

Supplement of:

Distinctions in source regions and formation mechanisms of secondary aerosol in Beijing from summer to winter

Jing Duan^{1,2,3}, Ru-Jin Huang^{1,2}, Chunshui Lin^{1,2,4}, Wenting Dai^{1,2}, Meng Wang^{1,2,3}, Yifang Gu^{1,2,3}, Ying Wang^{1,2,3}, Haobin Zhong^{1,2,3}, Yan Zheng⁵, Haiyan Ni^{1,2,3,6}, Uli Dusek⁶, Yang Chen⁷, Yongjie Li⁸, Qi Chen⁵, Douglas R. Worsnop⁹, Colin D. O'Dowd⁴, Junji Cao^{1,2}

¹State Key Laboratory of Loess and Quaternary Geology (SKLLQG) and Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China

²CAS Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China

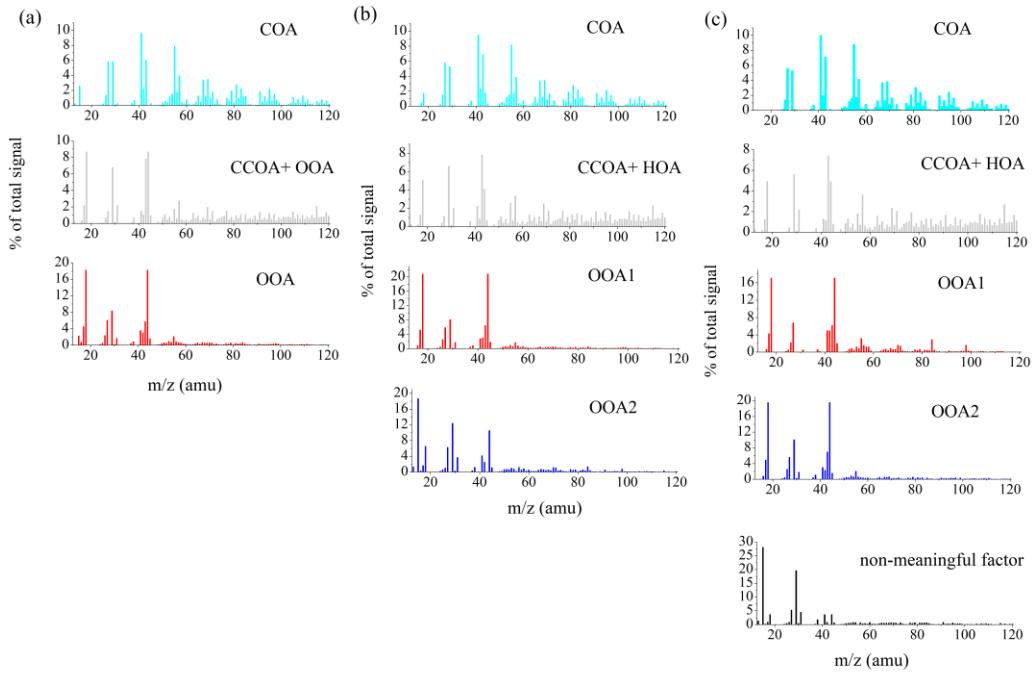
³University of Chinese Academy of Sciences, Beijing 100049, China

⁴School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland

⁵State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China

⁶Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, The Netherlands

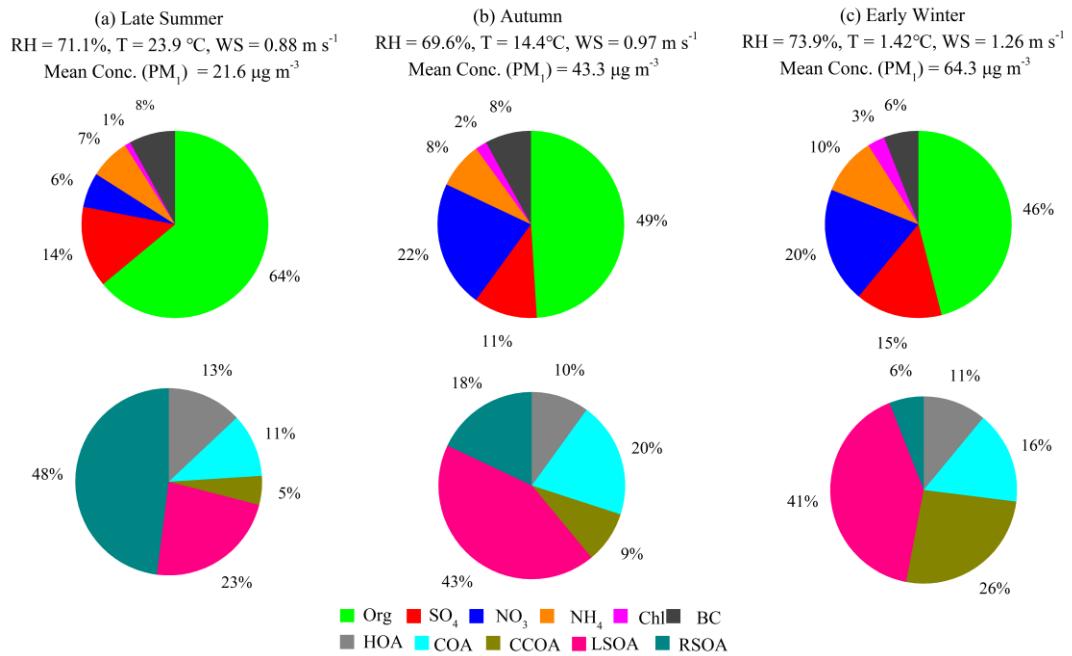
⁷Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China


⁸Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau

⁹Aerodyne Research, Inc., Billerica, MA, USA

Correspondence to: Ru-Jin Huang (rujin.huang@ieecas.cn)

Table S1. Summary of mass concentrations of aerosol species, gaseous pollutants and meteorological parameters during entire study and different seasons. PM₁ chemical composition during clean days (C), M-polluted days (M) and H-polluted days (H) in different seasons are also shown.


Species	Entire study	Late Summer			Autumn			Early Winter			
		Entire	C	M	Entire	C	M	H	Entire	C	M
Aerosol species (µg m⁻³)											
PM ₁	44.7	21.6	15.6	46.9	43.3	9.3	54.2	110.5	64.3	8.1	43.5
OA	22.4	13.8	10.5	28.1	21.2	5.8	25.5	50.8	29.6	4.5	20.4
HOA	2.2	1.8	1.3	3.9	2.1	0.4	2.5	6.1	3.3	0.2	1.2
COA	3.9	1.4	1.5	2.0	4.3	1.9	4.6	8.1	4.7	1.1	4.3
CCOA	3.1	0.7	0.5	1.7	2.0	0.6	2.3	4.6	7.7	1.1	5.3
LSOA	9.0	3.2	2.2	6.7	9.2	1.5	10.2	25.4	12.1	1.5	7.5
RSOA	4.2	6.6	5.0	13.8	3.8	1.5	5.9	6.6	1.8	0.6	2.0
SO ₄	5.6	3.1	1.9	8.0	4.8	0.8	7.6	11.0	9.6	1.5	6.5
NO ₃	8.7	1.3	0.9	3.3	9.5	0.6	12.5	27.6	12.9	0.7	8.7
NH ₄	3.8	1.5	0.9	3.8	3.5	0.5	3.7	11.0	6.4	0.7	4.4
Chl	0.8	0.2	0.05	0.5	0.8	0.1	0.7	2.2	1.8	0.2	1.3
BC	3.4	1.7	1.4	3.3	3.5	1.5	4.3	7.7	3.9	0.4	2.2
Gaseous pollutants											
SO ₂ (ppb)	5.0	3.0	2.7	3.5	4.4	3.0	4.4	6.2	7.9	3.7	5.2
CO (ppm)	0.9	0.5	0.6	0.4	0.7	0.3	0.8	1.2	1.7	0.2	0.9
NO (ppb)	19.1	4.7	3.7	4.2	18.1	8.9	15.5	28.2	32.7	4.3	18.9
NO ₂ (ppb)	29.9	18.7	14.6	23.1	32.0	22.3	32.3	48.7	34.0	11.9	25.5
O ₃ (ppb)	18.0	35.4	31.5	54.1	17.5	27.2	16.1	20.8	5.7	19.7	4.9
Meteorological parameters											
RH (%)	72.5	71.1	71.4	64.5	69.6	56.7	82.3	75.9	73.9	34.3	79.4
T (°C)	12.7	23.9	24.2	27.0	14.4	17.9	14.9	14.5	1.5	-3.0	1.3
WS (m s ⁻¹)	0.95	0.88	0.89	0.93	0.97	1.23	0.63	0.55	1.26	3.60	1.12
											0.63

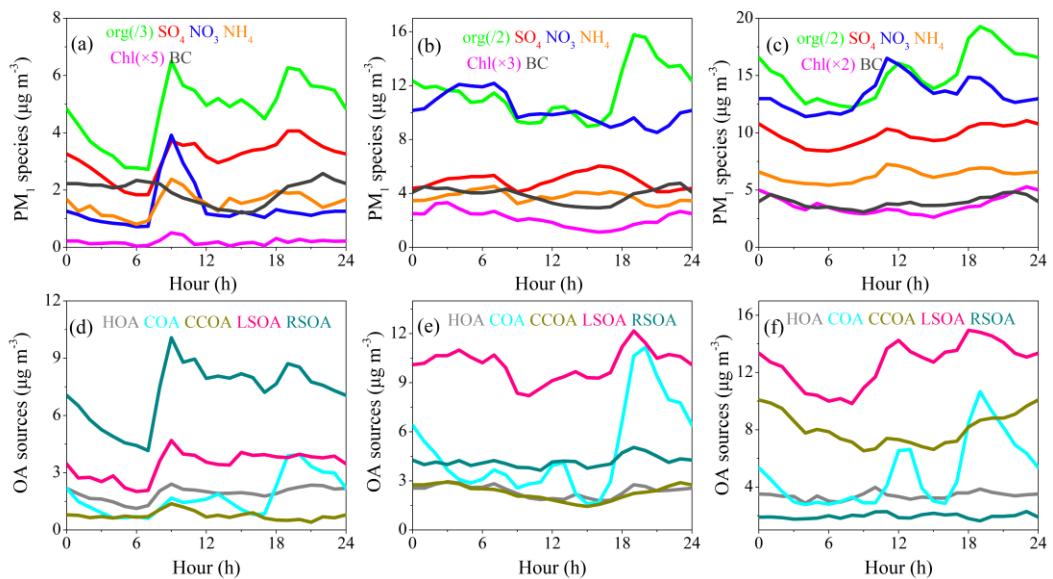

Figure S1. PMF profiles of OA sources for 4, 5 and 6 factor solutions.

Figure S2. ME-2 profiles of OA sources. The HOA profile is from that of Ng et al. (2011b), and the COA profile is from 4-factor PMF result. The others are unconstrained factors.

Figure S3. Mass fraction of PM₁ species and OA factors in later summer (a), autumn (b) and early winter (c).

Figure S4. Diurnal cycles of PM₁ species and OA factors during late summer (a, d), autumn (b, e) and early winter (c, f).