
Response to reviewer #1

We thank reviewer #1 for careful reading our manuscript and for the positive feedback as well as 
constructive comments on our work. Below we address first the general and then the minor 
comments. The reviewer’s comments are in blue, our responses are in black and any additions to 
the manuscript are in red

General comment 1

The manuscript is relatively technical and method oriented. For non-experts within the field it
can be hard to understand the possibilities and limitations with the described methods. I suggest
that you add more discussion about the possibilities and limitations with the described methods
in the summary and conclusion section. One limitation which I think should be discussed a bit
more is the uncertainties in the observations. On line 265-266 you write that you assume a 1 %
uncertainty in the measured evaporation factor (EF), I think this uncertainty can be substantially
bigger. How sensitive is the optimization of all parameter values to the uncertainties in the
observations? I.e. what happen if the uncertainty of the measured EF is 5 %?

Response

The question of uncertainties and their influence to the method is an interesting one. In real 
evaporation measurements the error may be larger than 1%. As the uncertainties vary with 
experimental setting and may sometimes be challenging to estimate, we concentrated here on the 
performance of the method in an idealized case. 

In addition, we also tested the methods with data set where random noise was introduced to the EF 
and time. On average the EF error was 1% and ± 10 min in time for long residence time (time > 10 
min data points) points. For short residence time data points (time < 10 min data points) the random
error in time was 9%. For the 10 minute data point the relative error in time was +77% / -63%. The 
results of fitting the LLEVAP model with both schemes showed similar results as the data set with 
no uncertainty in the particle radius / EF and hence we decided not to include it in the manuscript. 
The results of this new data set are summarized in Table 1. 

Table 1: Estimated parameter distributions and correct values for an artificial data set where 
random noise was introduced to the data set.
Variable Correct values MCMC MCGA (Gaussian) MCGA (uniform)
Csat,1 (μg m-3) 0.01 0.008 – 0.016 0.007 – 0.02 0.006 – 0.014
Csat,2 (μg m-3) 1 0.86 – 1.44 0.78 – 1.86 0.79 – 1.37
Csat,3 (μg m-3) 1000 567 – 2488 588 – 1530 309 – 6708
xmole,1 0.5 0.48 – 0.53 0.49 – 0.56 0.48 – 0.53
xmole,2 0.4 0.38 – 0.43 0.35 – 0.42 0.38 – 0.43
xmole,3 0.1 0.06 – 0.12 0.07 – 0.11 0.07 – 0.11

General comment 2

Now you use the term “correct” values when you talk about measured and/or literature data on
particle phase density, individual compound saturation concentrations and viscosity. But can we
really state that we know the correct values of all these parameters? I would avoid using the term



“correct” or at least clearly define what you mean with “correct” parameter values. 

Response

We have replaced the mentions of correct values to literature values when referring to literature 
values. We are now using the term correct value only when referring to the artificial data sets or the 
mass / mole fractions in mixtures 1-4 where the estimated parameters have “correct” values in the 
sense that they are measured or used as an input to a process model to produce the artificial data.

General comment 3

It would also be good to add a short discussion about how the described methods can be used in 
order to suggest/design new experiments which can give better constrains on the volatility and 
viscosity properties of SOA particles. Recommendation of new experiments is always welcomed by
experimental aerosol scientists.

Response

We have added following discussion on this at the end of conclusions.

Based on the analysis shown here, various parameters can be obtained from experimental data using
this method and the design of the experiments can be used to focus experiments on properties of 
interest. For instance, in order to distinguish between saturation concentrations of low-volatile 
compounds, small particles and hours long evaporation times are required. On the contrary, to 
distinguish between semivolatile or intermediate volatility compounds, larger particles and/or high 
sampling time resolution for the short evaporation time scales are needed.

Minor comment 1

When I read section 3, L250-285 I start to wonder what artificial parameter values of C* and the
mole fractions did you actually use in dataset 1-4? Then later when you start to describe the
results it become clear to me that these values can be found in figure 2-5. Still, I think it would
be good to have a table which provide these values already in Sect. 3. In this table you can also
include the best optimization values for these parameters and the 10 th and 90 th percentiles. With
this table include you do actually not need all the figures.

Response

We thank Reviewer #1 for this suggestion. We have added new Table 3 which shows the correct 
values for xmole and Csat for artificial data set 1-4. The old Table 3, Table 4 and Table 5 are now Table 
4, Table 5 and Table 6, respectively.

Minor comment 2

In Table 1 and Table 4 some field are empty, but I guess it should be saying e.g. Xmole,dry(t=0
s) “Fitted(min: 0.01 max:1)” and T(K) 293 in all fields. I suggest that you write out explicitly in
each column these values, even if they are the same in all experiments/simulations.



Response

Thank you for pointing this out. We have changed Table 1 and Table 4 to explicitly show what these
parameters are for each data set or mixture

Minor comment 3

L424-425: You use the term “non-viscous” and “viscous” when talking about mixtures with low-
viscosity and high-viscosity. I would recommend that you use the late terms instead and possible
specify that the particle-phase mass transfer limitation was negligible in the low-viscosity
mixture and hence neglected

Response

We agree with reviewer that using the term “non-viscous” is misleading as every particle has some 
viscosity. We have changed the text so that non-viscous was changed to “low viscosity” and viscous
to “high viscosity”. We have also added an explanation of these terms to Sect. 5, line 440 in the 
revised version.

In the following discussion, “low viscosity” refers to particles  where particle phase diffusivity is 
fast enough so that it doesn’t pose a  limitation to the evaporation of the volatile compounds and 
“high viscosity” refers to particles where the particle phase diffusivity is low enough to affect the 
particles’ evaporation rate.



Response to reviewer #2

We thank reviewer #2 for reviewing our manuscript and providing valuable feedback on our work. 
Below we address first the general and then the specific comments. The reviewer’s comments are in
blue, our responses are in black and any additions to the manuscript are in red

General comment 1

It is noteworthy that the authors do not use numerical values of their measure of
model result-data correlation (fitness) for their argumentation. The performance
of an optimization algorithm should also be evaluated in terms of how quickly
(or how reliably) it reaches a certain threshold of model result-data correlation
that justifies consideration of the optimized parameter set (e.g. model result-data
residue is comparable to the noise in the experimental data). The authors denote
the spread in fitted parameters, but it would also be interesting to see spreads
in their measure for correlation, especially in section 3 where two methods are
compared.

Response

We considered comparing the model result-data correlation, but decided not to include those 
because of the methodological differences between the MCGA and Bayesian inference. The main 
problem we encountered in comparing the two methods was that the Bayesian analysis 
fundamentally assumes that the estimated parameters have distributions whereas the MCGA 
algorithm looks for an optimal value which fits the data. This Bayesian vs. frequentist conflict 
presents challenges when the two methods are compared. 

Considering only a situation where one parameter would be optimized, the MCMC algorithm would
sample from the posterior distribution of this parameter such that sometimes during the execution 
also values that fits less well to the experimental data are visited but less often than those parameter 
values that produce a better fit to the data. For this reason we feel that it would not be fair to 
compare how the model result-data correlation evolves during the MCMC calculations. This 
comparison would show that in the MCMC algorithm the model result-data residue sometimes 
spikes whereas MCGA algorithm consistently moves toward lower residues. 

We believe that the best way to compare the algorithms is to think that over multiple optimization 
rounds the MCGA algorithm also produces a distribution of parameter values which can be 
compared to the posterior distribution calculated with the MCMC algorithm. 

We have clarified our reasoning that led us to only show the parameter estimate distribution in the 
manuscript by adding the following to Sect. 3 line 276 in the revised version.

The Bayesian inference and the MCMC algorithm assume estimated parameters are random 
variables with probability distributions, whereas the MCGA algorithm tries to find a single set of 
input parameters that best fit to the observations. The MCMC algorithm explores the posterior 
distribution by randomly drawing samples from it. The samples are drawn such that the parameter 
values that better fit to the data and thus are more probable are drawn more often than the lower 
probability parameter values that produce worse fits. Because of this fundamental difference 
between these two approaches, it would not be appropriate to compare how the model output-data 
residuals evolve during the execution of both algorithms and only the distributions of parameter 



estimates from MCMC and MCGA over multiple optimization rounds are used to compare the two 
methods.

General comment 2

What is the reason to choose MCGA over Bayesian inference for further analysis
in this manuscript? Did one method outperform the other in any regard or was it
just easier to operate?

Response

As shown in Sect. 3 both methods produce similar distributions for the estimated parameters and 
there is no obvious evidence that one method is better than the other. We feel that once this 
comparison is made the choice is up to the person performing the optimization, as rigorous model 
optimization needs hands-on expertise with the selected method. MCGA was selected for further 
comparison because we had more experience with Genetic Algorithms as our group has used GA 
before in Yli-Juuti et al., (2017) and the MCGA method in Buchholz et al., (2019). 

General comment 3

I wonder how big the error is that is introduced by combination of the topmost
bulk layers in the KM-GAP model during evaporation. This practice in conjunction
with discrete layers can introduce step-profiles in evaporation, where evaporation
slows down as volatile constituents are depleted from the topmost bulk layer and picks up pace 
again as soon as layers are merged (and hence volatile component is mixed into the topmost bulk 
layer). Kinetic models operating with fixed layer sizes and merging schemes have to have 
mechanisms in place that prevent these artifacts from happening, especially when input parameter 
optimization is automatized and hence numerical convergence not always manually checked for
each combination of input parameters. Which mechanisms are in place in this study to prevent this?

Response

Reviewer #2 raises an important point here. After each KM-GAP simulation we did not check 
numerically whether the model output contained step-profiles. An efficient method to remove these 
step-profiles caused by high viscosity in the topmost layer is to increase the number of layers in the 
model, which decreases the thickness of the topmost layer and leads to layers being merged more 
frequently, i.e. in practice before all of the volatile component (glycerol in mixtures 3 and 4) is gone
from the topmost layer. Based on a random search of the parameter space, large step-profiles are 
rare in our system but do exist with some combination of the allowed input parameters. However, 
increasing the number of layers from 30 to e.g. 100 led more often to situations where the diffusion 
fluxes are too high compared to the amount of molecules in a layer, which in turn resulted in the 
ODE solver to stop integration as the required time step to solve the molecular transport became too
short.

In figure 1 we compare KM-GAP output using the parameter estimates calculated by optimizing to 
low RH evaporation data of mixtures 3 and 4 with original number of layers (30) and with 100 
layers. With both mixtures we see small deviation between the outputs. However, this variation is 
small compared to the variation in the experimental data. 



To check that this numerical problem does not cause a systematic deviation to optimized parameter 
values, we tested how the best parameter estimates for mixture 3 would change if the candidates in 
the last generation of an optimization round were rerun with 300 layers (instead of the original 30 
layers). The best mole fraction estimates would change by 0.001, Csat estimates would stay the 
same, bsucrose would change from 1012.0

 to 1011.4
 and bglycerol from 10-3.88  to 10-3.33.  Based on this 

analysis, not checking the convergence might have caused the bsucrose estimates to be slightly lower 
and bglycerol estimates slightly higher. However, the deviations in the estimated bi parameters are 
small and do not affect our conclusions.

General comment 4

A stylistic suggestion: A concept that is usually used when talking about model
parameter optimization is that of a parameter’s (local) sensitivity. Talking about
conditions under which model output is sensitive to the numerical value of an
input parameter could simplify the (sometimes a little slow-moving) discussion in
this manuscript considerably. However, usage of this concept is left to judgment
of the authors.

Response

We have elected not to change the discussion as we deal with data sets that can be said to have 
“correct” answers in terms of literature values or input values used in calculating the artificial data 
sets. We feel that talking about the distribution of estimates we get from independent optimization 
runs fits better to the context of our work instead of parameter sensitivity.

Specific comment 1

Figure 1: Low RH measurements and KM-GAP output calculated with a set of estimated 
parameters (Csat,xmole and bi) and with 30 layers (black solid line) or 100 layers (magenta solid line). 
a) Low RH measurement data and parameter estimates of mixture 3 in the manuscript. b) Low RH 
measurement data and parameter estimates of mixture 4 in the manuscript



Sect. 1, l. 45 – What do you mean by “increasing attention has also been given
to modeling the particle dynamics to better understand the measurements”? Par-
ticle dynamics could refer to processes like deposition and coagulation, but prob-
ably means evaporation dynamics here, please clarify.

Response

We have modified the text on line 45 to the following

In addition to experimental methods, increasing attention has also been given to modeling the 
evaporation process to better understand the measurements

Specific comment 2

Sect. 1, l. 50 – The literature review on kinetic parameter determination through
inverse modelling seems a little sparse here. Even in aerosol research, there
have been more studies detailing such procedures. Examples include Berke-
meier et al. (2016), who determined both diffusion coefficients and reaction rates
by inverse modelling or Lowe et al. (2016), who used a Monte Carlo Markov
Chain (MCMC) algorithm on artificial data as a tool for sensitivity analysis.

Response

We thank Reviewer #2 for pointing out these excellent publications that we hadn’t referred to in our
manuscript. We have added references to both of these articles starting from line 51 reading:

Berkemeier et al., (2016) derived kinetic parameters influencing ozone uptake of shikimic acid by 
fitting to multiple measurements of ozone uptake by the acid at different relative humidities. Lowe 
et al., (2016) studied the sensitivity of various parameters of Köhler theory by studying the 
goodness-of-fit to  artificial cloud condensation nucleus spectra.  The same approach was also used 
Yli-Juuti et al. (2017) to inferred ...

Specific comment 3

Sect. 2.2, l. 132 – It is counterintuitive to talk about a good candidate having
low fitness here since in the biological sense a high fitness would be considered
better. “Fitness” is thus usually defined as the inverse of least-squares deviation.

Response

We have changed the manuscript so that when we talk about high fitness we mean an inverse of the 
mean squared error and thus a good fit candidate now has a higher fitness than a candidate with 
higher mean squared error. We have also modified the explanation starting from the line 133 in the 
revised version to the following:

Below, the fitness of a candidate is determined as the inverse of its goodness of fit statistic. The 
goodness of fit in this work is calculated as a mean squared error (MSE) between the evaporation 
simulation produced with the candidate’s parameter set and the measured evaporation. A lower 
value for goodness of fit statistic, i.e. lower MSE, means higher value for fitness and a better 
candidate.



Specific comment 4

Sect. 2.2, l. 153 – Can you expand on why the Metropolis criterion ensures
variability in the population? While this might be intuitive for experts, it might
not be for clear to the general reader of ACP. A couple of follow-up questions
on the Metropolis algorithm: Did the MCGA algorithm perform significantly better
with this criterion? Do you make sure that a newly created parameter set with
improved fitness over all previous ones is not discarded?

Response

The idea behind the Metropolis criterion (together with the mutation scheme) is that sometimes 
candidates with worse goodness-of-fit are accepted to the next generation. The idea is to keep the 
population more variable by removing members from the previous generation that would otherwise 
be included in the next generation and thereby to allow the MCGA algorithm to explore the 
parameter space more thoroughly. 

The Metropolis criterion does not significantly increase the performance of the algorithm when the 
versions with and without metropolis criterion are tested to artificial data set 1. Figure 2  below 
shows the distribution of the median mean squared error for generations 2-10 over the 500 
optimization rounds performed with the Metropolis criterion (blue lines) and MSE over 50 
optimization rounds performed without the Metropolis criterion (red lines). Figure 1 shows that at 
first the blue distribution is wider but not by much and in the end (generation 10) the version 
without the Metropolis criterion has more probability mass over smaller and higher median MSE 
values. 

The Metropolis criterion is applied only for candidates that have higher MSE than the maximum 
MSE in the previous generation, which ensures that a newly created parameter sets with improved 
fitness are not discarded.

Figure 2: Distribution of median mean squared error (MSE) in a generation for 500 optimization 
rounds with the Metropolis condition and 50 optimization rounds without the Metorpolis for 
artificial data set 1 in the manuscript. The distribution is calculated with a kernel density estimation 
method using Gaussian kernel.



We have added a following explanation to the manuscript Sect 2.2 line 157:

In genetic algorithms the goal is to keep the population as variable as possible while at the same 
time the goal is that the fitness of the candidates improves when new generations are calculated. If 
only the candidates that best produce the observations were chosen the algorithm might get stuck in 
a local minimum and, on the other hand, if new random parameters are drawn too often the genetic 
algorithm does not converge. 

Specific comment 5

Sect. 2.3.1, l. 201 – The comment on subconscious bias made me wonder what
choices the person performing the optimization has. In my understanding, there
should be none in a fully automated optimization.

Response

Even though the optimization is fully automated there exists a couple of things that the person 
performing the optimization can do to guide the optimization towards correct results, even though 
their effect might not be substantial to the optimization. The person performing the optimization can
narrow the parameter space so that it is more likely for the algorithm to find correct values. The 
person might tune lower the mutation rate or increase the number of elite members in a generation 
if the algorithm is found to converge fast towards the correct values. One could also try different 
goodness-of-fit functions so that the correct values were found more likely. When analyzing real 
SOA evaporation experiments the correct volatility distribution is not known, therefore, the above 
mentioned factors cannot be used to guide the results towards correct values. In practice, the above 
mentioned factors include decision making by the operator but the operator has to be able to make 
these decisions based on technical aspects of the method and the optimization problem at hand and 
not by knowing the correct answers. 

Specific comment 6

Sect. 4, l. 294 – Please define the term “optimization rounds”. From context,
it seems to be completed MCGA runs. In contrast, how many process model
evaluations were performed in each MCGA run? How has this number been
chosen?

Response

We have defined the optimization rounds to mean MCGA runs in Sect 2.2.1 line 161. 

The number of process model evaluations was not chosen when performing the optimization, 
instead we chose the number of generations and population size such that further increase in either 
number did not decrease the mean squared error between model output and data significantly, while 
at the same time the choice kept the computation time as small as possible.

The number of process model evaluations can be calculated from these two numbers considering 
that we choose the number of parameters to sample in the MC phase to be the same as in the GA 
phase and that the process model evaluations in the GA part is 0.95Npopulation·(Ngeneration – 1), where 



Npopulation  is the population size and Ngeneration the number of generations. The coefficient 0.95 comes 
from the fact that 5% of the next generation is always populated with the elite members of the 
previous generation. This results in 6840 process model evaluations with Npopulation = 400 
(corresponding to mixtures 3 and 4 at low RH in our study) or to .10260 evaluations with Npopulation = 
600 (corresponding to all other data sets in our study). 

We have added Table S1 to the supplement which shows the population size, number of elite 
members and the number of parameter sets in the MC part for each data set. This table is referred to
in the manuscript in Sect 2.2.1 lines 167-168. The old table S1 showing the composition of the 
particle at the start of the evaporation for artificial data set 4 is now labelled as Table S2 in the 
revised version of the manuscript 

All the MCGA parameters for each data set in this work are listed in the supplementary material 
Table S1.

Specific comment 7

Sect. 5.3 – You give two potential reasons for the process model failing at de-
scribing the experimental data using only literature values for viscosity and volatil-
ity. Can you add a brief discussion on what you think contributes more to the
observed discrepancy, the depressed viscosity or hindered evaporation due to
Raoult’s law?

Response 

In Sect 5.3. we speculate with the possibility that since the AIOMFAC model gives lower than unity
activity coefficients for the initial particle composition, there might be more water in the particle, 
which would hinder the rate of evaporation of other compounds and lower viscosity. It is 
noteworthy that these changes would affect the rate of evaporation opposite ways. The decreased 
viscosity would increase the rate of evaporation, whereas solution effect would decrease the rate of 
evaporation of an organic compound.

We have performed the AIOMFAC calculations only with one composition (the initial particle 
composition) and only to consider with the possibility of more water being present at low RH 
measurements of mixtures 3 and 4 and at high RH measurement of mixture 3. Discussion about the 
magnitudes of these effects would need detailed calculations of the activity coefficients as a 
function of composition which is out of the scope of this study. 

Specific comment 8

Sect. 6, l. 600 – “(. . .) the few shortcomings of the method could be largely at-
tributed to the fact that the method can only characterize properties that influence
the quantity that is measured”. As stated, this is too trivial, please rephrase. You
may want to refer to it as “model parameters that have sufficient sensitivity in the
probed time and concentration range”. For reference, some general concepts of
model parameter optimization (at least for application in aerosol research) have
been discussed in section 3 in Berkemeier et al. (2017) or can be found in the
discussion of sensitivity analysis and kinetic regimes in Berkemeier et al. (2013),
section 6.



Response

We have modified the text starting at line 622 in the revised version of the manuscript to read:

For some of the tested data sets, the few shortcomings of the method could be largely attributed to 
the fact that the model output was not sensitive to the changes in the estimated parameters with 
respect to the experimental timescale and parameter range. 

Specific comment 9

Fig. S9 – Please add literature values from Table 5 into the plot since you are
referring to this comparison in Sect. 5.3.

Response

We have added the literature values to Fig. S9.
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Abstract.  

The composition of organic aerosol under different ambient conditions as well as their phase state have been a subject of

intense study in the recent years.  One way to study the particle properties is to measure the particle size shrinkage in a

diluted  environment  at  isothermal  conditions.  From these  measurements  it  is  possible  to  separate  the  fraction  of  low

volatility compounds from high volatility compounds. In this work, we analyze and evaluate a method for obtaining particle

composition and  viscosity  from measurements  using  process  models  coupled  with  input  optimization  algorithms.  Two

optimization methods, Monte Carlo Genetic  Algorithm and Bayesian inference,  are  used together  with process  models

describing the dynamics of particle evaporation. The process model optimization scheme in inferring particle composition in

a volatility-basis-set sense and composition dependent particle viscosity is tested with artificially generated data sets and real

experimental  data. Optimizing model input so that the output matches these data yields a good match for the estimated

quantities. Both optimization methods give equally good results when they are used to estimate particle composition to

artificial test data. The time scale of the experiments and the initial particle size are found to be important in defining the

range of values that can be identified for the properties from the optimization.

1 Introduction

It has been estimated that organic aerosols (OA) comprise a large fraction of global aerosol particle mass (Kanakidou et al.,

2005; Jimenez et al., 2009) A significant fraction of OA is of secondary origin (Secondary Organic Aerosol, SOA) i.e. OA

formed  from  oxidation  of  volatile  organic  compounds  and  their  subsequent  condensation  onto  pre-existing  particles

(Hallquist et al., 2009). Especially in SOA systems, there are gaps of knowledge in the composition and phase state of the

particles  and their  response to  atmospheric  conditions such as  relative  humidity or  temperature  (Hallquist  et  al.,  2009;
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Virtanen et al., 2010; Pajunoja et al., 2015). These properties are important since they control the evolution of atmospheric

organic particles and their subsequent effect to climate (Tsigaridis et al., 2014; Shiraiwa et al., 2017).

The volatilities of particle phase compounds in OA and the viscosity of the particles can be inferred by measuring the size

change of particles during their evaporation (Vaden et al., 2011; Wilson et al., 2015; Yli-Juuti et al., 2017). In addition, if the

shrinking stops after a certain time, the particles can be inferred to contain organic compounds which are non-volatile with

respect  to  the ambient  conditions.  The phase state  of  OA particles  can  be studied in  these  experiments  by comparing

evaporation at different relative humidity conditions. New techniques have also been developed to infer the viscosity of the

particles directly  (Abramson et al., 2013; Renbaum-Wolff et al., 2013; Reid et al., 2018). The benefit of the evaporation

technique over direct measurement of viscosity is the possibility of using freshly formed, suspended OA particles without a

need, for example, for filter collection and further treatment.

In addition to experimental methods, increasing attention has also been given to modeling the evaporation process particle

dynamics to better understand the measurements  (Vaden et al., 2011; Liu et al., 2016; Yli-Juuti et al., 2017). Usually, the

model results obtained by assuming distinct OA properties are compared to experimental data and conclusions are drawn

from the differences  or  similarities  of  the two. However,  an inverse  approach  is  also possible where  some of  the OA

properties  are  fit  such  that  the  model  output  is  matched  to  the  experimental  observations.  This  approach  allows  the

estimation of the properties that are challenging to measure directly with available instruments. For example, Arangio et al.

(2015) used  this  concept  to  derive  kinetic  parameters  for  multiphase  chemical  reactions  of  hydroxyl  radical  with

levoglucosan and abietic acid.  Berkemeier et al., (2016)Berkemeier et al., (2016 ) derived kinetic parameters  influencing

ozone  uptake  of  shikimic  acid  by  fitting  to  multiple  measurements  of  ozone  uptake  by  the  acid  at  different  relative

humidities. Lowe et al., (2016) studied the sensitivity of various parameters of Köhler theory by studying the goodness-of-fit

to  artificial cloud condensation nucleus spectra. The same approach was also used by Yli-Juuti et al. (2017) to inferred

volatility distribution of compounds in SOA particles by searching for an optimal input to a process model such that the

model produces similar particle size change as was measured.

Even though the optimization of models to replicate experimental data is a widely used method in other fields (e.g., Kaipio et

al., 2000; Hernández et al., 2017; Varvia et al., 2018), such an approach is yet to be commonly utilized in studies probing

organic aerosol volatility and viscosity. The current challenges of estimating accurately OA component volatility and particle

viscosity raises a need for studies that assess how accurately they can be inferred by fitting process model output to time

dependent evaporation measurements, which is the aim of this study. 

The rest of the article is organized as follows. In the second section the evaporation data and computational methods are

described. In the third section two different approaches for performing the optimization are tested. In sections four and five,
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the particle volatility distribution is optimized to match artificial data sets and then the optimization method is tested by

applying it to experimental data sets where the composition and viscosity of generated particles are known. In the last section

the findings are summarized and conclusions are drawn.

2 Methods

The optimization method described here is based on process models that simulate the evaporation of OA particles and an

optimization algorithm that is used for finding the desired properties. Two evaporation models which have different levels of

detail in their representation of the aerosol particle evaporation process are used. Additionally, two different optimization

algorithms are tested.

2.1 Process models

Evaporation at high relative humidity (RH) is modelled with a liquid-like evaporation model (hereafter LLEVAP) (Yli-Juuti

et al., 2017) and evaporation at low RH with a modified version of the kinetic multi-layer model for gas-particle interactions

in aerosols and clouds (KM-GAP) model (Shiraiwa et al., 2012; Yli-Juuti et al., 2017). Both models and variations from their

typical implementations are described below.

In LLEVAP the evaporation of an organic compound i is controlled by the difference in its gas phase concentration C i and

the equilibrium concentration Ceq,i (Vesala et al., 1997; Lehtinen and Kulmala, 2003), equivalent to the gas phase diffusional

gradient between the infinite distance and particle surface, respectively. Therefore, the mass transport between the gas and

the particle phase is assumed to be the limiting phenomenon and the diffusion timescales within the particle are assumed to

be negligible. The mixture of organics and water is assumed to behave ideally. When performing optimization to interpret

real measurements, as described in Sect. 2.3.2, a flow of N2 maintains a near-zero background gas phase concentration of the

volatilizing components. This nitrogen flow is taken into account by including the Sherwood number correction to the mass

flux equations (Kulmala et al., 1995). 

In KM-GAP, the particle phase mass transport is modelled by dividing the particle into concentric layers  (Shiraiwa et al.,

2012, 2013). The composition dependent viscosity η in layer j is assumed to have a form 

log10(ηj)=∑
i=1

N

Xmole ,i , j log10(bi), (1)

where Xmole,i,j is the mole fraction of the ith compound in jth layer and bi is a coefficient that describes the contribution of

compound  I to the  viscosity  ηj (O’Meara et al.,  2016). The particle phase diffusion coefficients are calculated from the

viscosities based on the Stokes-Einstein relation (Einstein, 1905). The molecular diffusion inside the particle is calculated

based on the Fick’s law of diffusion. As with LLEVAP, an ideal mixture is assumed in the KM-GAP model implementation.
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During an evaporation simulation the particle size decreases. This shrinkage is modelled by allowing the quasi-static surface

layer (the outermost layer of the particle) to shrink so that its thickness deviates from the thicknesses of other layers. If the

thickness of the quasi-static surface layer is less than 0.3 nm it is combined with the first bulk layer which is the layer

directly beneath the quasi-static surface layer. This approach is the same that was used by Yli-Juuti et al. (2017). 

In both models, equilibrium partitioning of water in gas and particle phases is assumed. In LLEVAP, this controls the mole

fraction of water in the entire particle.  In KM-GAP, this assumption controls the mole fraction of water in the particle

surface layer while the composition of the inner layers is based on the kinetics of water transport. Moreover, the coefficient

b for water in equation (1) is set to the literature value for the viscosity of pure water, bwater ≈ 10-3 Pa s (Rumble et al., 2018)

when calculating the viscosity of a mixture in a layer.

In most of the model simulations the organic compounds are represented by a one dimensional volatility basis set (Donahue

et al., 2006) (1D-VBS, hereafter VBS). Organic compounds are grouped into distinct ‘bins’ in a VBS, described by their

saturation  (mass)  concentration  (Csat)  value  and  the  amount  of  that  bin  in  gas  and  particle  phases.  The  saturation

concentration of a compound can be used interchangeably with the effective saturation concentration (Csat,i times the activity

coefficient of compound i) C*
i
  because the organic-water mixture is assumed to behave ideally. 

The volatilities of the compounds in the particle are modelled with either a “full VBS” or with a “sparse VBS”. The full VBS

consists of bins from minimum defined Csat to maximum defined Csat with a decadal difference in Csat between two adjacent

bins; the sparse VBS consists of a predefined number of bins whose saturation concentration is not constrained relative to

each other. The sparse VBS is used to present the properties of the organic compounds where the number of evaporating

compounds is known. From hereafter the terms compound and VBS bin are used interchangeably in the text. The gas phase

is assumed to be infinitely diluted of organic compounds in the particle evaporation data sets described in Sect. 2.3 and, thus,

the mass or mole fraction presented in the VBS is always the fraction in the particle phase.

2.2 Optimization methods

2.2.1 Monte Carlo Genetic Algorithm

The Monte Carlo Genetic Algorithm (MCGA) is an optimization method developed by Berkemeier et al., 2017Berkemeier et

al., 2017. MCGA has been previously used in estimating atmospheric multiphase chemistry parameters such as reaction rate

coefficients and bulk phase diffusion coefficients (Table 1 in Berkemeier et al., 2017)(Table 1 in Berkemeier et al., 2017). 
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The algorithm divides the optimization process into two different parts: a random sampling of the parameter space (MC part)

and  a  genetic  algorithm (GA part)  with  an  initial  population  from the  MC sampling.  Random sampling  means  that  a

predetermined number of parameter sets, named candidate solutions or candidates, are created by randomly choosing values

for the free parameters  (Berkemeier et al., 2017)(Berkemeier et al., 2017). These candidates form a population. The free

parameter values are drawn from a uniform distribution between 0.01 and 1 for the mole or mass fraction of a compound and

from a log-uniform distribution for  the saturation concentrations and  b-parameters  of equation (1),  with clearly defined

minimum and maximum values (see Table 1 and Table 43).  Below tThe fitness goodness of a candidate is determined by

calculatingas the inverse of its goodness of fit statisticfitness . The goodness of fit fitness in this work is calculated as a mean

squared error (MSE) between the evaporation simulation produced with the candidate’s parameter set and the measured

evaporation. A lower value for goodness of fit statistic,  i.e. lower MSE, means lowerhigher value for fitness  meansand a

better candidate.

The initial population to the GA part is chosen from the MC part so that 5% of the best-fit candidates are chosen and the

remaining 95% of the population is chosen randomly. The computation times of the MC and GA parts are divided, so that

both parts require about half of the total computation time (Berkemeier et al., 2017)(Berkemeier et al., 2017). 

The GA part employs a survival-of-the-fittest scheme to improve the parameter sets drawn in the MC part . The GA part

consists of evolving the initial population by forming generations. Each new generation is created by first choosing a number

of elite candidates from the previous generation whose fitness value   is the  highestlowest. The rest of the generation is

created in a crossover process. First two candidates, called parents, are chosen. A new candidate is created from the two

parents’  parameter  sets.  A  new  parameter  for  the  new  candidate  is  chosen  from  the  parents’  parameters  randomly

(Berkemeier et al., 2017)(Berkemeier et al., 2017).

The version of the algorithm used in this work differs from the version described in Berkemeier et al., (2017)Berkemeier et

al.,  (2017) in that  how a new candidate is  accepted to the next generation and how parents are chosen. Once the new

candidate has all its free parameters drawn, it is accepted to the new generation if its fitness is higher lower than the lowest

largest fitness in the previous generation or if candidate’s fitness divided by the lowest fitness in the previous generation is

lower lower fitness in the previous generation divided by the candidate’s fitness is largestthe  than a uniform random number

between 0 and 1. If neither of the criteria for accepting the candidate is met, a parent survives to the next generation with

probability proportional to their  MSE fitness values. The additional criterion for accepting the candidate is similar to the

Metropolis algorithm (Metropolis et al., 1953). Lastly in the GA, once a new candidate is created and before its fitness is

compared against the previous generation, the candidate can undergo mutation with a preset probability. If mutation happens

the values for all the fitting parameters are chosen again randomly. In genetic algorithms the goal is to keep the population as

variable as possible while at the same time improving the fitness of the candidates when new generations are calculated. If
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only the candidates that best produce the observations were chosen, the algorithm might get stuck in a local minimum and,

on the other hand, if new random parameters were drawn too often the genetic algorithm would not converge. The  mutation

step together with the Metropolis criterion ensures that the values of the fitting parameters stay variable in the population. 

The probability to be chosen to be a parent was set to be  inversely proportional to the candidate’s fitness. This way the

parameters that produce better fits to the data are more likely chosen than those candidates that produce worse fits. The

number of elite candidates was set to be 5% of the generation size and the mutation probability was set to 20%. The number

of generations was set to 10. To get statistics of the estimated parameters the optimization process was always repeated at

least  100  times.  These  consecutive  optimization  runs  are  hereafter  referred  as  optimization  rounds.  All  the  MCGA

parameters for each data sets in this work are listed in the supplementary material Table S1.

When showing estimates from the distribution of fitted parameters, the mode of the estimate is used as a point estimate and

the uncertainty is characterized by the 10th and 90th percentiles of the distribution.

2.2.2. Bayesian inference

Bayesian inference is a class of statistical inference that can be used in finding estimates for unknown parameters in a model.

In Bayesian inference, the estimates of the unknown parameters are based on statistical prior information, observed data and

an observation model. Statistical  prior information is encoded into prior probability distribution and it can be used, for

example, to constrain the unknown parameter values to a physically feasible range (e.g. non-negativity). The observation

model  describes  the  dependency  between  the  observed  data  and  unknown  parameters,  and  statistical  models  for  the

observation noise and model uncertainties are used to construct the so-called likelihood probability distribution. The solution

of a Bayesian inference problem is a posterior probability distribution that is a conditional probability distribution for the

unknown parameters given the observations and prior information. The posterior probability according to the Bayes’ rule

(Bayes et al.,  1763; Gelman et al.,  2013) is proportional to the product of likelihood and prior probabilities. Usually in

practical  applications,  the posterior probability distribution is not used as it  is, but it  is used to derive point or interval

estimates for the unknown parameters.

Analytic derivation of the posterior probability distribution is often difficult or even impossible and, therefore, feasible nu-

merical methods have been developed to explore the posterior probability distribution. These numerical methods are typi-

cally used to draw random samples from the posterior probability distribution. The random samples are further used to com -

pute point estimates and credible intervals for the unknown parameters. A well-known class of sampling algorithms are the

Markov Chain Monte Carlo (MCMC) algorithms. In MCMC algorithms, random samples from the posterior probability dis-

tributions are drawn and, for example, the most probable values for the unknown parameters are computed.
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The evaporation of an organic aerosol particle is modelled using the LLEVAP model described in Sect. 2.1. This method is

applied to data set 1 described in Sect. 2.3. The prior probability models for the three organic compounds in data set 1 are set

to positive parts of normal distributions with means of 0, 0 and 500 μg m-3 and standard deviations of 10, 10 and 500 μg m-3,

respectively  for  the saturation concentrations of  the three organic  compounds. For the molar  fraction  the mean is 1/3,

standard  deviation is 1/3 and the distributions Gaussian for  every  compound with the negative part  of  the distribution

function removed. A Hamiltonian MCMC algorithm the No-U-Turn Sampler  (NUTS)  (Hoffman and Gelman,  2014) is

employed using the Stan software (Carpenter et al., 2017) to draw 2000 samples from the posterior probability distribution.

Finally, the most probable random sample according to the posterior distribution are taken as the point estimate for the

unknown parameters. This point estimate is called the maximum a posteriori (MAP) estimate. Furthermore, the 90% credible

interval for the unknown parameters is calculated to reflect the uncertainty of the estimates.

2.3. Test data

Altogether, ten different data sets were used to test how well the volatility and viscosity of OA particles can be estimated

using the techniques described above. First, four artificially created data sets were used to test the accuracy of the estimated

VBS in case of no particle phase diffusion limitations. Second, particle evaporation data measured with an Electrodynamic

Balance (EDB) (see Sect. 2.3.2) were used to characterize how well the volatility of compounds can be estimated from

experimental  data on particles  consisting of few compounds.  Finally,  measured  evaporation  data were  used to  test  the

simultaneous estimation of volatility and viscosity of particles generated from two compound mixtures.

2.3.1 Artificial data sets generated with LLEVAP model

All the four artificial data sets were generated using the LLEVAP model. In every case the data sets were created by a

different person than the one performing the optimization. This prevented subconscious bias, with the operator altering the

estimates  towards  correct  values.  Table  1 shows the  properties  of  the  particles  or  the organic  compounds that  change

between data sets and the free parameters. Table 2 shows the properties of the organic compounds and ambient conditions

that  are  the  same between  the data  sets. and  Table  3  shows the  mole  fractions  and  saturation  concentrations of  each

compound in every data set. The optimization results of these data sets are described and discussed in Sect. 4. Additionally,

the first artificial data set is also used to compare the Bayesian inference and MCGA methods in Sect. 3.

The artificial data sets 1,3 and 4 mimic evaporation of monodisperse particle population in the University of Eastern Finland

residence time chamber similar to the measurements reported in Yli-Juuti et al., (2017). The data sets differ in their number

of organic compounds and their saturation concentration values. In data set 1, three organic compounds were used and their

Csat values were chosen from the appropriate range. Both saturation concentrations and initial  dry mole fractions of the

compounds in the particle were treated as free parameters in optimization. In data set 3, six organic compounds, i.e. a full
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VBS, were used. The saturation concentrations were set to their correct values (see Table 1) and only dry particle mole

fractions at the start of the evaporation were optimized. Data set 4 was generated by simulating evaporation of a mixture of

40 compounds with a range of Csat and mole fractions. In optimization a full VBS with fixed saturation concentrations was

used. 

Artificial data set 2 mimics the evaporation of a single particle in an Electrodynamic Balance (see next subsection). This data

set simulates the particle evaporation measurements performed at the University of Bristol (Davies et al., 2012; Rovelli et al.,

2016). Data set 2 differs from the other data sets as the particle diameter is larger by several orders of magnitude at the start

of the evaporation and the particle size is sampled at a higher frequency. The number of organic compounds in data set 2 was

set to three and both the values of saturation concentration and the initial fraction of each organic compound was optimized

to fit the data (similar to data set 1). The artificial evaporation data are shown in Fig. 1 as well as in the supplement (Fig. S1,

Fig. S2, Fig. S3 and Fig. S4).

2.3.2 Experimental OA evaporation data

An Electrodynamic Balance (EDB) was used to trap single aerosol droplets generated from aqueous mixtures of organic

components with known chemical composition. The evaporative loss of semi-volatile organic components was observed by

measuring changes in the droplet radius over timescales of ~105 s. The experimental setup and the sizing of trapped droplets

is extensively described in previous publications (Davies et al., 2013; Rovelli et al., 2016; Marsh et al., 2017) and briefly

presented below.

Charged  droplets  are  generated  by  means  of  a  microdispenser  (Microfab  MJ-ABP-01)  and  confined  within  the

electrodynamic field generated by a set of concentric cylindrical electrodes. Once trapped, a single particle sits in a nitrogen

flow (200 mL min-1, gas flow velocity of 3 cm s-1) of controlled RH and T. The RH is measured by fitting either the size vs.

time profile of an evaporating probe water droplet (at RHs above 80%) or the equilibrated radius of a NaCl or NaNO3

aqueous solution probe droplet (below 80%) by applying a literature evaporation/condensation kinetic model (Kulmala et al.,

1993). The procedure is described in Rovelli et al. (2016), where the uncertainties associated with the measured RH are also

discussed (typically <±0.2% at RH > 90% and ~±1% below 90%). The temperature is measured by means of a thermocouple

(NI-USB-TC01, thermocouple type K, uncertainty of ±1.5 K) placed between the inner and the outer bottom electrodes,

directly within the gas flow. All the measurements in this work have been taken at 293 K. The droplet is illuminated with a

532 nm laser light (Laser Quantum Ventus CW laser) and the angularly-resolved elastically scattered light is collected with a

camera (Thorlabs CMOS camera, DCC1545M). The scattering pattern is used to retrieve the evolving radius of the confined

droplet, by applying the geometric optics approximation (Glantschnig and Chen, 1981), with a time resolution up to 10 ms. 

8

225

230

235

240

245

250

255



Four different aqueous mixtures of organic components were considered; their detailed chemical composition can be found

in Table  43. Mixtures 1 and 2 include three components of  variable volatility,  whereas  Mixtures 3 and 4 are sucrose-

glycerol-water ternary solutions. Considering that the water activity-dependent viscosity of binary sucrose spans over 10 -3-

1012 

Pa s (Power et al., 2013) and that pure glycerol has a viscosity of 1.46 Pa s (Haynes, 2009), the viscosity of Mixture 3 and 4

is expected to be significant and to increase over time as glycerol evaporates from the trapped droplet. For each of these

mixtures, a single droplet was trapped into two different RHs (low and high RH, see sect. 5.2).

3 Comparison of MCGA and Bayesian inference methods for fitting volatility

The artificial data set 1 was used to compare the two estimation methods, MCGA and Bayesian inference. Estimates for

three saturation concentrations and dry particle mole fractions at the start of the evaporation were calculated. For MCGA, the

total number of optimization rounds was 500. For Bayesian inference, 2000 samples were generated after a burn-in period of

500 samples where the parameters of the NUTS algorithm were tuned (Hoffman and Gelman, 2014). Every fourth estimated

parameter set was selected from these 2000 samples for the final analysis allowing the two methods to be compared. 

Additionally, the MCGA method was used with two different sampling schemes. In the uniform sampling scheme, the fitting

parameter values were drawn from a uniform distribution (log-uniform distribution for Csat). In the second scheme the values

for saturation concentration and mole fractions at the start of the evaporation are drawn from a normal distribution with

preset means and standard deviations similar to the Bayesian inference method (see Sect. 2.2.2) . The two MCGA schemes

are later referenced as MCGA with uniform sampling and Gaussian sampling, respectively.

Bayesian  inference  fundamentally  assumes  that  experimental  values  are  always  associated  with  an  uncertainty.  This

uncertainty  is  needed as  an  a priori knowledge before  any Bayesian analysis can take place.  The artificial  data set  1,

however, did not include any uncertainty. When optimizing the particle composition with the Bayesian inference method, a

1% uncertainty in the evaporation factor (EF) (particle diameter divided by the initial diameter) was assumed. 

The Bayesian inference  and the MCMC algorithm assume estimated parameters  are  random variables  with probability

distributions, whereas the MCGA algorithm tries to find a single set of input parameters that best fit to the observations. The

MCMC algorithm explores the posterior distribution by randomly drawing samples from it. The samples are drawn such that

the parameter values that better fit to the data and thus are more probable are drawn more often than the lower probability

parameter values that produce worse fits. Because of this fundamental difference between these two approaches, it would not

be appropriate to compare how the model output-data residuals evolve during the execution of both algorithms and only the
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distributions of parameter estimates from MCMC and MCGA over multiple optimization rounds are used to compare the

two methods.

Overall the three methods are able to produce similar, reliable estimates that are close to the correct values (Fig. 2). Figure

S1  shows  the  relative  evaporation  curve  densities  for  all  the  three  optimization  methods  together  with  the  artificial

evaporation data. Relative curve density is calculated by dividing the time and EF space into grids and calculating how many

of the simulated evaporation curves go through a specific grid point and dividing this count by the maximum count in the

same time column. The relative curve densities are similar for the three methods (Fig. S1).

The differences  between the methods are  the most  obvious with the most  volatile compound.  While the mole fraction

estimates are all close to the correct value, the saturation concentration estimates show deviation from the correct value. The

Bayesian inference estimate (1230 μg m-3) narrowly misses the correct saturation concentration (1000 μg m-3). The MCGA

method with Gaussian sampling produces an estimate of 800 μg m-3,  a difference opposite in direction to the Bayesian

inference method. The estimate with the MCGA method with uniform sampling deviates the most from the correct value

(600 μg m-3). The absolute uncertainties of all the three methods span over several hundred of μg m -3  .  The reason for this

high uncertainty is due to the evaporation time scale of the highest volatility compound and is discussed more thoroughly in

Sect. 4.1.

Since all of the studied optimization methods yielded similar results, only the MCGA scheme with uniform sampling is used

in the rest of this study, first to test the optimization method with different artificial data sets and then with the experimental

data. 

4 Evaluation of process model optimization method for fitting OA properties to artificial test data

The estimates of the compounds with highest and lowest volatility in data set 1 are more uncertain than the estimates of the

other compounds. In this section the reasons for this behavior are examined. Further, the process model optimization scheme

is tested in estimating volatility  for  the three  remaining artificial  data sets.  With data set  2,  the goal  is  to inspect  the

performance of the process model input optimization approach when the evaporation conditions change in terms of particle

diameter,  evaporation  timescale  and  measurement  sampling  frequency.  With  data  set  3,  the  target  is  to  evaluate  the

performance of the optimization in the case of a full VBS and the method’s ability to distinguish VBS bins from each other.

With data set 4 the optimization method is tested against evaporation data where the particle contains more evaporating

compounds than what are used in the optimization which is the case with real OA. 500 optimization rounds were calculated

for every data set. 
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The range of saturation concentrations that can be determined from the data with the optimization method varies with initial

particle diameter and with the timespan of the evaporation data. The former is due to the dependence of the mass flux

between the gas and particle phases on particle size. To assess the range of minimum and maximum possible saturation

concentrations that  can be identified with the method from data sets, the LLEVAP model was run multiple times with

particles that consist solely of one evaporating component and are characterized by variable size. The minimum identifiable

saturation  concentration  was determined  to be the  concentration  that  shows at  least  1% shrinkage in  terms of  particle

diameter in the time scale of an experiment. Similarly, the maximum identifiable saturation concentration was determined to

correspond to a concentration that left 10% of the particle size remaining at first data point. These minimum and maximum

values are shown in Table 1. The evaporation rate of a compound depends also on its mole fraction, but this simple analysis

already gives reasonable range of possible saturation concentrations for the optimization process.

4.1 Data set 1

The values of estimated variables in Fig. 2 show the largest uncertainty for the lowest and highest volatility compound

whereas the middle saturation concentration compound has a relatively small uncertainty. The reason for this behavior lies in

the  nature  of  the  evaporation  process.  For  the  least  volatile  compound,  the  correct  value  of  the  estimated  saturation

concentration was 0.01 μg m-3. The 10th and 90th percentiles of the obtained estimate were 0.004 μg m-3 and 0.012 μg m-3. The

lower end of the estimated saturation concentrations corresponds to evaporation curves which do not practically show any

evaporation once the middle volatility compound has evaporated from the particles. The higher end corresponds to curves

which follow the slow evaporation pattern also observed in the data. To constrain the saturation concentration and mole

fraction  estimates  of  the  least  volatile  compound  better,  more  data  would  be  needed  after  ca.  50  minutes,  when  the

evaporation of the least volatile compound dominates the particle shrinkage. 

A similar analysis can be applied to the most volatile compound, for which the obtained values of saturation concentration

span from around 400 μg m-3  to over 3000 μg m-3. In the case of data set 1, the amount of the most volatile compound

decreases by 99% during the first 5 seconds of the evaporation. As there is only one data point before 5 s, the estimated

values of the most volatile compound contribute relatively little compared to the other two compounds when the goodness of

fit is calculated. In all simulations there exists a distinct high volatility compound as the shape of the evaporation curve

dictates that the particle must shrink 10% by diameter during the first 10 minutes. This shrinkage can only be achieved with

a compound that has a relatively high saturation concentration. More accurate estimates of the most volatile compound

would require more data points at the very beginning of the evaporation. As data set 1 mimics evaporation experiments

which require filling of an evaporation chamber as reported in  Yli-Juuti et al. (2017), it might not be straightforward to

obtain more data points at the start of the evaporation. 

4.2 Data set 2
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There exist three key differences in data set 2 compared to other data sets. First, the data extends almost twice as long in

time. Second, the particle diameter is 125 times larger and, third, the time resolution is higher resulting in more data points

especially at the start of the evaporation. The first two differences mean that the range of identifiable  Csat values changes

compared to data sets 1,3 and 4 (see Table 1).

The MCGA estimates agree well with the correct values for data set 2 (Fig. 3). For the least volatile compound the saturation

concentration  and mole  fraction  estimates  match  exactly  with the correct  values.  The uncertainty  in  the  mole  fraction

estimate  is  small.  While  at  first  the  uncertainty  in  the  saturation  concentration  might  seem high  for  the  least  volatile

component, the absolute values are between 0.4 μg m-3 and 20 μg m-3 and organics with these saturation concentrations do not

evaporate at all or evaporate only very slowly in the timescale of the simulated evaporation.

The estimates for the second compound match the correct values well. The behavior is similar to data set 1, for which it was

found that the compound whose saturation concentration lies between the two other compounds’ saturation concentration

was characterized the best.

For  the  most  volatile  compounds the  estimates  are  close  to  the  correct  values  and  the  uncertainty  in  mole  fraction  is

negligible. The uncertainty in the Csat estimate is high and rises from the fact that only ca. 8% of the data points are recorded

before the most volatile compound is gone (over the timescale of ca. 30 s). However, the increased number in data points

that influence  Csat value makes the estimate more certain when compared to the estimate of the most volatile compound

calculated with MCGA and uniform sampling of the parameters in data set 1 for which only one data point is encountered

before the compound has practically evaporated.

4.3 Data set 3

Artificial data set 3 describes the evaporation of organic aerosol in similar conditions as data set 1. The difference from data

set 1 is that the particle composition consists of a “full VBS” i.e. all VBS bins between minimum and maximum identifiable

Csat are  present  in  the  particle  at  the  start  of  the  evaporation.  From  the  optimization  point-of-view,  the  saturation

concentrations of the organic compounds are fixed during the optimization and only the mole fractions of each compound at

the start of the evaporation are optimized to the data. This mimics the analysis that would be performed for SOA particles to

derive their composition in terms of a full volatility distribution. The estimated mole fractions together with the correct

values are shown in Fig. 4. The estimated values show that when the saturation concentrations are discretized into 6 bins,

optimizing only the mole fractions  is  more accurate  compared to  data set  1  where  saturation concentrations and mole

fractions were estimated.
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For the three compounds with saturation concentration higher or equal to 10-1 μg m-3 in data set 3, the estimated mole

fractions deviate only by 0.02 from the correct values. The estimates for the two least volatile compounds are different

compared with the other compounds in terms of uncertainty. The estimated mole fraction for the compound with Csat = 10-2

μg m-3 matches the correct value and the uncertainty is -0.08 / +0.06. For the least volatile compound the estimated mole

fraction is 0.01 lower than the correct value and the uncertainty is -0.04 / +0.08.

The evaporation curves calculated with the LLEVAP model using the MCGA estimates as input variables show that all the

curves match artificial data set 3 extraordinarily well (Fig. 1c and Fig. S3) compared to data set 1 (Fig. 1a and Fig. S1) where

the  curves  calculated  from  estimates  show  much  higher  variance  around  the  data  points.  This  demonstrates  that  the

uncertainty in the mole fraction estimates is not due to the MCGA algorithm itself but to the ability to distinguish low

volatility VBS bins. In fact, the same evaporation curve can be simulated by switching the amounts of molecules between

the two least volatile bins. This indistinguishability is seen also in that the summed mole fraction of the two least volatile

compounds is always in the range 0.35±0.01.

4.4 Data set 4

In terms of evaporation characteristics, the artificial data set 4 is similar to data sets 1 and 3. However, the evaporating

particle is made of 40 different compounds for data set 4 with distinct saturation concentrations and amounts in the particle.

The correct values for all the evaporating compounds can be found in Table S21, whereas the correct values in Fig. 5 show

these forty compounds lumped into 6 VBS bins. 

When optimizing the particle composition of data set 4, the compounds are presented with a full VBS similar to data set 3

and the free parameters are set the same way.

Figure 5 compares the MCGA estimates for the mole fraction with the correct  values. The accuracy of the estimates is

similar to the results obtained with data set 3. For the four highest volatility classes,  the estimates deviate at most by 0.04

from the correct lumped values. For the two lowest volatility groups the estimates deviate more from the correct values, by

approximately 0.12 for the group with  Csat=10-2  μg m-3  and by 0.13 for the lowest volatility group. There is no consistent

over- or underestimation associated to these low volatility bins. The estimate for the group with Csat=10-2  μg m-3  is higher

than the correct value and the estimate for the lowest volatility group lower than the correct value. In both cases, the correct

lumped value  is  included  in the  uncertainties  of  the estimates  that  are  higher  compared  to  the other  compounds.  This

behavior was also seen with data set 3 and again shows the indistinguishability that is associated with the two least volatile

bins and the time scale of this data set. When the sums of the two least volatile compounds are compared, the correct mole

fraction would be approximately 0.58 and the 10th and 90th percentiles of the estimates are 0.58 and 0.61, respectively.
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4.5 Discussion on estimating the volatility from artificial data

While all the estimates capture the correct values with reasonable accuracy, the amount of data points and their temporal

distribution clearly affect the estimates. When the data are sparse, the uncertainty of the estimated variables increases as the

optimization process is designed to weight each data point equally. In the case of data set 1 and data set 2, the compounds

with saturation concentration between the other two saturation concentrations always have the smallest uncertainty. This is

because the middle compound evaporates during almost the whole duration of the data and, thus, its saturation concentration

and mole fraction influences  the evaporation curve the most.  If  the goal  is  to reduce  uncertainties  of the least  volatile

compound, measurements should be carried out over longer time scales. Similarly, if the goal is to study compounds that

evaporate quickly, the very start of the evaporation needs to be measured at higher frequency. 

The  above  results  show  the  particle  size  and  time  scale  of  the  experiment  affect  the  range  of  possible  saturation

concentrations that can be estimated from the data. When the particle size is small and the measurement timescales long,

lower  saturation  concentrations  can  be  distinguished  from the  data;  when  the  particle  size  is  large,  higher  saturation

concentrations are distinguished from the data. The time of the first data point and the time resolution at the start of the

evaporation also matter. With higher sampling frequency and earlier data points, the higher volatility compounds can be

identified from the data with the optimization method. 

An interesting remark concerns the choice of the variables that are optimized. From Fig. S1 and Fig. S2 it can be seen that

the simulated evaporation curves show more variance around the data points when the saturation concentrations and mole

fractions are optimized than in Fig. S3 and Fig. S4, where only mole fractions at the start of the evaporation of a full VBS

are optimized. The mole fractions are an easier task to optimize because each new VBS bin creates a new dimension to the

parameter space, which can take values between zero and one. By contrast, adding a new saturation concentration dimension

increases the parameter space significantly more as possible values span over several orders of magnitude. 

It should be noted that it is not always better to fit a full VBS as illustrated by data set 3. If the number of evaporating

compounds is known, fixing the number of compounds and optimizing their relative amount and saturation concentration

gives more information about the experiment than optimizing only the mole fractions of a full VBS.

5 Volatility and viscosity estimates from the EDB evaporation measurements

So far, this study has considered only artificial  evaporation data calculated with the LLEVAP model. Next, the process

model  optimization  scheme is  applied to  real  experimental  data. In  the following discussion,  “low viscosity” refers  to

particles  where particle phase diffusivity is fast enough so that it doesn’t pose a  limitation to the evaporation of the volatile

compounds and “high viscosity” refers to particles where the particle phase diffusivity is low enough to affect the particles’
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evaporation rate.  Composition are estimated for two  low  non-viscosityus (mixtures  1 and 2) and two  high  viscosityus

mixtures (mixtures 3 and 4 at low RH). For the latter two, the viscosities are also estimated by using evaporation profiles

measured at two different relative humidities. The organic properties in the model and conditions of evaporation for all the

four mixtures are listed in Table  54.  For every mixture, 100 different parameter sets that fit to the measured data were

calculated. The measured and modelled evaporation curves are shown in Fig. 6 as well as in the supplement (Fig. S5, Fig S6,

Fig. S7, Fig. S8)

In the EDB the particle and gas phase water are not fully in equilibrium when the measurement starts. This creates a period

of very rapid evaporation when water evaporates from the particle. As both process models used in this study assume that the

water is in equilibrium at the start of the evaporation, these rapid evaporation periods were removed from the data. The point

at which water is in equilibrium was determined to be the point where the rate of change of particle squared radius is

constantly higher than 1 μm2 s-1 for mixtures 1,2,4 and 3 at high RH and 0.1 μm2 s-1 for mixture 3 at low RH. The reason for

the higher threshold for mixture 3 at low RH is that the mixture has the highestis the most viscosityus and the excess water

evaporation the slowest of all the organic-water mixtures. 

The sampling  frequency  varied  across  the  measurements.  After  removing the period  where  water  evaporates  from the

particle, the start of the data sets contained a period where the particle size was sampled at higher frequency than at later

time. For mixture 3 at low RH and for mixture 4 at both RH this led the MCGA algorithm to weight more strongly in the

fitting the start of the evaporation where there was more data. As this was not the desired behavior, only one data point for

every minute was taken into account when calculating the goodness of fit for these experimental data sets.

The correct  values presented here are mole or mass fraction in the actual mixture and the literature values for the pure

compound  saturation  concentrations  (Table  43).  However,  the  saturation  concentration  estimates  obtained  from  the

optimization process are effective saturation concentrations, because the evaporation models assume ideal behavior. Any

non-ideal behavior of the mixtures will cause the estimated Csat to differ from the literature values. The possible deviation

from  ideality  of  every  mixture  is  assessed  by  performing  AIOMFAC  (http://www.aiomfac.caltech.edu,  last  accessed

11.01.2019, Zuend et al., 2008, 2011) calculations with the composition at the start of the evaporation as the input.

5.1 Evaporation of low viscositynon-viscous mixtures

The correct mole fractions and saturation vapor pressures for the low viscositynon-viscous mixtures 1 and 2 are listed in 

Table 43 and shown for mixture 1 in Fig. 7 and for mixture 2 in Fig. 8. In both figures, two different MCGA estimates are 

shown. The darker squares represent optimization results where the literature values for correct molar masses and particle 

phase densitiesy were used. The light diamond markers represent optimization where the same molar mass and particle phase

density (M=200 g mol-1; 
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ρ = 1200 kg m-3) were used for every model compound. The vertical axis in Fig. 7 and Fig. 8 is mass fraction of a compound 

at the start of the evaporation since it is less sensitive to the assumed molar masses compared to mole fraction.

5.1.1 Mixture 1

The mass fraction estimates are close to the correct values for all the three compounds (Fig. 7). The correct value is within

the uncertainty of the estimates for all the compounds except for the highest volatility compound (MCGA, exact compound

properties) for which the 90th percentile corresponds to a mass fraction of approximately 0.28, 0.02 away from the correct

value. 

The saturation concentration estimates are slightly overestimated with both methods for the highest volatility compound

(carbitol)  and  for  the  middle  volatility  compound  (glycerol).  For  glycerol  the  MCGA estimate  with  correct literature

properties (800 μg m-3) is closer to the literature saturation concentration (370 μg m-3, see Table 43 for references) than the

MCGA estimate  with equal  compound properties  (2100 μg m -3).  With equal  compound properties  for  the estimates  to

produce comparable evaporation rates to measurements, a higher saturation concentration is needed to compensate for the

larger molar mass. 

For the least volatile compound (PEG400), the estimated saturation concentrations show the larges variation. In fact, both

estimates do not include the correct literature value in their distribution. This is again because of the low sensitivity of the

evaporation curve to the least volatile compound. It does not make a significant difference to the overall goodness of fit if the

saturation concentration is 3 μg m-3 or 0.1 μg m-3 as in the time scales of the measurements all these saturation concentrations

lead to practically no evaporation from the particle. 

Figure S5a shows all the simulated and measured evaporation curves and Fig. 6a shows twenty best fit simulated evaporation

curves and the measured one. The simulated curves show similar spread as with artificial data sets 1 and 2. In Fig. S5b the

correct literature values are used as input to the LLEVAP model and the resulting evaporation curve is compared with the

measurements to show that with  correct parameters from the literature and with correct  mole fractions the model would

produce evaporation rates similar to measurements everywhere except in the middle of the measurement where the simulated

rate of evaporation is slower. This discrepancy could be explained by the non-ideality of the mixture as the AIOMFAC

calculated activity coefficients are 1.12 and 1.88, respectively for carbitol and glycerol. Neglecting the non-ideality in the

model may have caused an overestimation of the saturation concentration of glycerol in the optimization.
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5.1.2 Mixture 2

The estimated mass fractions and saturation concentrations for mixture 2 (Fig. 8) show different behaviour to the estimated

properties of mixture 1. The only satisfactory estimates are the saturation concentration and mass fraction of the highest

volatility compound (carbitol), for which both MCGA methods marginally overestimate the saturation concentration. The

optimization performed with exact  compound properties produces a mass fraction estimate that is 0.05 smaller than the

correct value (0.30). In the MCGA runs with exact compound properties, the uncertainties are higher than in the MCGA runs

with equal compound properties for all the compounds, especially in the saturation concentration estimate. The AIOMFAC

calculations give an activity coefficient of 1.06 for carbitol which could explain some of the overestimation in the saturation

concentration.

The estimates of the saturation concentrations and mass fractions for the two other compounds (malonic acid and PEG400)

are problematic when compared with all of the other systems encountered so far. For both MCGA approaches the estimates

clearly deviate from the values that were sought. The uncertainties of the estimated values with both approaches span over a

wide range in the parameter  space, from 0.03 to 0.66 in mass fraction and from 0.15  μg m-3 to almost 9500  μg m-3 in

saturation concentration. The reason for this inaccuracy in the optimization method is discussed in Sect. 5.3.

5.2 Evaporation of high viscosityus mixtures 3 and 4

Finally, the results concerning the evaporation of  high  viscosityus mixtures 3 and 4 are described. For these optimization

runs the correct  molar  masses,  particle  phase densities  and gas  phase diffusion coefficients  were used for  sucrose and

glycerol. With both mixtures two different evaporation measurements were performed, one measured at high RH and one at

lower RH. For the high RH case,  it  was assumed that  the particles  behave like well-mixed ideal  liquids and, thus,  the

LLEVAP model was used to model the evaporation. For low RH measurements with significant particle phase diffusion

limitations,  KM-GAP was  used to  model  the evaporation.  The optimization to both relative humidities  was performed

simultaneously. In this case the goodness of fit was calculated as a sum of individual measurement-simulation MSEs.

Two restrictions were set for the new candidate creation. The candidate was not accepted if the overall particle viscosity was

below 0.01 Pa s at the start of the evaporation. Such a low viscosity does not produce slower evaporation at low RH what is

observed in the measurements and a low viscosity greatly increases the computation time of a single KM-GAP simulation. In

addition, during the candidate creation, the free parameters were sorted based on the saturation concentrations. Effectively,

this guides the optimization algorithm away from values that would produce wrong evaporation as the higher volatility

compound (glycerol) was prevented to get associated with the preset properties of lower volatility compound (sucrose) (e.g.

molar mass, gas phase diffusion coefficient) or vice versa. Ultimately the choice leads to a smaller number of iterations that

must be calculated in order to get a reliable estimate for the free parameters. 
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The estimates for the saturation concentration of sucrose and glycerol  and their mole fractions are shown in  Fig. 9 for

mixture 3 and in Fig. 10 for mixture 4. Table 65 shows the median and 10th and 90th percentiles of the estimated bi factors

with which the particle viscosity is calculated in the KM-GAP simulations. In addition, the spread of the simulations together

with the measured evaporation of particles are reported in Fig. S7a (mixture 3) and Fig. S8a (mixture 4). In Fig. S7b and Fig.

S8b, the KM-GAP and LLEVAP simulations made with the  correct literature values are compared with the evaporation

measurements. Figures 6c and 6d show the twenty best fit simulations together with the measured evaporation.

The saturation concentration of sucrose is presumably so low that practically no sucrose evaporates from the particle. For

this reason, it is marked in  Fig. 9 and  Fig. 10 at the  Csat =  1  μg m-3  which was identified as the lower limit that can be

reliably fitted considering the experimental timescale (see Sect. 4). The estimated saturation concentrations for sucrose are

comparable to this value: for mixture 3 the estimated saturation concentrations are between 2-11 μg m-3 and for mixture 4

between 1-10  μg m-3. The mole fraction estimates for sucrose are excellent as the deviation from the correct value is at

maximum 0.02 for mixture 3 and 0.01 for mixture 4.

For  the  higher  volatility  compound  glycerol,  the  optimization  yields  slightly  lower  saturation  concentrations  

(200 – 285 μg m-3) than the literature value (370 μg m-3) for mixture 3. For mixture 4 the estimated saturation concentration

matches the literature value better, although the literature value is at the high end of the estimated Csat   (260 – 380 μg m-3).

For the mole fraction of each compound at the start of the evaporation, the estimates are close to the real values.

Lastly, with mixtures 3 and 4 the contribution of each compound to the particle viscosity was estimated. If an ideal mixture

is assumed, these contribution parameters (bi in eq. (1)) can be compared to the pure compound viscosities. The estimated

contribution parameters  b together with pure component viscosity of sucrose and glycerol  found from the literature,  are

shown in Table 65. For sucrose the estimated bsucrose values are on the lower end of the literature values and for glycerol the

bglycerol estimates are several magnitudes smaller than the literature value. 

5.3 Discussion on estimating the volatility and viscosity from EDB measurements

Overall, it can be said that the estimated properties are captured well when the process model optimization scheme is applied

to real experiments. However, some aspects merit further discussion on the limitations of the method.

Among the ten artificial and experimental data sets considered in this work, the method fails to estimate the correct mass

fractions at the start of the evaporation and the saturation concentrations only for malonic acid and PEG400 in mixture 2.

This exception can be understood by looking at Fig. S6a. The measured evaporation curve is shaped like the letter L. There

is  a  clear  faster  period of  evaporation  when mainly the  highest  volatility  compound (carbitol)  evaporates  followed by

evaporation of at least one other compound. If more than one compound characterized by low volatility is present (in this
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case two, with  Csat  ≈  10  μg m-3 or smaller) the evaporation curve will look the same as in the case of one low volatility

compound, i.e. the particle size remains practically constant towards the end, and it is difficult for an optimization algorithm

to distinguish between the two. This is an important finding because it provides information on the sensitivity of the model

to low volatility chemical species; in addition, it provides an estimate of what range in volatility can be accessible as a

function of the experimental timescale. When optimizing the LLEVAP model input to particles produced from mixture 2,

MCGA was set to find saturation concentrations and mass fractions for exactly three compounds. When one compound is

needed to produce the fast evaporation and one compound the slow evaporation the third compound is left over. In this case

MCGA finds solutions where the third compound’s saturation concentration is close to either of the two other compounds or

its mass fraction at the start of the evaporation is insignificant. Fundamentally this result shows a limit to the optimization

method. If the properties of two compounds are close to each other so that they produce similar measurable quantity as they

would  produce  alone,  the  optimization  method  might  not  find  a  clearly  defined  estimate  for  these  properties.  This

shortcoming was encountered when finding optimal set of mass fractions and saturation concentrations for three compounds.

With artificial data set 4 it was shown that lumping 40 compounds to 6 volatility classes produced a good fit, meaning that

the impact of such shortcoming is expected to be limited when performing the optimization to “real” OA evaporation data

sets.

Another aspect concerns the lower estimate for the saturation concentration of glycerol compared to the realliterature value

and the estimated values for the  bi parameters of sucrose and glycerol. Fig. S7b and Fig. S8b show the simulated curves

when the real properties of the organics are used as input values. The simulated evaporation is faster than the measured one

which means that the properties estimated by optimizing model to match measured data are not expected to match with the

correct literature values. AIOMFAC calculations give water activity coefficients of 0.50, 0.86 and 0.59 for mixture 3 at the

low and high RH and for mixture 4 at the low RH, respectively when using the start of the evaporation composition as input.

The activity coefficients for glycerol are all close to unity for these mixtures. Water activity coefficients smaller than unity

mean that the there is more water partitioned in the particle phase than calculated based on the ideality assumption. Due to

Raoult’s law the rate  of evaporation of glycerol  might be hindered  which might explain why the optimization method

underestimates glycerol’s saturation concentration and why the literature values produce too fast evaporation when used as a

model input. AIOMFAC calculations produce a near unity (0.97) water activity coefficient for the high RH experiment of

mixture 4.  With this  experiment  the AIOMFAC activity  coefficient  of  glycerol  is  0.68 which again might explain the

discrepancy.

When optimizing the viscosity, the overall particle viscosity is optimized which is made up of the individual contribution

parameters of sucrose and glycerol. These contribution parameters can be compared to the pure compound viscosities, if the

mixture is ideal. While at first the estimated b-parameters seem to be too high for sucrose and too low for glycerol, the range

of possible contribution parameter values allowed in the optimization was large, from 10 -15 to 1020. At a closer inspection of
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the estimated bi  parameters (Fig. S9), it is clear that the high bsucrose  are always associated with low bglycerol values. However,

the literature values reported in Table 65 do not fit to the trend observed in Fig. S9. If the literature values were input to  Eq.

(1),  they  would  produce  higher  viscosity  than  what  is  estimated  with  the  process  model  optimization  method.  This

discrepancy could be explained by the non-ideality of the mixtures 3 and 4 at low RH where AIOMFAC calculated activity

coefficients for water were 0.50 and 0.59, respectively (i.e. there could be more water in the particle phase than what is

calculated based on the ideality assumption). This additional water could decrease the particle phase viscosity.

6 Summary and conclusions

In this study, process model optimization methods were tested as a possible way of quantifying some of the physicochemical

properties of organic aerosol particles that are challenging to measure directly. More specifically, the particle compounds’

volatilities and particle viscosity were estimated by searching for those values that when used as an input to a detailed

evaporation model produce an evaporation curve similar to the evaporation test data. Additionally, two different ways of

stating the optimization problem were tested. Both the Monte Carlo Genetic Algorithm and Bayesian inference method

yielded similar optimization results. 

The process model optimization scheme was tested for both artificially generated and measured isothermal evaporation data.

When fitting the model to artificial  data,  accurate estimates for both mole fraction and saturation concentrations of the

components were obtained. With real experimental data the method produced good estimates given the fact that the models

assumed ideal behavior and thermodynamic equilibrium calculations with AIOMFAC showed that the mixtures might be

slightly non-ideal. 

For some of the tested data sets, the few shortcomings of the method could be largely attributed to the fact that the model

output was not sensitive to the changes in the estimated parameters with respect to the experimental timescale and parameter

range. method can only characterize properties that influence the quantity that is measured.  If some parameters are non-

influential (or have a small influence over the observed timescales) to the model output or if the parameter is coupled to

another parameter, they cannot be estimated precisely. This was the case with artificial data sets 3 and 4, in which the two

least volatile compounds were almost interchangeable as both produce slow evaporation, and with the estimated viscosity of

glycerol  and sucrose in mixtures  3 and 4 where the b-parameters  were coupled to produce the overall  viscosity of the

particle. This overall viscosity could be achieved by many combinations of the allowed values of the b-parameter in eq. (1).

In addition, if the estimated properties of two different compounds were close to each other the studied method might not be

able to discriminate between them. This was observed with the evaporation of particles produced from mixture 2 as the
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saturation concentrations of malonic acid and PEG400 were close to each other  and produced nearly constant  rates  of

evaporation over the considered experimental timescale.

The process model optimization scheme does also depend on the process models that are used. If the model output with

correct literature values  deviates  from the measurements,  the obtained estimates  will  not  be  correctexact.  This  kind of

drawback was encountered when estimating the saturation concentration of glycerol in evaporation of mixtures 3 and 4. This

can be the case if the model does not describe the system accurately, e.g. due to ignored non-ideality.

Optimizing process model input to match measured data is a promising method for the quantification of the volaility of OA

particle  constituents  and  viscosity  from evaporation  experiments  which  are  challenging  properties  to  measure  directly.

Further  studies  using  this  method  should  be  accompanied  with  a  clearly  defined  range  of  values  for  each  estimated

parameter.  This  range  should  take  into  account  what  can  be  inferred  from the  data  with  respect  to  the  experimental

conditions and model assumptions. Based on the analysis shown here, various parameters can be obtained from experimental

data using this method and the design of the experiments can be used to focus experiments on properties of interest. For

instance, in order to distinguish between saturation concentrations of low-volatile compounds, small particles and hours long

evaporation times are required. On the contrary, to distinguish between semivolatile or intermediate volatility compounds,

larger particles and/or high sampling time resolution for the short evaporation time scales are needed.
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Table 1: Characteristics for the artificial data sets. Properties from top to bottom are number of VBS compounds (bins),

particle diameter at the start of the evaporation, saturation concentrations of the VBS compounds and dry mole fraction of

the compounds at the start of the evaporation. For Csat and Xmole,dry “Fitted” means that the parameter value was used as fitting

parameter and the value was constrained between the reported minimum and maximum values.

Variable Data set 1 Data set 2 Data set 3 Data set 4

# compounds 3 3 6 40

dp0 (nm) 80 10000 80 80

Csat,i (μg m-3) Fitted (min: 0.001 

max: 104)

Fitted (min: 1 

max: 109)

{0.001; 0.01; 0.1; 1; 10; 100} {0.001; 0.01; 0.1; 1; 10; 100}

xmole,dry 

(t = 0 s)

Fitted

(min: 0.01 max: 1)

Fitted

(min: 0.01 max: 1)

Fitted

(min: 0.01 max: 1)

Fitted

(min: 0.01 max: 1)
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Table 2: The ambient conditions and properties of the organic compounds in the artificial test data that are the same for all

compounds in artificial  data sets 1-4.  The variables  are,  from top to bottom, temperature,  relative humidity,  gas phase

diffusion  coefficient,   molar  mass,  particle  phase  density  of  the  pure  compound  ,  particle  surface  tension  and  mass

accommodation coefficient

Variable Value

T (K) 298

RH (%) 80

Da
gas (cm2 s-1) 0.05

M (g mol-1) 200

ρ (kg m-3) 1200

σ (mN m-1)   40

α   1

a) The gas phase diffusion coefficients are scaled to correct temperatures by multiplying with a factor  of (T/273.15)1.75  (Reid

et al., 1987)
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Table 3: The correct parameters that are fitted in the optimization process for every artificial data sets. The order of the mole

fractions is from the least volatile to the most volatile compound for artificial data sets 3 and 4

Artificial 

Data set

Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6

1 Csat,1 = 

10-2   μg m-3  

Csat,2 = 

100   μg m-3  

Csat,3 = 

103   μg m-3  

Xmole,1 = 0.5 Xmole,2  = 0.4 Xmole,3 = 0.1

2 Csat,1 = 

100   μg m-3  

Csat,2 = 

103   μg m-3  

Csat,3 = 

106   μg m-3  

Xmole,1 = 0.35 Xmole,2  = 0.45 Xmole,3 = 0.2

3 Xmole,1 = 0.15 Xmole,2  = 0.2 Xmole,3 = 0.25 Xmole,1 = 0.2 Xmole,2  = 0.15 Xmole,3 = 0.05

4a  Xmole,1 = 0.434 Xmole,2  = 0.146 Xmole,3 = 0.116 Xmole,4 = 0.143 Xmole,5  = 0.069 Xmole,6 = 0.092
a)   The mole fractions are lumped to six volatility classes. See Table S2 for the exact values
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Table  43:  Composition  of  the  mixtures  1-4  in  EDB measurements  and  the  literature  values  for  the  saturation  vapor

pressures. 

Component Xmole
Saturation concentration 

Csat (μg m-3) 

Mixture
1

Carbitol (2-(2-Ethoxyethoxy)ethanol) 0.39 5.5105 (293 K)a

Glycerol 0.40 370 (293 K)b

PEG400 (C2nH4n+2On+1, n = 8.2 to 9.1) 0.21 0.0090-0.27  (298 K)c

Mixture
2

Carbitol (2-(2-Ethoxyethoxy)ethanol) 0.40 5.5105 (293 K)a

Malonic acid 0.39 4 - 40 (298 K)d

PEG400 (C2nH4n+2On+1, n = 8.2 to 9.1) 0.21 0.0090-0.27  (298 K)d

Mixture
3

Sucrose 0.50 /

Glycerol 0.50 370 (293K)b

Mixture
4

Sucrose 0.24 /

Glycerol 0.76 370 (293K)b

a)  Data  from  unpublished  EDB  measurements,  same  experimental  approach  as  in   Krieger  et  al.  (2018) 
b)   Saturation concentration of glycerol at 298K from Haynes (2009) was converted to 293K using the Clasius-Clapeyron

equation. The enthalpy of vaporization at boiling point (T = 562 K) was taken from Rumble et al. (2018)  and corrected to

298K using equation 7-12-1 from Reid et al. (1987) resulting to ΔHvap = 78.4 kJ mol-1 
c)  Krieger et al. (2018)   

d)  Bilde et al. (2015) 
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Table 54: The properties of the organic compounds for the particles generated from mixtures 1-4. The variables are, from 

top to bottom, particle diameter at the start of the evaporation, molar mass, particle phase density, gas phase diffusion 

coefficient, relative humidity, temperature, saturation concentrations of the VBS compounds, mole fraction of the 

compounds at the start of the evaporation and viscosity parameters b in equation (1). 

Variable Mixture 1 Mixture 2 Mixture 3 Mixture 4

dp0 (μm) 24.29 23.70 {16.05+ ;19.42+} {19.02+;24.87+}

Ma (g mol-1) {134d; 92d; 400e} {134; 104d; 400} {342d; 92} {342;  92}

ρa (kg m-3) {990d; 1260d; 1130g} {990; 1620; 1130} {1580d; 1260} {1580; 1260}

Db
gas (cm2 s-1) {0.05;0.05;0.05} {0.05;0.05;0.05} {0.04; 0.09}f {0.04; 0.09}f

RH (%) 0 0 {25; 70} {25.1; 86.5}

T (K) 293 293 293 293

Csat Fitted

(min: 0.1 max: 108  )

Fitted

(min: 0.1 max: 108  )

Fitted

(min 1: max: 105  )

Fitted

(min: 1 max: 105  )

xmole ,dry 

(t = 0 s)

Fitted

(min: 0.01 max: 1)

Fitted

(min: 0.01 max: 1)

Fitted

(min: 0.01 max: 1)

Fitted

(min: 0.01 max: 1)

bi
c  - - Fitted

(min: 10.-15   max: 1020  )

Fitted

(min: 10.-15   max: 1020  )

+) first value is for measurement at low RH and second for measurement at high RH

a) For mixtures 1 and 2 only for the optimization runs where exact compound properties were used. The order of 

the compounds is the same as in the Ttable 43. 

b) The order of the compounds is the same as in  Ttable  43.   The gas phase diffusion coefficients are scaled to

correct temperatures by multiplying with a factor  of (T/273.15)1.75

c) only for low RH

d)  Rumble et al. (2018)

e) Mean molar mass from Krieger et al. (2018)

f) Calculated using data and equation 11-3-2 from Reid et al. (1987)

g) Sigma-Aldrich
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Table 65: The median b-parameter which describes the contribution of glycerol and sucrose to the particle viscosity from 

optimizing the KM-GAP model to match the low RH measurement of mixtures 3 and 4.The literature values for viscosity of 

glycerol is also reported. For sucrose the reported literature value is an experimental fit calculated from viscosity 

measurements of sucrose-water mixtures evaluated at RH=0%.

log10(bi)  median log10(bi) 10th / 90th percentile log10(ηi) literature (Pa s)

Mixture 3: glycerol -5.1 -12.0 / -0.2 -0.030a

Mixture 4: glycerol -6.5 -11.3 / -3.3 -0.030a

Mixture 3: Sucrose 12.8 9.6 / 16.5 15.92 ± 1.92b

Mixture 4: Sucrose 12.3 10.9 / 15.6 15.92 ± 1.92b

a) Rumble et al., (2018) b) Song et al. (2016)
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Figure 1: Simulated evaporation factors (EF, particle diameter dp divided by the initial diameter dp0) (black circles), 100 best

fit simulations (grey lines) and the best fit simulation (magenta line) for a) artificial data set 1, b) artificial data set 2, c)

artificial data set 3, d) artificial data set 4. The best fit simulation is determined as the evaporation simulation that produces

smallest mean squared error relative to the measurement data.



Figure 2: a)  Parameter estimates from the three different optimization methods applied to artificial data set 1. Shown are

MCGA  with  uniform  sampling  (blue  circles),  MCGA  with  sampling  distributions  similar  to  the  Bayesian  inference

(Gaussian sampling, yellow squares) and Bayesian inference (red diamonds). The markers show the modes of the estimated

variable distributions for MCGA methods and the maximum a posteriori estimate of the fitting variable distributions for the

Bayesian inference. The whiskers show the 10th and 90th percentiles of the variable distributions for the MCGA methods and

90% credible interval for the Bayesian inference. b) The artificial data points which are the target of the optimization process

and ten best fit  simulations calculated with the LLEVAP model using the estimates from the MCGA optimization with

uniform sampling. 
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Figure 3: Parameter estimates for artificial data set 2; dry particle mole fraction at the start of the evaporation and saturation

concentrations of three model compounds were optimized to match the data. Green stars show the MCGA estimates and

black crosses the correct values. The whiskers show the 10th and 90th percentiles of the estimated variable distributions.
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Figure 4: Parameter estimates for artificial data set 3; dry particle mole fraction at the start of the evaporation of six model

compounds with predefined saturation concentration were optimized to match the data. Blue triangles show the MCGA

estimates and black crosses the correct values. The whiskers show the 10th and 90th percentiles of the estimated variable

distributions.
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Figure 5: Parameter estimates for artificial data set 4; dry particle mole fraction at the start of the evaporation of six model

compounds with predefined saturation concentration were optimized to match the data.  Red triangles show the MCGA

estimates and the whiskers show the 10th and 90th percentiles of the estimated variable distributions. Black crosses are the

correct values summed to 6 volatility bins. All the correct values for the 40 evaporating compounds are listed in Table S21. 
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Figure 6:  a) Measured evaporation factors (EF, particle diameter dp divided by the initial diameter dp0) of mixture 1 from the

determined point  of water  equilibrium (see Sect.  5) (black circles),  20 best  fit  simulations (grey lines)  and the best  fit

simulation  (magenta  line).  b)  Same as  (a)  but  for  mixture  2.  c)  Measured  evaporation  factors  of  mixture  3  from the

determined  point  of  water  equilibrium  under  high  RH conditions  (RH=70%,   black  circles)  and  low RH conditions

(RH=25%, red circles), Grey lines show 20 best fit simulations and magenta line the best fit simulation d) same as (c) but for

mixture 4 for which the high RH is 86.5% and low RH is 25.1%. The best fit simulation is determined as the evaporation

simulation that produces smallest mean squared error relative to the measurement data.
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Figure  7:  a)  Parameter  estimates  for  particles  generated  from mixture 1.  Dry particle  mass fraction at  the start  of  the

evaporation of three compounds and their saturation concentrations were optimized to match the evaporation data. Orange

diamonds show the MCGA estimates calculated by assuming equal molar mass and particle phase density for all compounds

and brown squares  show the MCGA estimates calculated by setting the molar  mass and particle phase density to their

literature values. Black crosses show the  correct literature values. The whiskers of the estimates show the 10th and 90th

percentiles of the estimated variable distributions and the whiskers in correct values show the range of literature values (see

Table 43 for references). b) The measured evaporation curve which is the target of the optimization process and ten best fit

simulated evaporation curves calculated with the LLEVAP model using the estimates from optimization. 
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Figure  8:  Parameter  estimates  for  particles  generated  from  mixture  2.  Dry  particle  mass  fraction  at  the  start  of  the

evaporation of three compounds and their saturation concentrations were optimized to match the evaporation data. Cyan

diamonds show the MCGA estimates calculated by assuming equal molar mass and particle phase density for all compounds

and teal squares show the MCGA estimates calculated by setting the molar mass and particle phase density to their literature

values (see Table 43 for references). Black crosses show the correct literature values. The whiskers of the estimates show the

10th and 90th percentiles  of  the estimated  variable distributions and the whiskers in  correct  values show the range of

literature values.
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Figure  9:  Parameter  estimates  for  particles  generated  from  mixture  3.  Dry  particle  mole  fraction  at  the  start  of  the

evaporation of three compounds and their saturation concentrations were optimized to match the evaporation data. Magenta

squares show the MCGA estimates and black crosses show the  literature  correct values. The whiskers show the 10th and

90th percentiles of the estimated variable distributions. Correct value of Ssucrose Csat is marked at the lower limit of the Csat

range  due to its assumed low value.
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Figure  10:Parameter  estimates  for  particles  generated  from  mixture  4.  Dry  particle  mole  fraction  at  the  start  of  the

evaporation of three compounds and their saturation concentrations and the viscosity parameters bi were optimized to match

the evaporation data. Magenta squares show the MCGA estimates and black crosses show the literature correct values. The

whiskers show the 10th and 90th percentiles of the estimated variable distributions. Correct value of sSucrose Csat is marked

at the lower limit of the Csat range due to its assumed low value.


