
Response to reviewer #2

We thank reviewer #2 for reviewing our manuscript and providing valuable feedback on our work. 
Below we address first the general and then the specific comments. The reviewer’s comments are in
blue, our responses are in black and any additions to the manuscript are in red

General comment 1

It is noteworthy that the authors do not use numerical values of their measure of
model result-data correlation (fitness) for their argumentation. The performance
of an optimization algorithm should also be evaluated in terms of how quickly
(or how reliably) it reaches a certain threshold of model result-data correlation
that justifies consideration of the optimized parameter set (e.g. model result-data
residue is comparable to the noise in the experimental data). The authors denote
the spread in fitted parameters, but it would also be interesting to see spreads
in their measure for correlation, especially in section 3 where two methods are
compared.

Response

We considered comparing the model result-data correlation, but decided not to include those 
because of the methodological differences between the MCGA and Bayesian inference. The main 
problem we encountered in comparing the two methods was that the Bayesian analysis 
fundamentally assumes that the estimated parameters have distributions whereas the MCGA 
algorithm looks for an optimal value which fits the data. This Bayesian vs. frequentist conflict 
presents challenges when the two methods are compared. 

Considering only a situation where one parameter would be optimized, the MCMC algorithm would
sample from the posterior distribution of this parameter such that sometimes during the execution 
also values that fits less well to the experimental data are visited but less often than those parameter 
values that produce a better fit to the data. For this reason we feel that it would not be fair to 
compare how the model result-data correlation evolves during the MCMC calculations. This 
comparison would show that in the MCMC algorithm the model result-data residue sometimes 
spikes whereas MCGA algorithm consistently moves toward lower residues. 

We believe that the best way to compare the algorithms is to think that over multiple optimization 
rounds the MCGA algorithm also produces a distribution of parameter values which can be 
compared to the posterior distribution calculated with the MCMC algorithm. 

We have clarified our reasoning that led us to only show the parameter estimate distribution in the 
manuscript by adding the following to Sect. 3 line 276 in the revised version.

The Bayesian inference and the MCMC algorithm assume estimated parameters are random 
variables with probability distributions, whereas the MCGA algorithm tries to find a single set of 
input parameters that best fit to the observations. The MCMC algorithm explores the posterior 
distribution by randomly drawing samples from it. The samples are drawn such that the parameter 
values that better fit to the data and thus are more probable are drawn more often than the lower 
probability parameter values that produce worse fits. Because of this fundamental difference 
between these two approaches, it would not be appropriate to compare how the model output-data 
residuals evolve during the execution of both algorithms and only the distributions of parameter 



estimates from MCMC and MCGA over multiple optimization rounds are used to compare the two 
methods.

General comment 2

What is the reason to choose MCGA over Bayesian inference for further analysis
in this manuscript? Did one method outperform the other in any regard or was it
just easier to operate?

Response

As shown in Sect. 3 both methods produce similar distributions for the estimated parameters and 
there is no obvious evidence that one method is better than the other. We feel that once this 
comparison is made the choice is up to the person performing the optimization, as rigorous model 
optimization needs hands-on expertise with the selected method. MCGA was selected for further 
comparison because we had more experience with Genetic Algorithms as our group has used GA 
before in Yli-Juuti et al., (2017) and the MCGA method in Buchholz et al., (2019). 

General comment 3

I wonder how big the error is that is introduced by combination of the topmost
bulk layers in the KM-GAP model during evaporation. This practice in conjunction
with discrete layers can introduce step-profiles in evaporation, where evaporation
slows down as volatile constituents are depleted from the topmost bulk layer and picks up pace 
again as soon as layers are merged (and hence volatile component is mixed into the topmost bulk 
layer). Kinetic models operating with fixed layer sizes and merging schemes have to have 
mechanisms in place that prevent these artifacts from happening, especially when input parameter 
optimization is automatized and hence numerical convergence not always manually checked for
each combination of input parameters. Which mechanisms are in place in this study to prevent this?

Response

Reviewer #2 raises an important point here. After each KM-GAP simulation we did not check 
numerically whether the model output contained step-profiles. An efficient method to remove these 
step-profiles caused by high viscosity in the topmost layer is to increase the number of layers in the 
model, which decreases the thickness of the topmost layer and leads to layers being merged more 
frequently, i.e. in practice before all of the volatile component (glycerol in mixtures 3 and 4) is gone
from the topmost layer. Based on a random search of the parameter space, large step-profiles are 
rare in our system but do exist with some combination of the allowed input parameters. However, 
increasing the number of layers from 30 to e.g. 100 led more often to situations where the diffusion 
fluxes are too high compared to the amount of molecules in a layer, which in turn resulted in the 
ODE solver to stop integration as the required time step to solve the molecular transport became too
short.

In figure 1 we compare KM-GAP output using the parameter estimates calculated by optimizing to 
low RH evaporation data of mixtures 3 and 4 with original number of layers (30) and with 100 
layers. With both mixtures we see small deviation between the outputs. However, this variation is 
small compared to the variation in the experimental data. 



To check that this numerical problem does not cause a systematic deviation to optimized parameter 
values, we tested how the best parameter estimates for mixture 3 would change if the candidates in 
the last generation of an optimization round were rerun with 300 layers (instead of the original 30 
layers). The best mole fraction estimates would change by 0.001, Csat estimates would stay the 
same, bsucrose would change from 1012.0

 to 1011.4
 and bglycerol from 10-3.88  to 10-3.33.  Based on this 

analysis, not checking the convergence might have caused the bsucrose estimates to be slightly lower 
and bglycerol estimates slightly higher. However, the deviations in the estimated bi parameters are 
small and do not affect our conclusions.

General comment 4

A stylistic suggestion: A concept that is usually used when talking about model
parameter optimization is that of a parameter’s (local) sensitivity. Talking about
conditions under which model output is sensitive to the numerical value of an
input parameter could simplify the (sometimes a little slow-moving) discussion in
this manuscript considerably. However, usage of this concept is left to judgment
of the authors.

Response

We have elected not to change the discussion as we deal with data sets that can be said to have 
“correct” answers in terms of literature values or input values used in calculating the artificial data 
sets. We feel that talking about the distribution of estimates we get from independent optimization 
runs fits better to the context of our work instead of parameter sensitivity.

Specific comment 1

Figure 1: Low RH measurements and KM-GAP output calculated with a set of estimated 
parameters (Csat,xmole and bi) and with 30 layers (black solid line) or 100 layers (magenta solid line). 
a) Low RH measurement data and parameter estimates of mixture 3 in the manuscript. b) Low RH 
measurement data and parameter estimates of mixture 4 in the manuscript



Sect. 1, l. 45 – What do you mean by “increasing attention has also been given
to modeling the particle dynamics to better understand the measurements”? Par-
ticle dynamics could refer to processes like deposition and coagulation, but prob-
ably means evaporation dynamics here, please clarify.

Response

We have modified the text on line 45 to the following

In addition to experimental methods, increasing attention has also been given to modeling the 
evaporation process to better understand the measurements

Specific comment 2

Sect. 1, l. 50 – The literature review on kinetic parameter determination through
inverse modelling seems a little sparse here. Even in aerosol research, there
have been more studies detailing such procedures. Examples include Berke-
meier et al. (2016), who determined both diffusion coefficients and reaction rates
by inverse modelling or Lowe et al. (2016), who used a Monte Carlo Markov
Chain (MCMC) algorithm on artificial data as a tool for sensitivity analysis.

Response

We thank Reviewer #2 for pointing out these excellent publications that we hadn’t referred to in our
manuscript. We have added references to both of these articles starting from line 51 reading:

Berkemeier et al., (2016) derived kinetic parameters influencing ozone uptake of shikimic acid by 
fitting to multiple measurements of ozone uptake by the acid at different relative humidities. Lowe 
et al., (2016) studied the sensitivity of various parameters of Köhler theory by studying the 
goodness-of-fit to  artificial cloud condensation nucleus spectra.  The same approach was also used 
Yli-Juuti et al. (2017) to inferred ...

Specific comment 3

Sect. 2.2, l. 132 – It is counterintuitive to talk about a good candidate having
low fitness here since in the biological sense a high fitness would be considered
better. “Fitness” is thus usually defined as the inverse of least-squares deviation.

Response

We have changed the manuscript so that when we talk about high fitness we mean an inverse of the 
mean squared error and thus a good fit candidate now has a higher fitness than a candidate with 
higher mean squared error. We have also modified the explanation starting from the line 133 in the 
revised version to the following:

Below, the fitness of a candidate is determined as the inverse of its goodness of fit statistic. The 
goodness of fit in this work is calculated as a mean squared error (MSE) between the evaporation 
simulation produced with the candidate’s parameter set and the measured evaporation. A lower 
value for goodness of fit statistic, i.e. lower MSE, means higher value for fitness and a better 
candidate.



Specific comment 4

Sect. 2.2, l. 153 – Can you expand on why the Metropolis criterion ensures
variability in the population? While this might be intuitive for experts, it might
not be for clear to the general reader of ACP. A couple of follow-up questions
on the Metropolis algorithm: Did the MCGA algorithm perform significantly better
with this criterion? Do you make sure that a newly created parameter set with
improved fitness over all previous ones is not discarded?

Response

The idea behind the Metropolis criterion (together with the mutation scheme) is that sometimes 
candidates with worse goodness-of-fit are accepted to the next generation. The idea is to keep the 
population more variable by removing members from the previous generation that would otherwise 
be included in the next generation and thereby to allow the MCGA algorithm to explore the 
parameter space more thoroughly. 

The Metropolis criterion does not significantly increase the performance of the algorithm when the 
versions with and without metropolis criterion are tested to artificial data set 1. Figure 2  below 
shows the distribution of the median mean squared error for generations 2-10 over the 500 
optimization rounds performed with the Metropolis criterion (blue lines) and MSE over 50 
optimization rounds performed without the Metropolis criterion (red lines). Figure 1 shows that at 
first the blue distribution is wider but not by much and in the end (generation 10) the version 
without the Metropolis criterion has more probability mass over smaller and higher median MSE 
values. 

The Metropolis criterion is applied only for candidates that have higher MSE than the maximum 
MSE in the previous generation, which ensures that a newly created parameter sets with improved 
fitness are not discarded.

Figure 2: Distribution of median mean squared error (MSE) in a generation for 500 optimization 
rounds with the Metropolis condition and 50 optimization rounds without the Metorpolis for 
artificial data set 1 in the manuscript. The distribution is calculated with a kernel density estimation 
method using Gaussian kernel.



We have added a following explanation to the manuscript Sect 2.2 line 157:

In genetic algorithms the goal is to keep the population as variable as possible while at the same 
time the goal is that the fitness of the candidates improves when new generations are calculated. If 
only the candidates that best produce the observations were chosen the algorithm might get stuck in 
a local minimum and, on the other hand, if new random parameters are drawn too often the genetic 
algorithm does not converge. 

Specific comment 5

Sect. 2.3.1, l. 201 – The comment on subconscious bias made me wonder what
choices the person performing the optimization has. In my understanding, there
should be none in a fully automated optimization.

Response

Even though the optimization is fully automated there exists a couple of things that the person 
performing the optimization can do to guide the optimization towards correct results, even though 
their effect might not be substantial to the optimization. The person performing the optimization can
narrow the parameter space so that it is more likely for the algorithm to find correct values. The 
person might tune lower the mutation rate or increase the number of elite members in a generation 
if the algorithm is found to converge fast towards the correct values. One could also try different 
goodness-of-fit functions so that the correct values were found more likely. When analyzing real 
SOA evaporation experiments the correct volatility distribution is not known, therefore, the above 
mentioned factors cannot be used to guide the results towards correct values. In practice, the above 
mentioned factors include decision making by the operator but the operator has to be able to make 
these decisions based on technical aspects of the method and the optimization problem at hand and 
not by knowing the correct answers. 

Specific comment 6

Sect. 4, l. 294 – Please define the term “optimization rounds”. From context,
it seems to be completed MCGA runs. In contrast, how many process model
evaluations were performed in each MCGA run? How has this number been
chosen?

Response

We have defined the optimization rounds to mean MCGA runs in Sect 2.2.1 line 161. 

The number of process model evaluations was not chosen when performing the optimization, 
instead we chose the number of generations and population size such that further increase in either 
number did not decrease the mean squared error between model output and data significantly, while 
at the same time the choice kept the computation time as small as possible.

The number of process model evaluations can be calculated from these two numbers considering 
that we choose the number of parameters to sample in the MC phase to be the same as in the GA 
phase and that the process model evaluations in the GA part is 0.95Npopulation·(Ngeneration – 1), where 



Npopulation  is the population size and Ngeneration the number of generations. The coefficient 0.95 comes 
from the fact that 5% of the next generation is always populated with the elite members of the 
previous generation. This results in 6840 process model evaluations with Npopulation = 400 
(corresponding to mixtures 3 and 4 at low RH in our study) or to .10260 evaluations with Npopulation = 
600 (corresponding to all other data sets in our study). 

We have added Table S1 to the supplement which shows the population size, number of elite 
members and the number of parameter sets in the MC part for each data set. This table is referred to
in the manuscript in Sect 2.2.1 lines 167-168. The old table S1 showing the composition of the 
particle at the start of the evaporation for artificial data set 4 is now labelled as Table S2 in the 
revised version of the manuscript 

All the MCGA parameters for each data set in this work are listed in the supplementary material 
Table S1.

Specific comment 7

Sect. 5.3 – You give two potential reasons for the process model failing at de-
scribing the experimental data using only literature values for viscosity and volatil-
ity. Can you add a brief discussion on what you think contributes more to the
observed discrepancy, the depressed viscosity or hindered evaporation due to
Raoult’s law?

Response 

In Sect 5.3. we speculate with the possibility that since the AIOMFAC model gives lower than unity
activity coefficients for the initial particle composition, there might be more water in the particle, 
which would hinder the rate of evaporation of other compounds and lower viscosity. It is 
noteworthy that these changes would affect the rate of evaporation opposite ways. The decreased 
viscosity would increase the rate of evaporation, whereas solution effect would decrease the rate of 
evaporation of an organic compound.

We have performed the AIOMFAC calculations only with one composition (the initial particle 
composition) and only to consider with the possibility of more water being present at low RH 
measurements of mixtures 3 and 4 and at high RH measurement of mixture 3. Discussion about the 
magnitudes of these effects would need detailed calculations of the activity coefficients as a 
function of composition which is out of the scope of this study. 

Specific comment 8

Sect. 6, l. 600 – “(. . .) the few shortcomings of the method could be largely at-
tributed to the fact that the method can only characterize properties that influence
the quantity that is measured”. As stated, this is too trivial, please rephrase. You
may want to refer to it as “model parameters that have sufficient sensitivity in the
probed time and concentration range”. For reference, some general concepts of
model parameter optimization (at least for application in aerosol research) have
been discussed in section 3 in Berkemeier et al. (2017) or can be found in the
discussion of sensitivity analysis and kinetic regimes in Berkemeier et al. (2013),
section 6.



Response

We have modified the text starting at line 622 in the revised version of the manuscript to read:

For some of the tested data sets, the few shortcomings of the method could be largely attributed to 
the fact that the model output was not sensitive to the changes in the estimated parameters with 
respect to the experimental timescale and parameter range. 

Specific comment 9

Fig. S9 – Please add literature values from Table 5 into the plot since you are
referring to this comparison in Sect. 5.3.

Response

We have added the literature values to Fig. S9.
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