Management Association. Dennis, R., T. Fox, M. Fuentes, A. Gilliland, S. Hanna, C. 

Hogrefe, J. Irwin, S.T. Rao, R, Scheffe, K. Schere, D.A. Steyn, and A. Venkatram. 2010. 

A framework for evaluating regio- nal-scale numerical photochemical modeling systems. 

J. Environ. Fluid Mech.10:471–89. doi: 10.1007/s10652-009- 9163-2. Henneman, L. R., 

Liu, C., Hu, Y., Mulholland, J. A., & Russell, A. G. (2017). Air quality modeling for 

http://www.meicmodel.org/


accountability research: Operational, dynamic, and diagnostic evaluation. Atmospheric 

Environment, 166(2017), 551–565. 

Response: Thanks for these recommended articles. We provided an additional table (Table S2) 

to include the parameters recommended in these publications.  

 

18. Comment: Line 259: Please define the term “based line” 

Response: The “baseline” of a pollutant (except for ozone) was the defined as the lowest 
concentration of air pollutants in the summer (the summer concentrations) – please see line 

334-336: “On the other hand, the “baseline” SO2 concentration – minimum monthly average 

concentration in the summer (Figure 2) – also reduced somewhat during the same period.” 

 

 

19. Comment: Line 280: This contradicts the statement above that buffered changes in NO2 

are due exclusively to sources that were not controlled 

Response: The sentence was changed to: “The different trends between SO2 and NO2 indicate 

that other sources (e.g. traffic emissions, Figure S9) or atmospheric processes have a greater 

influence on ambient concentration of NO2 than coal combustion. For examples the chemistry 

of the NO/NO2/O3 system will tend to “buffer” changes in NO2 causing non-linearity in NOx-

NO2 relationships.” (Line 356-360).  

 

20. Comment: Line 330: Please elaborate on which data would improve this study. 

Response: We refer to detailed information on the implemented policies such as the start/end 

date of air pollution control actions. It is now included in the main text. (Line 413-415). 

 

21. Comment: Figure 2: I recommend including separate plots for emissions and 

concentrations. Plots with two vertical axes can lead to information manipulation (it is not 

clear, for instance, why an SO2 concentration of 40ppb corresponds to an emissions level 

of 2 kilotons). It would be useful to include correlations between detrended emissions and 

concentrations. Further, I recommend extending all vertical axes to values of 0. 

Response:  

We plotted the figures (see below) as suggested. We can easily replace the figure with the 

following ones. However, we felt that it is harder to compare the observed concentration, 

weather normalised concentration and primary emission in these new figures. Therefore, we 

suggest that it would be better to plot the primary emissions and concentrations in a single 

figure for a comparison.  

 



 



 

The reviewer asked us to include correlations between detrended emissions and concentrations. 

We emphasise here that emissions cannot be detrended. They are based on bottom-up estimates 

which have nothing to do with meteorology. We tried to extend all vertical axes to 0, but they 

make the figure less readable (e.g., the temporal trends are hard to see).   

 

22. Comment: Figures S4 and S5 require more description. What are Variable Importance and 

Variable Interactions? 

Response: This has been added to the description in Figure captions. 

 

23. Comment: Where is the emissions data from? What locations? 

Response: We have added to the revised text: “Monthly emission inventories of air pollutants 

were from Multi-resolution Emission Inventory for China (http://www.meicmodel.org/), and it 

is for the whole Beijing region” (Line 119-120).   The MEIC emission inventory is 

internationally recognized as the leading inventory for China.  

 

24. Comment: I recommend moving much of the information on the regulations from the 

supplement to the main text body. I recommend using consistent language to refer to the 

weather normalised concentrations. At points in the manuscript, figures, and tables, these 

values are referred to as detrended, “Nor.” 

Response: We moved the key information on regulations into the main text. We use the term 

“weather normalised concentration” and change the “Nor.” and “detrend” in Table 1 and Figure 
2 to “model”. 

 

 

 

 

 

  

http://www.meicmodel.org/


Review 2:  

1. Comment: The authors note the use of met data from Beijing Airport. How representative 

is this data of all sites studied? I’m a little concerned this forms an important factor in 

determining the general applicability of the model. As the paper by Grange and Carslaw 

2019 shows, the selection of wind directions, for example, can have significant impact on 

model fidelity if a site is affected by specific geography. 

Response:  
Airport met data are most representative of regional scale meteorology of the whole city. 

Because the meteorological measurements at each site are seriously affected by very local 

influences, it is not meaningful to compare the meteorology with that at the airport. Air 

pollution in the Beijing area is a regional phenomenon (Shi et al. 2019). We found very high 

correlations between air pollutant concentrations measured from 12 monitoring sites (Shi et al. 

2019). 

 

In Grange & Carslaw’s paper, they also used the surface met data from the airport using the 

“worldmet” package. Regarding the selection of wind directions, Grange & Carslaw (2018) 

also noted that “Interestingly, wind direction was often a relatively unimportant variable (Fig. 
4). This may be due to daily wind direction averages not contributing much information gain 

in the model because the aggregation period results in the metric representing atmospheric 

motion rather poorly”. 
 

 

2. Comment: Rather than referring to variables ’such as’, please be specific in all cases. 
Response: It is corrected! 

 

3. Comment: You state that the ’regression model is an ensemble-model which consists of 

hundreds of individual decision tree models’. Please clearly state the number and how 
hyperparameters were derived. 

Response: It is given in the SI (Section 3, Figure S1). The number of trees is 200, the minimum 

size of terminal nodes (Nodesize) is 3 and the variables randomly sampled for splitting (Mtry) 

the decision tree is 4. Mtry can be estimated based on the OOB error (as in the figure below). 

The number of trees and modesize was determined by RMSE and R2. It is found with the tree 

numbers larger than 150 and the nodesize of 3, the RMSE is minimum and stable. A larger 

number of trees and nodesizes lead to little improvement in R value and RMSE, but it 

significantly increases the computation time. Another way we optimize the Mtry and nodesize 

is by a trial and error method, in which we vary the Mtry from 3 to 10 and number of trees 

from 20 to 500 to find the dependence of the error on the values of Mtry or number of trees.  

 
 



4. Comment: You state you used ’e.g. 70% of the all data [correct - of all the data]’. Is this 
an example or is this the actual training portion you used? I think this is clarified later on 

but please refrain from vague statements in describing any model development workflow. 

Response: It is the actual training portion we used. It is now updated in the text. 

 

5. Comment: It is customary to combine a single random sampling strategy with K-folds [e.g. 

5] validation. Has this been used? If not, why? 

Response: No, in our study, we used out-of-bag (OOB) score estimation instead of the K-folds 

for model cross-validation. In the random forest algorithm which we used: each decision tree 

is trained using a bootstrapped subset of observations. This means that for every tree there is a 

separate subset of observations (called OOB observations) not being used to train that tree. The 

model can use OOB observations as a test set to cross-validate the performance of the random 

forest. The learning algorithm compares the observation's true value with the prediction from 

a subset of trees not trained using that observation, and calculates the overall score as a single 

measure of a random forest's performance.  

 

6. Comment: If random sampling, how do you know if using different initial seeds in any 

random number generator leads to better or worse results? I can’t see any code sharing so 

can’t check this - please see a further comment on this. 

Response: We have already considered this and used the function set.seed before running the 

RandomForest function to test the reproducibility. The result is almost the same. The code is 

available on: 

https://github.com/tuanvvu/Air_Quality_Trend_Analysis/blob/master/R/Air_Quality_Weathe

r_Normalised_Trend.R   
 

7. Comment: The authors talk about an ’enhanced’ normalisation procedure. Please explain 
more clearly how this is different from the original paper by Grange et al 2018. I will admit, 

that paper isnt as clear as it could be, but they do provide the model base. As far as I can 

tell, both studies only re-sample weather data. 

Response: The concept of weather normalisation is similar and was introduced by Grange et 

al. (2018). Both studies re-sample the weather data, but we did it in a different way. 

In Grange et al. (2018), both the weather and time predictor features (except the Unix date) 

were randomly generated from the original data set of predictor features as the following code: 
"# Randomly sample observations 
n_rows <- nrow(df) #df is original data set 

index_rows <- sample(1:n_rows, replace = replace) 

# Transform data frame to include sampled variables 

df[variables] <- lapply(df[variables], function(x) x[index_rows])” 
 

It means the seasonal, weekend/week, hour and weather data are also re-sampled. 

In our study, only weather data were re-sampled. The advantage is that we can now see the 

seasonal effects. We revised the text to: 

 

“In our algorithm, we firstly generated a new input data set of predictor features, which includes 
original time variables and re-sampled weather data (wind speed, wind direction, temperature, 

and relative humidity).  Specifically, weather variables at a specific selected hour of a particular 

day in the input data sets were generated by randomly selecting from the observed weather data 

(i.e., 1988-2017 or 2013-2017) at that particular hour of different dates within a four-week 

period (i.e., 2 weeks before and 2 weeks after that selected date).  For example, the new input 

weather data at 08:00 15/01/2015 are randomly selected from the observed data at 08:00 am 

on any date from 1st to 29th January of any year in 1988-2017.” (Line189-196). 

https://github.com/tuanvvu/Air_Quality_Trend_Analysis/blob/master/R/Air_Quality_Weather_Normalised_Trend.R
https://github.com/tuanvvu/Air_Quality_Trend_Analysis/blob/master/R/Air_Quality_Weather_Normalised_Trend.R


 

 

8. Comment: Also there is no discussion of classification into back trajectories, for example, 

or estimated boundary layer heights etc. If these products are not used, how is this study an 

enhancement? 

Response: Thank you for the suggestions. We did add the back trajectories into the model, but 

it did not improve the model’s performance. Therefore, we have not included this in the model. 

We now added a sentence in the Supplement to make this point clearer (Line 107-108, SI). 

 

 We used the hourly data sets as input variables in our study. Estimated hourly boundary layer 

heights from models, e.g., WRF-Chem are highly uncertain. Using such uncertain data will 

cause unpredictable uncertainty in our results. Our RF model performed very well already, with 

existing input variables.  

 

9. Comment: In some ways I struggle to see how section 2 ’weather normalisation’ is 
significantly different from the Grange et al approach. If they are different, they need 

clearly stating why - perhaps even with a visual workflow/table for each - and a comparison 

on findal data products. The title of the paper leads me to believe this is a new technique. 

Response: Please find our response to comment 7. We clarified that we did not create a new 

technique. We applied the random forest model and only enhanced the “weather normalisation 

technique”. However, the key point of this work is that we can now look at applications of the 

method to evaluate the air quality trends in Beijing, including seasonal variations. 

 

10. Comment: line 104 - concentrations of an air pollutant and it[s] predictor variables - please 

correct 

Response: It is corrected. 

 

11. Comment: line 116: ’These time variables’ - do you mean parameters that vary with time 

or the time variable? 

Response: We mean the time variables (features): date of year, hour of the year and 

week/weekend. This is now modified.  

 

12. Comment: line 119 [equation with no label] - what is the significance of year ’i’? Is this 
defined on, say, the Unix epoch? 

Response: Yes, it is. It is corrected to ith year (i from 2013 to 2017).  

 

13.  Comment: line 134: ’To validate the model for unseen data sets, a test data set which 
represents 30% of entire data sets[set] is input into the random forest model which has been 

constructed from training data sets.’ This is a confusing statement. The test and training 
sets refer to both features and predicted variable. Thus, only features are ’input into the 
model’? Please re-phrase this. In fact, I would suggest you consider using the term 

’features’ when referring to variables to which you are fitting the model. 

Response: It is re-phrased in the model evaluation line 145-147: “As shown in Figure 1, the 

whole data sets were randomly divided into: 1) a training data set to construct the random forest 

model and 2) a testing data set to test the model performance for unseen data sets. The training 

data set comprised of 70% of the whole data, with the rest as testing data”. We changed the 

“variable” to “predictor features” as suggested.  

 

14. Comment: line 140: ’A weather normalisation technique predicts the concentration of an 

air pollutant at a specific measured time point but with various meteorological conditions 



(termed as “weather normalised concentration”).’ Do you mean to state that this technique 
predicts the concentrations of an air pollutant as a function of meteorological factors alone? 

Response: It is not so, because it is also a function of the time variables. If a new weather 

condition is inputted to the model, it can predict the concentration of a pollutant in a certain 

time period.  

 

15. Comment: line 142: ’Both time variable (month, hour) and meteorological parameters, 
except the trend variable were re-sampled randomly and was added into the random forest 

model as input variables to predict the concentration of a pollutant’. This is a confusing 
statement when referred to ’adding’. What do you mean by adding? On top of preexisting 

variables? 

Response: “add” here means input. This is now updated: “A weather normalisation technique 

predicts the concentration of an air pollutant at a specific measured time point (e.g., 09:00 on 

01/01/2015) with randomly selected meteorological conditions. This technique was firstly 

introduced by Grange et al. (2018). In their method, a new dataset of input predictor features 

including time variables (day of the year, the day of the week, hour of the day, but not the Unix 

time variable) and meteorological parameters (wind speed, wind direction, temperature and 

RH) is firstly generated (i.e., re-sampled) randomly from the original observation dataset. For 

example, for a particular day (e.g., 01/01/2011), the model randomly selects the time variables 

(excluding Unix time) and weather parameters at any day from the data set of predictor features 

during the whole study period. This is repeated 1,000 times to provide the new input data set 

for a particular day. The input data set is then fed to the random forest model  to predict the 

concentration of a pollutant at a particular day (Grange et al., 2018; Grange and Carslaw, 2019). 

This gives a total of 1,000 predicted concentrations for that day. The final concentration of that 

pollutant, referred hereafter as weather normalised concentration, is calculated by averaging 

the 1000 predicted concentrations.”. (Line 171-184). 

 

16. Comment: Section 3.4 Please explain why, in a few cases, normalised values are higher 

than original. 

Response: As we discussed in Figure 4, if the weather during that month is more favourable 

for the dispersion of air pollutants, the normalised values will be higher than the observed 

concentration.  

  

17. Comment: Section 3.5 ’Our results confirmed that the “Action Plan” has been highly 
effective’. Please define ’highly effective’. 

Response: We’ve updated this to “’Our results confirmed that the “Action Plan” has led to 
major improvement in air quality.” 

  

18. Comment: Code/data availability: The current paper has no statement on this. The authors 

need to meet the current data and code sharing standards provided by Copernicus: 

https://www.atmospheric-chemistry-and-physics.net/about/data_policy.html 

https://peerj.com/articles/cs-86/ Indeed, there are currently many uncertain aspects of this 

study which could be resolved by clear code sharing and documentation. 

Response: They are now available at: https://github.com/tuanvvu/Air_Quality_Trend_Analysis 

 

19. Comment: There are a number of grammatical issues throughout the paper: 

Response: A senior co-author has re-checked the grammar throughout the manuscript.  
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ABSTRACT 24 

A five-year Clean Air Action Plan was implemented in 2013 to reduce air pollutant emissions and 25 

improve ambient air quality in Beijing. Assessments of this Action Plan is an essential part of the 26 

decision-making process to review the efficacy of the Plan and to develop new policies. Both 27 

statistical and chemical transport modelling were have been previosuly applied to assess the 28 

efficacy of this Action Plan. However, inherent uncertainties in these methods mean that a new 29 

and independent methods are required to support the assessment process. Here, we applied a 30 

improve a novel machine learning-based random forest technique to quantify the effectiveness of 31 

Beijing’s Action Plan by decoupling the impact of meteorology on ambient air quality. Our results 32 

demonstrate that meteorological conditions have an important impact on the year to year variations 33 

in ambient air quality. Further analysis show that the favorable meteorological conditions in winter 34 

2017 contributed to a lower PM2.5 mass concentration (58 µg m-3) would have broken the target of 35 

the Plan (2017 annual PM2.5 < 60 µg m-3) were it not for the meteorological conditions in winter 36 

2017 favouring the dispersion of air pollutantsthan predicted from the random forest model (61 µg 37 

m-3), which is higher than the target of the Plan (2017 annual PM2.5 < 60 µg m-3). However, over 38 

the whole period (2013 to 2017), impact of meteorological conditions on the trend of ambient air 39 

quality are small. It is the primary emission controls , because of required by the Action Plan, that 40 

has have led to the significant reductions in PM2.5, PM10, NO2, SO2 and CO from 2013 to 2017, 41 

which are  of approximately 34%, 24%, 17%, 68%, and 33%, respectively, after meteorological 42 

correction. The marked decrease in PM2.5 and SO2 is largely attributable to a reduction in coal 43 

combustion. Our results indicate that the Action Plan is has been highly effective in reducing the 44 

primary pollution emissions and improving air quality in Beijing. The Action Plan offers a 45 
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successful example for developing air quality policies in other regions of China and other 46 

developing countries.  47 

 48 

Keywords: Clean air action plan, Beijing, air quality, emission control, coal combustion 49 

1. INTRODUCTION 50 

In recent decades, China has achieved rapid economic growth and become the world’s second 51 

largest economy. However, it has paid a high price in the form of serious air pollution problems 52 

caused by the rapid industrialization and urbanization associated with its fast economic growth 53 

(Lelieveld et al., 2015; Zhang et al., 2012; Guan et al., 2016). According to the World Bank, air 54 

pollution costs China’s economy $159 billion (~9.9 % of GDP equivalent) in welfare losses and 55 

was associated with 1.6 million deaths in China in 2013 (Xia et al., 2016; World Bank and IHME, 56 

2016). Accordingly, air pollution has been receiving much attention from both the public and 57 

policymakers in China, especially in Beijing - the capital of China with around 22 million 58 

inhabitants- which has suffered extremely high levels of air pollutants (Rohde and Muller, 2015; 59 

Guo et al., 2013; Zhu et al., 2012; Cai et al., 2017).  To tackle air pollution problems, China’s State 60 

Council released the action plan in 2013 which set new targets to reduce the concentration of air 61 

pollutants across China (CSC, 2013). Within the plan, a series of policies, control and action plans 62 

with a focus on Beijing-Tianjin-Heibei, the Yangtze River Delta and the Pearl River Delta regions 63 

were proposed. To implement the national Action Plan and further improve air quality, Beijing 64 

Municipal Government (BMG) formulated and released the “Beijing 2013-2017 Clean Air Action 65 

Plan” (the “Action Plan”), which set a target for the mean concentration of fine particles (PM2.5, 66 

particulate matter with aerodynamic diameter less than 2.5 µm) to be below 60 µg m-3 by 2017 67 
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(BMG, 2013). Since then, the five-year period of 2013-2017 has seen the implementation of 68 

numerous regulations and policies in Beijing. 69 

 70 

It is of great interest to the government, policymakers and the general public to know whether the 71 

Action Plan is working to meet the set targets. Research in this area is often termed as an air quality 72 

accountability study (HEI, 2003; Henneman et al., 2017; Cheng et al., 2018). This is highly 73 

challenging because both the actions taken to reduce the air pollutants as well asand the 74 

meteorological conditions affect the air quality levels during a particular period (Henneman et al., 75 

2017; Cheng et al., 2018; Liu et al., 2017; Grange et al., 2018; Chen et al., 2019). Therefore, it is 76 

essential to decouple the meteorological impact from ambient air quality data to see the real 77 

benefits in air quality by different actions.  78 

 79 

Chemical transport models are used widely to evaluate the response of air quality to emission 80 

control policies (Wang et al., 2014; Daskalakis et al., 2016; Souri et al., 2016; Chen et al., 2019). 81 

However, there are major uncertainties in emission inventories and in the models themselves, 82 

which inevitably affect the outputs of chemical transport models (Li et al., 2017; Gao et al., 2018). 83 

Statistical analysis of ambient air quality data is another commonly used method to decouple the 84 

meteorological effects on air quality (Henneman et al., 2017; Liang et al., 2015), including the 85 

Kolmogorov-Zurbenko (KZ) filter model and deep neural networks (Wise and Comrie, 2005; 86 

Comrie, 1997; Eskridge et al., 1997; Hogrefe et al., 2003; Gardner and Dorling, 2001). Among 87 

these models, the deep neural network models showed a greaterbetter performance (i.e., higher 88 

correlation coefficient, lower root mean square error – RMSE) but But they usually gave a poor 89 
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fitting, suggesting a poor performance of the KZ filter model, or did not allow us to investigate the 90 

effect of input variables in neural network models (therefore it is referred as a “black- box” model) 91 

(Gardner and Dorling, 2001; Henneman et al., 2015). More recently, new approaches based on 92 

regression decisionclassification trees are being developed, which are suitable for air quality 93 

weather detrending, including the boosted regression trees (BRT) and random forest (RF) 94 

algorithms (Carslaw and Taylor, 2009; Grange et al., 2018). TThese machine learning based 95 

techniques have a better performance compared to than the traditional statistical and air quality 96 

models by reducing variance/bias and error in high dimensional data sets (Grange et al., 2018). 97 

However, similar to the deep learning algorithms such asincluding neural networks, it is hard to 98 

interpret the working mechanism inside these models and as well as the results. AlsoIn addition, 99 

the decision trees models are prone to over-fitting, especially when the number of tree nodes is 100 

large (Kotsiantis, 2013). An over-fitting problem of a random forest model is checked by its 101 

performanceability to reproduce observations using an unseen training data set. Recently published 102 

R-packages can partly explain and visualise random forest models such asincluding the importance 103 

of input variables and their interactions (Liaw and Wiener, 2018; Paluszynska, 2017).     104 

 105 

Here, we applieddeveloped a novel machine learning technique based upon the random forest 106 

algorithm and the latest R-packages to quantify the role of meteorological conditions in air quality 107 

and thus evaluate the effectiveness of the Action Plan in reducing air pollution levels in Beijing. 108 

The results were compared with the latest emission inventory as well as results from previous 109 

study which used a chemical transport model - the Weather Research and Forecasting (WRF)-110 

Community Multiscale Air Quality (CMAQ) model (Wong et al., 2012; Xiu and Pleim, 2001). 111 
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2. MATERIALS AND METHODS 112 

2.1 Data Sources  113 

Hourly air quality data for six key air pollutants (PM2.5, PM10, NO2, SO2, O3, and CO) was collected 114 

across by 12 national air quality monitoring stations in Beijing by the China National 115 

Environmental Monitoring Network (CNEM). Hourly air quality data were downloaded from the 116 

CNEM website - http://106.37.208.233:20035. Since air quality data are removed from the website 117 

on a daily basis, data were automatically downloaded to a local computer and combined to form 118 

the whole dataset for this paper. All data are now available at 119 

https://github.com/tuanvvu/Air_Quality_Trend_Analysis (last access 5 June 2019). These sites 120 

were classified in three categories (urban, suburban, and rural areas). (tThe map and categories of 121 

these monitoring sites isare given in Figure S1, and Table S1). Hourly meteorological data 122 

including wind speed (ws), wind direction (wd), temperature (temp), relative humidity (RH) and 123 

pressure (press.) recorded at Beijing International Airport were downloaded using the “worldMet”- 124 

R package (Carslaw, 2017b). Monthly emissions inventories of air pollutants were from the Multi-125 

resolution Emission Inventory for China (http://www.meicmodel.org/), and for the whole Beijing 126 

regions.  Data was analyzed in R Studio with a series of packages, including the “openair”, 127 

“normalweatherr”, and “randomForestExplainer” (Liaw and Wiener, 2018; Carslaw and Ropkins, 128 

2012; Carslaw, 2017a; Paluszynska, 2017).  129 

2.2 Random forest mModelling 130 

 131 

Figure 1 shows a conceptual diagram of the data modelling and analysis which consists of three 132 

steps: 133 

1) Building the rRandom forest (RF) model development: 134 

http://106.37.208.233:20035/
https://github.com/tuanvvu/Air_Quality_Trend_Analysis
http://www.meicmodel.org/
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A decision tree-based random forest regression model describes the relationships between hourly 135 

concentrations of an air pollutant and its their predictor featuresvariables (including time 136 

variablesvariation: such as month 1 to 12, day of the year from 1 to 365, hour of a day from 0 to 137 

23, and meteorological parameters: wind speed, wind direction, such as temperature, pressure, and 138 

relative humidity). The RF regression model is an ensemble-model which consists of hundreds of 139 

individual decision tree models. The RF model wasis described in detail in Breiman (1996 & 140 

2001).  141 

 142 

In the RF model, the bagging algorithm, (which uses bootstrap aggregating), randomly samples 143 

observations and their predictor features with replacement from a training data set. In our study, a 144 

single regression decision tree is grown in different decision rules based on the best fitting between 145 

the observed concentrations of a pollutant (response variable) and their predictor features. The 146 

predictor features are selected randomly to gives the best split for each tree node. The hourly 147 

predicted concentrations of a pollutant are given by the final decision as the outcome of the 148 

weighted average of all individual decision tree. By averaging all predictions from bootstrap 149 

samples, the bagging process decreases variance, thus helping the model to minimize over-fitting.   150 

 151 

As shown in Figure 1, Tthe whole data sets were randomly divided into two with a fraction of 0.7: 152 

1) a training data set to construct the random forest model and 2) a testing data set to test the model 153 

performance for with unseen data sets. The training data set comprised of 70% of the whole data, 154 

with the rest as testing data. we firstly construct the RF model from a training data sets ( 70% of 155 

the all data available) of observed concentrations of a pollutant and its featurespredictor variables 156 
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and then evaluatevalidate the model by unseen data sets (testing data sets). The RF model was 157 

constructed using R-“normalweatherr” packages by Grange et al. (2018). 158 

 159 

The original data sets contain hourly concentrations of air pollutants (response) and their predictor 160 

featuresvariables that include time variables (ttrend - Unix epoch time, the day of the year, 161 

week/weekend, hour) and meteorological parameters (wind speed, wind direction, pressure, 162 

temperature, and relative humidity). These time predictor featuresvariables represent effects upon 163 

concentrations of air pollution pollutants by diurnal, weekday/weekend day and seasonal cycles 164 

and ttrend
  (Unix epoch time) represents the trend in time which captures the long-term change of 165 

air pollutant due to changes in policies/regulations, which was calculated as: 166 

 ���௘�ௗ = ����� +  ���−ଵ�� +  ��ଶ4��  167 

where, Ni is the number of days in a year i (the year ith from 2013 to 2017), tH: diurnal hour time 168 

(0-23); tJD: day of the year (1-365)) (Carslaw and Taylor, 2009). 169 

 170 

Table S2, Figure S3-S4 and Section S3 provided information on Tthe performance of our model 171 

to reproduce observations was evaluated based on based on a number of statistical measures 172 

including mean square error (MSE)/ root mean square error (RMSE), correlation coefficients (r2), 173 

FAC2 (fraction of predictions with a factor of two), MB (mean bias), MGE (mean gross error), 174 

NMB (normalised mean bias), NMGE (normalised mean gross error), COE (Coefficient of 175 

Efficiency), IOA (Index of Agreement) for a linear regression between observed and modelled 176 

values for both training and testing data sets as suggested in a number of recent papers (Emery et 177 

al. 2017, Henneman et al., 2017, and Dennis et al., 2010). Furthermore, other model evaluation 178 

metrics (FAC2- fraction of predictions with a factor of two, MB-mean bias, MGE-mean gross 179 
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error, NMB-normalised mean bias, NMGE-normalised mean gross error, COE-Coefficient of 180 

Efficiency, IOA-Index of Agreement) were also calculated (Table S3, Figure S3-S4, Section S2). 181 

These results confirm that the model performs very well in comparison with traditional statistical 182 

methods and air quality models (Henneman at al., 2015). 183 

 184 

2) Weather normalisation using the RF model  185 

A weather normalizsation technique predicts the concentration of an air pollutant at a specific 186 

measured time point (e.g., 09:00 on 01/01/2015) with various randomly selected meteorological 187 

conditions (term as “weather normalised concentration). Meteorological normalization This 188 

technique was firstly introduced by Grange et al. (2018). In their method, a A new dataset of input 189 

predictor features (including Both time variables: ((month, day of the year, the day of the week, 190 

hour of the day, exceptbut not the Unix time variable) and meteorological parameters: (wind speed, 191 

wind direction, temperature and RH) is firstly generated (i.e., re-sampled) randomly based onfrom 192 

the original inputobservation dataset. For example, for a particular day (e.g., 01/01/2011), the 193 

model randomly selects the time variables (excluding Unix time) and weather  parameters 194 

conditions at any day from the data set of predictor features during the whole study period. This is 195 

repeated 1,000 times to provide the new input data set for a particular day. And then, The input 196 

data set is then fed to, except the trend variable were re-sampled randomly and was added into  the 197 

random forest model willas input variables to to predict the concentration of a pollutant at a 198 

particular day based on the new input data sets (Grange et al., 2018; Grange and Carslaw, 2019). 199 

This gives a total of 1,000 predicted concentrations for that day. The final concentration of that 200 

pollutant, referred hereafter as meteorological weather normalised concentration, is calculated by 201 

averaging the 1000 predicted concentrationspredictions from the RF model. By this way, the model 202 
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results in a predicted concentration of pollutant by normalization This method normalises of the 203 

impact of both seasonal and weather variations. HoweverTherefore, it is unable to investigate the 204 

seasonal variation of trends for a comparison with the trend of primary emissions. ThereforeFor 205 

this reason, we enhanced the meteorological normaliznormalisation procedure.   206 

 207 

In our algorithm, we firstly generated thea new input data set of predictor featuress, (which 208 

contains:includes original time variables and re-sampled weather data (wind speed, wind direction, 209 

temperature, and relative humidity)Unix time, day of the year, week/weekend day, hour of the day 210 

variables, wind speed, wind direction, temperature, and relative humidity  during 2013-2017).  211 

with  newonly weather data (MET data) sets were re-sampled from thirty-year data sets (1988-212 

2017) of weather in Beijing. We also enhanced modified the code to re-sample the MET data for 213 

a long term period rather than MET data during the conducted studyfrom 2013-2017. In particular, 214 

Tthirty-year MET in Beijing (1988-2017) Specifically, weather variables at a specific selected 215 

hour of a particular day in the input data sets were generated by randomly selecting from the 216 

observed weather data (i.e., 1988-2017 or 2013-2017) at that particular hour of different dates 217 

within a four- week period (i.e., 2 weeks before and 2 weeks after that selected date).  For example, 218 

the new input weather data at 08:00 15/01/2015 are randomly selected from the observed data at 219 

08:00 am on any date from 1st to 29th January of any year in 1988-2017 or 2013-2017.  The 220 

selection process was repeated automatically 1,000 times to generate a final input data set. Each 221 

of the 1,000 data was then fed to the random forest model to predict the concentration of a 222 

pollutant. The 1,000 predicted concentrations were then averaged to calculate the final weather 223 

normalised concentration for that particular hour, day, and year. This way, unlike Grange et al., 224 

(2018), we only normalise the weather conditions but not the seasonal and diurnal variations. 225 
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Furthermore, we are able to re-sample observed weather data for a longer period (for example, 226 

1998-2017), rather than only the study period. This new approach enables us investigate the 227 

seasonality of weather normalised concentrations and compare them with primary emissions from 228 

inventories.  229 

was used to enable a better representation of average meteorological conditions.  Specifically, 230 

MET data variables at a specific selected hour of a particular day in the input data sets was replaced 231 

randomly by the MET data at that hour for a period of 2 weeks before and after that selected data 232 

in the 30 year MET data set (1988-2017).  For example, the MET data at 8:00 15/01/2015 could 233 

be randomly replaced by the MET data at 8:00 am in any date from 1st to 30th January of any year 234 

in 1988-2017. Similar to Grange’s approach, with each a new input dataset we generated the 235 

concentration of a pollutant based on a random forest model which was built in the step one. We 236 

repeated this generation process by a thousand times, and the final concentration of a pollutant 237 

(weather normalized concentration) was calculated as an average of all values from each 238 

generation process.  239 

 240 

3) Quantifying long-term trend using Theil-Sen estimator:  241 

The Theil-Sen regression technique was performed onestimates the concentrations of air pollutants 242 

after meteorological normaliszation to investigate the long-term trend of pollutants to calculate 243 

their long-term trends. The Theil-Sen approach which computes the slopes of all possible pairs of 244 

pollutant concentrations and takes the median value, has been commonly used for long-term trend 245 

analysis over recent years. By selecting the median of the slopes, the Theil-Sen estimator tends to 246 

give us accurate confidence intervals even with non-normal data and non-constant error variance 247 

(Sen, 1968). The Theil-Sen function is provided via the “openair” package in R. 248 
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 249 

2.3. Notices, regulations and policies for air pollution control in Beijing 250 

The five-year period of 2013-2017 saw the implementation of numerous regulations and policies. 251 

The “Beijing Clean Air Action Plan 2013-2017” proposed eight key regulations including: (1) 252 

Controlling the city development intensity, population size, vehicle ownership, and environmental 253 

resources, (2) Restructuring energy by reducing coal consumption, supplying clean and green 254 

energy, and improving energy efficiency, (3) promoting public transport, implementing stricter 255 

emission standards, eliminating old vehicles and encouraging new and clean energy vehicles, (4) 256 

Optimizing industrial structure by eliminating polluting capacities, closing small polluting 257 

enterprises, building eco-industrial parks and pursuing cleaner production, (5) Strengthening 258 

treatment of air pollutants and tightening environmental protection standards, (6) Strengthening 259 

urban management and regulation enforcement, (7) Preserving the ecological environment by 260 

enhancing green coverage and water area, and (8) Strengthening emergency response to heavy air 261 

pollution. We collected more than 70 major notices and policies on air pollution control during 262 

from the Beijing government website (http://zhengce.beijing.gov.cn/library/). Most important 263 

regulations were related to energy system re-structuring and vehicle emissions (Section S2). These 264 

key measures include: 1) Reform and upgrade Action Plan for coal energy conservation and 265 

emission reduction (2014); 2) “no-coal zone” for Beijing-Tianjin-Hebei regions in October 2014; 266 

3) Beijing implemented the fifth phase emission standards for new light-duty gasoline vehicles 267 

(LDVs) and heavy-duty diesel vehicles (HDVs) for public transport in 2013; 4) traffic restrictions 268 

to yellow-label and non-local vehicles to enter the city within the sixth ring road during daytime 269 

since 2015. 270 

 271 

http://zhengce.beijing.gov.cn/library/
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3. RESULTS AND DISCUSSIONS 272 

3.1 Observed Levels of Air Pollution in Beijing During 2013-2017 273 

The aAnnual mean concentration of PM2.5 and PM10 in Beijing measured from the 12 national air 274 

quality monitoring stations declined by 34 and 19 % from 88 and 110 µg m-3 in 2013 to 58 and 89 275 

µg m-3 in 2017, respectively. Similarly, the annual mean levels of NO2 and CO decreased by 16 276 

and 33 % from 54 µg m-3 and 1.4 mg m-3 to 45 µg m-3 and 0.9 mg m-3 while the annual mean 277 

concentration of SO2 showed a dramatic drop by 68 % from 23 µg m-3 in 2013 to 8.0 µg m-3 in 278 

2017. Along with the decrease of annual mean concentration, the number of haze days (defined as 279 

PM2.5 > 75 µg m-3 here) also decreased (Figure S76).  These results confirm a significant 280 

improvement of air quality and that Beijing seem appeared to have achieved its PM2.5 target under 281 

the Action Plan (annual average PM2.5 target for Beijing is 60 µg m-3 in 2017).  On the other hand, 282 

the annual mean concentration of PM2.5 is still substantially higher than the China’s national 283 

ambient air quality standard (NAAQS-II) of 35 µg m-3 (Table S321) and the WHO Guideline of 284 

10 µg m-3. While PM10, PM2.5, SO2, NO2 and CO showed a decreasing trend, the annual average 285 

concentration of O3 increased slightly by 4.9 % from 58 µg m-3 in 2013 to 61 µg m-3 in 2017.  The 286 

number of days exceeding NAAQS-II standards for O3-8h averages (160 µg m-3) during the period 287 

2013-2017 was 329, accounting for 18 % of total days.  288 

 289 

3.2  Air Quality Trends After Weather Normalizsation 290 

A key aspect in evaluating the effectiveness of air quality policies is to quantify separately the 291 

impact of emission reduction and meteorological conditions on air quality (Carslaw and Taylor, 292 

2009;Henneman et al., 2017), as these are the key factors regulating air quality. By applying a 293 

random forest algorithm, we decoupled the effect of meteorological condition to showed the 294 
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normaliszed air quality parameters,  – under the condition of the 30-year average (1988-2017) 295 

meteorological conditions (Figure 2). The temporal variations of ambient concentrations of 296 

monthly average PM2.5, PM10, CO, and NO2 do not offer a clear show a smooth trend from 2013 297 

to 2017 because of the spikes in the wintersduring pollution events. However, after the weather 298 

normaliszation, we can clearly see the decreasing true real trend (Figure 2). The trends of the 299 

normaliszed air quality parameters represent the effects of emission control and, in some cases, 300 

associated chemical processes (for example, for ozone, PM2.5, PM10). SO2 showed a dramatic 301 

decrease while ozone increased year by year (Figure 2). The normaliszed annual average levels of 302 

PM2.5, PM10, SO2, NO2, and CO decreased by 7.4, 7.6, 3.1, 2.5, and 94 µg m-3 year-1, respectively, 303 

whereas the level of O3 increased by 1.0 µg m-3 year-1.  304 

 305 

Table 1 compares the trends of air pollutants before and after normaliszation, which are largely 306 

different depending on meteorological conditions. For example, the annual average concentration 307 

of fine particles (PM2.5) after weather normaliszation was 61 µg m-3 in 2017, which was higher 308 

than their observed level of 58 µg m-3 by about 5.2%. This suggests that Beijing would have missed 309 

its PM2.5 target of 60 µg m-3 if not for the favorable meteorological conditions in winter 2017 and 310 

the emission reduction contributed to 10 µg m-3 out of the 13 µg m-3 (77%) PM2.5 reduction (71 to 311 

58 µg m-3) from 2016 to 2017. Overall, the emission control led to a 34%, 24%, 17%, 68%, and 312 

33% reduction in normaliszed mass concentration of PM2.5, PM10, NO2, SO2 and CO respectively 313 

from 2013 to 2017 (Table 1).  314 

When meteorological conditions were randomly selected from 2013-2017 (instead of 1998-2017) 315 

in the RF model, the normaliszed level of PM2.5 in 2017 was 60 µg m-3, which is 1 µg m-3 difference 316 

to that using 1998-2017 data. This difference is due to the variation of the long-term climatology 317 
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(1998-2017) to the 5 year period (2013-2017). This indicates that our modelling results are robust. 318 

Additional uncertainty in the meteorological normalised levels of PM2.5 obtained from a random 319 

forest model is discussed later in Section 3.3. 320 

 321 

The observed PM2.5 mass concentration reduced by 30 µg m-3 from 2013 to 2017, whereas the 322 

normaliszed values reduced by 32 µg m-3. Similarly, the observed PM10 and SO2 mass 323 

concentration reduced by 30 and 15.5 µg m-3 from 2013 to 2017, whereas the normaliszed values 324 

by were 33 and 17.9 µg m-3. These results suggest that the effect of emission reduction would have 325 

contributed to an even better improvement in air quality (except ozone) from 2013 to 2017 if not 326 

for meteorological variations year by year. 327 

Figure 3 shows that the Action Plan has been highly effectiveled to a major improvement in 328 

improving in the air quality of Beijing at both the urban, suburban and rural sites, particularly for 329 

SO2 (16-18 % year-1-), CO (8-9 % year-1-), and PM2.5 (6-8 % year-1-). The Action Plan also led to a 330 

decrease in PM10 and NO2 but to a lesser extent than that of CO, SO2 and PM2.5, indicating that 331 

PM10 and NO2 were significantly affected by other less well controlled sources or they are affected 332 

differently than the other pollutants due to their different atmospheric processes. For example, 333 

Figure 2 suggested that the high levels of PM10 in spring were mostly affected by the frequent 334 

Asian dust events. Urban sites showed a bigger decrease in PM2.5, PM10, and SO2 concentrations 335 

in comparison to the rural and suburban sites (Figure 3).  336 

3.3 Impact of Meteorological Conditions on PM2.5 levels: A Comparison with Results 337 

from CMAQ-WRF Model 338 

We compared our RF modelling results with those from an independent method by Cheng et al. 339 

(2018) who evaluated the de-weathered trend by simulating the monthly average PM2.5 mass 340 
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concentrations in 2017 by the CMAQ model with meteorological conditions of 2013, 2016 and 341 

2017 from the WRF model. The WRF-CMAQ results show predict that the annual average PM2.5 342 

concentration of Beijing in 2017 is 61.8 and 62.4 µg m-3 if under the 2013 and 2016 meteorological 343 

conditions respectively, both of which are higher than the measured value – 58 µg m-3. Thus, the 344 

modelled results are similar to those from the machine learning techniques, which gave a weather-345 

normaliszed PM2.5 mass concentration of 61 µg m-3 in 2017.  346 

Figure 4 also shows that the PM2.5 concentrations would have been significantly higher in 347 

November and December in 2017 if under the meteorological conditions of 2016. In contrast, the 348 

PM2.5 concentrations would have been lower in spring 2017 of under the MET meteorological 349 

conditions data of 2016 or the 30-year normalised MET meteorological data. Since severe PM2.5 350 

pollution and haze events frequentlyalmost always occur in winter in Northern China (Cai et al., 351 

2017), tThe more favourable meteorological conditions in the two months contributed appreciably 352 

to the lower measured annual average PM2.5 level in 2017. It also suggests that the monthly levels 353 

of PM2.5 strongly depend upon the monthly variation of weather.  354 

Comparison of model uncertainties from the two methods 355 

Figure 5 compares observation and prediction of monthly concentrations of PM2.5 by the WRF-356 

CMAQ model and the RF model. The correlation coefficient r2 between monthly values was 0.82, 357 

whereas that from the random forest method is >0.99 for both the training and test data sets. The 358 

difference between the monthly observed PM2.5 values and those simulated by the WRF-CMAQ 359 

model ranged from 3 to 33.6%, resulting in 7.8% difference in the yearly value. By In contrast, the 360 

deviation between observed and predicted PM2.5 value from the RF model ranges from 0.4-7.9% 361 

with an average of 1.5%. In the modelled concentration of PM2.5 from the random forest technique, 362 
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the sStandard variation deviation of the 1,000 predicted concentration of PM2.5 in 2017  those 1000 363 

predictions by a random forest is only 0.35 µg m-3, accounting fored 0.6% of the observed PM2.5 364 

concentrations in 2017. 365 

 366 

3.4  Evaluating the Effectiveness of the Mitigations Measures in the Clean Air Action 367 

Plan 368 

The weather normalised air quality trend (Figure 2) allows us to assess the effectiveness of various 369 

policy measures to improve air quality to some extent. In particularly, the SO2 normaliszed trend 370 

clearly shows that the peak monthly concentrations in the winter months decreased from 60 µg m-371 

3 in January 2013 to less than 10 µg m-3 in December 2017 (Figure 2). This indicates that the 372 

control of emissions from winter-specific sources was highly successful in reducing SO2 373 

concentrations. The Multi-resolution Emission Inventory for China (MEIC) shows a major 374 

decrease in SO2 emissions from heating (both industrial and centralized heating) and residential 375 

sector (mainly coal combustion) (Figure S87), which is consistent with the trend analyses. On the 376 

other hand, the “based linebaseline” SO2 concentration – defined as the minimum monthly 377 

concentration the lowest ones in the summer (Figure 2) – also reduced somewhat during the same 378 

period. The “based line” SO2 in the summer mainly came from non-seasonal (winter) sources 379 

including power plants, industry, and transportation (Figure S97). Overall, the MEIC estimated 380 

that SO2 emissions decreased by 71 % from 2013 to 2017 (Figure S87), which is close to the 67% 381 

decrease in the weather normalizsed concentration of SO2 (Table 1). According to the Beijing 382 

Statistical Year Books (2012-2017), coal consumption in Beijing declined remarkably by 56 % in 383 

6 years as shown in Figure 6 (Karplus et al., 2018;BMBS, 2013-2017). The slightly faster decrease 384 

in SO2 concentrations relative to coal consumption (Figure S98) was attributed to the adoption of 385 
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clean coal technologies that were enforced by the “Action Plan for Transformation and Upgrading 386 

of Coal Energy Conservation and Emission Reduction (2014-2020)” (Karplus et al., 2018; Chang 387 

et al., 2016). In summary, energy re-structuringe, e.g., replacement of coal with natural gas (Figure 388 

6; Section S2), is the a highlymost effective measure in reducing ambient SO2 pollution in Beijing. 389 

 390 

Coal combustion is not only a major source of SO2, but also an important source of NOx and 391 

primary particulate matter (PM) in Beijing (Streets and Waldhoff, 2000; Zíková et al., 2016; Lu et 392 

al., 2013; Huang et al., 2014). Precursor gases such asincluding SO2 and NOx from coal 393 

combustion also contribute to secondary aerosol formation (Lang et al., 2017). The MEIC emission 394 

inventory showed that 8.8-29 % of NOx was emitted from heating, power and residential activities, 395 

primarily associated with coal combustion. As shown in Figure S98, the normaliszed NO2 396 

concentration is also decreasing, but much slower than that of SO2. Most notably, the level of SO2 397 

dropped rapidly in 2014 but the level of NO2 decrease by a small proportion. The different trends 398 

between SO2 and NO2 indicate that other sources (e.g. traffic emissions, Figure S98) or 399 

atmospheric processes have a greater influence on ambient concentration of NO2 than coal 400 

combustion. For examples, although the chemistry of the NO/NO2/O3 system will tend to “buffer” 401 

changes in NO2 causing non-linearity in NOx-NO2 relationships (Marr and Harley, 2002). NO2 402 

concentrations decreased more rapidly from January 2015, particularly specifically by 17%, 18%, 403 

10%, 15% (Figure 2) in the first six months of 2015, which suggests that emission control measures 404 

implemented in 2015 were effective. These measures, including  include regulations on spark 405 

ignition light vehicles to meet the national fifth phase standard, and expanded traffic restrictions 406 

to certain vehicles, including banning entry of high polluting and non-local vehicles to the city 407 
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within the sixth ring road during daytime, and phasing out of 1 million old vehicles (Yang Zet al., 408 

2015) (Section S2).  409 

 410 

Normaliszed PM2.5 decreased faster than NO2, but slower than SO2 (Figure S98). Yearly peak 411 

normaliznormalised PM2.5 concentrations decreased from 2013-14 to 2015-2016 but slighted 412 

rebounded in 2016-2017. The monthly normaliznormalised peak PM2.5 concentration reduced 413 

from 115 µg m-3 in Jan 2013 to 60 µg m-3 in Dec 2017. The biggest drop is seen in winter 2017, 414 

which decreased by more than half from the peak value in winter 2016, suggesting that the “no 415 

coal zone” policy (Section S2) to reduce pollutant emissions from winter specific sources (i.e., 416 

heating and residential sectors) were was highly effective in reducing PM2.5. The 417 

normaliznormalised “based linebaseline” concentration – lowest minimum monthly average 418 

concentration values in each yearthe summer – also decreased from 71 µg m-3 in summer 2013 to 419 

42 µg m-3 in summer 2017. This suggests that non-heating emission sources, such asincluding 420 

industry, industrial heating and power plants also contributed to the decrease in PM2.5 from 2013 421 

to 2017. These are broadly consistent with the PM2.5 and SO2 emission trends in MEIC (Figure 422 

S87). A small peak in both PM2.5 and CO in June/July seen in Figure 2 from 2013 to 2016 attributed 423 

to agricultural burning almost disappeared over the period of the measurements and simulations in 424 

2017, suggesting the ban on open burning is effective. 425 

 426 

The normaliznormalised trend of PM10 is similar to that of PM2.5, except that the rate of decrease 427 

is slower. The trend agrees well with PM10 primary emissions for the summer (Figure S87).  The 428 

biggest drop in peak monthly PM10 concentration is seen in winter 2017, which decreased by more 429 

than half from the peak value in winter 2016, suggesting that “no coal zone” policy (Section S2) 430 
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to reduce pollutant emission from winter specific sources (i.e., heating and residential sectors) 431 

were highly effective in reducing PM10, similar to that ofas with PM2.5. The rate of decrease of 432 

peak monthly PM10 emission is slower than that of weather normalised PM10 concentrations,, 433 

which may suggest an underestimation of the decrease in by the MEIC. The normaliznormalised 434 

“based linebaseline” concentration – (minimum monthly average concentration, Figure 2)lowest 435 

values in summer (Figure 2) The “based line” of a pollutant (except for ozone) was the defined as 436 

the lowest concentration of air pollutions in the summer (the summer concentrations) – also 437 

decreased from substantially from 2013 to 2017. This indicates that non-heating emission sources, 438 

such asincluding industry, industrial heating and power plants also contributed to the decrease in 439 

PM10. This is consistent with those trends in MEIC (Figure S87). The peaks in the spring are 440 

attributed to Asian dust events. 441 

 442 

The normaliznormalised CO trend shows that the peak CO concentration reduced by 443 

approximately 50% from 2013 to 2017 with the largest drop from 2016 to 2017 (Figure 2). The 444 

decreasing trend in total emission of CO in the MEIC is slower from 2015 to 2017, suggesting that 445 

the CO emission in the MEIC may be overestimated in these two years. During 2013-2016, the 446 

CO level decreased by 26 % and 34 % for both winter and summer (“baseline”). Similar to the 447 

normaliznormalised PM2.5 trend, a small peak of CO concentration occurred in Jun-July during 448 

2013-2016, which is likely associated with open biomass burning around the Beijing region. This 449 

peak disappeared in 2017. A major decrease in normaliznormalised CO levels in winter 2017 is 450 

attributed to the “no-coal zone” policy (see below Section S2; Figure S87).  451 

 452 
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3.5  Implications and Future Perspectives 453 

We have applied a machine learning based model to identify the key mitigation measures 454 

contributing to the reduction of air pollutant concentrations in Beijing. However, three challenges 455 

remain. Firstly, it is not always straightforward to link a specific mitigation measure to 456 

improvement in air quality quantitatively. This is because often more than two measures were 457 

implemented at on a similar timescale, making it difficult to disentangle the impacts. Secondly, 458 

we were not able to compare the calculated benefit for each mitigation measure with the that 459 

intended one designed by the government due to a lack of informationdata about the implemented 460 

policies, for example, such as the start/end date of air pollution control actions. If data on the 461 

intended benefits are known, this will further enhance the value of this type of study. Thirdly, the 462 

ozone level increased slightly during 2013-2017, especially for the summer periods (Table 1). 463 

Because ozone is a secondary pollutant, interpretation of the effects of emission changes  it is not 464 

possible to directly compare the trend with emission of precursor pollutants is . The mechanisms 465 

of this increase are complex and out of beyond the scope of this study. 466 

 467 

Our results confirmed that the “Action Plan” has been led to a major highly effective in 468 

improvement in theing real (normaliznormalised) air quality of Beijing (Figure 3). However, it 469 

would have failed to meet the target for annual average PM2.5 concentrations if not for better than 470 

average air pollutant dispersion (meteorological) conditions in 2017. This suggests that future 471 

target setting should consider meteorological conditions. Major challenges remain in reducing the 472 

PM2.5 levels to below Beijing’s own targets, as well as China’s national air quality standard and 473 

WHO guidelines. Another challenge is to reduce the NO2 and O3 levels, which show little decrease 474 
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or even an increase from 2013 to 2017. The lessons learned in Beijing thus far may prove beneficial 475 

to other cities as they develop their own clean air strategies. 476 

 477 
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 775 
Table 1.  A comparison of the annual average concentrations of air pollutants before and after 776 

weather normaliznormalisation. 777 

 778 
Pollutants PM2.5 PM10 NO2 SO2 CO O3 

year Obs. Model Obs. Model Obs. Model Obs. Model Obs. Model Obs. Model 

2013 88 93 110 123 54 58 23 26.3 1.4 1.5 58 59 

2014 84 85 119 121 57 56 20 20 1.2 1.3 55 56 

2015 80 75 107 106 50 50 13 13 1.3 1.2 58 59 

2016 71 71 98 101 47 48 10 10 1.1 1.1 63 60 

2017 58 61 90 93 45 48 7.5 8.4 0.9 1.0 60 61 

Note: Obs: observed concentration. ModelNor.: Modelled cConcentration of a pollutant after weather 779 
normaliznormalisation. Unit: µg m-3 for all pollutants, except CO (mg m-3) 780 
 781 
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 794 
Figure 1: A diagram of long-term trend analysis model 795 
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 32 

807 

Figure 2. Air quality and primary emissions trends. Trends of monthly average air quality 808 

parameters before and after normaliszation of weather conditions (first vertical axis), and the 809 

primary emissions from the MEIC inventory (secondary vertical axis). “Model” in the figure 810 

means the modelled concentration of a pollutant after weather normalisationzed. The red line 811 

shows the Theil-Sen trend after weather normaliszation. The black and blue dot lines represent 812 

weather normaliszed and ambient (observed) concentration of air pollutants. The red dot line 813 

represents total primary emissions. The levels of air pollutants after removing the weather’s effects 814 

decreased significantly with median slopes of 7.2, 5.0, 3.5, 2.4, and 120 µg m-3 year-1 for PM2.5, 815 

PM10, SO2, NO2, and CO, respectively, while the level of O3 slightly increased by 1.5 µg m-3 year-816 
1. 817 

 818 

 819 

 820 



 33 

 821 
Figure 3. Yearly change of air quality in different area of Beijing. This figure presents yearly 822 

average changes of weather normaliszed air pollutant concentrations at rural, suburban and urban 823 

sites (see Figure S1 for classification) of Beijing from 2013 to 2017.  Specifically, average yearly 824 

changes are for SO2 (-14%, -15%, -16 % year-1- for rural, suburban, and urban areas, respectively), 825 

CO (-9%, -9%, -8% year-1), PM2.5 (-7%, -8%, -9% year-1), PM10 (-6%, -5%, -7% year-1), NO2 (-826 

2%, -6%, -5% year-1) and O3 (1%, 0.3%, 2% year-1). The error on the bar shows the minimum and 827 

maximum yearly change.  828 
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 853 
 854 

Figure 4. Relative change in monthly PM2.5 levels in 2017 under different weather conditions. 855 

This figures presents relative changes (%) in monthly average modelled PM2.5 concentrations in 856 

2017 if under the 2016 (red) and 2013 (green) meteorological condition using CMAQ model and 857 

under averaged 30 years of meteorological condition using the machine learning technique. A 858 

positive value indicates PM2.5 concentration would have been higher in 2017 if under the 2013 or 859 

2016 meteorological conditions. Under the meteorological condition of 2016, monthly PM2.5 860 

concentration in 2017 would have been approximately 28% lower in January but 53% to 82% 861 

higher in November and December. This suggests that 2017 meteorological conditions were very 862 

favourable for better air quality comparing to those in 2016. If under the meteorological condition 863 

of 2013, monthly PM2.5 concentration in 2017 would have been higher in January (22%) and 864 

February (36%) but only slightly higher in November (12%) and December (14%). 865 
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 878 
 879 

Figure 5. Comparison of predicted monthly average PM2.5 mass concentrations by the 880 

MRFWRF-CMAQ (Cheng et al., 2018) and RF model against observations in Beijing. WRF-881 

CMAQ results are averaged over the whole Beijing region and the observed values refer to the 882 

average concentration of PM2.5 over the 12 sites.  883 
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 892 
 893 

Figure 6. Primary energy consumption in Beijing. Petroleum consumption remained stable (21-894 

23 million tonnes coal equivalent (Mtce)) over the years while natural gas and primary electric 895 

power increased significantly by 1.8 times and reached 23 Mtce in 2016. Coal consumption 896 

declined remarkably by 56.4% from 15.7 Mtce in 2013 to 6.8 Mtce in 2016. The proportion of 897 

coal in primary energy consumption in 2016 was 9.8 %, within its target of 10 % set by the Beijing 898 

government. 899 
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Section S1. Data collection and overview of air quality  34 

Hourly air quality data for six air pollutants was collected in Beijing from 17/01/2013 to 31/12/2017 35 

across 12 national air quality monitoring stations which were classified in three categories (urban, 36 

suburban, and rural areas) based on hierarchical clustering (Figure S1, Table 1). Specifically, PM2.5 37 

levels at urban, suburban and rural sites decreased from 89.8, 78.3, and 67.8 µg m-3 in 2013 to 59.6, 38 

54.6, and 47.8 µg m-3 in 2017, respectively. In 2017, 23 % of days still exceeded the NAAQS-II. A 39 

higher decrease in PM10 levels by 20.2 % was found at urban sites compared to those at suburban 40 

sites (17.2 %). PM10 also shows exceedances of NAAQS-II standards both for daily averages (150 41 

µg m-3) and annual averages (70 µg m-3). It suggests that particulate matter, especially PM2.5 is still a 42 

critical air pollutant in Beijing. In 2017, SO2 does not show exceedance of the NAAQS-II standards 43 

either for daily averages (150 µg m-3) and annual averages (60 µg m-3). For CO, only 12 days do not 44 

meet NAAQS-II standards of 4 µg m-3. In contrast, the annual average concentration of NO2 in 2017 45 

was slightly higher than the NAAQS-II standard of 40 µg m-3, with 18 days exceeding the NAAQS-46 

II standard for daily averages (80 µg m-3). 47 

 48 

 49 

Figure S1. Map of 12 monitoring stations  50 
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 51 

Section S2. Notices, regulation and policies for air pollution control in Beijing 52 

Regulation and policies on energy system re-structuring: 53 

 In October 2013, the government of Huairou district enforced a policy to replace anthracite stoves 54 

from 3000 rural households, change coal heating to electricity for 1170 households, supply 55 

liquefied petroleum to the countryside for 20,000 households, construct energy-saving residential 56 

housing and implement district heating; this reduced the consumption of 47,000 tons of poor 57 

quality coal.  58 

 In Oct 2013, the government of Shijingshan, an urban district of Beijing, planned to cut 2800 59 

tons of coal usage from coal-fired boilers in 2013, and reduce coal usage by more than 4500 tons 60 

in 2014, and eliminate coal-fired boilers in 2015.  61 

 In November 2013, Miyun government issued an action plan to “Reduce coal for clean air” with 62 

a focus on urban transformation, conversion to natural gas, replacement with high quality coal, 63 

relocation of mountain communities, conservation of household energy, and removal of illegal 64 

constructions.  65 

 In September 2014, the China State government released an important regulation on the “Reform 66 

and upgrade Action Plan for coal energy conservation and emission reduction (2014-2020)” that 67 

requires Beijing to place strict controls upon energy efficiency. Following that Action Plan, stack 68 

gas emissions of SO2, NOx, and PM from coal-fired power plants must be limited to below 10, 69 

35, and 50 mg m-3 respectively. 70 

 In March 2017, the Ministry of Environmental Protection issued the “2017 Air Pollution 71 

Prevention and Control Work Plan for Beijing-Tianjin-Hebei”. According to this plan, before the 72 

end of October 2017, Beijing, Tianjin, Langfang and Baoding City of Hebei will become the 73 

“no-coal zone”. 74 

 75 
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Regulations and policies on vehicle emission control:  In order to control air pollution from vehicle 76 

emissions, during 2013-2017 the city announced a series of policies and regulations focusing on the 77 

implementation of stricter standards for new vehicles and vehicle fuels, elimination of yellow-label 78 

vehicles (which do not meet basic emission standards), and promotion of public transport. 79 

Consequently, Beijing led the nation in improving the fuel quality standards by adopting the 80 

desulfurization of gasoline and diesel fuels (sulfur content <10 ppm) in 2012, three years ahead of 81 

the surrounding regions (Tianijin and Hebei) and five years before the national deadline. Major 82 

policies for air pollution from transportation management: 83 

 In February 2013, Beijing implemented the fifth phase emission standards for new light-duty 84 

gasoline vehicles (LDVs) and heavy-duty diesel vehicles (HDVs) for public transport. 85 

  In June 2013, another notice from the Beijing government emphasized that all heavy-duty 86 

vehicles sold and registered in Beijing must meet the national fourth-phase emission standards 87 

 In August 2014, a notice from Beijing’s government declared that all spark ignition light vehicles 88 

must meet the national five phase standard from 1st January 2015.  89 

 In 2014, Beijing Municipal Commission of Transport (BMCT) expanded traffic restrictions to 90 

certain vehicles, particularly yellow-label and non-local vehicles to enter the city within the sixth 91 

ring road during daytime since 2015. 92 

 In November 2014, the governments of Yanquing and Miyun, two rural districts of Beijing, 93 

released regulations to prohibit yellow-label gasoline vehicles entering certain roads.  94 

 In February 2015, the Beijing Municipal government issued a notice to promote elimination and 95 

replacement of old motor vehicles with an expectation of 1 million old vehicles/year phased out.  96 

 Other policies which may have contributed to the enhancement of air quality during 2013-2017 97 

included a ban of outdoor biomass burning and improved suppression of dust discharges from 98 

construction sites. 99 

  100 
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Section S3. Model performance and explanation   101 

Variables and hyperparameters: The input variables contain time and MET variables. 102 

Time variables: day_unix (or ttrend) represents the emission trend of a pollutant; Julian_day (tJD: the 103 

day of the years) represents for the seasonal variation; weekday/weekend represents the difference 104 

of pollution between the week and weekend days.  105 

MET variables: wind speed (m s-1), wind direction (o), temperature (oC), relative humidity (%), and 106 

atmospheric pressure (mbar).  The back-trajectories can be used as a predictor feature, but it does 107 

not increase the performance of the model in this case.   108 

Selected parameters in a random forest:  109 

 Mtry=4: variables randomly sampled for splitting the decision tree 110 

 Nodesize=3: minimum size of terminal nodes for model 111 

 Ntree=200, the number of trees to grow. Figure S21 shows the dependence of model 112 

performance on the number of trees.  113 

 114 

 115 

 116 

Figure S21. The influence of number of trees on the model performance for PM2.5. 117 

 118 
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 119 

 120 

 121 

Model performance’s evaluation: 122 

A random forest shows a good performance with the correlation (r2) between hourly predicted and 123 

observed data for both training and testing data sets. In particular, r2 value ranged 0.81-0.83, 0.75-124 

0.79, 0.80-0.83, 0.88-0.90, 0.85-0.87, and 0.89-0.90 for PM2.5, PM10, NO2, SO2, CO and O3, 125 

respectively.  Figure S32 shows the hourly correlation between observed and predicted data for a 126 

testing data. Other model evaluation metrics are shown in Table S2. 127 

 128 

Figure S32. Correlations between daily observed and predicted data from testing data sets  129 

 130 

 131 

As shown in Figure S32, it is likely that the model underestimates hourly concentration of air 132 

pollutants at those extremely high levels. These errors are reduced when we compare the weekly 133 

averaged concentration as shown in Figure S43.  134 

 135 

 136 
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 137 

 138 

Figure S43.  The correlation between observed and modelled concentrations is approximately 0.9-139 

0.99 for weekly averaged data. In our study, a RF forest model was trained using a fraction of 0.7 140 

from the datasets. 141 

 142 

 143 

 144 

Variable importance and interactions: 145 

 146 

 147 

As shown in Figure S44, seasonal variations (day_julian) play the most important variable in the 148 

model, except for ozone when temperature and diurnal pattern (hour) mainly control the predicted 149 

values.  The trend (day_unix) shows more important role in the model of SO2 and CO, indicating 150 

emission control shows most effectiveness on the decrease of SO2 and CO. Regarding MET variables, 151 

humidity and temperature play a more important role in the model of PM while wind speed has a 152 

larger impact in the model of NO2. The variable interaction is shown in Figure S5.    153 

 154 
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 155 

 156 

Figuer S4. Importance of predictor features: date_unix, day of the year (day_julian), hour of day 157 

(hour), week/weekend, temperature (temp), RH, pressure (press), wind speed (ws), wind direction 158 

(wd)  in the random forest model. Figure 4 shows the day of the year (seasonal variable) is the most 159 

important variables controlling the concentration of the pollutant (except for ozone: the most 160 

important is the temperature variable). The trend (date_unix) has a larger effect on SO2, thaen CO 161 

and PM, less effect on the NO2 and no significant effect on O3 concentration. 162 
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 184 

 185 

 186 

Figure S65. FeaturesVariation interactions in a random forest model for PM2.5. This figure shows the co-187 

occurrence of a pair of variables in a similar tree. For example, in the first node of the tree, RH and 188 

date_unix is the most frequent occurrence.   189 
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 193 

 194 

 195 

Figure S76. Probability density of urban air pollutant concentrations during 2013-2017. 196 

Number of heavy polluted events decreases from 2013 to 2017 for all pollutants, except ozone. 197 
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 204 

 205 

Figure S87. Monthly emission inventories of air pollutants in Beijing during 2013-2017. The 206 

emissions of PM2.5, PM10, NOx, SO2, CO in Beijing dropped by 35 %, 44 %, 11 %, 71 %, 17% from 207 

76, 109, 260, 93, 1.7 Gg in 2013 to 49, 61, 231, 27, 1.4 Gg in 2017, respectively. Power sector 208 

represents the coal-fired, gas-fired and oil-fired power plants; industry sector includes two subsectors 209 

as industrial process and industrial boilers (to offer the mechanical energy ); heating includes both 210 

industrial heating (to offer the thermal energy) and domestic heating (refers to centralized heating); 211 

residential sources are the urban and rural burning with traditional stoves with coal or biomass fuels; 212 

transportation includes both on-road and off-road traffic; solvent use contains all the subsectors  213 

which would use solvent during production processes, such as paint, ink, pharmaceutical production 214 

and household solvent use. 215 

 216 
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 218 

 219 

Figure S98. Normalized levels of air pollutants and energy consumption. The trend of SO2 was 220 

very close to the normalized trend of coal consumption, but showed a faster decrease than trends of 221 

PM2.5 and NO2. 222 

 223 

  224 
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Table S1. Locations and cateogories of monitoring site 225 

Station 

ID 

Name Category Longtitude Latitude 

01 Wangshouxigong Urban 116.37 39.87 

02 Dingling Rural 116.17 40.29 

03 Dongsi Urban 116.43 39.95 

04 Tiantan Urban 116.43 39.87 

05 Nongzhanguan Urban 116.47 39.97 

06 Guanyuan Urban 116.36 39.94 

07 Haidianquwanliu Urban 116.32 39.99 

08 Shunyixincheng Urban 116.72 40.14 

09 Huairouzhen Suburban 116.64 40.40 

10 Changpingzhen Suburban 116.23 40.20 

11 Aotizhongxin Urban 116.40 39.98 

12 Gucheng Suburban 116.26 39.93 

 226 

Table S22: RF model performance for testing data set (in hourly time resolution).  227 

Pollutants RMSE r2 FAC2 MB MGE NMB NMGE COE IOA 

PM2.5 17.9 0.95 0.94 0.62 10.00 0.01 0.14 0.81 0.91 

PM10 43.1 0.79 0.87 1.46 27.10 0.01 0.26 0.57 0.79 

NO2 14.3 0.78 0.95 -0.01 10.16 0.00 0.20 0.59 0.79 

SO2 7.0 0.89 0.89 0.22 3.70 0.02 0.25 0.73 0.87 

CO 0.4 0.86 0.96 0.01 0.24 0.01 0.21 0.67 0.84 

O3 18.4 0.89 0.82 0.50 12.90 0.01 0.21 0.70 0.85 

Note:  FAC2 (fraction of predictions with a factor of two), MB (mean bias), MGE (mean gross 228 

error), NMB (normalised mean bias), NMGE (normalised mean gross error), COE (Coefficient of 229 

Efficiency), IOA (Index of Agreement) (Emery et al. 2017). 230 

 231 

Table S3.  Air Quality Standards. China’s Air Quality Standards: GB 3095-2012, phase-in 2012-232 

2016; WHO Air Quality Guidelines (2005). The Class 2 standards apply to urban areas. 233 

 234 

Pollutant

s 
Averaging time 

China standards 
WHO unit 

Class 1 Class 2 

PM2.5 
annual 15 35 10 µg m-3 

24 hours 35 75 25 µg m-3 

PM10 
annual 40 70 20 µg m-3 

24 hours 50 150 50 µg m-3 

NO2 

annual 40 40 40 µg m-3 

24 hours 80 80 - µg m-3 

hourly 200 200 200 µg m-3 

SO2 

annual 20 60 - µg m-3 

24 hours 50 150 20 µg m-3 

hourly 150 500 - µg m-3 

10 min - - 500 µg m-3 

CO 
annual 4 4 - mg m-3 

24 hours 10 10 - mg m-3 

O3 
8-hour mean, daily max 100 160 100 µg m-3 

hour 160 200 - µg m-3 
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