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The details about the network of ground-based observatories (ARFINET and AERONET), the direct measurements from

which are used in the present study, are provided in Table S1, S2 and S3 from Appendix S1. Appendix S2 has demonstrated

the ability of Weighted Interpolation Method (WIM) to combine Satellite-Retrieved (SR) and GRound-based (GR) Aerosol

Optical Depth (AOD) in such a way that uncertainty in the merged AOD is guaranteed to be smaller than those in satellite

retrieved AOD . The details regarding the seasonal estimation of background error covariance matrix, which is required to5

combine ground-based Absorption AOD (AAOD) with OMI AAOD using 3D-VAR, are illustrated in Appendix 5.

S1 ARFINET and AERONET observatories

The present study utilizes the monthly mean AOD data at 500 nm, measured at 27 ARFINET and 17 AERONET stations which

are detailed in the Table S1 and S2, respectively. The list of 34 ARFINET observatories, the Black Carbon mass concentration

measurements from which are employed in the present study, is provided in Table S3.10
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Table S1. ARFINET observatories, the AODs from which have been used in the present study.

Sr no. Station Station Latitude Longitude Altitude Starting

name ID in degree in degree in m year

north east

1 Anantapur (rural, semiarid) ATP 14.46 77.67 0350 2001

2 Bhubaneswar (semi-urban) BBR 20.20 85.80 0078 2009

3 Bangalore (urban) BLR 12.97 77.59 0960 2003

4 Chennai (urban) CHN 12.70 79.92 0050 2011

5 Dibrugarh (rural) DBR 27.30 94.60 0111 2002

6 Dehradun (semi-urban, Himalayan Foothills) DDN 30.34 78.04 0700 2007

7 Delhi (urban) DEL 28.60 77.20 0239 2012

8 Goa (semi-urban, coastal) GOA 15.46 73.83 0070 2007

9 Hyderabad (urban) HYD 17.75 78.73 0557 2003

10 Hyderabad (suburban) HDT 17.47 78.58 0557 2007

11 Hanle (rural, pristine, high altitude) HNL 32.78 78.95 4520 2009

12 Imphal (rural) IPH 24.75 93.92 0765 2010

13 Jaisalmer (rural, desert) JSL 26.92 70.95 0225 2010

14 Jodhpur (suburban, arid) JDR 26.26 72.99 0236 1987 a

15 Kashidhoo (rural,island) KSD 4.96 73.47 1998-2000

16 Kullu (rural, high altitude) KLU 31.90 77.10 1154 2009

17 Minicoy (island) MCY 08.20 73.00 0002 1995 a

18 Mysore (semi-urban) MYS 12.30 76.50 0772 1989 a

19 Nagpur (urban) NGP 21.15 79.15 0300 2008

20 Nainital (rural, Himalayan high altitudes) NTL 29.20 79.30 1960 2002

21 Port Blair (island) PBR 11.64 92.71 0060 2002

22 Patiala (semi-urban) PTL 30.33 76.46 0249 2006

23 Shillong (rural, high latitude) SHN 25.60 91.91 1033 2008

24 Trivandrum (semi-urban, coastal) TVM 08.50 77.00 0002 1986

25 Udaipur (semi-urban) UDP 24.60 73.90 0577 2010

26 Visakhapatnam (semi-urban, coastal) VSK 17.70 83.10 0020 1988

27 Agartala (rural) AGR 23.50 91.25 0043 2010

In Table S1, locations with population less than 0.5 million are considered as rural, locations having population in between

0.5 to 2 million are considered as semi-urban while locations with population exceeding 2 million are considered to be urban
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(Babu et al., 2013). Most of the stations mentioned in Table S1 are operational even today except those marked as ‘a ’in front

of respective starting year.

Table S2. AERONET observatories, the AOD from which have been used in the present study.

Sr no. Station Station Latitude Longitude Starting-

name ID in degree in degree end year

north east

1 Baraily (urban) BRL 28.39 79.43 2008-2008

2 Bhola (semiurban) BHL 22.69 90.65 2013-2013

3 Dhaka (Urban) DHK 23.73 90.39 2012-2014

4 EVK2-CNR (rural, Himalayan high altitude) GCL 27.95 86.81 2006-2011

5 Gandhi college (semi urban) GCL 25.87 84.12 2006-2014

6 Hanimadhoo (rural, island) HNM 6.74 73.17 2004-2013

7 Jaipur (arid, urban) JPR 26.90 75.80 2009-2014

8 Jomsom JSM 28.77 83.71 2011-2013

9 Kanpur (urban) KNP 26.51 80.23 2001-2013

10 Kashidhoo (rural,island) KSD 4.96 73.47 1998-2000

11 Karachi (urban, coastal) KRC 24.87 67.03 2006-2013

12 Lahore (urban) LHR 31.54 74.32 2006-2014

13 Male (semiurban, island) MLE 4.19 73.53 2001-2002

14 Nainital (rural, Himalayan high altitudes) NTL 29.39 79.45 1998-2012

15 Nam-Co (mountain lake, Himalayan high altitudes) NMC 30.77 90.00 2006-2011

16 Pantnagar (urban) PNR 29.05 79.52 2008-2009

18 Patiala (urban) PTL 30.32 76.39 2006-2012

19 Pokhara (rural, Himalayan valley) PKR 28.15 83.97 2010-2013

20 QQMS-CAM (semiurban, Himalayan high altitudes) QQM 28.36 86.94 2010-2014
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Table S3. ARFINET observatories, the BC mass concentrations measurements from which have been used in the present study.

Sr no. Station Station Latitude Longitude Altitude Starting

name ID in degree in degree in m year

north east

1 Agartala (rural) AGR 23.50 91.25 0043 2010

2 Ahmedabad (urban) AMD 23.02 72.57 0053 2008

3 Anantapur (rural, semiarid) ATP 14.46 77.67 0350 2001

4 Bhubaneswar (semi-urban) BBR 20.20 85.80 0078 2009

5 Bangalore (urban) BLR 12.97 77.59 0960 2003

6 Chennai (urban) CHN 12.70 79.92 0050 2011

7 Dibrugarh (rural) DBR 27.30 94.60 0111 2002

8 Dehradun (semi-urban, Himalayan Foothills) DDN 30.34 78.04 0700 2007

9 Delhi (urban) DEL 28.60 77.20 0239 2012

10 Goa (semi-urban, coastal) GOA 15.46 73.83 0070 2007

11 Hyderabad (urban) HYD 17.75 78.73 0557 2003

12 Hyderabad (suburban) HDT 17.47 78.58 0557 2007

13 Hanle (rural, pristine, high altitude) HNL 32.78 78.95 4520 2009

14 Imphal (rural) IPH 24.75 93.92 0765 2010

15 Jaisalmer (rural, desert) JSL 26.92 70.95 0225 2010

16 Kadappa (semi-urban) KDP 14.46 78.81 0138 2011

17 Kharagpur (rural) KGP 22.50 87.50 0028 2004

18 Kullu (rural, high altitude) KLU 31.90 77.10 1154 2009

19 Minicoy (island) MCY 08.20 73.00 0002 1995 a

20 Mysore (semi-urban) MYS 12.30 76.50 0772 1989 a

21 Nagpur (urban) NGP 21.15 79.15 0300 2008

22 Nainital (rural, Himalayan high altitudes) NTL 29.20 79.30 1960 2002

23 Naliya (rural, coastal) NAL 22.23 68.89 0050 2007

24 Ooty (rural, high altitude) OTY 11.40 76.70 2520 2012

25 Port Blair (island) PBR 11.64 92.71 0060 2002

26 Patiala (semi-urban) PTL 30.33 76.46 0249 2006

27 Pune (urban) PUN 18.54 73.85 0457 2005

28 Rajkot (urban) RKT 22.3 70.8 0140 2008

29 Ranchi (semi-urban) RNC 23.23 85.23 0654 2010

30 Shillong (rural, high latitude) SHN 25.60 91.91 1033 2008

31 Trivandrum (semi-urban, coastal) TVM 08.50 77.00 0002 1986

32 Udaipur (semi-urban) UDP 24.60 73.90 0577 2010

33 Varanasi (semi-urban) VNS 25.3 82.96 0078 2009

34 Visakhapatnam (semi-urban, coastal) VSK 17.70 83.10 0020 1988
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S2 Uncertainty in merged AOD

Satellite retrieved (SR) AODs have uncertainties than those in ground-based (GR) AOD measurements, due to several reasons.

As merged AOD product is developed by systematically combining SR and GR AOD by weighted interpolation method (WIM),

it would be interesting to analyze and compare uncertainty in merged AOD (MG AOD) w.r.t. that in its parent datasets.

For simplicity, we assume a case in which SR AOD at a given grid point (X1) is being merged with a GR AOD (X2) from a5

ground-based aerosol observatory lying within the horizontal radius of influence from the grid point. According to WIM, MG

AOD is expressed as a convex combination of its parents as following.

X̃ =AX1 +BX2 (1)

Here, X̃ is MG AOD at the given grid point and A and B are weights (real, positive valued scalars) for corresponding SR and

GR AOD respectively. As WIM expresses MG AOD as a convex combination of SR and GR AOD, we can write10

A+B = 1 (2)

which means

A2 +B2 = 1− 2AB (3)

Taking variance on both sides of equation 1 we can write,

var(X̃) =A2var(X1)+B2var(X2); (4)15

Equation 4 is expressing variance in MG AOD as a linear combination of variance in SR and GR AOD with A2 and B2 being

respective weights. As the sum of A2 and B2 can never be greater than unity, as can be seen from equation 3, following

inferences can be drawn regarding variance in MG AOD.

1. Variance of MG AOD can never be greater than variance of both of its parents.

2. Variance of MG AOD can be smaller than that of both of its parents or can at least be smaller than variance of SR AOD.20

These observations can be verified for the general case in which observations from multiple ground stations are being merged

with the background data at a give grid point (i.e. X2 is a vector).

S3 3D-VAR : Construction of observational and background covariance matrices

3D-VAR, one of the widely used data assimilation methods based on least square optimization, expresses the assimilated field

in terms of parent datasets and their covariance matrices, as shown in the following equation (Kalnay, 2003; Lewis et al., 2006)25

[
B−1 +HTR−1H

]
X =

[
B−1Xb +HTR−1Z

]
(5)
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Here, X and Xb refer to MG AAOD and OMI AAOD vectors, respectively, of size n× 1, where ’n’ is the total no of grid

points in the spatial domain (n=1120 for the current study). Further from equation 5, Z denotes the vector of GR AAODs,

which is of size m× 1 where m is the no. of ground-based observatories data from which is used for merging. The map from

the grid space and the observation space is provided by the interpolation matrix referred as H (size m×n) in equation 5. Here,

H is constructed through bilinear interpolation of gridded background data to the locations of ground-based observatories5

encompassed by those grid points. Finally, B (size n×n) and O (size m×m) represent the error covariance matrices for OMI

AAODs and GR AAODs respectively.

For the successful implementation of 3D-VAR, appropriate construction of B and R is quite important as these covariance

matrices not only decide the spatial patterns in which observations are assimilated with the gridded background data but

also provides the weights given to the respective parent datasets during the assimilation. The construction of observation10

error covariance matrix (R) is already detailed in the main article (section 3.2), however the details regarding estimation of

background error covariance matrix (B) are as given below.

S3.1 Constructing background error covariance matrix (B)

In the present work, as the observation error covariance matrix has the diagonal structure, the task of deciding the spatial

patterns in which GR AAODs blend with the gridded background data, is performed by the background error covariance15

matrix only. So, the construction of matrix B is a crucial for the present merged product to be realistic. As such, we have made

use of time series of OMI AAOD data (500 nm, monthly mean) from 2005 to 2016, for constructing B.

As a first step to estimate B, the data matrix (D) with it’s columns formed by Xb at different time instances (say k = no.

of time instances) is constructed and thus matrix D has the size of n× k. The climatology of AAOD at each grid point is

constructed by taking mean of each row of the data matrix to get the column vector of size n× 1 which we refer as C. The20

anomaly matrix (referred as A, size n× k) is then constructed as shown in equation 6

A(i, j) =D(i, j)−C(i,1) (6)

In equation 6, the index i refers to spatial location and j refers to the time instance. The background error covariance matrix,

B is then estimated as shown in equation 7.

B =
I

k− 1
A AT (7)25

In the above equation 7, I refers to an identity matrix of size n×n.

In the view of the statistically estimated matrix B to be realistic, one would opt to employ the longest possible time series

of OMI AAOD, which transaltes to making use of OMI AAODs for all the months during year 2005 to 2016 to construct B.

However in that case, the temporal variations (especially at seasonal scale) in OMI AAOD, can lead to bias in the estimated

covariance. It is to be noted here that the seasonal variations in AAOD can primarily be associated with seasonal changes in30

the sources and loading of absorbing aerosol species as well as the meteorological parameters (boundary layer height, large

scale wind patterns) over the Indian region.
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In order to avoid this potential bias in the estimate of matrix B, we have estimated the background error covariance matrix

separately for pre-monsoon season, Mar-Apr-May (MAM) (deeper PBLH causing enhanced vertical mixing of aerosols) and

for post-monsoon + winter (Oct to Feb, ONDJF) (shallower PBL and relatively lesser vertical mixing of aerosols). Henceforth,

we refer background covariance matrices for pre-monsoon and post monsoon + winter season as BPM and BWT respectively.

It is to be noted that, the existence of long-term trend in OMI AAOD is also examined and de-trending is performed if a trend5

is found significant at 95% confidence level. These de-trended AAODs are then employed for the estimation of BPM and BWT ,

in order to avoid the bias emanating from probable long-term trend in OMI AAODs. However, due to quite limited length of

background data available (36 months for MAM and 60 months for ONDJF during year 2005 to 2016), BPM and BWT are

rank-deficient and hence singular. So, in order to make them full rank matrices, we have added a small value (∼ 10−8) to the

diagonal elements of BPM and BWT , which is known as the method of regularization (Lewis et al., 2006). This addition to10

the diagonal elemnts of BPM and BWT is neither altering the structure of covariance matrices nor making significant changes

to variances (i.e. diagonal elements) which are of the order of 10−6, for the present study. The regularized BPM and BWT are

then employed to respectively estimate the merged AAODs (using equation 5) for the months March to May and October to

February.
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