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Abstract. In vegetation canopies with complex architectures, diffuse solar radiation can enhance carbon 

assimilation through photosynthesis because isotropic light is able to reach deeper layers of the canopy. Although 

this effect has been studied in the past decade, the mechanisms and impacts of this enhancement over South 25 
America remain poorly understood. Over the Amazon deforestation arch large amounts of aerosols are released 

into the atmosphere due to biomass burning, which provides an ideal scenario for further investigation of this 

phenomenon in the presence of canopies with complex architecture. In this paper, the relation of aerosol optical 

depth and surface fluxes of mass and energy are evaluated over three study sites with Artificial Neural Networks 

and radiative transfer modeling. Results indicate a significant effect of the aerosol on flux of carbon dioxide 30 
between the vegetation and the atmosphere, as well as on energy exchange, including that surface fluxes are 
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sensitive to second order radiative impacts of aerosols on temperature, humidity, and friction velocity. CO2 

exchanges increased in the presence of aerosol in up to 55% in sites with complex canopy architecture. A decrease 

of approximately 12% was observed for a site with shorter vegetation. Energy fluxes were negatively impacted 

by aerosols over all study sites.  

1 Introduction 5 

The composition of the atmosphere is determined by the emission and transport of gases and aerosols at different 

scales, chemical and microphysical processes, wet and dry deposition, or by the distribution of the land surface 

and oceanic ecosystems around the globe. These processes are represented by the biogeochemical cycle and they 

involve interactions between different components of the Earth system. These interactions are generally non-

linear and might produce negative or positive radiative forcing signals in the climate system (Forster et al., 2007).  10 
The state of the climate system is governed by the energy balance, which is defined as the amount of energy going 

into the climate system minus the amount of energy dissipated by it mostly through the emission of long wave 

radiation. In the long term, the amount of solar radiation absorbed by Earth's atmosphere and surface is balanced 

out by the same amount of longwave radiation emitted by them. About half of the solar radiation is absorbed by 

the Earth's surface. This energy is transferred to the atmosphere by heating the air in contact with the surface, 15 
through evapotranspiration and longwave radiation emission, which can be absorbed by clouds and greenhouse 

gases. The atmosphere in turn emits longwave energy back to the surface as well as to the space (Kiehl and 

Trenberth, 1997). 

The Earth’s climate system has undergone a number of changing processes considered ‘natural’ throughout the 

history of the planet. The average temperature of the planet has always been directly linked to the amount of CO2 20 
in the atmosphere. The uncertainties on the energy balance associated with greenhouse gases have been reduced 

over the past years; however, uncertainties associated with atmospheric aerosols remain substantial, despite the 

various advances achieved since the first studies relating aerosols and the climate system (Boucher et al., 2013). 

Aerosols are technically defined as solid or liquid particles suspended in the air (Seinfeld and Pandis, 2006), that 

can be emitted from natural or anthropogenic sources. They can be found in different shapes and chemical 25 
composition, which may vary according to their source of emission and/or processes they are subjected once in 

the atmosphere. They can also be classified into primary, i.e., when they are directly emitted, or secondary, i.e., 

when they are formed in the atmosphere through a physical-chemical process known as gas-particle conversion. 

The typical diameter of aerosols ranges from a few nanometers to tens of micrometers (Seinfeld and Pandis, 2006) 

and it can impact their time spent in the atmosphere and their ability to interact with radiation.  30 
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Aerosols can travel long distances which increase the time they are exposed to radiation and the probability of 

interaction with clouds. In addition, the accumulation mode (0.1 μm < particle size < 2.5 μm) interacts most 

effectively with solar radiation, although the nuclei-mode aerosols (0.1 μm > particle size) are mostly found over 

the continents and coastal areas, directly related to human activities. Nuclei-mode aerosols account for about 10% 

of the aerosols of the globe (Textor et al., 2006). Aerosols emitted by natural sources are the dominant type in the 5 
climate system. In climate models, aerosols are generally divided into five general categories: dust, marine spray, 

sulphur aerosols or sulphate, and carbon compounds, which are divided into two subcategories: particulate organic 

material and Black Carbon (Chin et al., 2002). 

The direct radiative effect of aerosols can absorb and scatter radiation in the shortwave band and longwave band, 

which directly impacts the radiative balance of the climate system (Forster et al., 2007). The net impact of the 10 
direct radiative effect of aerosols decreases the available solar energy at the surface. In the last decades, there has 

been a 2.7% reduction observed on the incident direct solar irradiance at the surface, a phenomenon known as 

‘Global Dimming’ (Stanhill and Cohen, 2001). Although the mechanisms associated with the direct radiative 

effect of aerosols are well described in the literature, uncertainties are still significant, especially with respect to 

the spatial and temporal distribution of the aerosols in the atmosphere (Forster et al., 2007; Fletcher et al., 2018). 15 
In addition, the radiative effects of aerosols can impact different compartments of the climate system, such as the 

biosphere, for example.  

The biosphere interacts with the climate system through biogeophysical and biogeochemical processes, which can 

cause both, positive and negative responses on the radiative balance, and some of these responses, especially at a 

local scale, can be quite significant (Wang et al., 2014; He et al., 2017; Persad and Caldeira, 2018). 20 
The overall reduction of incident radiation at the surface has negatively impacted gross primary productivity 

(GPP) in light limited ecosystems (Black et al., 2006; Unger et al., 2017; Ezhova et al., 2018). In addition, a 

decrease in total solar radiation is followed by an increase in its diffuse component, which in turn can increase 

plant productivity due to a higher production efficiency per unit of incident radiation in the canopy, an effect 

known as ‘the diffuse fertilization effect’ (Kanniah et al., 2012). In ecosystems with densely vegetated canopies, 25 
the direct shortwave radiation reaches the upper part of the vegetation canopy, while most leaves at medium 

canopy height or at bottom canopy layers remain shaded. Carbon assimilation increases under atmospheric 

conditions with moderate aerosol load and high fraction of diffuse radiation (Niyogi et al., 2004) and decreases 

as the concentration of aerosols increases to a level where the overall radiation is substantially reduced (Yamasoe 

et al., 2006). 30 
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The spatial distribution and nature of the shortwave radiation is critical for the productivity of terrestrial 

ecosystems and further studies on the impacts of light limitation on vegetation productivity are needed. In light 

limited ecosystems such as rainforests and temperate forests, the radiative impact of aerosols on vegetation 

productivity must be evaluated in combination with other environmental factors, such as temperature and water 

(O’Sullivan et al., 2016.). With fieldwork and numerical studies in the Australian savannah, Whitley et al. (2011) 5 
suggested that vegetation productivity was more influenced by light limitation than by water limitation. Actually, 

the response of photosynthetic capacity to an increase in the concentration of atmospheric aerosol has been 

extensively studied over almost the past two decades (Roderick et al., 2001; Gu et al., 2002; Niyogi et al., 2004; 

Yamasoe et al., 2006; Oliveira et al., 2007; Mercado et al., 2009; Doughty et al., 2010; Kanniah et al., 2010; 

Zhang et al., 2010; Kanniah et al., 2012; Li et al., 2014; Rap et al., 2015; Tang and Dubayah, 2017) through 10 
observations (Steiner et al., 2013) and modeling (Moreira et al., 2017) frameworks.  

In this paper, however, we investigate the impact of atmospheric aerosols on the carbon balance over three sites 

in South America, in the deforestation arch of the Amazon forest, making use of a novel approach, combining 

two different types of modeling techniques. First, we make use of Artificial Neural Networks (ANNs), a machine 

learning algorithm that can approximate any nonlinear deterministic function (Gentine et al., 2018),  to build a 15 
new modeling framework from scratch relating a number of state variables (radiation, temperature, humidity, as 

well as the aerosol optical depth) with energy and mass fluxes for three study sites representing a range of 

structurally different ecosystems in the Amazon; and second, a radiative transfer scheme driven with a unique 

aerosol optical model developed in Rosário et al. (2009) and described in Rosário et al. (2011). A recent study 

has performed a modeling evaluation of the radiative impact of aerosols over a temperate forest with complex 20 
structure in the USA (Lee et al., 2018), but the studies in the Amazon remain mostly observational.  

Machine learning has significantly advanced in the last decades, being applied to a number of different research 

areas, and more recently used in Earth System studies as a powerful tool to link physical process models with 

data-driven relationships (Schneider et al., 2017; Huntingford et al., 2019; Reichstein et al., 2019; Watson-Parris 

et al., 2019).  There are a number of different machine learning techniques that have been applied to Earth System 25 
studies including: random forests (Rodriguez-Galiano et al., 2012; Yang et al., 2016; McGovern et al., 2017), 

model tree ensembles (Jung et al., 2010; Yang et al., 2016), empirical orthogonal functions (Yang et al., 2019), 

principal components analysis (Gosh and Mujumdar, 2008), ANNs (Krasnopolsky et al., 2005; Goyal et al., 2014; 

Gentine et al., 2018; Nguyen et al., 2018; Buckland et al., 2019; Wu et al., 2019), and more.   

 30 
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We have chosen ANNs over other machine learning methods, because once trained, they are computationally 

efficient, as most of the computational demand is required during the training phase. Perhaps this is one of the 

main reasons for its large applicability in several different studies, an advantage over more resource-demanding 

machine learning techniques. Although ANNs are highly data dependent, sometimes leading to problems of over-

fitting and generalizations, ANNs are a good approach for problems with large datasets because they allow any 5 
number of input variables. 

The main goal of this paper is to investigate, step-by-step, the effects of the atmospheric aerosol on the variability 

of CO2, sensible (H), and latent (LE) heat fluxes in the Amazon region over the deforestation arch, based on the 

study of three specific experimental sites. The use of ANNs allows to build up a statistical modeling framework 

relating meteorological (i.e., temperature, humidity, friction velocity) and radiative variables (i.e., incident 10 
photosynthetically active radiation (PAR) at the top of the canopy, the percentage of diffuse PAR) to mass and 

energy fluxes in the forest in a first approach to address the radiative impacts on mass and energy fluxes. The 

follow up analysis is based on the derivation of a second group of ANNs relating radiative variables with 

meteorological ones in order to identify the second order effect of aerosols on surface fluxes. Finally, we make 

use of the radiative transfer (RT) theory with a process-based RT model to create a hypothetical scenario without 15 
aerosols and estimate the potential fluxes of mass and energy, not only considering the first order impact of 

aerosols, but also the second order impact by making use of two distinct groups of ANNs.  

With this approach, this study evaluates: (i) the impacts of aerosol optical depth at 550 nm on fluxes of heat, 

water, and CO2; (ii) the characteristics of aerosol present in each of the experimental sites; and (iii) the isolated 

impact of aerosols on mass and energy fluxes through statistical modeling with ANNs, in comparison to other 20 
environmental factors, such as temperature, moisture, and turbulence. 

2 Materials and methods 

2.1 Sites 

The deforestation arch consists of 248 municipalities in Brazil going from the state of Rondônia to the state of 

Maranhão, across the Brazilian savannah and Amazonian biomes (Araújo Junior et al, 2001), about 3,000 25 
kilometres long and up to 600 kilometres wide. Between July and October 1987, the region of the deforestation 

arch lost approximately 50,000 km of forests in the states of Pará, Mato Grosso, Rondônia, and Acre, and released 

more than 500 million tons of carbon into the atmosphere, in which 44 million tons in the form of CO2 (Song et 

al., 2015). The three flux sites evaluated in this paper are in the Brazilian deforestation arch (Fig. 1). 
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2.1.1 Bananal Island  

The Bananal Island is the largest island in a river on the planet, with approximately 2 million hectares and almost 

360 km in the North-South direction and 80 km in the East-West. The Bananal Island is a floodplain region. The 

flux tower of Bananal Island was installed in the Northern part of the island, in the limits with the Canton State 

Park, by the Laboratory of Climate and Biosphere of the Institute of Astronomy, Geophysics, and Atmospheric 5 
Sciences of the University of Sao Paulo. The average height of the canopy is approximately between 15 to 18 m. 

The instrumental platform was mounted in a 40 m high structure located approximately 2 km east of the Araguaia 

River, at the geographic coordinates 9° 49.27' S; 50° 08.92' W, at 120 m a.s.l. The data monitoring started on the 

27th October 2003 and the project was based on the facilities of the Canguçú Research Centre of the Instituto 

Ecológica - UFT, approximately 20 km south of the micrometeorological tower (Borma et al., 2009). 10 
2.1.2 Rebio Jaru 

In the north-eastern part of the state of Rondônia, Brazil, the Jaru Biological Reserve has approximately 60,000 

ha. The entire basin of the Tarumã river is in the reserve and covers about 75% of the unit. The land has a large 

number of small streams and springs keeping a moist vegetation throughout the year. The vegetation is mainly 

characterized as an Open Tropical Forest with some palm trees. There are also few areas with lianas and bamboo 15 
trees, as well as small spots of dense ombrophiles forest, characteristic of the Amazon region (IBAMA, 2006). 

The average height of the canopy is approximately 35m, but some trees can reach up to 45m. The tower is located 

1,240 m from the river bank in a more preserved region (Gomes, 2011). Data from the Rebio Jaru were collected 

from August to October 2007, at the geographic coordinate 10° 04.71' S; 61° 56.01' W 148 m a.s.l. Eddy-

covariance instruments were installed in the 62 m height (Bosveld and Beljaars, 2001).  20 
2.1.3 Sinop 

This study site is located in an area of logging with forest management in Fazenda Maracaí. The farm is located 

to the northwest, approximately 50 km, from the centre of Sinop, Mato Grosso, Brazil, at coordinates 11° 24.70' 

S; 55° 19.39'W, at 423 m a.s.l. The Maracaí farm consists of a transitional tropical forest (between Brazilian 

savannah and open ombrophiles forest) with a continuous canopy, composed of trees from 25 to 28m in height 25 
(Vourlitis et al., 2008). The vegetation consists of perennial trees that is characteristic of the transition forest in 

Mato Grosso. The diversity is high, and there is no predominance of a single tree species. There are approximately 

80 species and 35 families of trees with diameter at breast height around 10 cm. The climatological seasonality 

for the ecotone of the transition forest is similar to that of the tropical and closed forest. The sonic anemometer 
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was installed at 42 meters height. The site is part of the LBA (Large Scale Biosphere-Atmosphere Experiment in 

Amazonia) integrated project and has been carrying out measurements of this nature since 1999. 

2.2 Flux tower data 

Surface fluxes of CO2, sensible heat, and latent heat were obtained through the eddy covariance technique applied 

to data collected with sonic anemometers and infrared gas analyzers installed in flux towers located at Bananal 5 
Island, Sinop, and the Jaru Biological Reserve (Rebio Jaru). Fluxes were obtained with temporal resolution of 30 

minutes. Measurements of meteorological variables, such as temperature, relative humidity, and wind speed were 

collected. Except for the tower in Sinop, the other towers presented radiative measurements such as incident solar 

radiation and, incident and reflected PAR. For Sinop, these variables were calculated by a radiative transfer model, 

libRadtran, further described in Section 3.1.  10 
Geographic coordinates, altitudes, flux tower heights, and the type of sensors used in each one of the three sites 

are presented in Table 1. A Multifilter Rotating Shadowband Radiometer data provided aerosol optical depth at 

550 nm estimates per minute and 30 minutes averaged values were calculated, available only for the Rebio Jaru 

site.  

The study period of this work was limited to the dry season, since (a) the maximum numbers of fire outbreaks 15 
occur in August, September, and October. (b) In terms of the temporal distribution of the aerosol optical depth, 

there is a significant increase in the months of August, September, and October. And, (c) the analysis of the 

intrinsic properties of the aerosols becomes important because it has indications of its chemical composition and 

size of the particles. Only the months of August, September, and October were considered in this analysis in order 

to keep consistency of the type of aerosols being evaluated. 20 

2.3 MODIS data 

The aerosol optical depth (AOD) at 550 nm used in this study was obtained from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) for Bananal Island and Sinop. Except for Rebio Jaru, where AOD values were 

obtained in situ with shadow band radiometer (MFRSR) (Table 1). MODIS is an instrument on board of the Terra 

and Aqua satellites. The Terra's orbit around the globe is synchronized and flies from north to south across the 25 
equator line in the morning (~ 10:30 local time), while the Aqua presents passages from south to north by the 

equator in the afternoon (~ 13:30 local time). MODIS observes the entire ocean surface of the Earth and almost 

the entire terrestrial surface in a period of 1 to 2 days and acquires data in 36 spectral bands. The aerosol product 

from MODIS is the aerosol optical depth measured over the oceans and a portion of the continents, globally. In 
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addition, the aerosol size distribution is derived over the oceans, and the aerosol type over continents. Daily 

MODIS level-2 data is produced with a spatial resolution of 10 x 10 km2 over nadir. The level 2 product was 

chosen due to its estimation of the aerosol retrieval uncertainty to assist with error analyses as well as a best 

estimate of the aerosol optical depth data with quality assurance flags already applied. Although spatial resolution 

is courser at level-2, lower product uncertainty improved our analysis.  5 
Two groups of MODIS aerosol data products were collected: MOD04_L2, containing the data collected from the 

Terra platform, and MYD04_L2, containing the data collected from the Aqua platform. The MODIS aerosol 

product is used to build the climatological variance of aerosols, sources and sinks of specific types of aerosols 

(e.g., sulphate aerosols, biomass burning), the interaction of aerosols with clouds, and atmospheric corrections of 

surface reflectance obtained from remote sensing. 10 
Pre-assumptions about the general structure of aerosol size distribution are necessary for the inversion of the 

MODIS data and the distribution is described as two log-normal curves: a unique mode, to characterize the 

particles of accumulation mode (aerosol radius < 0.5 μm) and a single coarse mode to describe dust and salt 

particles (aerosol radius > 1.0 μm). The aerosol parameters that are thus recovered are: the relationship between 

the two modes (fine and coarse), spectral optical depth, and mean particle size. The quality control of these 15 
products is based on the comparison with terrestrial stations and climatology. We used instantaneous and monthly 

fields of the aerosol optical depth at 550 nm (AOD550nm), referring to collection 051 (Hubanks, 2012), level 2. 

The pixels over the flux towers were considered. Episodes contaminated by clouds were excluded from the 

analysis.  

The MODIS aerosol data was acquired at the moment of each satellite overpass (Terra and Aqua) over the site of 20 
interest, and a single point was used to represent the 30 minutes interval. Uncertainties associated with each 

variable were estimated from the standard deviations obtained for the 30-minute intervals, except for the MODIS 

AOD550nm measurements, in which the uncertainty of the AOD550nm in an area of 10 x 10 km2 was estimated 

following Levy et al. (2009) as, 

𝜎" = ±(0.05 + 0.15𝜏)                                                                         (1) 25 
In Rebio Jaru, in situ AOD measurement was conducted in a relatively limited period of time, covering only part 

of the dry season of 2007, yet the high temporal resolution of the aerosol optical depth data (every minute) enabled 

a more robust analysis of the diurnal cycle. On the other hand, in Bananal Island and in Sinop, the time series of 

flux measurement was longer (from 2003 to 2008, and from 2005 to 2008, respectively). However, AOD data 

was limited to maximum two points a day from MODIS, but the analysis of these experimental sites presented 30 
possibilities of characterization of the interannual cycles. 
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3 Models 

In this section, we discuss the two models used in this study: a physical process-based atmospheric radiative 

transfer model, libRadtran (Mayer and Kylling, 2005), and a statistical based model, the artificial neural networks. 

First, we describe the radiative transfer model; second, we present the machine learning technique, ANNs, and 

describe the specific methodology used in our experiments. Finally, we describe statistical metrics used to evaluate 5 
our results.  

3.1 Radiative Transfer Model 

The radiative transfer model libRadtran1.6-beta (Mayer and Kylling, 2005) was used to perform calculations with 

the incident solar radiation at the Top of the Atmosphere (TOA) specified for the Amazon region with a tropical 

atmosphere profile. Ozone concentrations were set to 300 DU based on values obtained by Rosário et al. (2009), 10 
who found an average value of integrated ozone content in the atmospheric column of 257 DU. In this paper, 

surface albedos from the International Geosphere-Biosphere Programme (IGBP) classification (Loveland and 

Belward, 1997) were used. 

For the three sites, the surface type was set to a deciduous broadleaf forest. The day of the year provides 

information about the Earth-Sun distance, which affects the amount of radiation incident at the TOA, and it was 15 
also used as input to the code. The correction for molecular absorption, parameterized from the LOWTRAN model 

(Pierluissi and Peng, 1985), as well as adopted by the SBDART code (Ricchiazzi et al. 1998) was implemented. 

The resolution of the corrections for molecular absorption was 0.5 nm at wavelengths below 350 nm and 1.0 nm 

above. The DISORT method (DIScrete ORdinate Radiative Transfer Solvers) was used to solve the radiative 

transfer equations because of its versatility and broad use (Mayer et al., 2010). Four streams were used in the 20 
simulations performed in this paper. Previous studies have shown that differences in incident irradiance at the 

surface with at least 4 streams are minimal (Mayer et al., 2011). PAR waveband ranges between 400 and 700 nm 

and total solar radiation between 280 and 4000 nm.  

The input data required to describe the intensive optical properties of the aerosols were obtained from models 

created with the Mie theory from Rosário (2011), derived from the Aerosol Robotic Network (AERONET) 25 
products for three experimental sites: Alta Floresta, Abracos Hill, and Rio Branco. These models carry spectral 

information about the linear extinction coefficient (Q) in km-1, the single scattering albedo (ω0), and the 

asymmetry factor for the phase function, calculated from the Henyey-Greenstein method (Henyey and Greenstein, 
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1941). Spectral resolution of the aerosol model in the PAR spectral region was 25 nm, and over the entire solar 

spectrum it varied from approximately 10 nm at shorter wavelengths up to 700 nm at longer wavelengths. 

Three optical models were developed for the biomass burning aerosol emitted over Amazon, which are different 

in scattering and absorption properties: a more scattering, an intermediate type, and a more absorbing aerosol 

type. Also, in this study, sensitivity analysis performed with data from the Biological Reserve of Jaru showed that 5 
the more scattering aerosol model is the one that best represented the biomass burning aerosols of that season, 

associated to higher values of AOD550nm. Therefore, in this study, the aerosol model used for all three study 

sites was the more scattering type.  

The specific input parameters of the radiative transfer equations are: solar zenith angle and the aerosol optical 

depth at 550 nm. The model provides the integrated value of the downward direct irradiance, the downward diffuse 10 
irradiance, and the upward diffuse irradiance, at the altitude determined by the user. All calculations were 

determined at the surface. From these values, it is possible to obtain the descending global irradiance (the sum of 

the contributions of the direct and diffuse irradiance incident at the surface) and the diffuse fraction, i.e., the ratio 

between the diffuse and incident global irradiance at the surface. 

3.2 Artificial Neural Networks 15 

Artificial Neural Networks (ANNs) have great potential because of their capacity to represent the complexity of 

the phenomena that are analyzed through them. Traditionally, physical simulation systems have great difficulty 

in reproducing complex responses of natural events, because unknown processes are often unresolved or 

represented through simplified approaches called 'parameterization schemes', which can limit forecast predictive 

skill (Huntingford et al., 2019). ANNs can be considered a network of many relatively simple processors, called 20 
units or nodes, in which there is a small amount of local memory. In ANNs, these basic local memory units are 

commonly layered and communicate through channels or connections, and operate only on their own media, that 

is, with their local data and their input parameters (Papale and Valentini, 2003). They can be seen as robust parallel 

processor with natural ability to store knowledge gained from experimentation and make this learning available 

for future use. This means that, from this method, it is possible to create hypothetical scenarios to evaluate the 25 
behavior of the output variables, in relation to possible modifications in the input variables. 

ANNs are trained from examples contained in the total set of input data. The “weights” are randomly provided at 

the beginning of the process and modified according to the rule used in the backpropagation method. In this paper, 

two methods of resolution of ANNs were used: i) the Multilayer Perceptron (MLP) is a direct and unidirectional 

power supply model of artificial neural networks, which maps the input data sets to an appropriate set of output 30 
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data. The MLP uses the backpropagation technique to train the networks. The most commonly used functions in 

this method are both sigmoid (Bayram et al., 2016); and ii) the Radial Basis Function (RBF) uses functions of 

radial basis as a function of activation of the nodes of the neural networks. The RBF method typically has three 

layers: the input, the intermediate, with a non-linear activation function and the output with a linear function. The 

input parameters are modeled as a vector composed of real numbers, and the outputs are scalar functions with 5 
vector input values (Bayram et al., 2016). 

The MLP is a function f: RD ® RL, where D is the size of the input vector x and L is the size of the output vector 

f(x), such that, in matrix notation: 

𝑓(𝑥) = 𝐺(𝑏(1) +𝑊(1)(𝑆(𝑏(4) +𝑊(4)𝑥)))                                                                                                                (2) 

With bias vectors b(1), b(2); weight matrices W(1), W(2), and activation functions G and s. W(1) is the weight matrix 10 
connecting the input vector to the hidden layer. Choices of s include tanh and the logistic sigmoid function with 

sigmoid(a) = 1/(1 + e-a).  

The RBF is a function with respect to the origin or a certain point c:  

𝑓(𝑥) = 𝑓(‖𝑥 − 𝑐‖)                                                                                                                                                 (3) 

RBF neural networks are good for novelty detection, because each neuron is centered on a training example, and 15 
so inputs far away from all neurons constitute novel patterns; but not so good at extrapolation, because it gives 

the same weight to every attribute as they are considered equally in the distance computation. 

For all ANNs used in this paper, 200 neural networks were generated for each one of the different output variables, 

from all three study sites, and only the one with the smallest error between modelled and observed output was 

evaluated. From the total dataset, 70% of the data were randomly chosen and used in the training process of the 20 
ANNs, 15% in the validation process, and 15% in the testing process. The set used in the training process has the 

function of exemplifying relations between inputs and outputs to the ANN. This data partitioning was selected to 

allow the vast majority (> 2/3) of the data to be used for training, and the remaining data (less than 1/3) were 

equally partitioned between validation and testing, because both processes are thought to have the same 

importance on the ANN construction.   25 
We have used the two most recommended back-propagation algorithms for optimization of ANNs (Rojek, 2017), 

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) and Radial Basis function training algorithm (RBFT), and the 

sum of squares (SOS) to choose between MPL and RBF by selecting the one which presented the smallest 

deviation to the training data. 

The variables used to train the ANNs were: incident photosynthetically active radiation incident at the top of the 30 
canopy (PARi) in Wm-2, the partitioning  of photosynthetically active radiation in its diffuse form (PARdif) in 
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percentage, derived from the method of Reindl et al. (1990), the solar zenith angle (SZA) in degrees, the average 

air temperature in the canopy (T) in degrees Celsius, the vapor pressure deficit (VPD) in kPa, the friction velocity 

(u*) in ms-1, and the aerosol optical depth at 550 nm (AOD550nm). Therefore, seven variables were used as inputs 

of the ANN and the flux of carbon dioxide (FCO2), in μmol CO2 m-2s-1, was selected as output.  

The best carbon flux ANN for all sites presented similarities such as: all three were generated from the RBF 5 
training model, used a Gaussian function for the activation of the hidden units, and the identity function for the 

activation of the output. However, the ANNs presented different number of hidden units. The network generated 

for the Bananal Island presented 30 hidden units, the one generated for Sinop used 21, and for Jaru, 19. Basically, 

the larger the number of hidden units in a neural network, the more robust the model is, i.e., the neural network 

has a greater capacity to model more complex relationships. At the end, the number of hidden units provides an 10 
indication that the database of the three analyzed sites presented different complexities in the relationship between 

the variables introduced at the moment of the construction of the networks. However, the functions that best 

managed to describe these relations were the same and the difference between them is the error magnitude between 

output data used for training and the model output.  

The performance of the ANN results was evaluated using the coefficient of determination (r2), which is the 15 
Pearson coefficient (r) squared, RMSE and MAE, defined as: 

𝑟1 = 9
∑ ;<=>?@A(<)B(C=>?@A(C))D

E∑ (<=>?@A(<))F(C=>?@A(C))FD
G

1

                                                            (4) 

Where p is the total number of data points used for validation only, excluding training and testing, y are the output 

values of the generated ANNs, and t are the values derived from the flux tower data (FCO2, H, and LE) or 

meteorological variables (T, VPD, and u*).  20 
Root Mean Square Error (RMSE) is used to evaluate differences between the values predicted by a mathematical 

or physical model (y) and the observed values (t). RMSE is a good measure of the accuracy of a model, but only 

to compare calculations and observations of the same variable, since it is scale dependent. It is obtained by the 

following equation: 

𝑅𝑀𝑆𝐸 = E∑ (<=C)FD

K
                                                              (5) 25 

Finally, the use of the Mean Absolute Error (MAE) does not take into account if an error was overestimated or 

underestimated, once it is characterized as the average of the errors committed by a model and can be obtained 

from the following equation, 
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𝑀𝐴𝐸 = 4
K
∑ |𝑦 − 𝑡|K                                                                    (6) 

4. Results 

4.1 Evaluation of ANNs for CO2, sensible heat, and latent heat fluxes 

In the absence of clouds, aerosols were responsible for changing the amount of solar radiation available at the 

surface and the partition between direct and diffuse radiation. This, in turn, impacted surface temperature, water 5 
vapor, among other changes able to affect photosynthesis. 

Flux data was combined with meteorological and satellite data. It is important to emphasize that the flux data have 

a sample interval of 30 minutes, while the satellite data is a ‘snapshot’ of the atmosphere when the passage occurs 

in a very short time interval, which registers a value referred to a single minute, but over a 10 x 10 km2 area. 

From the integration of the database it was possible to make an analysis using ANNs. Some precautions were 10 
taken in order to avoid misleading analysis of the ANNs. For example, values of u* smaller or equal to 0.2 m.s-1 

were excluded from the training, testing, and validation processes to avoid uncertain CO2 flux data collected in 

episodes with less turbulence, and therefore, a less mixed atmosphere. All data points for all variables above or 

below three standard deviations were excluded from the input datasets of the ANNs because they were considered 

to be outliers.  15 
Seven variables were used as inputs of the ANNs: photosynthetically active radiation incident on surface (PARi), 

in W.m-2, the partition of photosynthetically active radiation in diffuse form (PARdif), in %, derived from the 

method of Reindl (1990), the solar zenith angle (SZA), in degrees, the mean air temperature in the canopy (T) in 

degrees Celsius, the vapor pressure deficit (VPD) in kPa, the friction velocity (u*), in ms-1 and the aerosol optical 

depth at 550 nm (AOD550nm). The flux of carbon dioxide (FCO2) (in μmol CO2 m-2s-1) was selected as output. 20 
Figure 2 shows the FCO2 data set used for validation, obtained through the eddy covariance method, on the x-

axis (Eddy), and the ones calculated by the generated ANN, on the y-axis, with the respective determination 

coefficient (r2), RMSE, and MAE, for all three sites.  

The Rebio Jaru site presented the highest r2 (0.67) of the three evaluated sites, which represents a high correlation 

between the measured and modelled CO2 flux data. This site presented continuous AOD550nm data coverage 25 
throughout the day. At the other two sites, a single day had a maximum of two AOD550nm data points associated 

with the passages of the Terra and Aqua satellites. This result indicates that a continuous daytime coverage of 

AOD generated a more robust ANN influencing FCO2 with more predictability. 
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Figure 3 shows box and whisker plots for the diurnal cycle of FCO2 (μmol CO2 m-2s-1), H (W/m²), and LE (W/m²) 

for flux tower data obtained through eddy covariance (EC) method and modelled with ANNs (ANN) for 6 days 

(23rd Aug, 24th Aug, 25th Aug, 29th Aug, 01st Sep, and 10th Sep) over the dry season of 2007 in Rebio Jaru. It is 

possible to notice that on all evaluated days, the ANN results represent well the measured data. Although for the 

three fluxes (FCO2, H, and LE), the ANNs are not able to capture the extreme values of the distribution (the 10th 5 
and 90th percentiles), the median and both quartiles are well represented. During the evaluated period (August, 

September, and October 2007), the mean value of FCO2 was -12.2 μmol CO2 m-2s-1, while the average FCO2 

generated by the ANN for the same period was -12.4 μmol CO2 m-2s-1, a relative difference of 1.9%.  

The Bananal Island site presented the lowest values of RMSE (3.20) and MAE (2.43). because of its long temporal 

series, from October 2003 to December 2008, with 320 input points, which was important to establish a more 10 
robust mapping of the intra-seasonal variability. Throughout the evaluated period, the mean observed FCO2 for 

Bananal Island was -7.0 μmol CO2 m-2s-1, while the average FCO2 generated by the ANN was -7.1 μmol CO2 m-

2s-1, a relative difference of 1.3%.  

The Sinop site presented the largest discrepancies between the model and observed FCO2 with a r2 of 0.37, RMSE 

of 5.69 μmol CO2 m-2s-1, and MAE 4.78 μmol CO2 m-2s-1. A database of intermediate size compared to the other 15 
sites (237 points), no PAR measurements were performed at Sinop, but values were generated with the radiative 

transfer model libRadtran. The errors associated with the outputs of the radiative transfer model were included in 

the neural network training process. The relative difference between the mean observed and simulated FCO2 was 

1.2%. 

In order to evaluate the radiative effects of aerosol optical depth on turbulent energy fluxes, the same type of 20 
analysis performed for carbon dioxide flux, was done for sensible heat flux (H) and latent heat flux (LE). The 

evaluated period was also the same, August, September, and October, the dry and burning season in the region. 

For all three experimental sites the ANNs were made from the same variables used in the networks related to 

FCO2.  

All data points above or below three standard deviations were excluded from the input sets, because they were 25 
considered to be outliers and the choice of ANNs.  

As for FCO2, Rebio Jaru presented the highest r2 (0.87) for sensible heat flux results. However, the same behavior 

was not observed when evaluating latent heat flux, which presented a relatively lower r2 (0.58) in comparison. In 

general, the overall results of LE compared to H presented relatively smaller r2 values. The diurnal cycle of H is 

more well-behaved in relation to LE as it depends on the diurnal cycle of temperature. Latent heat flux, on the 30 
other hand, is greatly influenced by advection of moisture coming from other sources not exclusively related to 
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stomatal opening by the local vegetation. The presence of springs nearby could explain peaks on local maxima of 

latent heat flux. This can be seen in Figure 3 in Supplement Material, which shows the diurnal cycle (for some 

days of the experiment) of measured H and LE fluxes (black dots) and the respective curves calculated from 

ANNs (red lines).  

During the evaluated period (August, September, and October 2007), the mean H observed was 117.4 Wm-2, while 5 
the average of H generated by ANN for the same period was 111.7 Wm-2, a relative difference of 4.9%. For LE, 

the mean value of the observed data was 218.1 Wm-2 and the average value generated by ANN was 218.7 Wm-2, 

a relative difference of 0.3%. Although the analyzes performed between the validation data and those obtained 

through ANNs presented better results for H, the relative difference between the mean values of LE - calculated 

and observed - was lower. 10 
It is important to emphasize that the analysis performed between the validation data and the modelled data 

generated by ANNs is a way to determine if the neural network is robust. This does not necessarily mean that a 

low r2 indicates that a given ANN has low predictability. The evaluation of the relative deviation is a way of 

measuring the accuracy of an ANN. Although it is possible to note in Figure 2.b that the ANN of H could better 

approximate the measured values, the relative error associated with ANN of LE was around 4.6% lower. 15 
Bananal Island presented intermediate r2 values (0.42 for H and 0.35 for LE), which indicates an average 

correlation between the observed and the modelled data. For relative deviations, the values were lower than 3% 

for H data and lower than 1% for LE. 

For Sinop, the analyzes of H presented a r2 of 0.53, considered from medium to high performance of the ANN, 

and a relative deviation of 0.5%. For LE, the r2 was 0.27 and the relative error was 1.2%. 20 

4.2 Modeling CO2 fluxes with ANNs with constant temperature and moisture 

From the generated ANNs, tests were performed to determine the behavior of FCO2 in different scenarios for all 

three evaluated sites. In the first test, the values of T, VPD, and u* were fixed in order to isolate aerosol radiative 

effect on the availability of photosynthetically active radiation at the surface and the partitioning of it in its direct 

and diffuse forms. This first test is hypothetical, since it is known that the fixed variables also suffer influences of 25 
AOD550nm. In the test, AOD550nm varied from 0.0 to 2.0 and the radiative transfer model libRadtran was used 

to estimate values of PARi and PARdif values, for three different solar zenith angles (15º, 30º, and 45º). The results 

related to Bananal Island can be seen in Figure 4. The other sites showed similar behavior. 

The values of T, VPD, and u* were fixed at the ‘optimal point’ of FCO2, i.e., for which values of T, VPD, and u*, 

FCO2 presented the largest absolute values. For the other sites, arbitrary values were fixed, close to those found 30 
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at the Bananal Island. Table 2 shows the values of T, VPD, and u* fixed for each one of the evaluated sites. 

Figure 5 shows the variation of FCO2 in relation to AOD550nm for three different SZAs (15º, 30º, and 45º), in 

the three evaluated sites. For Bananal Island and Rebio Jaru, the increase in AOD550nm generates an initial 

decrease in the absolute values of FCO2, for almost all SZAs, except for the solar zenith angle of 30º in Bananal 

Island, which appears to have no impact on CO2 flux until AOD550nm ~ 0.25. However, from this value on, the 5 
FCO2 values show a decreasing trend. 

The FCO2 in Bananal Island presents a minimum point with the variation of AOD550nm, while in Rebio Jaru, 

FCO2 presents a more stable behaviour. In the Bananal Island, after the minimum point of the curve, FCO2 starts 

to increase with AOD550nm, i.e., there is an optimal range of AOD550nm, which is dependent on the SZA. For 

SZA = 15°, this interval is associated with AOD550nm between 0.59 and 0.93. For SZA = 30°, the interval is 10 
narrower, with AOD550nm ranging from 0.57 to 0.61. And for SZA = 45 °, AOD550nm is between 0.45 and 

0.55. For higher values of AOD550nm (above 1.75), the behavior of FCO2 also stabilizes, but at different points, 

dependent on SZA. 

In Rebio Jaru, on the other hand, this behavior associated to an ‘optimal range’ of AOD550nm influence on the 

FCO2 curve is not observed. It is possible to identify a value of AOD550nm where the value of FCO2 stabilizes 15 
and does not present significant variations anymore. This value of AOD550nm, associated to the stabilization of 

the curves, also appears correlated with the solar zenith angle. For SZA = 15°, this value of AOD550nm is 0.98, 

for SZA = 30° is 0.88 and for SZA = 45° is 0.65. When analyzing the results for Sinop, this behavior of decrease 

in the absolute value of FCO2 with the increase of AOD550nm is not verified. The addition of AOD550nm values 

from 0.0 to 2.0 generates increases in absolute values, that is, the CO2 changes between the local vegetation and 20 
the atmosphere decrease with higher aerosol load. This behavior is observed up to a value of AOD550nm from 

where FCO2 value stabilizes, depending on the SZA. For SZA = 15°, this value of AOD550nm is 1.85, for SZA 

= 30° is 1.70, and for SZA = 45° AOD550nm = 1.25. 

4.3 Modeling temperature, humidity, and wind with ANNs 

In the first test, temperature, VPD, and u* were fixed as described in Table 2, but these variables are directly 25 
related to the available energy at the surface and, therefore, these variables would also be impacted in the presence 

of aerosols. Artificial neural networks were built from the same database used to make the previous ANNs but 

varying its input and output values. 

The first variable to be evaluated was the temperature. Three variables were used as input parameters in the 

training processes of the temperature ANN: PARi (Wm-2), PARdif (%) and SZA (º). These variables were chosen 30 
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as inputs for the neural network of temperature because radiation directly impact surface temperature. The 

available energy at the surface is proportional to PARi and PARdif, linked to the diurnal cycle. 

The second evaluated variable was VPD. This variable is related to temperature, which is related to PARi, PARdif, 

and SZA. Thus, these 4 variables were used as inputs values in the construction of the VPD ANN. 

Finally, u* is also affected by energy available at the surface but in a lower degree once it is directly dependent 5 
on wind speed. All other variables (except for the AOD550nm itself, in order to avoid overtraining) were used as 

input values in the construction of the u* ANN. 

Figure 6 shows data used for the validation, i.e., without interference in the construction of the networks. The 

values of the x-axis correspond to the observed values, and those of the y-axis, to the values generated by the 

neural networks. The results for the neural networks of VPD, for all evaluated sites, were the most compatible 10 
with the values observed and they presented a r2 greater than 0.8. This is mainly because VPD is closely related 

to temperature. The explanation of the variance of VPD through the variables used as inputs of the ANNs was 

mainly governed by temperature. In Bananal Island, temperature explained 50.5% of the VPD variance, in Rebio 

Jaru and Sinop, 65.6% and 38.1%, respectively. Temperature and friction velocity presented a moderate value of 

r2 (between 0.2 and 0.5) for all cases. However, in the overall sensitivity analysis, PARi was mostly responsible 15 
for the explanation of the variance of temperature.  

4.4 Isolating the radiative impact of aerosols on CO2, sensible heat, and latent heat fluxes with ANN 

modeling 

From the generated ANNs, a study was performed in order to identify what the relative differences would be in 

FCO2, H, and LE fluxes between real observed conditions and an atmosphere without aerosols, i.e., with 20 
AOD550nm = 0.0 for the evaluated cases. 

First, the radiative transfer model, libRadtran, was used to obtain PARi and PARdif values for an atmosphere with 

AOD550nm = 0.0. For the calculations, the real values of SZA and day of the year were used. The results for the 

Rebio Jaru site can be visualized in Figure 7. For the other study sites, the same behavior of the curves is observed. 

It is possible to identify that the observed values of PARi are systematically lower than those obtained by the 25 
radiative transfer model, while the opposite is observed for PARdif. Aerosol decreases the incident shortwave 

global radiation at the surface by absorption and scattering processes, while it increases the percentage of diffuse 

radiation due to the scattering. From PARi and PARdif calculated for an aerosol-free atmosphere, temperature, 

VPD, and u* were calculated through the ANNs. The SZA values used as input in the libRadtran were the same 

as those used in the ANNs. 30 
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All variables obtained by both models (libRadtran and ANNs) - except for the values of AOD550nm, which were 

set at zero, and SZAs, which were kept the same as the original database - were used in calculations of fluxes of 

CO2, H, and LE. Table 3 summarizes the results. The mean real values and standard deviations of each of the 

variables of the initial set of data, the mean model values and the respective standard deviations are shown also 

for all variables. The relative difference between the means of the actual values and the simulated ones, indicating 5 
whether the model presented values larger than the real ones (positive), or smaller (negative). 

PARi and PARdif variables agreed over the three sites, when comparing the actual and simulated values. The 

average of the modelled PARi values, without aerosol, was 12.4% higher than the average of the real values for 

the Bananal Island site, 29.8% higher for the Rebio Jaru, and 26.3% % higher for Sinop. On the other hand, the 

average of the model values of PARdif was 35.9% lower than the average of the real values for Bananal Island, 10 
52.0% lower for Rebio Jaru, and 38.0% lower for Sinop. 

Temperature also showed agreement regarding the increase of the mean values modelled in relation to the mean 

real values. In Bananal Island, the increase was 11.3%, in Rebio Jaru was 7.4%, and in Sinop the relative 

difference was 1.7%. The relative difference between the actual and modelled mean values of VPD and u * did 

not show agreement for the three experimental sites. However, Bananal Island presented a significant increase in 15 
VPD (~50%) for an atmosphere with no aerosols.  

As demonstrated by Doughty et al. (2010) for a tropical forest, there is a decrease of approximately 13% in the 

FCO2 for every 1ºC increase in temperature, when it is above 28ºC. Due to the high correlation between VPD and 

T, the results of the model without aerosols agree with the authors. 

For FCO2, Bananal Island and Rebio Jaru presented higher mean modelled values, i.e., a lower exchange of CO2 20 
with the atmosphere is expected under the effect of episodes without aerosols. Sinop presented the opposite effect. 

This is mainly due to the differences in structural local characteristics of each site. The response of photosynthetic 

capacity to an increase in diffuse radiation may vary between different ecosystems and seems to be related to the 

different properties of canopies (Zhang et al., 2010; Kanniah et al., 2012; Tang and Dubayah, 2017). Niyogi 

(2004) showed that carbon assimilation grows with an increase in aerosol concentration in the case of forests and 25 
cultivated areas and decreases over pastures. 

The surrounding areas of the flux tower in Sinop show several regions of pasture, which later became soy or maize 

plantations. For this reason, the less complex canopy structures in the region (with lower vegetation and more 

homogeneity in the vertical and horizontal distribution) have opposite responses to that proposed by the ‘diffuse 

fertilization effect’ theory. The complexity of the canopies in Bananal Island and Rebio Jaru confirms the effect. 30 
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The same type of test was performed in order to evaluate the relative differences in H and LE under conditions of 

an observed aerosol concentration and a simulated atmosphere without aerosols, with AOD550nm = 0.0. In this 

test, energy (H and LE) fluxes were obtained using variables calculated by the models (libRadtran and ANNs), 

except for the values of AOD550nm (0.0) and SZAs, which were obtained through the original data. Table 3 

shows the average real values and the standard deviations of the fluxes, H and LE, for the observed database, the 5 
average model values and the relative difference between the means of the real values and the simulated ones.  

For all three sites, the values of sensible and latent heat fluxes calculated through the ANNs for a scenario without 

aerosols were higher than the mean observed values. It was observed that, for all experimental sites, an aerosol-

free atmosphere was associated with higher PARi and lower PARdif values, which means that in an aerosol-free 

atmosphere, there are conditions for more available energy at the surface, which may explain the increase in the 10 
mean values of sensible and latent heat fluxes. The higher availability of surface radiative energy proved to be 

used for the increase in temperature. The analysis of energy fluxes indicates that in the presence of aerosols, there 

is a total reduction in both heat and water exchange between the surface and the atmosphere over the evaluated 

sites. 

Over all experimental sites, sensible heat flux was shown to be more susceptible to changes in AOD550nm 15 
compared to latent heat flux. This fact is greatly observed in Bananal Island and Rebio Jaru, but less in Sinop. A 

possible explanation for this phenomenon can be obtained by evaluating the absorption spectrum of water. The 

spectral region most affected by the presence of biomass burning aerosols is the PAR and evaluations were limited 

to this spectrum only. This spectral region interacts very little with water. Another possible explanation is due to 

the temperature rise of the canopy itself. The vegetation responds to temperature increase with a stomatal closure, 20 
which decreases evapotranspiration. Aerosols are more efficient in affecting the exchange of heat between the 

atmosphere and the vegetation than the exchange of moisture between the two. 

5. Conclusions  

In this study, we evaluated the impact of AOD550 nm on land fluxes of CO2, sensible heat, and latent heat for 

three study sites located in the deforestation arch region of the Brazilian Amazon using a combination of ANNs 25 
and radiative transfer modeling.  

Aerosols were responsible for changing the amount of solar radiation available at the surface and the partition 

between direct and diffuse radiation. The radiative impact of aerosols caused variations in the temperature and 

humidity, as well as in FCO2. For the impact of aerosol on the flux of CO2, the modelled values with ANN for 



 
 
 

20 
 

Rebio Jaru indicated a strong dependence with solar zenith angle. Temperature and VPD were important in 

explaining FCO2 variance for all study sites. 

For Bananal Island and Rebio Jaru, the increase of AOD550nm initially generates a decrease in the absolute values 

of FCO2 to AOD550nm ~ 0.25. However, for higher values of AOD550nm, FCO2 decreased, which indicates 

higher photosynthetic rates. In Sinop this behavior was not observed.  5 
We developed a group of ANNs relating meteorological and radiative variables for three sites in the Amazon 

region (Fig. 8). For Bananal Island, the behavior of decreasing FCO2 with the increase of AOD550nm remained. 

For Rebio Jaru, FCO2 decreases with AOD550nm up to approximately AOD550nm = 0.50 and showed the 

opposite behavior after that. For Sinop, the behavior between both scenarios remained basically the same.  

In order to obtain the total radiative impact of aerosols on FCO2, a third test consisted of a study to define the 10 
relative differences in FCO2 between conditions in the presence of aerosol and without aerosols (AOD550nm = 

0.0) in a combination of two distinct methodologies: ANNs and radiative transfer modeling. The average of the 

modelled PARi values without aerosol was higher than the average of the real values for all sites, while the average 

of modelled values of PARdif was lower, as expected. Temperature also increased in the modelled scenario without 

aerosols in relation to the one containing aerosols. The relative difference between the actual and modeled mean 15 
values of VPD and u* did not show agreement for the three experimental sites.  

Bananal Island and Rebio Jaru presented higher values of modelled CO2 flux in the scenario without aerosol, 

while Sinop presented the opposite result. This was due to the canopy structural properties of Sinop and 

surroundings presenting several crop fields. For this reason, the less complex canopy architecture in the region 

acted to decrease photosynthetic response of the vegetation to less total incident PAR and more radiation in its 20 
diffuse form. We conclude that in the absence of aerosols, CO2 flux from the atmosphere to the surface in Rebio 

Jaru could be reduced to more than half as its current values in the presence of aerosols. This effect is only 

observable by taking secondary effects into account.  

The same type of evaluation was performed for the fluxes of sensible heat and latent heat using ANNs. When 

evaluating the variables that best explain the variance of sensible heat flux for Bananal Island, VPD and T showed 25 
a strong influence of 27.4% and 23.7%, respectively. This fact indicates that energy fluxes of Bananal Island are 

influenced by temperature. In the case of Rebio Jaru, PARi explained about 17% of the variance of H. For Sinop, 

there is no favorable variable explaining the variances of H and LE. However, friction velocity (u*) presented the 

highest index of sensitivity (15%), which indicates that the variance of both energy fluxes was more influenced 

by turbulence itself. 30 
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In the first test, the behavior of the fluxes with AOD550nm showed quite similarities in all three sites. The average 

behavior of both, H and LE, was decreasing by an increase in aerosol optical depth. The increase in aerosol 

concentration decreases total incident radiative energy at the surface and, thus generates a systematic decrease in 

H and LE. In the second test, the variation of other meteorological variables affected the fluxes and, although 

differences were present, the general behavior of energy fluxes with aerosol optical depth remained. Sensible heat 5 
flux and latent heat flux decreased with higher AOD550nm.  

In the scenario with AOD550nm = 0.0, the values of sensible and latent heat fluxes were higher than the observed 

values. This indicates that in an atmosphere without aerosols, more energy is available at the surface. Sensible 

heat flux was shown to be more susceptible to changes in AOD550nm compared to latent heat flux. This fact is 

reported in the Bananal Island and Rebio Jaru data sets, but less in Sinop. The radiative spectral region most 10 
affected by the presence of the biomass burning aerosols is the PAR, and only the aerosol optical depth at 550 nm 

was evaluated. The radiation at 550 nm interacts little with water vapor. Also, an increase in canopy temperature 

may lead to stomatal closure decreasing total evapotranspiration, which can impact latent heat flux negatively. 

The two group of ANNs developed in this study, i.e., characterizing the first and second order radiative impact of 

aerosols on mass and energy fluxes, can be used for flux data gap-filling, as well as modeling and evaluating 15 
future climate. More evaluations of the impact of aerosols on energy fluxes throughout the Amazon basin are 

needed, and machine learning techniques are an efficient and accessible tool to develop these studies.  

It is important to highlight some important caveats of the ANN methodology used to drawn our conclusions, 

including, but not limited to: general extrapolations, e.g., a limited number of sites were used in this study, high 

dependence on sampling together with other data biases, e.g., the dry season only was particularly used in here, 20 
the non-consideration of all confounding factors of the examined problem, e.g., a limited number of input variables 

(7) were used to build the ANNs throughout these experiments. Yet, using restricted datasets and objective choices 

of features to study rather than an extensive and generic approach remain valid and important. Moreover, expert 

intervention associated with best practices are expected to diminish these weaknesses associated with machine 

learning techniques (Reichstein et al., 2019).  25 
Future efforts must include ways to go around the main caveats of this work, including: i) the addition of multi-

source (more field sites), multi-scale (the whole Amazon basin represented at different resolutions), and complex 

spatio-temporal relations (intra and inter-seasonal variability of flux data, as well as advection of aerosols from 

different sources); ii) uncertainty estimation should be integrated into models; and iii) using physical-based 

models to test the statistical ones, e.g., linking radiative transfer and ecophysiology models to evaluate the 30 
theorical first order impact of aerosols on light scattering and photosynthesis. Deep learning techniques such as 
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Recurrent Neural Networks (Schmidhuber, 2015) or Long-Short-Term-Memories (Hochreiter and Schmidhuber, 

1997) may be able to contour some of these weaknesses (Reichstein et al., 2019). 

Nevertheless, coupling machine learning techniques at local and regional levels with land surface models (Moreira 

et al., 2017) and Earth System Models (Malavelle et al., 2019) can improve the representation of poorly known 

process-based mechanisms or add information about unknown relationships between meteorological variables 5 
and surface fluxes. 
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Figure 1: Geographical representation of the North region of Brazil. The darker green area represents the remaining 
forest. The black dots indicate the location of the study sites: Rebio Jaru, RO (west), Sinop, MT (center), and Bananal 
Island, TO (east). Boxes show the temporal distribution of the aerosol optical depth at 550 nm over the three sites 5 
derived from MODIS from 2003 and 2008 and the monthly mean values for the period, with the standard deviation 
represented by vertical bars. 
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a. Bananal Island - TO             b. Rebio Jaru - RO                    c. Sinop – MT 5 

Figure 2: FCO2 (μmol CO2 m-2s-1), H (W/m²), and LE (W/m²) calculated from flux tower data through eddy covariance 
(x-axis) versus modelled by ANNs (y-axis), with r2, RMSE, and MAE. The 1:1 straight line (thick) and the linear fit 
(thin) are also represented for the three study sites. 
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Figure 3. Box and whisker plot with extreme data points added for the diurnal cycle of FCO2 (μmol CO2 m-2s-1), H 
(W/m²), and LE (W/m²) calculated from flux tower data through eddy covariance (EC) (gray) and modelled by ANNs 
(ANN) (red) for 6 days (23rd Aug, 24th Aug, 25th Aug, 29th Aug, 01st Sep, and 10th Sep) over the dry season of 2007 in 
Rebio Jaru. The height of the box portion is given by the interquartile range of the dataset, and extends from the 25th 5 
to 75th percentile. The horizontal bar within the box denotes the median value. The ends of the whiskers are drawn to 
the10th and 90th percentile values. The extreme values are points at the maximum and minimum points.  

 

 

 10 
Figure 4: PARi (Wm-2) (continuous lines) and PARdif (%) (dashed lines) versus AOD550nm, for three different SZAs 
(15º, 30º, and 45º) calculated by the radiative transfer model, libRadtran, for Bananal Island for a characteristic day 
of the dry season. 
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a. Bananal Island - TO           b. Rebio Jaru - RO                     c. Sinop - MT 

Figure 5: Modelled FCO2 (μmol CO2 m-2s-1), H (W/m²), and LE (W/m²) via ANNs versus AOD550nm, for three SZAs 5 
(15º, 30º, and 45º), for three study sites. Values of temperature, VPD, and u* were kept constant. PARi and PARdif were 
obtained through libRadtran. 
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a. Bananal Island - TO             b. Rebio Jaru - RO                    c. Sinop – MT 

Figura 6: Temperature (°C), VPD (kPa), and u* (m.s-1) obtained from ANNs generated with observed values for the 5 
three study sites, with respective r2, MAE, and RMSE. The 1: 1 line (thick) and the best linear fit (thin) are also shown. 
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Figure 7: PARi (Wm-2) (left) and PARdif (%) (right) versus SZA (º), for Rebio Jaru. The observed values of PARi and 
PARdif - obtained by the method of Reindl (1990) - are represented by open circles, while the values calculated through 
libRadtran are represented by the black dots. The curves fitted to the data sets are shown in red. 
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a. Bananal Island - TO           b. Rebio Jaru - RO                     c. Sinop - MT 

Figure 8: Modelled FCO2 (μmol CO2 m-2s-1), H (W/m²), and LE (W/m²) via ANNs versus AOD550nm, for three SZAs 5 
(15º, 30º, and 45º), for three study sites. Values of temperature, VPD, and u* were statistically modelled with ANNs 
built from meteorological data. PARi and PARdif were obtained through libRadtran. 
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Table 1: Geographic coordinates, altitudes, flux tower height, and the sensors used in the three experimental sites. 

 Bananal Island Rebio Jaru Sinop 

Coordinates 9°49.3'S; 50°08.9'W 10°04.7'S;  
61°56.0'W 

11°24.7'S;  
55°19.4'W 

Altitude 120 m 148 m 423 m 
Flux tower height 40 m 62 m 40 m 

Period Oct/2003 - Dec/2008 Aug/2007 - Oct/2007 Mar/2005 - Aug/2008 

datalogger CR5000 & CR10X 
(Campbell Sci.) 

CR10X 
 (Campbell Sci.) 

CR5000 & CR10X 
(Campbell Sci.) 

 Fluxes 
Sonic anemometer CSAT3; 10 Hz Solent 1012R2; 10.4Hz SWS-211/3K; 10 Hz 

Gas analyser  IRGA, Li-7500 IRGA, Li-7500 NOAA-ATDD 
 Meteorological variables 

Temperature and 
humidity 

Psychrometer CSI 
HMP45C 

Termohygrometer Vaisala 
(HMP45D) HMP-35 Vaisala 

Precipitation Hydrological Services Pluviometer EM ARG-100 2501, Sierra-Misco 

Net radiation Net radiometer 
(Kipp&Zonen) 

Net radiometer 
(Kipp&Zonen) NR-LITE (Kipp&Zonen) 

 Radiation 

Solar radiation Pyranometer 
(Kipp&Zonen) CM-21 (Kipp&Zonen) libRadtran1 

PAR Radiometer 
(Kipp&Zonen) Skye SKE-510 libRadtran1 

 Aerosol 
AOD550nm MODIS MFRSR2 MODIS 

1 Values obtained from the radiative transfer model  
2 Multi-Filter Rotating Shadowband Radiometer 

 

Table 2: Fixed values of temperature (T), vapor pressure deficit (VPD), and friction velocity (u*) for three sites 5 
evaluated in the first test. 

 
Bananal Island - TO Rebio Jaru - RO Sinop - MT 

T (ºC) 28.5 29.0 29.0 
VPD (kPa) 1.5 2.0 2.0 
u* (m.s-1) 0.3 0.2 0.2 
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Table 3: Mean values with standard deviations of the turbulent fluxes of CO2 (FCO2), sensible heat (H), and latent heat 
(LE), in μmol CO2 m-2s-1 and Wm-2, respectively. These values were used as input parameters for building ANNs 
(Measured), mean values and standard deviations generated from the aerosol free scenarios (Modelled), and relative 5 
differences (%) between the measured and the modelled values for all three study sites. 

Study site Variables Measured  Modelled Relative difference  

Bananal Island - TO 

FCO2 -7 ± 5 -6 ± 1 +12% 

H (Wm-2) 131 ± 67 347 ± 112 +62% 

LE (Wm-2) 287 ± 108 306 ± 26 +6% 

Rebio Jaru - RO 

FCO2 -12 ± 7 -6 ± 0 +55% 

H (Wm-2) 117 ± 74 184 ± 65 +36% 

LE (Wm-2) 215 ± 98 219 ± 68 +2% 

Sinop - MT 

FCO2  -18 ± 7 -20 ± 3 -12% 

H (Wm-2) 137 ± 71 162 ± 24 +15% 

LE (Wm-2) 227 ± 89 262 ± 38 +13% 
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