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Abstract. Improving the accuracy of regional aerosol climate impact assessment calls for improvement in the accuracy of

regional aerosol radiative effects (ARE) estimation. One of the most important means of achieving this is to use spatially

homogeneous and temporally continuous datasets of critical aerosol properties, such as spectral aerosol optical depth (AOD)

and single scattering albedo (SSA), which are the most important parameters for estimating aerosol radiative effects. However,

observations do not provide the above; the space-borne observations though provide wide spatial coverage, are temporally snap5

shots and suffer from possible sensor degradation over extended periods. On the other hand, the ground-based measurements

provide more accurate and temporally continuous data, but are spatially near-point observations. Realizing the need for spatially

homogeneous and temporally continuous datasets on one hand and the near-non-existence of such data over the south Asian

region (which is one of the regions where aerosols show large heterogeneity in most of their properties), construction of

accurate gridded aerosol products by synthesizing the long-term space-borne and ground-based data, has been taken up as10

an important objective of the South West Asian Aerosol Monsoon Interactions (SWAAMI), a joint Indo-UK field campaign,

aiming at characterizing aerosol-monsoon links and their variabilities over the Indian region.

In the Part-1 of this two-part paper, we present spatially homogeneous gridded datasets of Aerosol Optical Depth (AOD) and

Absorption Aerosol Optical Depth (AAOD), generated for the first time over this region. These data products are developed by

merging the highly accurate aerosol measurements from the dense networks of 44 (for AOD) and 34 (for AAOD) ground-based15

observatories of Aerosol Radiative Forcing NETwork (ARFINET) and AErosol RObotic NETwork (AERONET) spread across

the Indian region, with satellite-retrieved AOD and AAOD, following statistical assimilation schemes. The satellite data used

for AOD assimilation includes AODs retrieved from MODerate Imaging Spectroradiometer (MODIS) and Multiangle Imag-

ing SpectroRadiometer (MISR) over the same domain. For AAOD, the ground-based Black Carbon (BC) mass concentration

measurements from the network of 34 ARFINET observatories and satellite-based (Kalpana-1, INSAT-3A) infrared (IR) radi-20

ance measurements, are blended with gridded AAODs (500 nm, monthly mean) derived from Ozone Monitoring Instrument
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(OMI)-retrieved AAODs (at 354 nm and 388 nm). The details of the assimilation methods and the gridded datasets generated

are presented in this paper.

The merged, gridded AOD and AAOD products thus generated, are validated against the data from independent ground-

based observatories, which were not used for the assimilation process, but are representative of different subregions of the

complex domain. This validation exercise revealed that the independent ground-based measurements are better confirmed5

by merged datasets than the respective satellite products. As ensured by assimilation techniques employed, the uncertainties

in merged AODs and AAODs are significantly less than those in corresponding satellite products. These merged products

also exhibit all important, large-scale spatial and temporal features which are already reported for this region. Nonetheless, the

merged AODs and AAODs are significantly different in magnitude, from the respective satellite products. On the background of

above mentioned quality enhancements demonstrated by merged products, we have employed them for deriving the columnar10

SSA and analysed its spatio-temporal characteristics. The columnar SSA thus derived has demonstrated distinct seasonal

variation, over various representative subregions of the study domain. The uncertainties in the derived SSA are observed to

be substantially less than those in OMI SSA. On the backdrop of these benefits, the merged datasets are employed for the

estimation of regional aerosol radiative effects (direct), the results of which would be presented in a companion paper; Part-2

of this two-part paper.15

1 Introduction

The climate forcing potential of atmospheric aerosols is well accepted by the global scientific community and policy makers

[IPCC, 2013]. This forcing can affect Earth’s hydrological cycle (Ramanathan et al., 2001; Bollasina et al., 2011), increase the

stability of the atmosphere (Ramanathan and Carmichael, 2008; Jacobson and Kaufman, 2006; Petäjä et al., 2016) and can have

significant impact on Indian summer monsoon (Lau and Kim, 2006). Along with these climatic impacts, aerosols are shown to20

have an adverse effects on human health (Dockery et al., 1993; Seaton et al., 1995; Pope III et al., 2002). Accurate assessment

of these impacts still remains a challenge, primarily due to the inadequate spatio-temporal coverage of the aerosol properties

such as the Aerosol Optical Depth (AOD) and Single Scattering Albedo (SSA), and the large uncertainties prevailing in the

available database. This is especially so over the Indian region, which is among regions having high aerosol loading, that shows

large heterogeneities in its spatial and temporal characteristics. These heterogeneities are primarily because of wide diversity in25

geography, anthropogenic activities and meteorological features at meso-scale and synoptic scale. As demonstrated by the past

studies (Haywood and Shine, 1995, 1997; Heintzenberg and Helas, 1997; Russell et al., 2002; Takemura et al., 2002; Loeb and

Su, 2010; Babu et al., 2016), a small change in the SSA can even alter the sign of aerosol radiative forcing (at top of atmosphere)

from positive (warming) to negative (cooling), especially over highly reflecting surfaces. The large spatial heterogeneity in the

surface reflectance of the land-mass over this region, and its seasonality makes the aerosol radiative forcing estimation all30

the more complex. Given this background, construction of gridded datasets of aerosol parameters, especially AOD and SSA,

with reduced uncertainties and fairly homogeneous spatial and temporal distribution over the region, becomes imperative.

One way to achieve this is data assimilation, a mathematical technique of generating a dataset with reduced uncertainties by
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systematically combining multiple datasets (which individually may have higher uncertainties) (Kalnay, 2003; Lewis et al.,

2006).

Various space-borne sensors aboard remote sensing satellites (such as MODIS, MISR, OMI etc) provide the global datasets

for spatial and temporal distributions of AOD and Absorption AOD (AAOD) (Kaufman et al., 1997; Diner et al., 1998; Chu5

et al., 2002; Remer et al., 2005; Torres et al., 2007). Despite their wide spatial coverage, the satellite retrieved data suffers from

substantial biases and uncertainties due to cloud contamination, various assumptions made during the retrieval procedure, large

spatial heterogeneity in the ground reflectance (over the heterogeneous landmass), and also due to very little information on

variation during a day (due to snapshot nature of measurements). In addition, satellite retrievals suffer from issues regarding

sensor calibration (Zhang and Reid, 2006; Jethva et al., 2014). Especially over the land with heterogeneous surface reflectance,10

satellite-retrieved AODs depict higher uncertainties (Jethva et al., 2009). On the other hand, being direct measurements, AOD or

Black Carbon (henceforth BC which is the primary absorbing aerosol specie) mass concentration measured respectively using

ground-based, periodically calibrated sun photometers and Aethalometers, are quite accurate, have large temporal coverage in

a day as well as over the years (Moorthy et al., 1989; Holben et al., 1998; Hansen and Novakov, 1990; Babu et al., 2004) along

with smaller uncertainties than their satellite counterparts. However, their limited spatial representativeness (more like point15

measurements) calls for a dense network of observations for a reasonable spatial coverage; even then remote and inaccessible

areas remain under-sampled. Moreover, practical constraints result in spatially non-uniform distribution of the ground-based

stations.

These limitations of satellite retrieved (SR) and ground (GR) measured aerosol parameters restrict their applicability for

climate impact assessment studies over heterogeneous regions, like the vast Indian region. However, the relative advantages20

of these two datasets could be effectively employed for improving regional radiative forcing estimation if these different inde-

pendent datasets could be assimilated to generate a more accurate and spatio-temporally continuous gridded dataset following

established statistical assimilation techniques.

There have been a few efforts in the past to combine AODs from various sources, regionally and globally. Collins et al.

(2001) have assimilated AODs retrieved by Advanced Very High Resolution Radiometer (AVHRR) with those simulated by25

Multi-scale Atmospheric Transport and CHemistry (MATCH) model for generating forecasts of aerosols during INDian Ocean

EXperiemt (INDOEX). Since then, a few more studies have focused on assimilating satellite retrieved aerosol products with

those simulated by regional/global chemistry transport models (Yu et al., 2003; Generoso et al., 2007; Niu et al., 2008; Zhang

et al., 2008). Benedetti et al. (2009) have incorporated AOD assimilation as an integral part of weather forecasting system at

European Centre for Medium-Range Weather Forecasts (ECMWF). However, in all these efforts, the focus was to use satellite30

products with chemistry transport models and none of these studies has assimilated AOD observations from ground-based

network of sun-photometers with the corresponding satellite retrieved parameters. Probably the first effort in this direction

was by Chung et al. (2005) who have assimilated monthly mean AODs retrieved by MODerate Imaging Spectroradiometer

(MODIS) with those simulated by global chemistry transport model and the resulting AODs are further integrated with monthly

mean AOD measurements from Aerosol RObotic NETwork (AERONET) in order to generate the global merged AOD product.35

Over the Asian region, Adhikary et al. (2008) have assimilated monthly mean AERONET AODs with monthly averaged
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MODIS AODs and these combined AODs are further assimilated with those simulated by regional chemistry transport model.

Nonetheless, over the Indian region (bounded between 0.5◦ N–34.5◦ N and 65.5◦ E–96.5◦ E, figure 1), both of these studies

have employed ground-based measurements from just two AERONET stations (Kanpur 26.51◦ N, 80.23◦ E and Hanimadhoo

6.74◦ N, 73.17◦ E). Due to this, the final assimilated AODs (for Chung et al. (2005) and Adhikary et al. (2008)) over most parts5

of Indian region are largely represented by satellite retrieved AODs with their inherent large uncertainties as discussed earlier.

More recently, Singh et al. (2017) have combined AODs simulated by ECMWF with those retrieved by MODIS, Multiangle

Imaging SpectroRadiometer (MISR) as well as in situ measured AODs by total 35 AERONET stations spread over Indian

as well as Arabian region. However, even in this case employing about 17 AEORNET stations over Indian region, most of

these stations were in the monsoon trough region and north-east India with no representation of other parts of the domain. The10

situation is still worse for SSA.

Thus, developing spatially and temporally continuous gridded products for AOD and SSA using long-term measurements

from the dense network of ground based aerosol observatories (covering most parts of the Indian region) and satellite retrieved

products still remained a dire necessity. This was recognised as one of the most important objectives of the South West Asian

Aerosols Monsoon Interactions (SWAAMI) (https://gtr.ukri.org/projects?ref=NE%2FL013886%2F1) (Morgan et al., 2016), a15

co-ordinated field campaign undertaken jointly by the Indian and the UK scientists, and formed its important package.

Accordingly, we have used long-term (2001–2013) measurements of AOD at 550 nm from the two widely used space-borne

sensors, MODIS and MISR, over the Indian region and the accurate, quality checked AOD from a network of 44 ground-based

sun-photometers (ARFINET and AERONET) for the same period to generate a gridded dataset for AOD using a modified

form of a well established data assimilation technique. On the similar lines, we have also generated a spatially homogeneous20

gridded product for absorption AOD (AAOD), by combining the AAODs estimated using ground-based BC measurements and

space-borne infrared radiance measurements (to delineate the dust contribution to AAOD) with AAODs (500 nm) derived from

Ozone Monitoring Instrument (OMI) retrievals. These merged datasets for AAOD and AAOD are further employed to estimate

columnar SSA at 1◦× 1◦ over the domain.

In part–1 of this 2-part paper we provide the details of datasets employed for merging and the assimilation methodologies25

used (for the merging process), in section 2 and 3 respectively. The validation of merged AODs and AAODs against an

independent ground-based measurements, which did not take part in assimilation, is presented in section 4.1. The merged data

sets are then used to examine the spatial distribution of AOD and AAOD over the Indian region (section 4.2) and to delineate

their seasonality over the spatially homogeneous sub-regions of the study domain (section 4.2 and 4.3). Further, using the

validated, merged datasets, the gridded product for columnar SSA is derived and the regional as well as sub-regional scale SSA30

characteristics are presented in section 4.3.
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2 Database

2.1 Satellite Retrieved (SR) AOD

Monthly mean AOD (at 550nm) product from MODIS on board Aqua and Terra satellites (Kaufman et al., 1997) (L3, collection

6, https://modis.gsfc.nasa.gov/data/), as well as from MISR on board Terra satellite (Diner et al., 1998) (L3, https://misr.jpl.

nasa.gov/), are used as the background data in this study. The MODIS AOD product having spatial resolution of 1◦× 1◦ , is

constructed by merging AODs retrieved with enhanced Deep blue algorithm (Hsu et al., 2013; Sayer et al., 2013) and Dark

Target algorithm (Levy et al., 2013), in order to provide AODs over bright surfaces (deserts, arid regions, semiarid regions etc.)5

as well as oceans. The MISR AOD product at 555 nm, with spatial resolution of 0.5◦×0.5◦ is re-gridded to 1◦×1◦ resolution

for combining with MODIS AODs for minimizing data gaps in the background AODs due to non-availability of MODIS

data. Being derived from finer resolution measurements (1 km), MODIS AOD product is preferred over MISR AOD while

constructing background data. In the present study, AODs from MODIS-Terra formed a first layer of background data with

gaps in it being filled by AODs from MODIS-Aqua, if present. Any data gaps existing further were filled with the re-gridded10

MISR AODs. Henceforth, the word SR AOD will refer to this integrated satellite retrieved AOD (MODIS + MISR).

2.2 Satellite Retrieved Absorption AOD

This is obtained from the Ozone Monitoring Instrument (OMI) on-board AURA satellite, which measures the upwelling radi-

ations in the wavelength range of 270–500 nm, at the top of the atmosphere (Levelt et al., 2006). UV aerosol index, AOD and

AAOD at 354 and 388 nm are then derived by incorporating the measured backscattered radiation into the inversion algorithm15

(OMAERUV), which makes use of pre-computed reflectance by a set of aerosol models, as detailed by Levelt et al. (2006)

and Torres et al. (2005). The AOD and AAODs are then extrapolated to 500 nm by considering the wavelength dependence of

the respective retrievals, as specified in the corresponding aerosol models (Torres et al., 2005). In the present study, we have

employed the monthly mean, Level-3 AAODs (500 nm) as the background data (for constructing merged AAOD product),

which hereafter referred to as SR AAOD.

2.3 AOD from ground-based sun photometer network (GR AOD)

Ground-based measurements of AOD used in this study are obtained from the ARFINET observatories (Moorthy et al., 2013;5

Babu et al., 2013) established by Indian Space Research Organization (ISRO) as well as from the AERONET observatories

established (over Indian region) and operated by different institutions jointly with NASA (Holben et al., 1998). The locations

of these 44 observatories, the AOD values from which are used in this study, are shown in the top panel of figure 1.
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Figure 1. Locations of the ground-based stations, AODs (a) and BC (surface level) mass concentration measurements (b) from which are

used in the present study. In figure (a), blue and red dots represent respectively the ARFINET and the AERONET stations, the AODs from

which are assimilated, while the pink dots represent the stations, the data from which are used for independent validation (and not used in the

assimilation). In figure (b), blue and pink dots denote the ARFINET stations providing BC data for assimilation and validation respectively.

The ARFINET observatories are set-up as a part of the project, Aerosol Radiative Forcing over India (ARFI), of ISRO

for investigating the spatial-temporal heterogeneities of aerosols, their spectral characteristics, size distributions as well as to10

assess impact of aerosols on regional radiative forcing. In order to obtain columnar AODs, each observatory in the ARFINET

is equipped with either 10 channel Multi Wavelength Radiometer (MWR) (Moorthy et al., 1989, 2013) and/or Microtops Sun

photometer (MSP) (Morys et al., 2001). The details of analysis of these data and inter-comparison with other commercial and

research level sun-photometers are available in the literature (Shaw et al., 1973; Moorthy et al., 2007b, 2013; Kompalli et al.,

2010). The present study utilizes the monthly mean AOD data at 500 nm, measured at ARFINET stations which are detailed

in Table S1 provided in supplementary material. The AERONET stations (Table S2 from supplementary material) comprised

of a network of automatic, sun-sky scanning radiometers; is set up and supervised by NASA (Holben et al., 1998, 2001). The

present study employs level-2, monthly mean AODs at 500 nm provided by AERONET (https://aeronet.gsfc.nasa.gov/ ).

2.4 AAOD from ground-based BC measurements5

Unlike AOD, there are no direct ground-based measurements for absorption AOD. Hence, in order to construct a reliable dataset

of AAOD over Indian region, we have employed the regular BC mass concentration measurements (at surface level) performed

at 34 ARFINET observatories (figure 1b). The list of these observatories along with their geographical co-ordinates and broad
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geographical features of the respective regions, is provided in the Table S3 (from supplementary material). The reason behind

using the BC measurements for the current purpose lies in the fact that black carbon is the primary light absorbing aerosol specie10

not only because of its ability to absorb the radiations over a wide wavelength range but also due to its longer atmospheric

residence time (of the order of few days to weeks) in the lower troposphere (Babu and Moorthy, 2002). In addition, BC can alter

the properties of other aerosol species by mixing with them (Jacobson, 2001). The other strong absorbing aerosol specie over

this region is the mineral dust, which is perennially present, especially over the north-western arid regions and Indo-Gangetic

Plains (IGP).15

The continuous measurements for BC mass concentration are performed using the Aethalometer (from Magee Scientific

Inc., USA) (Hansen et al., 1984; Hansen and Novakov, 1990) at these 34 ARFINET stations (figure 1b). For maintaining

consistency in measurements and ensuring data quality, these Aethalometers are operated under a common protocol and are

periodically inter-compared.

The measured BC mass concentrations are used to estimate the AOD due to BC, making use of the Optical Properties20

of Aerosols and Clouds (OPAC) model (Hess et al., 1998). Presently, there is no empirical model available for the vertical

distribution of BC over the Indian region. As such, in order to specify the vertical distribution of BC in OPAC, we have

considered the representative vertical distribution of BC, based on commonly observed features of vertical heterogeneities of

aerosols reported over the Indian region (Satheesh et al., 1999, 2008; Babu et al., 2011). Due to vertical mixing caused by

the eddies within the day-time convective boundary layer, aerosols can be considered to be near uniformly distributed within25

the Planetary Boundary Layer (PBL). Aircraft and balloon measurements of BC over different regions of India and during

different seasons (Satheesh et al., 2008; Suresh Babu et al., 2010; Babu et al., 2011) have shown that during daytime the near

uniform BC mass concentrations are observed till ≈ 2 km. Accordingly, we have considered the uniform mass concentration

of BC within the PBL and an exponential decaying above it following the scale heights (seasonally varying) reported by Yu

et al. (2010) using CALIPSO observations over the Indian region.

For deriving the BC AODs from BC mass concentration using OPAC, the PBL heights (PBLH) provided by the Modern-

Era Retrospective analysis for Research and Applications-2 (MERRA2) reanalysis dataset (Gelaro et al., 2017), are used.

The MERRA2 PBLH dataset has been validated by comparing with PBLH derived from radiosonde and GPS radio occul-

tation measurements over Indian region by Sathyanadh et al. (2017). Depending on the location, the slope of a linear fit

between the MERRA2 derived and measured PBLH is varying between 0.75 to 0.93 (Sathyanadh et al., 2017). Nevertheless,5

the validation exercise performed by (Sathyanadh et al., 2017) is representative of a quite limited period (May to Septem-

ber 2011). Therefore, we have validated MERRA-2 PBLH with those estimated from radiosonde measurements (downloaded

from http://weather.uwyo.edu/upperair/sounding.html) performed at eight representative locations (figure 2), during the period

of year 2008 to 2018.
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Figure 2. Locations of the ground stations, radiosonde measurements from which are used for the purpose of validating PBLH derived

by MERRA-2. These subregional representative stations form a subset of ground-based observatories, AOD and BC mass concentration

measurements from which are employed for construction of assimilated AOD and Absorption AOD (AAOD) products.

The scatter plots between spatially collocated MERRA-2 PBLH and those derived from radiosonde measurements over the10

eight locations, are presented in figure 3. It can be seen from figure 3 that, MERRA-2 PBLH are well-correlated with those

estimated from radiosonde measurements, although the correlation coefficient varies from 0.63 to 0.96, w.r.t the location. The

details about this validation exercise are provided in Appendix C.
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Figure 3. Comparison of spatio-temporally collocated MERRA-2 PBLH with those derived from radiosonde measurements performed at 8

representative locations during year 2008 to 2018. The correlation coefficient (R) (significant at 95% confidence limit) and the equation of

linear regression between the two PBLH estimates are provided in each of the figures.
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After deriving BC AODs by incorporating BC mass concentration measurements and MERRA-2 PBLH in OPAC (Hess

et al., 1998), the corresponding absorption AODs contributed by BC are then estimated by considering BC SSA as 0.22 (Hess15

et al., 1998).

Mineral dust aerosols form another important species contributing to aerosol absorption, not only the solar but also the

outgoing terrestrial radiation (Satheesh et al., 2007; Deepshikha et al., 2006a, b). Mineral dust prevails over the central and

northern parts of Indian region; locally produced as well as advected from west Asian and east African regions (Moorthy

et al., 2005; Niranjan et al., 2007; Beegum et al., 2008). As a first step to estimate the dust absorption optical depth, we have20

computed the Infrared Difference Dust Index (IDDI) (Legrand et al., 2001), the reduction in infrared radiance sensed by the

satellite-based instruments, due to atmospheric dust aerosols. Mathematically, IDDI is defined as shown in equation 1 following

Legrand et al. (2001).

IDDI = RD ↑ −RC ↑ (1)

Here, RD ↑ and RC ↑ respectively denote the outgoing long-wave terrestrial radiations in dust-loaded and clear sky (i.e. no25

aerosol and no clouds) conditions at top of atmosphere (TOA). Thus, IDDI is an indicator of amount of columnar dust loading

in the atmosphere (Tanré and Legrand, 1991; Legrand et al., 2001). In this study, we estimated the IDDI from the brightness

temperature corresponding to IR radiance (10.5 to 12.5 microns) measured by the Very High Resolution Radiometer (VHRR)

aboard geostationary Indian satellites, Kalpana-1 and INSAT-3A following Deepshikha et al. (2006a, b) and Srivastava et al.

(2011). The daily estimates of IDDI are then used to infer the dust AOD (500 nm) (following Srivastava et al. (2011)) from30

which dust absorption AOD are estimated by considering dust SSA (at 500 nm) as 0.91 (Moorthy et al., 2007a). The monthly

mean dust AAODs are then interpolated to the locations of ARFINET laboratories from which the BC measurements are

employed. The final AAODs to be merged with the OMI AAODs are then constructed as shown in equation 2 and are henceforth

referred as GR AAOD.

GR AAOD = BC AAOD+ dust AAOD (2)

3 Merging the different datasets: Assimilation Methodology5

In generating merged datasets for AOD and AAOD by assimilating different datasets, we have adopted widely accepted statis-

tical data assimilation techniques, along with a few physical constraints; as detailed below.

Several methods are available in the literature for combining scattered observations with gridded data, including variance

minimization based methods (like 3D-VAR) and heuristic methods like Successive Correction Methods (SCM) (Kalnay, 2003;

Lewis et al., 2006). Methods based on variance minimization are mathematically sophisticated and perform the assimilation10

in such a way that the variance of entire assimilated field is guaranteed to be lesser than those of the parent datasets. On the

other hand, SCM are empirical in nature and blend in the observations with background data locally within a specified radius

of influence, although it does not assure the variance minimization.
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As such, Mitra et al. (2003, 2009) have employed Cressman method (Cressman, 1959), a variant of SCM, for forming

daily analyses of rainfall over Indian region by merging rain gauge measurements with satellite retrieved precipitation. For15

AOD assimilation, the similar method has been employed by Chung et al. (2005), while Optimal Interpolation (OI) has been

used by Collins et al. (2001); Adhikary et al. (2008) and Singh et al. (2017). Further, 3D-VAR has been employed by Niu et al.

(2008) and Zhang et al. (2008) for assimilation of dust aerosol properties and AODs respectively. Nevertheless, analysed AODs

produced by either variance minimization methods or SCM based methods, need not be always bounded by their parents.

In the present study, the datasets to be merged represent the same parameter although measured by different techniques. The20

ground based measurements comprise of data from dense network of observatories representing all distinct environments over

the region and has sufficient temporal coverage to smooth out any isolated events or episodes. Ground-based measurements

also provide a fairly accurate spatio-temporal distribution; while the satellite products provide wide spatial coverage. In view

of this, it is logical that merged datasets be bounded by the respective parent datasets. This also leads to a fairly smooth spatial

variation that are needed for inputting the merged products to climate impact assessment models, without compromising on25

the accuracy of distinct spatial features.

3.1 Merging methodology for AOD

In order to achieve the variance minimisation while ensuring the merged AODs to be bounded by the parent datasets (i.e.

SR and GR AOD), we have employed SCM, with a variation, which we refer as Weighted Interpolation Method (WIM). It

expresses the merged AODs as weighted average of SR and GR AODs, in such a way that the resulting merged AOD values are30

always bounded by the parents. While performing the weighted average, the weight given to GR AOD is inversely proportional

to the distance between location corresponding to a given grid point and a ground-based observatory, following the Cressman

(1959). This inverse distance weighting method enables the merged AOD at a given location to be largely represented by the

ground-based measurements from nearer stations vis-a-vis farther ones. Depending on the weights given to GR AOD, WIM

assigns weights for SR AOD such that the sum of weights for SR and GR AODs is always unity. This ensures that merged AODs

are bounded by ground-based and satellite retrieved AODs. The weighted average of SR and GR AODs is then performed in

an iterative manner, till the merged AODs interpolated at the locations of ground-based observatories matches with respective

GR AODs within its uncertainty limits. Mathematically, WIM is expressed as shown in equation 3.5

Xk+1 =R[Xk] +QW [Z] (3)

Here, Xk+1 = vector (sizen× 1) of merged data at k+1th iteration, where n represents total number of grid points in

the domain. Mathematically, n= nx×ny where nx and ny denote number of nodes in longitudes and latitudes respectively.

Further, Xk represents vector (size n× 1) of merged data at kth iteration. During first iteration of equation 3, Xk is equal

to vector of background data as provided by SR AOD. Z refers to vector (size m× 1) of GR AOD; where m represents10

number of ground-based measurements available at that instant in the whole spatial domain. H is an interpolation matrix (size

m×n) which bi-linearly interpolates the gridded satellite data to the locations of ground-based observatories. The details about

construction of H can be found in (Kalnay, 2003; Lewis et al., 2006).
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As the satellite retrieved and ground-based AODs are not collocated, one needs to give appropriate weights to SR and GR

AOD values during merging them. In equation 3, QW (size n×m) is the normalized weight matrix for GR AODs, and R15

(size n×n) is the weight matrix for SR AODs. The normalised weight matrix is constructed as a product of two matrices; Q,

the normalisation matrix (size n×n) and W , the weight matrix (size n×m) for GR AODs. The weights given to GR AODs,

which form elements of matrix W are computed using one of the widely-accepted inverse-distance method which is given by

Cressman (Cressman, 1959) as shown in equation 4.

Wij =


d2− r2ij
d2 + r2ij

, if rij ≤ d

0, otherwise

(4)

Here, Wij denotes the weight given to GR AOD from jth ground-based observation location during merging it with SR20

AOD at ith grid point. This weighting strategy (equation 4) ensures that the contribution of ground-based measurements to

merged AOD is higher (lesser) if the distance between a ground station and a grid point (referred as rij in equation 4) is lesser

(higher). The weight matrix W also makes sure that merged AODs are not contributed by the GR AODs from the ground-

based stations lying outside the radius of influence which is denoted by d in equation 4. It is to be noted here that the radius of

influence corresponds to the region surrounding a given location, within which an AOD from that location can be considered

to be largely representative. The details about the choice of radius of influence for the present study are described in section

3.0.2.

The weight matrix (W ) thus computed (equation 4) needs to be normalized to make sure that sum of the weights given to

GR AODs from all the stations, is less than unity. This normalising process thus constrains the merged AODs by the available5

ground-based measurements. In order to perform this normalization, the diagonal matrix, Q (which multiplies to W as shown

in equation 3) is constructed as follows (Cressman, 1959; Kalnay, 2003; Lewis et al., 2006).

Q−1
ii =

 m∑
j=1

Wij +
σ2
o

σ2
B

 (5)

The first term on the rhs of equation 5 is the summation over the weights given to all GR AODs from all the stations within

radius of influence from ith grid point and 2nd term is the ratio of error variances in GR AOD (σ2
o) to that in SR AODs (σ2

B).

This normalization strategy also ensures that the weights for a parent dataset reduce with the increase in its uncertainty. As10

major portion of background data is formed by MODIS AODs, σB is represented as rms (root mean square) uncertainty in

MODIS AODs, which is given as 0.03+0.2τsat by Sayer et al. (2013), where τsat is the MODIS AOD. The σo term is formed

by uncertainty of GR AOD measurements made at ARFINET and AERONET observatories. As the uncertainties in GR AODs

at different wavelengths are in the range of 0.01 to 0.03 (Holben et al., 1998; Babu et al., 2013), the maximum uncertainty

(i.e.0.03) is considered as σo .15
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After computing the normalised weights for GR AOD, we have calculated the weights to the SR AODs such that the sum of

the weights for SR and GR AODs is unity. In other words, the weights for SR AODs are computed such that the merged AODs

are guaranteed to be a convex combination of the parent datasets. Mathematically

Rii = Iii−
m∑
j=1

[QiiWij ] (6)

Here, R is the diagonal matrix with its ith diagonal element referring to the weight given to SR AOD at grid point at ith grid

point. I is the Identity matrix of size n×n.20

It is also to be mentioned here that WIM (equation 3) makes sure that uncertainties in MG AODs are either less than

uncertainties in SR and GR AODs or at least less than the largest of the two. The theoretical proof for this is given in Appendix

A.

3.1.1 Modified Weight Matrix formulation

The weight matrix formulation (equation 2) involves the distance (rij) between a grid point and a network observatory as well25

as the radius of influence (d) from that grid point. However, both of these quantities (rij and d) can be computed/estimated

based on either only horizontal or horizontal and vertical coordinates of corresponding grid point and ground station, depending

upon the nature of problem. In the current problem of AOD merging, apart from horizontal distance, it is essential to consider

the altitude difference between a grid point and a ground station. This is because, AODs measured at an aerosol observatory

located over a sharp peak situated over a large plain terrain may not be representative of AOD corresponding to adjoining grid

points over the plains due to sharper variations in aerosol concentrations in vertical than horizontal direction. Hence, in order

to have a realistic merging, especially in cases involving merging of AODs from two locations within the horizontal radius of

influence yet differing in altitudes significantly, it is necessary to take into account the vertical distribution of aerosols and an5

associated length scale.

Due to the dynamics of the day time convective boundary layer and the associated updrafts, aerosols can be considered to

be near uniformly distributed within the planetary boundary layer (PBL); but above this, vertical heterogeneities are possible

(for example Satheesh et al. (2008); Suresh Babu et al. (2010); Babu et al. (2011)). As such, the planetary boundary layer

height is considered as the region within which the aerosol distribution is near-homogeneous in the vertical. However, the10

vertical gradients in aerosols could be much sharper than the horizontal variations, especially above the PBL. Concentration

of aerosols may significantly differ above the top of the PBL, which acts as a virtual lid (leaky although) shielding the free

troposphere from surface based emissions, significantly. A typical example of such case is the Nainital station located over the

mountain peak of nearly 2 km elevation above mean sea-level, at a radial distance of < 50 km from the Gangetic plains on the

south, east and west of it. Similar is the case with a few other stations such as Shillong, Ooty etc..15

As such, we expressed the weight matrix (W ) in equation (3) as the product of two matrices (scalar product) of the same

order, W1 and W2 which take into account the horizontal and vertical variation of aerosols respectively. The details are as

given below.
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Horizontal component of weight matrix (W1) : This weight matrix (size n×m) is defined in terms of horizontal radius of

influence (d) and the horizontal separation between a grid point and a ground network observatory (rij), as given below in20

equation 7.

W1ij =


d2− r2ij
d2 + r2ij

, if rij ≤ d

0, otherwise

(7)

In the present study, the radius of influence is considered to be 250 km (for the first iteration of equation 3) following Winker

et al. (1996) who have suggested the global horizontal correlation length scale for aerosol to be 200 km, using observations

from The Lidar In-space Technology Experiment (LITE). In the current work, the radius of influence is reduced by 50 km

during each successive iteration of equation 3, to make sure that GR AODs from the location nearest to the given grid point is25

merged with the background data to the maximum possible extent while iterations converge.

The vertical component of the weight matrix (W2) (size n×m) is configured in terms of height of influence (H) and the

altitude difference between a grid point and a network observatory (hij) as given below.

W2ij =


H2−h2ij
H2 +h2ij

, ifhij ≤H

0, otherwise

(8)

Here, hij represents the difference between altitudes of ith grid point and jth observation location. H is the height of influence

defined as PBLH +τ , where τ is the height of layer measured above PBL and in which the aerosol concentrations are5

considered to be decreasing rapidly from the near constant value within PBLH which is specified using MERRA2 reanalysis

dataset. The value of τ has been taken from the variance of PBLH given by MERRA2. For this, we computed the covariance

matrix (size n×n) from monthly mean PBLH over the Indian region. The diagonal elements of this matrix provide variances

in the PBLH data at each grid point. After computing standard deviations (σ) from variance values, τ values are taken as 2σ.

Based on relation between H , hij and PBLH, any of the three following cases can arise, with each defining the distinctive way10

in which W1 and W2 contribute to the resultant weight matrix (i.e. W ).

1. If hij ≤ PBLH

In this case, jth ground station is located within the PBL of the ith grid. In accordance with the consideration of well

mixed boundary layer, W2 would have the highest weight (=1) and the resultant weight matrix would be solely deter-

mined by its horizontal component (equation 7). This leads to an element of the resultant weight matrix being expressed15

as shown in equation 9.

Wij =W1ij (9)

2. If H ≥ hij > PBLH

In this case, jth ground station is at an altitude just above the PBL of the ith grid, but not high enough to be considered
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uninfluenced by variations at the ith grid point, rather its influence would be rapidly decreasing. In this case, the resultant

weight matrix W is expressed as the scalar product of W1 and W2, so that20

Wij =W1ij ∗W2ij (10)

3. If hij > PBLH

In this case, altitude of jth ground station is high enough above the PBL at the ith grid point such that AOD measured at

such ground station has hardly any relevance to the AOD at ith grid point. As such, the grid point and ground station are

considered to be independent and W2 is set to zero and hence the resultant weight matrix, which is the product of W1

and W2 becomes zero (equation 11).25

Wij = 0 (11)

After constructing W following the above considerations, normalizing matrix Q is computed by substituting corresponding

W into equation 5. This is followed by computation of weight matrix for background data, R as given in equation 6. Following

the construction of W , Q and R matrices, equation 3 is solved iteratively with SR AOD being the background data for the first

iteration. The solution of the first iteration forms the background data for the second iteration and the procedure is repeated until

the norm of vector of absolute difference between GR AOD and merged AOD (MG AOD) interpolated to locations of ground

observatories (mathematically, norm(Z −HXk)), reaches a pre-set limiting value of 0.02, which is the mean uncertainty in

ground-measured AODs (Holben et al., 1998; Babu et al., 2013). In the present study, this condition is satisfied within ≈ 10

iterations. Nevertheless, in some of the cases, norm(Z −HXk) gets levelled off before reducing to the limiting error value.

This occurs due to AOD measurements at some of the ground stations being unassociated with AODs corresponding to grid5

points surrounding them. In such cases, iterations of equation 3 are performed till absolute difference between errors (i.e.

norm(Z −HXk) during successive iterations is less than 10−3.

3.2 Merging datasets for AAODs

For AAOD merging, the method slightly differed from the above, as the ground based observations are only of the BC mass

concentration measurements which are representative only of surface level black carbon, unlike AOD which has been columnar10

for both space-based and ground-based measurements. As detailed in section 2.4, the columnar absorption optical depth for

BC are estimated by incorporating the BC number concentration (corresponding to BC mass concentration measurements)

into OPAC (Hess et al., 1998) in which the vertical distribution of BC is specified using commonly observed characteristics of

vertical heterogeneities of aerosols reported over the Indian region (Satheesh et al., 1999, 2008; Babu et al., 2011). In addition

to BC, the contribution of dust is also taken into account to construct the columnar AAODs to be merged with OMI AAODs15

(section 2.4).

Unlike the ground-based AODs demonstrating much stronger correlation (R = 0.77, figure 4a) with satellite AODs, the above

mentioned GR AAODs are relatively weakly correlated with OMI AAODs (R = 0.35, figure 4c). Owing to these differences,
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employing WIM for AAOD assimilation is observed to generate non-smooth and highly discontinuous merging patterns. As

such, we have employed one of the widely used data assimilations methods, 3D-VAR (Niu et al., 2008; Zhang et al., 2008),20

which is based on principle of least-squared error minimization. In 3D-VAR, the merged AAODs are estimated as a solution of

the minimizer of the following objective function (referred as J) which expresses the weighted sum of the departures in merged

AAODs from GR and OMI AAODs, as shown in the equation 12.

J(x) =
1

2

[
(X −Xb)

TB−1(X −Xb)+ (Z −HX)TO−1(Z −HX)
]

(12)

Here, X and Xb refer to MG AAOD and OMI AAOD vectors, respectively, of size n× 1, where n is the total no of grid25

points in the spatial domain (n=1120 for the current study). Further in equation 12, Z denotes the vector of GR AAODs, which

is of size m× 1 where m is the no. of ground based observatories, data from which are available during the respective month.

The map between the grid space and the observation space is provided by the interpolation matrix referred as H (size m×n)

(equation 12) (Lewis et al., 2006; Kalnay, 2003). Finally, B (size n×n) and O (size m×m) represent the error covariance

matrices for OMI AAODs and GR AAODs respectively. The minimizer to the above mentioned objective function is estimated30

by solving the following equation 13.[
B−1 +HTR−1H

]
X =

[
B−1Xb +HTR−1Z

]
(13)

The further details about the 3D-VAR can be found in Kalnay (2003); Lewis et al. (2006).

Constructing error covariance matrices (B and O) is a fundamental element of 3D-VAR data assimilation. This is mainly

because, the underlying correlation structure and the actual variance values not only dictate the pattern in which observations

get merged with the background data but also decides the weights given to each of the parent datasets during the merging

process. In the present study, the observation error covariance matrix (O) is considered to be diagonal implying that errors in5

GR AAODs from different ground-based stations are uncorrelated, which is generally true and is followed earlier also (Niu

et al., 2008; Zhang et al., 2008; Singh et al., 2017). As the diagonal terms of the covariance matrix refer to variance of the

corresponding data, the diagonal terms of O are formed by the taking square of uncertainties in the GR AAODs which are

estimated as explained below.

It can be understood that, the uncertainties in BC AAOD arise largely from the uncertainties in BC mass concentration10

measurements, the assumed vertical distribution of BC as well as uncertainties associated with OPAC model. So, in order to

estimate the uncertainties in BC AAODs, we perturbed BC mass concentration measurements, MERRA-2 PBLH and scale

height within their respective uncertainty limits to compute the multiple realizations for a set of BC AAODs. For this exercise,

the uncertainties in BC measurements are considered to be 2 to 5% (Hansen and Novakov, 1990; Babu et al., 2004; Dumka

et al., 2010) and those in MERRA2 PBLH are estimated to be 5 to 20% while the uncertainties in scale height for vertical15

distribution of aerosols (derived from CALIPSO measurements) is considered to be ≈100 m, (Kim et al., 2008). The standard

deviation of the multiple realizations for a given BC AAOD, is adopted as the uncertainty in the corresponding BC AAOD. This

analysis showed that the uncertainties in BC AAODs vary from around 11% to 20% with its mean, i.e. 15% being considered

16



as the uncertainty in BC AAOD. Similarly, the uncertainties in dust AAOD, which are largely emanating from the uncertainties

in vertical heterogeneity of dust and its optical properties are estimated to be around 25% of dust AAOD. The diagonal terms20

of error covariance matrix for observations (O) are thus constructed as shown in following equation 14.

Oii = (0.15 ∗BC AAODi)
2 +(0.25 ∗ dust AAODi)

2 (14)

Here, i represents the index varying from 1 to no. of ground-based stations.

As the observation error covariance matrix is diagonal, the patterns of merging GR AAODs with OMI AAODs are fully

dependent on the background error covariance matrix (B). In the view of this, we have estimated the background error covari-25

ance matrix from historical time-series (2005 to 2016) of OMI AAOD at 500 nm. This covariance matrix provides not only

the spatial structure of correlation between OMI AAODs at n grid points as well as the variances of the background data. The

details about the construction of seasonally varying B from time-series of OMI AAOD are provided in the section S2 from

supplementary material.

It is to be noted that 3D-VAR assures the variance of merged estimates to be lesser than those of both the parent datasets30

(Lewis et al., 2006; Kalnay, 2003). However, the theoretical proof for variance in analysed (assimilated) estimates (constructed

by 3D-VAR) being smaller than those in parent datasets, is provided in Appendix B.

This translates to the uncertainties in the merged AAODs being guaranteed to be smaller than those in OMI AAODs and GR

AAODs.

4 Results and discussion

Following the above methods, we constructed spatially and temporally homogeneous gridded data products of AOD and AAOD5

over the study domain, for each month of the year. Before examining the products for their basic features, it is essential to

validate them with independent measurements.

4.1 Validation of merged products

For the validation purpose, we have evaluated the performance of the merged datasets against independent ground-based

measurements from sub-regional representative locations, the data from which did not enter the assimilation process. The10

merged AOD (AAOD) product constructed by assimilating long-term, ground based AODs (AAODs) from the network of

36 (26) observatories are validated against the AODs (AAODs) from 8 (8) independent, representative observatories, which

are shown by pink dots in figure 1. As the grid nodes and locations of ground-based observatories are not collocated, we

have interpolated the merged AODs and AAODs from the grid nodes contained by 3◦× 3◦ box surrounding the locations of

respective ground locations used for validation. The comparisons of collocated merged AODs and AAODs with the respective,15

independent ground-based estimates are shown by scatter plots in figure 4b and 5b. To assess the quality improvement due to

present assimilation, we have shown the scatter plots of the satellite retrieved AOD and AAOD (interpolated to ground station

locations) against those from the corresponding independent measurements, in figure 4a and 5a respectively.
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The regression lines and the ideal 1:1 lines are also drawn in the respective panels and the corresponding statistics (regression

coefficients and correlation coefficient) are also provided in figure 4 and 5.20

Figure 4. Validation of merged AOD product; (a) Satellite AOD vs GR AOD, (b) Merged AOD vs GR AOD. Red lines are regression fitted

to the point while the dotted black lines represent the ideal 1:1 case.
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Figure 5. Validation of merged AAOD product; (a) Satellite AAOD vs GR AAOD, (b) Merged AAOD vs GR AAOD. Red lines are regression

fitted to the point while the dotted black lines represent the ideal 1:1 case.

The merged products are demonstrating improved agreement (stronger correlation) with independent ground-based datasets

than that shown by respective satellite products (figure 4,5). This highlights the significant advantage of the assimilation and is

all the more important for AAOD (figure 5); the most important parameter for the accurate estimation of atmospheric forcing.

With this confidence established through statistical means, we proceeded then to include these independent stations also into the

group of ground locations used for merging and the whole assimilation process (section 3.1.1) is repeated to generate the final

gridded, merged AOD and AAOD datasets. These final merged AODs and AAODs constructed by assimilating ground-based

data from 44 stations for AOD and 34 stations for AAOD, are henceforth referred as MG AOD and MG AAOD respectively.

4.2 Spatio-temporal characteristics of merged products

Having generated the harmonized gridded datasets of AOD and AAOD, we examined the spatio-temporal features for their5

fidelity in reproducing the already reported characteristics over this region from several sub-regional studies. In figure 6 and

7, we present the spatial variation of MG AOD respectively for January-2009 (representative of winter, the season with lowest

vertical mixing) and May-2009 (representative of pre-monsoon, summer season, when the convective mixing is very strong).

The corresponding features for AAOD are shown in figure 8 and 9. In all the four figures, locations of ground stations, data

from which is assimilated, are indicated by circles. In the figure 6 and 7 (figure 8 and 9), the panels from left to right indicate10

SR AOD (SR AAOD), MG AOD (MG AAOD) and dAOD (dAAOD) which is the difference between merged and satellite-

retrieved AOD (SR AAOD).
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Mathematically,

dAOD = MG AOD−SR AOD (15)

15

dAAOD = MG AAOD−SR AAOD (16)
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Figure 6. Spatial variation of monthly mean SR AOD (a), MG AOD(b) and dAOD (c) for January – 2009.
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Figure 7. Spatial variation of monthly mean SR AOD (a), MG AOD(b) and dAOD (c) for May – 2009.
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Figure 8. Spatial variation of monthly mean SR AAOD (a), MG AAOD(b) and dAAOD (c) for January – 2009.
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Figure 9. Spatial variation of monthly mean SR AAOD (a), MG AAOD(b) and dAAOD (c) for May – 2009.

Figures 6 to 9 clearly show that the broad spatial features are consistent between the merged and respective satellite products.

For instance, higher AODs and AAODs are exhibited over Indo-Gangetic plains (IGP) than those over central and peninsular

India, by merged products which is in line with their respective gridded parents and also with reports from several past studies

(Babu et al., 2013).20
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However, in most of the cases, the merged AODs (Figures 6b and 7b) show higher values than the respective satellite AODs

(Figure 6a and 7a) as the ground-station points are approached. This is in line with the general observation about satellite

retrieved AODs being underestimated over this region (Jethva et al., 2005, 2007; Tripathi et al., 2005). However, sufficiently

farther away, where no ground-based measurements are available, the merged products tend to be close to the corresponding

satellite data. This brings in the need for improving the density of the ground network to further improve the accuracy of25

regional AOD, for providing even better inputs to climate models.

Further, we estimated the variance in merged AOD and AAODs and compared it with that in respective satellite products. As

assured by the assimilation methodologies employed, the uncertainties (square root of variance) in merged AOD and AAODs

are observed to be substantially lower than those in the corresponding satellite data. For the above shown representative cases,

the uncertainties in merged AODs are observed to be even as small as≈ 13% of those in SR AOD. The uncertainties in merged

AAODs are estimated to be as small as ≈ 82% and ≈ 56% of those in corresponding satellite product, during Jan-2009 and

May-2009 respectively.

4.3 SSA estimation5

The merged, gridded datasets of AOD and AAOD over the domain enable estimation of SSA, the critically important aerosol

parameter for radiative forcing estimation. The importance of the accurate estimation of SSA for climate impact assessment

of aerosols has been underlined by numerous studies in the past (Haywood and Shine, 1995, 1997; Heintzenberg and Helas,

1997; Russell et al., 2002; Takemura et al., 2002; Loeb and Su, 2010; Babu et al., 2016). Takemura et al. (2002) have shown

that the small changes in SSA can even alter the sign of aerosol radiative forcing (ARF) at TOA, while (Loeb and Su, 2010)10

have demonstrated that uncertainties in SSA could even be the largest contributor to the uncertainties in total direct ARF in

clear as well as all sky conditions.

Even though the OMI SSA (Torres et al., 2007) provides a wide spatial coverage, OMI retrievals suffer from uncertainties

emanating largely from subpixel cloud contamination as well as assumptions regarding height of an aerosol layer and surface

albedo (Satheesh et al., 2009; Jethva et al., 2014; Torres et al., 2007). On the other hand, the highly accurate SSA derived from15

airborne measurements of scattering and absorption coefficients (Babu et al., 2016), are location and season specific and thus

lack the spatio-temporal coverage necessary for the regional ARF estimation. In this context, the merged and validated gridded

AOD and AAOD products, generated above, assume importance.

The gridded data for columnar SSA is derived from the merged AODs and AAODs using the relation (equation 17) as

follows.

SSA =
MG AOD−MG AAOD

MG AOD
(17)5

The spatial variation of the above estimated SSA is presented for the representative months of January-2009 and May-2009, in

figure 10.
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Figure 10. Spatial variation of monthly mean columnar SSA estimated using merged AOD and AAODs for January - 2009 (a) and May -

2009 (b).

It can be seen from figure 10 that SSA over Indo-Gangetic plains and northern as well as north-western India is lesser than

that over southern India, during both the representative months. This is in line with the regional distribution of SSA reported by

Narasimhan and Satheesh (2013) using the gridded SSA retrieved using joint OMI-MODIS algorithm (Satheesh et al., 2009).10

The lower SSA values over IGP and north-western India indicate higher load of absorbing aerosols, mainly BC (over IGP and

northern India) and mineral dust (over north-western Indian region consisting of Thar desert). The increased presence of BC

over IGP and northern India can be largely attributed to emission from thermal power plants, increasing number of motorised

vehicles as well as biomass burning. Further inspection of figure 10 reveal that eastern coast of India is demonstrating lower

SSA vis-a-vis western coast, especially during the pre-monsoonal month of May-2009 (figure 10b). In addition, consistently

lower SSA can also be seen over the parts of Myanmar and surrounding regions, during both the representative months (figure

10).

On the background of sensitivity of aerosol radiative effect to the changes in SSA (Haywood and Shine, 1995, 1997;

Heintzenberg and Helas, 1997; Russell et al., 2002; Takemura et al., 2002; Loeb and Su, 2010; Babu et al., 2016), it would5

be imperative to assess the uncertainty in the above estimated SSA (equation 17). For this purpose, we have perturbed MG

AOD and AAOD within their respective uncertainty limits to derive multiple realizations for a given SSA (using equation 17)

and the standard deviation across these multiple realizations is adopted as an uncertainty in the respective SSA. For the above

shown representative cases (figure 10), the RMS uncertainty in SSA is 0.03 and 0.02 for Jan-2009 and May-2009 respectively,
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which is less than that in OMI SSA (0.05 to 0.1)(Torres et al., 2002) and comparable to that in AERONET SSA (≈ 0.03 for5

AOD440nm > 0.2 and solar zenith angle larger than 50◦ ) (Dubovik et al., 2000).

4.3.1 Seasonality in SSA

In view of the known seasonality in aerosol types arising from the seasonal nature of aerosol sources, transport pathways and

the meso-scale and synoptic meteorology, it would be important to examine the seasonality of SSA over the study domain, in

the light of already published data. For this, we have considered four representative and fairly homogeneous subregions of the10

Indian domain to assess the seasonality, as shown in Table 1 (and depicted in figure S1 from supplementary material). In line

with the seasonal variation in synoptic meteorology influencing the aerosol field over the Indian region, we have considered

three seasons, pre-monsoon which comprises of Mar-Apr-May months and referred as PrM (characterized by strong heating,

deeper planetary boundary layer and prevailing westerlies over the region); winter season comprising of Dec-Jan-Feb months

(characterized by relatively lesser solar hearing, shallower planetary boundary layers and easterly winds) and post-monsoon15

(referred as PoM) formed by Oct-Nov months, which mark the transition from summer monsoon to winter season.

Table 1. Details of subregions considered

Sr no. Subregion Subregion Broad Latitudinal Longitudinal

ID name geographical boundaries boundaries

characteristics in deg. North in deg. East

1 IGP Indo-Gangetic plains Plain plateau 24.5–28.5 78.5–83.5

2 NE North-Eastern India Mountainous 23.5–27.5 90.5–95.5

3 WAR Western Arid Regions Arid 23.5–28.5 70.5–76.5

4 PI Peninsular India Coastal and plain 7.5–17.5 74.5–80.5

The SSA values derived from the merged datasets following equation 17, are averaged over the sub-regions (table 1) and

seasons are presented in right most panel of figure 11. The corresponding seasonal mean, sub-region averaged values of merged

AODs and AAODs appear respectively in the left and middle panels of the figure 11. The error-bars represent the standard

deviation, and hence the spread of the respective quantities in the spatio-temporal domain.20
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Figure 11. Climatological seasonal cycle of AOD (first column), AAOD (second column) and derived SSA (third column) averaged over

IGP (first row), NE (second row), PI (third row) and WAR (fourth row)

The figures clearly demonstrate that amongst all the sub-regions, the highest seasonality in SSA occurs over the IGP (figure

11c), while the seasonality is lowest in the NE subregion (figure 11f). Over most of the regions, SSA is lowest in the pre-

monsoon season, and highest in the winter (except for subregion PI (figure 11i)). The lower SSA over IGP which translates

to increased aerosol absorption (figure 11c) during the pre-monsoon, could be largely because of transport of mineral dust

from the Thar desert and west-Asian aid regions to IGP as has been reported earlier (Moorthy et al., 2005; Niranjan et al.,25
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2007; Beegum et al., 2008; Jethva et al., 2005). These mix with the local emissions and gets distributed vertically deep in the

atmosphere (due to vigorous convective motions in the pre-monsoon season), to the regions above low-level clouds (Satheesh

et al., 2008) leading to further enhancements of atmospheric absorption (Chand et al., 2009). It is to be noted that the seasonality

of SSA over IGP as shown in figure 11c, is in line with Babu et al. (2016) and Vaishya et al. (2018) who have reported lesser

columnar SSA during spring vis-a-vis winter over various locations (Lucknow, Ranchi, Patna and Dehradun) in IGP, based on30

airborne measurements of scattering and absorption coefficients.

Contrary to all the subregions, the seasonal cycle of SSA over PI shows the maxima (figure 11i) during PoM. However, SSA

over WAR (figure 11l) demonstrates substantial seasonality of the similar kind as that over IGP (figure 10c), despite having

considerably different seasonal variation in AOD (figure 11j) than that over IGP (figure 11a).

5 Summary

Gridded datasets of monthly mean aerosol optical depth and absorption aerosol optical depth have been generated for the first5

time over the Indian region, as a part of the SWAAMI project, by merging long-term measurements from the dense network of

ground-based stations with corresponding satellite data. The merging of datasets is performed employing well-established data

assimilation methods modified following a weighted interpolation scheme to account for the vertical distribution of aerosols.

The gridded data demonstrated improved accuracy and conformity with independent ground-based measurements over different

subregions, than the corresponding satellite datasets. The merged products also demonstrate substantially less uncertainties10

than those in respective satellite products, as ensured by the assimilation methodologies employed. These benefits of merged

products emphasize their superiority for inputting into regional climate models. The merged AODs and AAODs reproduced

the widely reported spatio-temporal features of aerosols over this region despite being significantly different (in term terms of

AOD and AAOD values) from their gridded parent. The columnar SSA values have been derived from the harmonized products

and their spatio-temporal variation across the domain is examined at regional and sub-regional scale. The application of these15

quality-enhanced, merged datasets for regional radiative forcing estimation would be discussed in Part-2 of this two-part paper.

Appendix A: Variance in merged AODs constructed by WIM

As explained in the section 1 and 2, satellite retrieved AOD has higher uncertainties than ground-based AOD measurements,

due to several reasons. As merged AOD product is developed by systematically combining SR and GE AOD by weighted

interpolation method, it would be interesting to analyze and compare uncertainty in MG AOD w.r.t. that in its parent datasets.20

For simplicity, we assume a case in which SR AOD at a given grid point (X1) is being merged with a GE AOD (X2)

from ground-based aerosol observatory lying within the radius of influence from the grid point. So, following equation basic

equation for WIM, we can write

X̃ =AX1 +BX2 (A1)
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Here, X̃ is MG AOD at the given grid point andA andB are weights (real,positive valued scalars of size 1×1) for correspond-25

ing SR and GE AOD respectively. As, weighted interpolation method expresses MG AOD as a convex combination of SR and

GE AOD, we can write

A+B = 1 (A2)

which means

A2 +B2 = 1− 2AB (A3)

Taking variance on both sides of equation A1 we can write,

var(X̃) =A2var(X1)+B2var(X2); (A4)

Equation A4 is expressing variance in MG AOD as a linear combination of variance in SR and GE AOD with A2 and B2 being5

respective weights. As the sum of A2 and B2 can never be greater than unity, as can be seen from equation A3, following

inferences can be drawn regarding variance in MG AOD.

1. Variance of MG AOD can never be greater than variance of both of its parents.

2. Variance of MG AODs will always be lesser than that of SR AODs if GE AODs are available. Although depending on

values of A and B, variance of MG AOD may or may not be lesser than that of GE AOD.10

3. If GE AOD is unavailable at a given location (i.e. B = 0) then MG AOD and its variance is exactly equal to SR AOD

and its variance respectively.

These observations can be easily verified for the general case in which observations from multiple ground stations are being

assimilated with the background data at a give grid point (i.e. X2 is a vector).

Appendix B: Variance in analysed estimate by 3D-VAR15

3D-VAR constructs an analysis estimate such that the squared, weighted departures in both the parents from the analysis

estimate are minimised. Here, the weights for departure in each of the parent are expressed as inverse of error covariance

matrix for the corresponding parent datasets. If both parent datasets are providing unbiased estimates, the analysis estimate

constructed by 3D-VAR guarantees to have minimum variance. In this section, we prove that this minimum variance for

analysis estimate is guaranteed to be smaller than variances in both parent datasets.20

Let X̃ be the unknown random variable denoting analysed (i.e. assimilated) estimate of absorption aerosol optical depth

(AAOD) with meanM and variance σ2. LetX1 andX2 be two random variable denoting satellite retrieved AAOD (referred as

SR AAOD) and ground-based AAOD (referred as GR AAOD) which are the two available, unbiased estimates of AAOD with

mean M and variances σ2
1 and σ2

2 respectively. As both SR and GR AAODs are completely independently achieved estimates,

we can consider X1 and X2 to be uncorrelated.25

The goal is to derive AAOD estimate, X̃ from linear combination of X1 and X2 such that
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1. X̃ is a linear, unbiased estimate of AAOD, i.e. E[X̃] = M

2. variance of X̃ is minimum.

Let,

X̃ = a1X1 + a2X2 (B1)

be the assimilated estimate for AAOD where a1 and a2 are to be determined such that the above conditions are satisfied.5

Taking expectations on both sides of equation B1 we get,

E[X̃] = a1E[X1] + a2E[X2] (B2)

M =M(a1 + a2) thus we get (B3)

1 = a1 + a2 (B4)

Taking variance on both sides of equation B1.10

var(X̃) = a21var(X1)+ a22var(X2) (B5)

We need to find a1 and a2 such that var(X̃) is minimised. Therefore, we differentiate equation B5 w.r.t. a1 and equating it

to zero in order to get expressions for a1 and a2 as,

a1 =
σ2

2

σ12 +σ22
(B6)

15

a2 = 1− a1 =
σ1

2

σ12 +σ22
(B7)

Substituting above expressions for a1 and a2 (equation B6 and B7 respectively) in equation B5, we get expression of variance

in X̃ as,

var(X̃) =

(
σ2

2

σ12 +σ22

)2

σ1
2 +

(
σ1

2

σ12 +σ22

)2

σ2
2 (B8)

The equation B8 can be further rearranged as,20

var(X̃) =

(
σ2

2σ1
2

σ22 +σ12

)
(B9)

It can be verified that(
σ2

2σ1
2

σ22 +σ12

)
≤min

(
σ1

2,σ2
2
)

(B10)

Therefore, the variance of linear, unbiased and minimum variance estimator (which is the case for 3D-VAR for the present

problem) is guaranteed to be smaller that those of parent datasets. This proves that uncertainties (square root of variance) in25

merged AAODs constructed using 3D-VAR are guaranteed to be less than those in SR and GR AAODs.
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Appendix C: Validation of MERRA-2 PBLH

We have validated the MERRA-2 PBLH for the duration of 11 years (2008 to 2018) with those estimated using radiosonde

measurements (downloaded from http://weather.uwyo.edu/upperair/sounding.html) over the Indian region. However, due to un-

availability of continuous radiosonde measurements over many of the locations of ground-based ARFINET and/or AERONET30

stations, we have considered radiosonde measurements from 8, subregional representative locations (figure 1), the Aerosol Op-

tical Depth (AOD) and Black Carbon (BC) measurements from which are employed for constructing assimilated products. The

details regarding lat-lon coordinates and broad geographical features for these stations can be found in Table S1 and S3 from

the supplementary material, along with other ARFINET and AERONET stations, data from which is used for the assimilation

study.

The radiosonde measurements at these stations (figure 2) are usually performed twice a day, at 00 GMT and 12 GMT and

provide vertical distribution temperature, pressure, relative humidity. Further, these fundamental thermodynamic fields are used5

to derive the vertical profiles for virtual potential temperature (θv), which are also provided in the respective data files.

In order to estimate PBLH from the radiosonde data, we have computed the gradient in the virtual potential temperature

(4θv) at each given altitude. The height (above surface) at which the4θv exceeds 3 ◦k km−1 is considered as PBLH (Kompalli

et al., 2014; Nair et al.) at that location. The planetary boundary layer is likely to be deeper during daytime vis-a-vis nighttime,

due to stronger solar heating during the day. Due to this, shallower PBL occurring in the early morning (00 GMT) may not be10

always captured with the provided radiosonde profiles. In the view of this, we have employed PBLH estimated using radiosonde

measurements during daytime (12 GMT) only, for the present validation purposes.

The hourly averaged PBLH (12 GMT) given by MEERA-2 for that particular day, are bi-linearly interpolated to the locations

of stations shown in figure 2, in order to get spatio-temporally collocated estimate of MERRA-2 PBLH. The scatter plots

between the collocated PBLH and those estimated from radiosonde measurements for 8 locations, during year 2008 to 2018,

are presented in figure 3.

It can be seen from figure 3 that, PBLH provided by MERRA-2 dataset are well-correlated with those estimated using

radiosonde data, although the correlation coefficient is varying from 0.63 to 0.96, w.r.t the location. The equations for linear5

regression between the two PBLH estimates suggest that, PBLH given by MERRA-2 are underestimated over majority of

the stations (figure 3a to 3e), which is in line with the general observation made by reviewer. Nonetheless, substantially

overestimated PBLH values by MERRA-2 are apparent for some of the stations (figure 3f to 3h).
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