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Abstract. Despite its key role for climate change, large uncertainties persist in our knowledge of the anthropogenic emissions

of carbon dioxide (CO2) and no global observing system exists allowing to monitor emissions from localized CO2 sources

with sufficient accuracy. The Orbiting Carbon Observatory-2 (OCO-2) satellite allows retrievals of the column-average dry-air

mole fractions of CO2 (XCO2). However, regional column-average enhancements of individual point sources are usually small

compared to the background concentration and its natural variability and often not much larger than the satellite’s measurement5

noise. This makes the unambiguous identification and quantification of anthropogenic emission plume signals challenging.

NO2 is co-emitted with CO2 when fossil fuels are combusted at high temperatures. It has a short lifetime of the order of

hours so that NO2 columns often greatly exceed background and noise levels of modern satellite sensors near sources which

makes it a suitable tracer of recently emitted CO2. Based on six case studies (Moscow, Russia; Lipetsk, Russia; Baghdad, Iraq;

Medupi and Matimba power plants, South Africa; Australian wildfires; and Nanjing, China), we demonstrate the usefulness10

of simultaneous satellite observations of NO2 and XCO2. For this purpose, we analyze co-located regional enhancements of

XCO2 observed by OCO-2 and NO2 from the Sentinel-5 Precursor (S5P) satellite and estimate the CO2 plume’s cross-sectional

fluxes. We take advantage of the nearly simultaneous NO2 measurements with S5P’s wide swath and small measurement noise

by identifying the source of the observed XCO2 enhancements, excluding interference with remote upwind sources, allowing

to adjust the wind direction, and by constraining the shape of the CO2 plumes. We compare the inferred cross-sectional15

fluxes with the Emissions Database for Global Atmospheric Research (EDGAR), the Open-Data Inventory for Anthropogenic

Carbon dioxide (ODIAC), and, in the case of the Australian wildfires, with the Global Fire Emissions Database (GFED).

The inferred cross-sectional fluxes range from 31 MtCO2/a to 153 MtCO2/a with uncertainties (1σ) between 23% and 72%.

For the majority of analyzed emission sources, the estimated cross-sectional fluxes agree within their uncertainty with either

EDGAR or ODIAC or lie in between them. We assess the contribution of multiple sources of uncertainty and find that the20

dominating contributions are related to the computation of the effective wind speed normal to the plume’s cross-section. The

flux uncertainties are expected to be reduced by the planned European Copernicus anthropogenic CO2 monitoring mission

(CO2M) which will not only provide precise measurements with high spatial resolution but also imaging capabilities with a
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wider swath of simultaneous XCO2 and NO2 observations. Such a mission, in particular as a constellation of satellites, will

deliver CO2 emission estimates from localized sources at an unprecedented frequency and level of accuracy.

1 Introduction

Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas and driver for climate change. By September

2018, 195 member states of the UNFCCC (United Nations Framework Convention on Climate Change) have signed the Paris5

agreement with the long-term goal to keep the increase in global average temperatures relative to pre-industrial levels well

below 2°C. Actions need to be taken to halve anthropogenic greenhouse gas emissions (including CO2) each decade after

reaching peak emissions in 2020 (Rockström et al., 2017). However, there are still large uncertainties in the anthropogenic

emissions and no global observing system exists allowing to monitor country emissions and their changes with sufficient

accuracy (e.g., Ciais et al., 2014; Pinty et al., 2017).10

CO2 is long-lived and well-mixed in the atmosphere and its largest gross fluxes are of natural origin (photosynthesis and

respiration). As a result, regional column-average enhancements of individual anthropogenic point sources are usually small

compared with the background concentration and its natural variability and often not much larger than the satellite’s measure-

ment noise (Bovensmann et al., 2010). This makes the identification of anthropogenic plume signals with past (SCIAMACHY

(SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY, Burrows et al., 1995; Bovensmann et al., 1999))15

and current (GOSAT (Greenhouse Gases Observing Satellite, Kuze et al., 2009), OCO-2 (Orbiting Carbon Observatory-2, Crisp

et al., 2004)) satellite sensors difficult and the quantification of anthropogenic emissions a challenging task. Usually, the latter

requires knowledge of the source position and assumptions on plume formation (e.g., Nassar et al., 2017; Heymann et al.,

2017) or statistical approaches applied on larger areas and/or time periods (e.g., Schneising et al., 2013; Buchwitz et al., 2017).

Reuter et al. (2014) followed an alternative approach to identify anthropogenic regional CO2 enhancements by analyzing20

simultaneous satellite observations of tropospheric nitrogen dioxide (NO2) vertical columns and column-average dry-air mole

fractions of CO2 (XCO2). Nitrogen monoxide (NO) is formed and emitted to the atmosphere when fossil fuels are combusted

at high temperatures. In the atmosphere, it reacts rapidly with ozone (O3) and at a much slower rate via a termolecular reaction

with oxygen (O2) to form NO2. The tropospheric daytime concentrations of NO2 are coupled with the concentrations of NO

and O3 by the Leighton photo-stationary state. NO2 has a short lifetime of the order of hours so that its vertical column densities25

often greatly exceed background and noise levels of modern satellite sensors near sources (Richter et al., 2005) making it a

suitable tracer of recently emitted CO2.

In contrast to SCIAMACHY used by Reuter et al. (2014), OCO-2 has no NO2 sensor aboard. However, with the launch of

the S5P satellite (Sentinel-5 Precursor, Veefkind et al., 2012) in October 2017, NO2 observations with unprecedented spatial

resolution and global daily coverage became available. Here we use this data to identify OCO-2 XCO2 enhancements which30

can be attributed to localized (up to city-scale) emissions for which we estimate the plume’s cross-sectional CO2 fluxes.
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In the next section, we describe the used OCO-2 XCO2 and S5P NO2 data sets and the developed co-location method. In

section 2, we describe the used plume detection and scenario selection method as well as the cross-sectional flux estimation

method. The results of our case study analyses are presented and discussed in section 3 and 4, respectively.

2 Data sets and methods

2.1 XCO25

The Orbiting Carbon Observatory-2 (OCO-2, Crisp et al., 2004) was launched in 2014 aiming at continuing and improv-

ing XCO2 observations from space. OCO-2 is part of the A-train satellite constellation and flies in a sun-synchronous orbit

whose ascending node crosses the equator on 13:36 local time. It measures the solar backscattered radiance in three indepen-

dent wavelength bands in the spectral regions of the near infrared (NIR) and short wave infrared (SWIR): the O2-A band at

around 760 nm, the weak CO2 band at around 1610 nm, and the strong CO2 band at around 2060 nm. OCO-2 is operated in10

a near-push-broom fashion and has eight parallelogram-shaped footprints across track with a spatial resolution at ground of

≤1.29 km×2.25 km.

We use NASA’s operational bias corrected OCO-2 L2 Lite XCO2 product v9 (Kiel et al., 2019, see Fig. 1a for an example)

which we obtained from https://daac.gsfc.nasa.gov. The product is rigorously pre- and post-filtered for potentially unreliable

soundings including, e.g., cloud and aerosol contaminated scenes. Additionally, the OCO-2 retrieval algorithm accounts for15

light scattering at optically thin aerosol layers by fitting the optical depth and height of two lower-atmosphere aerosol layers and

the optical depth of a stratospheric aerosol layer (O’Dell et al., 2018). The OCO-2 v9 data set has an improved bias correction

approach that results in reduced biases particularly over areas of rough topography.

The OCO-2 XCO2 product includes an uncertainty estimate which we use for our study. For the selected scenarios, the

reported single sounding uncertainty lies typically in the range of 0.4 ppm to 0.7 ppm which is similar to estimates based20

on the standard deviation of the difference of succeeding soundings. The validation study of Reuter et al. (2017) estimated

that the single sounding precision relative to ground based Total Carbon Column Observing Network (TCCON) data is about

1.3 ppm. However, this includes, e.g., the noise of the validation data set and a larger pseudo-noise component due to spatial

and temporal representation errors when co-locating OCO-2 with the validation data and it shall be noted that the study of

Reuter et al. (2017) analyzed a predecessor NASA OCO-2 XCO2 data set (v7 instead of v9).25

2.2 NO2

The TROPOspheric Monitoring Instrument (TROPOMI) on Sentinel-5 Precursor was launched in October 2017 into a sun-

synchronous orbit with an ascending node local equator crossing time of 13:30 (Veefkind et al., 2012). TROPOMI is a nadir

viewing imaging grating spectrometer for the UV/visible spectral region with additional channels in the NIR and SWIR, extend-

ing the existing data records of the GOME (Global Ozone Monitoring Experiment), SCIAMACHY, OMI (Ozone Monitoring30

Instrument), and the GOME-2 missions. It has a swath width of about 2600 km and in comparison to previous instruments a
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much better spatial resolution of 3.5 km×7 km at nadir at similar signal to noise ratio per measurement. Here we use radiances

in the spectral region 425 nm–465 nm to retrieve NO2 slant columns with a standard Differential Optical Absorption Spec-

troscopy (DOAS) retrieval developed for previous satellite instruments (Richter et al., 2011), followed by a de-striping step as

described by Boersma et al. (2007). Slant columns are defined as the absorber concentration integrated along the light path,

and thus depend on both, the atmospheric NO2 profile, and the light path of the individual measurement.5

The random noise of our S5P slant columns has been estimated from the scatter of observations over a clean Pacific region

(10°S–10°N, 160°E–230°E). In order to account for the viewing angle dependency of the slant columns, a geometric air

mass factor has been computed using only the instrument’s viewing zenith angle. The evaluation suggests that the random

noise (1σ) of our S5P slant column product is typically 5 ·1014 molec./cm2, while enhancements near sources often exceed

1016 molec./cm2. For individual soundings, the uncertainty can differ depending on viewing geometry and surface reflectance.10

In order to extract the tropospheric vertical columns, usually, first the stratospheric contribution to the retrieved slant columns

needs to be removed and then the light path dependency of the remaining tropospheric slant columns is corrected for by

dividing through a scene dependent air mass factor. In this study, another approach is taken as only localized enhancements

are evaluated. By subtracting the surrounding background values (section 2.5), both the stratospheric contribution and any

tropospheric background are removed from the signal as they are both smooth on scales of a few tens of kilometers discussed15

here. What remains is the slant column plume signal of the lower troposphere from which we derive information on the CO2

plume.

2.3 Co-location of OCO-2 and S5P data

OCO-2 and S5P fly both in sun-synchronous orbits with similar equator crossing times of their ascending nodes and orbit

times of about 100 minutes. S5P has a swath width of about 2600 km which provides nearly global coverage each day. For20

these reasons, basically each scene observed by OCO-2 is also observed by S5P within a maximum time difference of about

50 minutes. We project the S5P and OCO-2 data of the same day in a surrounding of a potential target on a high resolution

(0.001◦ × 0.001◦) grid to compute NO2 averages representative for the footprints of the CO2 soundings (see Fig. 1c for an

example).

2.4 Geophysical data bases25

As input for the computation of the cross-sectional fluxes (section 2.5), we compute the number of dry air particles in the

atmospheric column from meteorological profiles which we read at the same time with the wind information from the ECMWF

(European Centre for Medium range Weather Forecast) ERA5 (fifth generation of ECMWF atmospheric reanalyzes) data

archive at 0.25°×0.25°×hourly resolution. This data archive provides also an uncertainty estimate of the wind information

from an ensemble statistic but at a reduced resolution of about 0.5°×0.5°×three hours.30

We compare the inferred cross-sectional CO2 fluxes with the following emission data bases. The Emissions Database for

Global Atmospheric Research (EDGAR v4.3.2, https://edgar.jrc.ec.europa.eu) provides information on anthropogenic CO2

emissions at 0.1°×0.1°×annually resolution. EDGAR v4.3.2 ends in 2012 and we use the data of that year for our comparisons.
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The Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC v2017, http://db.cger.nies.go.jp/dataset/ODIAC, Oda

et al., 2018) provides also information on annual anthropogenic CO2 emissions but at a finer resolution (1 km×1 km×monthly)

and the data base ends in 2016. For the reason of comparability, we re-gridded the ODIAC emissions to the EDGAR resolution

(0.1°×0.1°×annual) and use 2012 data as baseline. Additionally, we use ODIAC v2017 data re-gridded to 0.1°×0.1°×monthly

resolution. The Global Fire Emissions Database (GFED v4.1s, https://www.globalfiredata.org) provides information on CO25

emissions from wildfires at a resolution of 0.25°×0.25°×3 hours which we re-gridded to 0.1°×0.1° resolution for a six hours

average ending approximately at the time of the overpass.

2.5 Flux estimation

S5P’s spatial resolution is considerably coarser than that of OCO-2. Consequently for our case studies, we concentrate on

plumes which are significantly larger than the swath width of OCO-2. This means that for the selected scenarios, OCO-2 sees10

actually only a cross-section of a plume (see Fig. 1c for an example).

We model the cross-sectional NO2 columns along the OCO-2 orbit by a linear polynomial, accounting for large scale

variations of the background values, overlayed by a Gaussian function describing the enhancement within the plume. Simul-

taneously, the cross-sectional CO2 concentrations are modeled in a similar manner. However, the width of the CO2 Gaussian

function is constrained to equal the width of the NO2 Gaussian function. This means, the plume shape is determined from15

the NO2 measurements, but we allow for a shifted position of the maximum in order to account for potential plume displace-

ments resulting from different overpass times. Additionally, it shall be noted that the CO2 and NO2 plumes may have small

differences, e.g., due to different decay rates of NO2 in different altitudes. These differences, however, are considered minor

compared with the precision of the XCO2 soundings. Specifically, the co-located NO2 and XCO2 values along the distance in

OCO-2’s flight direction x are fitted with the maximum likelihood method by the following vector function:20

 NO2

XCO2

=

a0 + a1 x+ a2 e
−4 ln(2) (x−a3)

2 a−2
4

a5 + a6 x+ a7 e
−4 ln(2) (x−a8)

2 a−2
4

 (1)

The free fit parameters a0−8 correspond to the polynomial coefficients of the background values (a0,1,5,6), the amplitudes

(a2,7), shifts (a3,8), and the full width at half maximum (FWHM, a4) of the Gaussian functions. We force the FWHM to be25

constrained entirely by the NO2 measurements by setting the CO2 part of the corresponding Jacobian artificially to zero. How-

ever, we expect only little differences to a combined FWHM fit because of the lower relative noise of the NO2 measurements.
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Integration over the Gaussian enhancement results in the cross-sectional CO2 flux FCO2
(mass of CO2 per time) of the

plume depending on the FWHM a4, the amplitude of the XCO2 enhancement a7, the effective wind speed ve within the plume

normal to the OCO-2 orbit, and the number of dry air particles in the atmospheric column ne:

FCO2 =
1

2

√
π

ln(2)

MCO2

NA
ne a4 a7 ve (2)

5

Here, MCO2
is the molar mass of CO2 (44.01 g/mol) and NA the Avogadro constant (6.02214076 ·1023 mol−1). We approx-

imate the number of dry air particles ne and the effective wind speed’s normal ve from ECMWF ERA5 meteorological profiles

at the position of the maximum of the fitted Gaussian XCO2 function. In regions with large variations of the surface elevation

or wind conditions within the plume’s cross-section, it might be appropriate to account for variations in the number of dry air10

particles and/or the wind conditions when integrating over the Gaussian enhancement.

We manually adjust the ECMWF wind direction (not the wind speed) to subjectively fit the plume direction observed in the

NO2 fields (e.g., Fig. 1a). The manual adjustment to wind direction but not wind speed is similar to the approaches of, e.g.,

Krings et al. (2011) or Nassar et al. (2017).15

For a hydrostatic atmosphere with a standard surface pressure of 1013hPa, ne is about 2.16 ·1025 cm−2 and the cross-

sectional CO2 flux FCO2 (Eq. 2) in units of MtCO2/a becomes approximately

FCO2
≈ 0.53

MtCO2

a

a4
km

a7
ppm

ve
m/s

(3)

20

given that the FWHM a4, the amplitude of the XCO2 enhancement a7, and the effective wind speed ve are provided in the

units km, ppm, and m/s, respectively. As ne approximately scales with the surface pressure, Eq. 3 may be easily adapted to

other meteorological conditions.

As discussed by Brunner et al. (2019), the plume height (and subsequently the wind speed in plume height) depends on25

many aspects like emission height, stack geometry, flue gas exit velocity and temperature, meteorological conditions, etc.

Some of these parameters are not known for many sources and their explicit consideration would go beyond the scope of this

study focusing on demonstrating the benefits of simultaneous NO2 and XCO2 measurements rather than on most accurate

flux estimates. Varon et al. (2018) proposed to approximate the effective wind speed within the plume from the 10 m wind by

applying a multiplier in the range of 1.3–1.5. Therefore, we decided to use a multiplier of 1.4 for convenience. This empirical30

relationship accounts, e.g., for plume rise and mixing into altitudes with larger wind speeds. For the present, we consider this
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approximation adequate for this first study, but we recognize that uncertainties (see next section) resulting from this estimate

of the effective wind speed’s normal may be reduced in the future by improved wind knowledge.

Additionally, it shall be noted that the plume cross-sectional flux (Eq. 2) is only a good approximation for the actual source

emission under steady state (temporally invariant) conditions for wind speeds greater than about 2 m/s (Varon et al., 2018)

when advection dominates over diffusion (Sharan et al., 1996). Changes in wind direction, wind speed, or atmospheric stability5

in the time span between emission and observation may result in differences between the plume cross-sectional flux and the

source flux. Temporal variations in the source emissions of course also result in (temporally delayed) variations of the plume

cross-sectional flux, which is always only a snap shot and must not be confused with, e.g., the annual average, even though

given in the same units. In case of chemically active species (such as NO2), also chemical processes along the plume path

would have to be considered in order to compute source emissions from plume cross-sectional fluxes.10

2.6 Uncertainty propagation

In order to estimate the uncertainty of the CO2 plume cross-sectional flux (FCO2 , Eq. 2), we propagate the uncertainties of the

FWHM (a4), the amplitude (a7), and the wind speed normal (ve) by assuming uncorrelated errors. The uncertainties of the

FWHM and the amplitude result from the maximum likelihood fitting method propagating the uncertainties of the individual

XCO2 and NO2 soundings as reported in the data products. The uncertainties of the wind components are read from the15

ECMWF ERA5 data archive resulting in total wind speed uncertainties ranging from 0.18 m/s to 0.33 m/s for the analyzed

scenarios. Additionally, we assume that the manual adjustment of the wind direction is accurate by ±10◦. These uncertainties

propagate into the uncertainty of the wind speed normal. Varon et al. (2018) estimated that computing the effective wind

speed from the 10 m wind introduces an additional uncertainty of 8-12%. However, we analyze scenarios with larger plume

structures and probably also larger variations of the injection heights which we consider by enhancing this error component to20

20% for convenience. Uncertainties in the number of dry air particles are neglected as they are much smaller compared to, e.g.,

the wind speed uncertainty. As mentioned earlier, the assumption of constant meteorological conditions might not be valid in

regions with large variations of the surface elevation or wind conditions within the plume’s cross-section, which may result in

an underestimation of the total cross-sectional flux uncertainty in such cases.

2.7 Plume detection and scenario selection25

We use a semi-automatic method to select potentially interesting targets. In a first step, all co-locations of OCO-2 and S5P

are computed similarly as described in section 2.3 but based on a coarser high resolution grid (0.01◦ × 0.01◦) to improve the

computational efficiency. We shift a 30 s (∼200 km) search window in time steps of 0.25 s (∼2 km) over the time series of

co-locations. Only those time steps are further considered which have at least 100 co-locations without data gaps exceeding

3 s (∼20 km) within the search window. In the next step, we perform a least squares fit of the co-located XCO2 and NO230

data with a Gaussian vector function. This fitting function corresponds to Eq. 1 but with independent FWHM for XCO2 and

NO2 and centered within the search window (a3 and a8 set to zero), which improves the convergence rate. Only those time

steps are further considered fulfilling the following criteria: the fit converged, the NO2 amplitude exceeds 1015 molec./cm2, the
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Table 1. Summary of cross-sectional flux results including uncertainty contributions (1σ) and comparison with emission data bases EDGAR

and ODIAC or GFED in the case of the Australian wildfires. The ODIAC values in brackets represent ODIAC emissions of 2016 and

the month of the overpass in the same grid boxes as summed up for 2012. Note that the cross-sectional flux results correspond to the

instantaneous time of the overpass’ whilst EDGAR and ODIAC emissions are annual or monthly averages; GFED emissions correspond to

six hourly averages (see Sec. 2.4). The uncertainty estimate comprises the total uncertainty and the uncertainties introduced by the ECMWF

wind uncertainty, the uncertainty of the wind direction (10°), use of the 10 m wind (20%), the XCO2 precision as reported in the data product,

and the NO2 precision as reported in the data product. All values are in units of MtCO2/a.

Emission source
Cross-sect. Cross-sectional flux uncertainty

EDGAR
ODIAC/

flux Total ECMWF Angle 10 m XCO2 NO2 GFED∗

Moscow 76 33 4 29 15 5 1 195 102 (88)

Lipetsk 69 50 5 48 14 1 0 23 4 (4)

Baghdad 95 36 3 30 19 6 1 22 13 (12)

Medupi and Matimba 31 7 3 2 6 2 0 0 24 (26)

Australian wildfires∗ 153 40 5 24 31 8 5 0 52

Nanjing 120 27 10 5 24 6 1 164 89 (96)

XCO2 and NO2 FWHM (ac and an, respectively) do not exceed the half width of the search window (ac, an ≤ 15s) and do

not differ by more than their average (|ac− an| ≤ (ac + an)/2), the XCO2 and NO2 amplitudes are at least two times larger

than their uncertainties and larger than the maximum variations of the backgrounds. In the last step, we decided by manual

inspection of the XCO2 and NO2 co-locations plus the surrounding NO2 fields and ECMWF wind information if the scenario

is a promising candidate for further flux analyses. Potential reasons to reject an automatically pre-selected scenario are, e.g.,5

too low wind speed, wind direction nearly parallel to OCO-2 orbit, unclear source attribution, or poor fit quality. In total, we

manually identified about 20 promising scenarios in the time period 01/2018 to 08/2018 of which we selected and analyzed six

examples for this study.

3 Results

From the time period of 01/2018 to 08/2018, we selected the following scenarios as examples for flux analyses based on10

co-located XCO2 and NO2 observations.

3.1 Moscow

Fig. 1a shows the NO2 enhancement in the city plume of Moscow (approx. 12.4 million inhabitants) as retrieved from S5P

overlayed by OCO-2’s XCO2 measurements. The NO2 enhancement is clearly visible also in the plume’s cross-section along

OCO-2’s ground track (Fig. 1c). Due to the larger relative noise of the XCO2 retrievals, the XCO2 enhancement is less obvious15

but still visible (Fig. 1c). The Gaussian fit of the enhancements is excellent for NO2 and reasonable (χ2 = 2.2) for XCO2.
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Figure 1. Moscow on August 25, 2018. a) S5P NO2 slant column (background) overlayed by OCO-2 XCO2 (foreground). Gray and

white 0.1° boxes show EDGAR (bottom) and ODIAC (top) 2012 annual emissions with either EDGAR or ODIAC being larger than

0.5 MtCO2/a. The white arrows show the direction of the 10 m wind as read from ECMWF (dotted), manually corrected to (sub-

jectively) best match the NO2 plume (solid), and normal to the OCO-2 orbit (dashed). Effective wind speed normal to the OCO-

2 orbit, estimated cross-sectional CO2 flux, time of OCO-2 overpass, and time difference between OCO-2 and S5P overpass are

also listed. The hatched area corresponds to the urban area (World Urban Areas dataset, Geoportal of the University of California,

https://apps.gis.ucla.edu/geodata/dataset/world_urban_areas). b) Larger section of the S5P NO2 slant columns including the OCO-2 or-

bit and the bounding box of sub-figure a). c) OCO-2 XCO2 values (red) and co-located S5P NO2 slant columns (black) within the plume’s

cross-section in OCO-2 flight direction.

There was nearly no adjustment needed (1°) to bring the ECMWF 10 m wind in good agreement with the NO2 plume (Fig. 1a).

The effective wind speed normal to the OCO-2 orbit amounts to 1.6±0.6 m/s which is a bit lower than optimal for reasonable

flux estimates (Varon et al., 2018). The cross-sectional CO2 flux amounts to 76±33 MtCO2/a. This compares to 2012 average

upwind emissions (white marked boxes in Fig. 1a) of 195 MtCO2/a (EDGAR) and 102 MtCO2/a (ODIAC). ODIAC’s emission

estimate for 08/2016 amounts to 88 MtCO2/a. The NO2 far field shows no indications for overlayed CO2 plumes from other5

sources (Fig. 1b). The total flux uncertainty is dominated by the uncertainty of the wind direction followed by the uncertainty

of the effective wind speed.
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Figure 2. As Fig. 1 but for Lipetsk on August 25, 2018.

3.2 Lipetsk

Fig. 2a shows the surrounding of Lipetsk (approx. 0.5 million inhabitants) with, among other industries, the Novolipetsk steel

plant and the Lipetskaya TEC-2 gas-fired power plant (515MW) only one minute (∼400 km) apart from Moscow along OCO-

2’s flight track (see also Fig. 1b). The cross-sectional NO2 and XCO2 enhancements clearly stand out of the noise of the

data (Fig. 2c) and the Gaussian function fits the XCO2 data reasonably well (χ2 = 2.4). We applied a small correction of 5°5

to the ECMWF wind direction. However, as the wind direction is similar to OCO-2’s flight direction, the normal effective

wind speed is unfavorably low (0.9±0.7 m/s) which makes the cross-sectional flux estimates (69±50 MtCO2/a) less reliable

and highly uncertain. The by far largest uncertainty contribution comes from the uncertainty of the wind direction. The 2012

average EDGAR and ODIAC upwind emissions (white marked boxes in Fig. 2a) are 23 MtCO2/a and 4 MtCO2/a (same for

08/2016), respectively, but the NO2 far field shows no indications for overlayed CO2 plumes from other sources (Fig. 2b).10

3.3 Baghdad

Fig. 3a shows the S5P NO2 slant columns overlayed by OCO-2 XCO2 data in a surrounding of Baghdad (approx. 5.4 million

inhabitants). Enhanced values are clearly visible in the cross-section of the NO2 plume and less obviously visible also in the

XCO2 data (Fig. 3c). The XCO2 enhancement is well fitted (χ2 = 1.0) by the Gaussian fitting function. The manually adjusted
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Figure 3. As Fig. 1 but for Baghdad on July 31, 2018.

wind direction deviates by 17° from the ECMWF wind direction and the normal wind speed amounts to 4.4±1.7 m/s. From

the XCO2 enhancement and the normal wind speed, we compute the cross-sectional CO2 flux to be 95±36 MtCO2/a. This

compares to an upwind source of 22 MtCO2/a or 13 MtCO2/a (12 MtCO2/a for 07/2016) of EDGAR or ODIAC, respectively.

The flux uncertainty is dominated by the uncertainty of the wind direction and the uncertainty of the effective wind speed. The

NO2 far field shows no indications for overlayed CO2 plumes from other sources (Fig. 3b).5

3.4 Medupi and Matimba power plants

The Medupi (4764MW) and Matimba (3990MW) coal-fired power plants lie close to each other in South Africa about 300 km

north of Johannesburg. Their NO2 plume is shown in Fig. 4a overlayed by OCO2 XCO2 measurements. NO2 measurements in

the larger surrounding do not suggest any additional nearby upwind sources (Fig. 4b). The cross-sectional NO2 values show a

clear elevation within the plume which is less obvious for XCO2 having larger relative scatter especially south of the plume.10

Nevertheless, the Gaussian function fits the XCO2 values reasonably well (χ2 = 1.4). The wind direction (corrected by 13°)

is nearly perpendicular to the OCO-2 orbit and the effective normal wind speed is 2.6±0.6 m/s. The cross-sectional CO2 flux

amounts to 31±7 MtCO2/a which is consistent with ODIAC 2012 emissions of 24 MtCO2/a and ODIAC 07/2016 emissions of

26 MtCO2/a but EDGAR does not have significant emissions in this area. It shall be noted that the Medupi power plant started

operation in 2015 with limited capacity and that it still has not reached its nominal capacity. Therefore, it is no surprise that15
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Figure 4. As Fig. 1 but for the Medupi and Matimba power plants in South Africa on July 11, 2018.

the Medupi power station is not included in either EDGAR or ODIAC 2012 data. The flux uncertainty is dominated by the

uncertainty of the effective wind speed.

3.5 Australian wildfires

Fig. 5a shows the NO2 plumes of two Australian wildfires on 05.05.2018 overlayed by an OCO-2 orbit of XCO2 measurements.

Enhanced NO2 and XCO2 values are clearly visible within the plume’s cross-section (Fig. 5b). The NO2 (and less obvious also5

the XCO2) cross-section has two maxima which cannot be accounted for by the Gaussian fitting function. However, this is

not reflected in the good XCO2 fit quality (χ2 = 0.6), but should be taken into account when valuing the results. We applied

a small manual correction of 7° to the wind direction and the effective wind speed normal to the OCO-2 orbit is 6.7±1.7 m/s.

For the snapshot of the overpass, we computed a cross-sectional CO2 flux of 153±40 MtCO2/a. Its uncertainty is driven by

the uncertainty of the effective wind speed and wind direction. As the shown plumes originate from wildfires, EDGAR and10

ODIAC do not include their emissions. However, GFED has average emissions of 52 MtCO2/a within the six hours period

0h–6h UTC including the time of the overpass (5h UTC). The maximum GFED emissions are approximately at the position

of the largest NO2 concentrations. Fig. 5c shows no indications, that additional upwind sources may explain the discrepancy

between our cross-sectional flux estimate and GFED.
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Figure 5. As Fig. 1 but for Australian wildfires on May 5, 2018. The ODIAC emission data (top number) have been replaced by GFED

emissions for the time of the OCO-2 overpass.

3.6 Nanjing

Fig. 6a shows the NO2 slant columns in the surrounding of Nanjing (approx. 5.8 million inhabitants) overlayed by OCO-2

XCO2 measurements. The cross-section along the OCO-2 orbit shows strong XCO2 and and NO2 plume signals distinctively

above the noise level which are well fitted with the Gaussian fitting function (χ2 = 0.6). The ECMWF wind direction is not

far from being rectangular to the OCO-2 orbit and we applied a moderate manual correction of 11°. The effective normal wind5

speed is 2.2±0.5 m/s. This results in a cross-sectional flux estimate of 120±27 MtCO2/a which lies in between the upwind

emissions of EDGAR (163 MtCO2/a) and ODIAC (89 MtCO2/a for 2012, 96 MtCO2/a for 03/2016). Fig. 6b does not indicate

additional major remote upwind sources. The uncertainty of the cross-sectional flux estimate is dominated by the uncertainty

of the effective wind speed.

4 Discussion and conclusions10

Based on six case studies (Moscow, Russia; Lipetsk, Russia; Baghdad, Iraq; Medupi and Matimba power plants, South Africa;

Australian wildfires; and Nanjing, China), we demonstrated the usefulness of simultaneous satellite observations of NO2 and

the column-average dry-air mole fraction of CO2 (XCO2). For this purpose, we analyzed co-located regional enhancements of
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Figure 6. As Fig. 1 but for Nanjing on March 9, 2018.

XCO2 observed by OCO-2 and NO2 from S5P and estimated the CO2 plume’s cross-sectional fluxes. For atmospheric standard

conditions, we approximated as a rule of thumb, that a Gaussian enhancement of 1 ppm with a width of 1 km at a wind speed

(normal to the cross-section) of 1 m/s corresponds to a plume cross-sectional flux of roughly 0.53 MtCO2/a.

For Moscow, we derived a cross-sectional flux of 76±33 MtCO2/a which agrees (within its uncertainty) with ODIAC 2012

emissions of 102 MtCO2/a (88 MtCO2/a for 08/2016) but not with EDGAR emissions of 195 MtCO2/a. The cross-sectional5

flux estimate of Lipetsk with the Novolipetsk steel plant and the Lipetskaya TEC-2 power plant is 69±50 MtCO2/a. Within

its uncertainty, this estimate agrees with EDGAR emissions of 23 MtCO2/a but not with ODIAC emissions of 4 MtCO2/a.

However, the uncertainty of the estimate is large due to a wind direction with an acute angle relative to the OCO-2 orbit

which also results in a low effective normal wind speed. This can serve as an example for low wind speeds being favorable

for plume detection but not necessarily for flux quantification. In the case of Baghdad, we derived a cross-sectional flux of10

95±36 MtCO2/a for the time of the overpass which is considerably larger than the annual average EDAGR (22 MtCO2/a) and

ODIAC (13 MtCO2/a for 2012, 12 MtCO2/a for 07/2016) emissions of 2012. The wind conditions were relatively good and

S5P NO2 measurements do not suggest an overlaying significant upwind source. In this context, it is interesting to note that

Georgoulias et al. (2019) found a strongly increasing trend (17.0±0.8%/a in the period 04/1996–09/2017) for the tropospheric

NO2 concentrations in Baghdad (and a decreasing trend of -2.2±0.7%/a for Iraq) hinting at strongly increasing CO2 emissions15

in Baghdad since 2012. The cross-sectional flux of the plume of the Medupi and Matimba power plants have been estimated

14



to 31±7 MtCO2/a which agrees (within its uncertainty) with ODIAC (24 MtCO2/a for 2012, 26 MtCO2/a for 07/2016) but not

with EDGAR (no significant emission). Nassar et al. (2017) also estimated the emissions from the Matimba power plant (but

not Medupi) using OCO-2 XCO2 v7 data. For a direct overpass in 2014 and a close flyby (∼7 km away) in 2016 they found

fluxes, converted to annual values, of 12.1±3.9 MtCO2/a and 12.3±1.2 MtCO2/a, respectively. For the Australian wildfires,

we estimated a plume cross-sectional flux of 153±40 MtCO2/a which is about three times larger than the GFED estimate5

(52 MtCO2/a) for a six hours average ending approximately at the time of the OCO-2 overpass. Unfavorable wind conditions

or a strong overlaying upwind source can be excluded as reason for the discrepancy. The same is true for the fact that a double-

plume structure has been fitted with a Gaussian function. However, it shall be noted that GFED’s emission estimate for the

same time interval but one day before the OCO-2 overpass amounts to 252 MtCO2/a. For the Nanjing scenario, we derived a

cross-sectional flux of 120±27 MtCO2/a which lies in between ODIAC (89 MtCO2/a for 2012, 96 MtCO2/a for 03/2016) and10

EDGAR (164 MtCO2/a). However, the scene includes a larger area of overlaying sources, making source attribution difficult.

The total uncertainty of the derived plume cross-sectional fluxes ranges from 7 MtCO2/a to 50 MtCO2/a or in relative mea-

sures from 23% to 72%. The total uncertainty is always dominated by an uncertainty contribution related to meteorology.

Specifically, the (manually adjusted) wind direction or the computation of the effective wind speed from the 10 m wind con-

tribute most to the total uncertainty. The noise of the XCO2 retrievals contributes only with 1 MtCO2/a to 8 MtCO2/a to the15

total error and the noise of the NO2 retrievals contributes on average even three times less.

It is unlikely, that the observed XCO2 enhancements are dominated by uncorrected enhancements due to co-emitted aerosols

because the OCO-2 retrieval algorithm accounts for light scattering at optically thin aerosol layers and filters scenes with

stronger aerosol contamination. Additionally, Bovensmann et al. (2010) estimated for the proposed CarbonSat (Carbon Mon-

itoring Satellite) instrument that neglecting co-emitted aerosols in power plant plumes results in errors between 0.2 MtCO2/a20

and 2.5 MtCO2/a which is small compared with the derived cross-sectional fluxes and their total uncertainties (Tab. 1). Aerosols

can also effect the S5P NO2 slant columns which is, however, less important for our work because we derive only the plume

width and direction from the NO2 observations.

It shall be noted that differences of the cross-sectional flux estimates and the emission data bases are not necessarily coming

from inaccuracies of the satellite retrievals or the emission data bases. Our estimates are valid only for the time of the overpass25

while the emission data bases give annual or monthly averages. Velazco et al. (2011) illustrated, that power plants can have

substantial annual and day-to-day variations. Additionally, the cross-sectional flux is only a good approximation for the source

emission under meteorological steady state conditions with wind speeds greater than about 2 m/s (Varon et al., 2018).

For the analyzed scenarios, we observe rather large differences between the EDGAR and ODIAC emission inventories. How-

ever, note that only those grid boxes are shown (and summed up) in Fig. 1a–6a for which either EDGAR or ODIAC emissions30

are larger than 0.5 MtCO2/a. This means, a smoother distribution of emissions may be misinterpreted as less emissions, if a

significant fraction of the total emission is located in grid boxes not exceeding the 0.5 MtCO2/a threshold. Additionally, it shall

be noted that ODIAC emissions correspond to fossil fuel combustion and cement production only, while EDGAR includes also

emissions from other sectors (e.g., agriculture, land use change, and waste).
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NO2 is co-emitted with CO2 when fossil fuels are combusted at high temperatures and has a relatively short lifetime of the

order of hours which makes it a suitable tracer for recently emitted CO2. Despite less strict quality filtering is needed, plume

enhancements of NO2 columns near sources can be retrieved from satellites with much lower relative noise than this is the

case for XCO2. We take advantage of these points by using NO2 measurements to i) identify the source of the observed XCO2

enhancements, ii) to exclude interference with potential additional remote upwind sources, iii) to manually adjust the wind5

direction, and iv) to put a constraint on the shape of the observed CO2 plumes.

In principle, it is also possible, to fit only the XCO2 values without constraining the plume shape by NO2. In this case,

XCO2 is used to derive the amplitude and FWHM of the enhancement. We repeated the flux estimation of all shown scenarios

with such a setup and got fluxes of 61±27 MtCO2/a, 63±46 MtCO2/a, 75±29 MtCO2/a, 35±9 MtCO2/a, 166±44 MtCO2/a,

and 119±28 MtCO2/a for the Moscow, Lipetsk, Baghdad, Medupi/Matimba, Australian wildfires, and Nanjing scenario, re-10

spectively. The derived fluxes are consistent within their uncertainty with our main results shown in Tab. 1, but the uncertainty

contribution due to the noise in the XCO2 data increased by 34% from 4.7 MtCO2/a to 6.3 MtCO2/a on average.

Reuter et al. (2014) discussed that post-ENVISAT missions such as OCO-2 would benefit from co-located measurements

of co-emitted species from other satellites or ideally multi-species measurements from the same instrument. We demonstrated,

that the analysis of small scale emissions in OCO-2 XCO2 data indeed profits from simultaneous NO2 observations of S5P as15

they allow to set the XCO2 observations into context but also to constrain the plume structure. The uncertainties of the cross-

sectional flux estimates due to meteorology and their agreement with the actual emissions might be improved in subsequent

studies by making use of dedicated simulations with Lagrangian particle dispersion models with either known source positions

(and injection heights) or source positions inferred from the NO2 data.

However, we expect the largest room for improvements in satellite missions such as the planned European Copernicus an-20

thropogenic CO2 monitoring mission (CO2M) which will provide not only precise measurements with high spatial resolution

but also imaging capabilities with a wider swath of simultaneous XCO2 and NO2 observations. Its imaging capabilities will

reduce the uncertainty of the inferred emissions due to measurement noise simply because of the increased number of sound-

ings. Additionally, simultaneous XCO2 and NO2 observations from the same platform will allow stricter constraints on the

plume shape. More importantly, the meteorology related uncertainties will reduce (Varon et al., 2018) because deviations from25

steady state conditions can average out and are, therefore, less critical if the entire plume structure is sampled rather than only

a cross-section.
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