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Abstract. To improve poor air quality in Asia and inform effective emission-reduction strategies, it is vital to understand the 

contributions of different pollution sources and their associated human health burden s. In this study, we use the WRF-Chem 

regional atmospheric model to explore the air quality and human health benefits of eliminating emissions from seven different 10 

anthropogenic sectors (transport, industry, shipping, agriculture, energy generation, residential combustion and open biomass  

burning) over South and East Asia in 2014. We evaluate WRF-Chem against measurements from air quality monitoring  

stations across the region and find the model captures the spatial distribution and magnitude of PM 2.5 (particulate matter < 2.5 

µm diameter). We find that eliminating emissions from residential energy use, industry or open biomass burning yield the 

largest reductions in population-weighted PM2.5 concentrations across the region. The largest human health benefit is achieved 15 

by eliminating either residential or industrial emissions, averting 467,000 (409,000-542,000) or 283,000 (95UI: 226,000-

358,000) annual premature mortalities, respectively in India, China and Southeast Asia; with fire prevention averting 28,000 

(95UI: 24,000-32,000) annual premature mortalities across the region. We compare our results to previous  sector-specific 

emission studies. Across these studies, residential emissions are the dominant cause of particulate pollution in India, with a 

multi-model mean contribution of 42% to population-weighted annual mean PM2.5. Residential and industrial emissions cause 20 

the dominant contributions in China, with multi-model mean contributions of 29% for both sectors to population-weighted 

annual mean PM2.5. Future work should focus on identifying the most effective options within the residential, industrial and 

open biomass burning emission sectors to improve air quality across South and East Asia. 

1 Introduction 

Rapid industrialisation and urbanisation combined with slow implementation of environmental legislation and clean residential  25 

fuels has led to serious air quality problems across Asia. Exposure to poor air quality is associated with detrimental acute and 

chronic health effects, including premature mortality due to cardiopulmonary diseases and lung cancer (Burnett et al. 2014;  

Cohen et al. 2017), and reduced life expectancy (Apte et al., 2018). Specifically, exposure to ambient fine particulate matter 

(with diameters < 2.5 µm; PM2.5) pollution is a leading risk factor for human health in Asia and is estimated to cause around 
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1 million premature deaths every year in both China and India (The Global Burden of Diseases, Injuries, and Risk Factors 

Study 2016 (GBD2016); Cohen et al., 2017; Li et al., 2018; Burnett et al., 2018).  

In China, the government have begun to tackle these air quality problems in recent years by introducing policies to reduce air 

pollutant emissions. Satellite and ground-based measurements indicate that concentrations of some air pollutants (PM 2.5 and 

sulphur dioxide (SO2)) have begun to decline in China within the last decade (Ma et al., 2016; van der A et al., 2017; Lin et 5 

al., 2018; Silver et al., 2018). India is also introducing policies aimed at addressing the health burden from air pollution (Sagar 

et al 2016; Goldemberg et al 2018). Many of these policies are due to be unified within the upcoming National Clean Air 

Programme (NCAP) to provide a framework for air quality management with the aim of attaining Indian air quality standards 

(Ministry of Environment Forests and Climate Change, 2018). However, despite these policies being introduced in China and 

India, ambient PM2.5 pollution remains a problem in both countries, with measured annual mean concentrations well in excess 10 

of the World Health Organization (WHO) Air Quality Guideline concentration of 10 µg m-3 (Brauer et al., 2016; Yang et al., 

2018; Silver et al., 2018). 

To improve poor air quality in Asia and inform effective emission-reduction strategies, it is vital to understand the major 

contributing sources and processes that to lead to poor air quality and associated human health effects. Policies that have been 

implemented in North America and Europe to improve air quality may have limited effectiveness in Asia due to differences in 15 

emission sources. Therefore, there is a strong need for new research on source contributions specifically focussed on countries 

in Asia.  

To quantify source contributions to PM2.5 and other air pollutants at a regional or national level, atmospheric chemistry -

transport models can be applied (e.g. Ying et al., 2014; Hu et al., 2015; Wang et al., 2015;  Shi et al., 2017; Timmermans et al., 

2017; Qiao et al., 2018) using two main methods. The first method uses a “tagging” approach (also referred to as a “source -20 

attribution” or “source-oriented” approach), where species in the model are tagged to trace the origin of the air pollutant of 

interest. This technique allows accurate quantification of the contributions of specified emission sources, model process and /or 

source regions to a given air pollutant. The second method uses a “removal” approach (also refe rred to as a “source-

subtraction” approach or “sensitivity analysis”) where multiple model simulations are performed with different emission 

source-sectors or source-regions excluded (“zeroed out” or “switched off”). The effective contribution of the source of interest 25 

is calculated as the difference in simulated pollutant concentrations between the perturbed simulation and a control simulation 

(including all sources).  

If the behaviour of air pollutants from emission to atmospheric concentration was linear, these two methods would yield the 

same results. However, the processing and resulting concentrations of certain air pollutants, particularly secondary pollutants 

(i.e. those partially or exclusively formed in the atmosphere), can be highly non-linear. Following this, the “removal” modelling  30 

approach allows accurate quantification of the change in past, current or future air pollutant concentrations should the specified 

emission sector be eliminated or reduced as a result of emission control strategies or other reasons. This approach is better 
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suited to test the results of implementing planned or suggested emission controls on air pollutant concentrations than the 

“tagging” approach. 

Using the “tagging” approach, Shi et al. (2017), Timmermans et al. (2017) and Qiao et al., (2018) analysed the source 

apportionment of PM2.5 across China. These studies consistently identified residential combustion and industry as the main 

contributing emission sectors to PM2.5 with some disagreement regarding the importance of the transport sector. Karagulian et 5 

al. (2017) used the “removal” approach and also found the largest relative contributions to PM2.5 in China were from the 

industrial and residential sectors, with the residential sector dominating contributions in India.  

By combining atmospheric chemistry-transport models with exposure-response functions (from e.g. Burnett et al. (2014)), 

several studies have quantified the disease burden associated with exposure to ambient PM2.5 from different emission sectors 

either globally (e.g. Lelieveld et al., 2015; Butt et al., 2016; Silva et al., 2016; Liang et al., 2018) or specifically for India and /or 10 

China (Archer-Nicholls et al., 2016; Global Burden of Disease from Major Air Pollution Sources (GBD-MAPS), 2016; 2018;  

Hu et al., 2017; Aunan et al., 2018; Gao et al., 2018; Gu et al., 2018; Upadhyay et al., 2018; Guo et al., 2018; Conibear et al., 

2018a) and Southeast Asia (Koplitz et al., 2017). Studies that consider contributions from multiple emission sectors, generally 

find that PM2.5-related health effects are dominated in India by emissions from residential energy use (Lelieveld et al., 2015;  

Silva et al., 2016; GBD-MAPS, 2018; Upadhyay et al., 2018; Guo et al., 2018; Conibear et al., 2018a) and in China by 15 

emissions from residential energy use (Lelieveld et al., 2015; Silva et al., 2016) or industry (GBD-MAPS, 2016; Hu et al., 

2017; Gu et al., 2018). However, the estimates of sectoral contributions to premature mortality from ambient PM 2.5 exposure 

vary widely between the studies, largely caused by differences in the applied mortality estimation approaches (“attribution” or 

“substitution”; Conibear et al., 2018a), exposure-health impact functions, model processes and structure (including model grid 

resolution), anthropogenic emissions data, and population data. It is often challenging to distinguish the different methods used 20 

in these studies and to understand the implications of the different methods on the results presented.  

The implications of using different approaches for estimating the health burden associated with PM2.5 exposure in India was 

explored and demonstrated recently by Conibear et al. (2018a). Conibear et al. (2018a) found that 52% of population -weighted 

annual mean PM2.5 concentrations and 511,000 (95UI: 340,000-697,000) annual premature mortalities in India were attributed 

to residential energy use (the “attribution” approach). However, removing residential emissions would avert only 256,000 25 

(95UI: 162,000-340,000) annual premature mortalities (26% of the total) (the “substitution” approach), due to the non-linear 

exposure–response relationship causing health effects to saturate at high PM 2.5 concentrations. 

To our knowledge, the potential averted disease burden from eliminating multiple different pollution so urces has not yet been 

quantified specifically for China and Southeast Asia at high resolution. Here we use the source -“removal” and mortality-

“substitution” approaches in a high-resolution regional model (following Conibear et al. (2018a)) to quantify the sector-specific 30 

air quality benefit and avoided disease burden in China, Mainland Southeast Asia and the Indian Subcontinent. We focus on 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-147
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 20 March 2019
c© Author(s) 2019. CC BY 4.0 License.



4 

 

anthropogenic emission sectors (land transport, industry, agriculture, power generation, residential combustion and s hipping) 

and open biomass burning (including agricultural and deforestation fires).  

In this paper, we also produce the most comprehensive summary to date of previous studies on sector-specific PM2.5 and 

disease-burden contributions in India and China. We document both the methods used and the results from these previous 

studies to enable more informed comparisons between them, and also to develop a multi-model range in estimates of the 5 

sectoral contributions to PM2.5 and disease burden in India and China. 

2. Methods 

2.1 Model description 

To simulate regional PM2.5 concentrations we used the Weather Research and Forecasting model coupled with Chemistry  

(WRF-Chem; Grell et al., 2005) version 3.7.1, which simulates the emission, transport, mixing, chemical transformation and 10 

removal of trace gases and aerosol simultaneously with meteorology. We use the same model version and set -up as Conibear 

et al. (2018a), who give a detailed model description in the methods. 

Aerosol physics and chemistry are treated using the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC;  

Zaveri et al., 2008) scheme, including grid-scale aqueous chemistry and extended treatment of organic aerosol (Hodzic and 

Jimenez, 2011; Hodzic and Knote, 2014). Four discrete size bins are used within MOSAIC (0.039–0.156 μm, 0.156–0.625 15 

μm, 0.625–2.5 μm, 2.5–10 μm) to represent the aerosol size distribution. Gas -phase chemical reactions are calculated using 

the chemical mechanism Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) (Emmons et al., 2010), 

with several updates to photochemistry of aromatics, biogenic hydrocarbons and other species relevant to regional air quality  

(Knote et al., 2014). 

Simulated mesoscale meteorology is kept in line with analysed meteorology thro ugh grid nudging to the National Centre for 20 

Environmental Prediction (NCEP) Global Forecast System (GFS) analyses to limit errors in mesoscale transport (NCEP, 2000;  

2007). The model meteorology was reinitialised every month to avoid drifting of WRF-Chem and spun up for 12 hours, while 

chemistry and aerosol fields were retained to allow for pollution build -up and mesoscale pollutant transport phenomena to be 

captured. During the simulations, horizontal and vertical wind, potential temperature and water vapo ur mixing ratio were 

nudged to GFS analyses in all model layers above the planetary boundary layer. Meteorological conditions were initialised by 25 

NCEP GFS 6-hourly analyses at 0.5° resolution. These, together with GFS 3-h forecasts in between were also used for 

boundary conditions and grid analysis nudging (NCEP, 2000; 2007). MOZART-4/Goddard Earth Observing System Model 

version 5 (GEOS5) 6-hourly simulation data (NCAR, 2016) were used for chemical and aerosol boundary conditions.  

We used two model domains; one over the Indian subcontinent and one over East Asia (including Eastern and Southern China 

and Mainland Southeast Asia). Both model domains use a Lambert conformal conical projection with a horizontal resolution 30 

of 30 km x 30 km. The model domain over the Indian subcontinent covers a 140x140 grid (Conibear et al., 2018a); while the 
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model domain over East Asia covers a 130x124 grid. The domains have 33 vertical levels up to a minimum pressure of 10 

hPa. We re-gridded the model output, using linear interpolation, onto a regular latitude-longitude grid at 0.25° × 0.25° 

resolution. The results presented in Sect 3. (including the model evaluation statistics, sectoral contributions to PM 2.5 and health 

effects) were all calculated/obtained for the two model domains separately. The two model domains are combined in Fig 1a 

for display purposes only (where the domains overlap, the grid cells with the maximum annual mean PM 2.5 concentrations in 5 

the control simulation are shown). 

We calculated the contribution of specific emission sectors to PM2.5 concentrations using the “removal” approach i.e. by 

switching off emission sectors one-at-a-time in individual simulations. The emission sectors investigated were agriculture 

(AGR), power generation (ENE), industrial non-power (IND), residential energy use (RES), land transport (TRA), open 

biomass burning (BBU), and shipping (SHP; only in the East Asia domain). All simulations were run for the same time period, 10 

with identical reinitialisation intervals for the model meteorology (monthly). The simulation period was for one year from 

00:00 9 January 2014 to 23:00 8 January 2015, with the first eight days of January 2014 run as spin -up. 

2.1.1 Description of emissions inventories  

Anthropogenic emissions were taken from the Emission Database for Global Atmospheric Research with Task Force on 

Hemispheric Transport of Air Pollution (EDGAR-HTAP) version 2.2 at 0.1°×0.1° horizontal resolution (Janssens -Maenhout 15 

et al., 2015). For emissions over Asia EDGAR-HTAPv2.2 uses the Model Intercomparison Study for Asia Phase III (MIX) 

mosaic Asian anthropogenic emission inventory version 1.0 at 0.25°×0.25° horizontal resolution (Li et al., 2017). For China, 

MIX uses the Multiresolution Emission Inventory for China (MEIC) developed by Tsinghua University 

(http://www.meicmodel.org) and a high-resolution ammonia (NH3) emission inventory by Peking University (Huang et al., 

2012) to replace MEIC emissions for NH3 over China. For India, MIX uses the Indian emission inventory provided by Argonne 20 

National Laboratory (Lu et al 2011; Lu and Streets, 2012) for sulphur dioxide (SO2), black carbon (BC) and organic carbon 

(OC) for all sectors as well as nitrogen oxides (NOx) for power plants, and REAS2.1 (Kurokawa et al., 2013) for other species. 

Gaps in EDGAR-HTAPv2.2 were filled by the bottom-up global emission inventory EDGARv4.3.  

The EDGAR-HTAPv2.2 inventory includes emissions of SO2, NOx, carbon monoxide (CO), non-methane volatile organic 

compounds (NMVOC), NH3, BC and OC from the following source sectors: aviation, shipping, agriculture, power generation, 25 

industrial non-power, land transport and residential energy use. The following descriptions of these emissions sectors are from 

Janssens-Maenhout et al. (2015). The aviation sector includes all international and domestic aviation. The shipping sector 

includes all international (marine) shipping but not inland waterways. The industrial sector includes emissions from 

manufacturing, mining, metal, cement, chemical, and solvent industries. Land transport includes all transport by road, railway , 

inland waterways, pipeline and other ground transport of mobile machinery. The agricultural sector includes emissions from 30 

livestock and crop cultivation but not from agricultural waste burning or Savannah burning. Emissions from residential energy 
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include small-scale combustion devices for heating, cooking, lighting and cooling in addition to supplementary engines for 

residential, commercial, agricultural, solid waste and wastewater treatment.  

Daily mean biomass burning emissions were taken from the Fire Inventory from NCAR (FINN) version 1.5, with a spatial 

resolution of 1 km x 1 km (Wiedinmyer et al., 2011) for the year 2014. Biogenic emissions were calculated online by the 

Model of Emissions of Gases and Aerosol from Nature (MEGAN; Guenther et al., 2006). Dust emissions were calculated 5 

online through the Georgia Institute of Technology-Goddard Global Ozone Chemistry Aerosol Radiation and Transport 

(GOCART) model with Air Force Weather Agency (AFWA) modifications (LeGrand et al., 2019). Anthropogenic dust 

emissions (e.g. re-suspended road dust, construction dust etc.) are not included. It is important to note dust emissions may be 

underestimated across Asia in these simulations (Conibear et al., 2018a).  

2.2 Health impact estimation  10 

We calculated the disease burden due to exposure to ambient PM 2.5 using the Integrated Exposure-Response (IER) functions 

from The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD2015) with age-specific modifiers for each 

disease to estimate the relative risk of premature mortality due to exposure to various PM 2.5 concentrations (GBD2015; Cohen 

et al., 2017). We estimated the disease burden from lower respiratory infection (LRI) for early, late and post neonatal, and 

populations between 1 and 80 years upwards in 5-year groupings; and from ischaemic heart disease (IHD), cerebrovascular 15 

disease or stroke (STR), chronic obstructive pulmonary disease (COPD) and lung cancer (LC) for adults over 25 years old, 

split into 5-year age groups. We used the parameter distributions of α, β and γ from the GBD2015 for 1000 simulations to 

derive the mean IER with 95% uncertainty intervals (GBD2015; Cohen et al., 2017). The IER functions have uniform 

theoretical minimum risk exposure levels (TMREL) for PM2.5 between 2.4–5.9 μg m−3. The calculation of the disease burden 

and uncertainty is described in further detail in the Supplementary Material (Sect. S1). 20 

As in Conibear et al. (2018a), sector-specific mortality was calculated using the “subtraction” method. The “subtraction” 

method calculates the sector-specific premature mortality (MSECTOR) as the difference between the premature mortality from 

all sources (MALL) and the premature mortality when one sector has been removed (MSECTOR_OFF) as in Eq. 1: 

MSECTOR = MALL – MSECTOR_OFF     (1) 

We also calculated the sector-specific mortality using the “attribution” method (following Conibear et al. (2018a)) to compare 25 

our results with previous studies that used this method. The “attribution” method first calculates the fractional sectoral 

reduction in PM2.5 concentrations from removing an emission sector (PM2.5_SECTOR_OFF) and then uses this fraction to scale the 

total premature mortality estimate (Eq. 2). 

MSECTOR = MALL (PM2.5_ALL – PM2.5_SECTOR_OFF)/PM2.5_ALL      (2) 

There is large uncertainty associated with calculating the health effects due to exposure to ambient PM 2.5, with recent studies 30 

suggesting that the IER functions may underestimate relative risk (Yin  et al., 2017; Li et al., 2018) and/or disease burden 
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(Burnett et al., 2018). For example, recent epidemiological cohort studies in China suggest that the IER functions may  

underestimate the relative risk of cause-specific mortality due to long-term exposure to PM2.5 for PM2.5 concentrations 

experienced in China and other low- and middle-income countries (Yin et al., 2017; Li et al., 2018). These studies suggest that 

our premature mortality estimates , at least in China, may be conservative. 

The population count (P) data set at 0.25° × 0.25° resolution was obtained from the Gridded Population of the World, Version  5 

4 (GPWv4), created by the Centre for International Earth Science Information Network (CIESIN) and accessed from the 

National Aeronautics and Space Administration (NASA) Socioeconomic Data and Applications Centre (SEDAC) (GPWv4, 

2016). The United Nations adjusted version was implemented for 2015 with total populations of 1.302 billion for India and 

1.380 billion for China (1.402 billion for China and Taiwan). The WRF-Chem model domain used in this study (described in 

Sect. 2.1) includes 92% of the population of China. Population age composition was taken from the GBD2015 population 10 

estimates for 2015 (GBD Collaborative Network, 2016). 

2.3 PM2.5 measurements 

To evaluate our model-simulated surface PM concentrations, we used measured annual mean PM 2.5 and PM10 concentrations 

from the World Health Organization database (2016, 2018). The database consists of city -average PM2.5 and PM10 

concentrations obtained from multiple ground station measurements. Roughly 75% of measurements are from urban areas of 15 

at least 20,000 inhabitants, with the remaining 25% from smaller areas of up to 20,000 residents. The years of available 

measurements range from 2008 to 2016. Some cities in the database only have measurements of PM10 concentrations. For 

these locations, PM2.5 concentrations have been calculated by the WHO from the measured PM 10 concentration using national 

conversion factors (PM2.5/PM10 ratio) either provided by the country or estimated as population‐weighted averages of urban‐

specific conversion factors (estimated as the mean PM2.5/PM10 ratio of stations for the same year) for the country (WHO 2016, 20 

2018). These calculated PM2.5 concentrations make up 41% of the measurements used in this study (see Table 1). For PM2.5 

measurements in Vietnam, we found large differences between measured and converted concentrations and therefore only 

include measured concentrations in the model evaluation (Sect. 3.1) for this country. 

2.3.1 Comparing simulated and measured PM2.5 concentrations 

To evaluate model-simulated annual mean PM2.5 concentrations against measurements from the WHO (Sect. 3.3), we selected 25 

measurement years to match or to be or close as possible to the simulation year of 2014. The simulated annual mean surface 

PM2.5 concentrations from the control simulation were linearly interpolated to the location of the measurement station, using 

the longitude and latitude of the central part of the relevant town/city/mun icipality if the measurement represented an average 

of multiple stations. To quantify the agreement between model and observations, we use the Pearson correlation coefficient 

(r) and normalised mean bias factor (NMBF) as defined by Yu et al. (2006). A positive NMBF indicates the model 30 
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overestimates the observations by a factor of NMBF+1. A negative NMBF indicates the model underestimates the observations 

by a factor of 1–NMBF. 

3. Results 

3.1 Model evaluation 

The model captures the observed spatial distribution of annual mean PM2.5 concentrations, for the year 2014, particularly over 5 

China, India, Bangladesh and Thailand (Fig. 1; r=0.55). Figure 1 compares simulated and measured annual mean PM 2.5 

concentrations over the Indian Subcontinent, Mainland Southeast  Asia and eastern and southern China. Figure 1a shows that 

the model simulates high annual mean PM2.5 concentrations (~80-160 µg m-3) over the Indo-Gangetic Plain in northern India 

and over the North China Plain and Sichuan Basin regions in China; with lower concentrations simulated over southern and 

western India, southern China and Mainland Southeast Asia. The spatial agreement between model and measurements is 10 

improved when comparing against 2014 measurements only (r=0.76) or when we compare against measured PM2.5 only and 

discard values converted from PM10 (r=0.63). 

Over the whole domain, simulated annual mean PM2.5 concentrations are unbiased against the WHO measurements (Fig. 1b; 

NMBF=0.09; equivalent to a factor 1.09 greater than measured values). On average, the model simulates annual mean PM2.5 

concentrations within a factor 1.5 of the measurements in China (NMBF=0.33; Table 1), Thailand (NMBF=0.06), India 15 

(NMBF=-0.05), Bangladesh (NMBF=-0.26), Vietnam (NMBF=0.46) and the Republic of Korea (NMBF=-0.32); and within a 

factor of 2.3 in Myanmar (NMBF=-1.27), Nepal (NMBF=-0.81) and Bhutan (NMBF=-0.63). The negative model biases (up 

to a factor of 2.27 underestimation) may be due to underestimation of open biomass burning and anthropogenic emissions in 

some regions. Simulated PM2.5 concentrations and thus the estimated PM2.5-related disease burdens for countries with negative 

model biases are likely to be conservative. 20 

For annual mean PM2.5 concentrations above ~60 µg m-3 in China, the model is positively biased against the measurements; 

this may be due to using anthropogenic emissions data from 2010 and comparing with measurements from 2014. PM 2.5 

emissions, particularly those in the industrial and power generation sectors, are reported to have decreased across China 

between 2010 and 2014 (Zheng et al., 2018). It should be noted, however, that the large majority (89%) of simulated values at 

individual stations in China are within a factor 2 of the measurements. Figure S1 shows the model is also able to capture daily 25 

variability in measured PM2.5 concentrations at three Chinese megacities; simulating daily mean concentrations within a factor 

1.8 of the measurements (NMBF=0.09-0.80; r=0.47-0.56). 

The model is expected to underestimate measured concentrations in countries located towards the boundaries of the regional 

model domain (the Philippines, Pakistan and Republic of Korea) due to increased influence from the coarse resolution global 

model and potential missing sources outside the regional model domain. Therefore, we do not present results for these countries 30 

in the following sections. 
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3.2 Contribution of emission sectors to ambient PM2.5 concentrations 

3.2.1 Contribution of emission sectors to PM2.5 by country 

Figure 2 shows the percentage contribution of each anthropogenic emission sector to the simulated population-weighted annual 

mean PM2.5 concentration for each country within the model domain. The relative contribution of each sector is calculated for 

each country as the percentage difference between the simulated population-weighted annual mean PM2.5 concentrations from 5 

the control simulation (with all sources included) and from each of the individual eliminated -sector simulations. Results for 

Afghanistan, Pakistan, the Philippines and South Korea are not shown in Fig. 2 due to their proximity to the edges of the model 

domain (Sect. 3.1).  

In China, the largest contributions to population-weighted annual mean PM2.5 concentrations are from the industrial (43%) and 

residential (38%) emission sectors, which is consistent with previous studies (see Sect. 4). The next largest contributions are 10 

from natural and minor sources (including mineral dust, sea spray and biogenic SOA) (9%), power generation (5%) and road 

transport (4%). In India, the population-weighted annual mean PM2.5 is dominated by the contribution from the residential 

sector (52%) as reported in Conibear et al. (2018a), with power generation, industry and transport contributing 21%, 16% and 

10%, respectively. Open biomass burning emissions contribute relatively small fractions to the population-weighted annual 

mean PM2.5 in both China (1%) and India (3%). However, it is likely that fire emission datasets underestimate the emissions 15 

from agricultural fires in China (e.g. Zhang et al., 2016) and India (e.g. Cusworth et al., 2018). 

In India, there is a noticeably larger fractional contribution of power generation emissions to the population -weighted annual 

mean PM2.5 concentration (21%) compared with China (5%). This is likely due to multiple reasons including lack of regulation, 

lack of flue-gas desulphurisation, and low energy efficiencies in India (Venkataraman et al., 2018), resulting in higher implied  

emission factors (emissions per unit of activity) for PM2.5 from power generation in India relative to China (Janssens-Maenhout 20 

et al., 2015) and higher fractional contributions of power generation to total primary PM 2.5 emissions (16% of total in India; 

7% in China (Li et al., 2017)). Conversely there is a larger contribution of industrial emissions to  population-weighted annual 

mean PM2.5 concentration in China (43%) than in India (16%). This is likely due to a larger amount of heavy industry in China 

compared to in India (primary PM2.5 emissions from industry contribute 50% to the total emitted PM2.5 in China compared to 

18% in India (Li et al., 2017)). This is likely to change in the future in India, where industry becomes dominant under curre nt 25 

policies (Conibear et al. (2018b)). 

In Bangladesh, the contributions to population-weighted annual mean PM2.5 are very similar to those in India, with a larger 

contribution from the residential sector (58%) and slightly smaller contributions from power generation (17%) and transport 

(7%) emissions. The contributions from industry (16%) and open biomass burning (3%) match those in India. In Nepal and 

Bhutan, residential emissions are even more dominant, contributing 67-68% of population-weighted annual mean PM2.5. 30 

The residential sector also dominates contributions to population-weighted annual PM2.5 in Myanmar (38%), Vietnam (52%) 

and Cambodia (45%). Industrial emissions contribute the largest fraction of population -weighted PM2.5 in Thailand (34%), 
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with relatively large contributions in Laos (19%) and Vietnam (23%). In Laos, the population -weighted PM2.5 is dominated by 

emissions from open biomass burning (30%). It is likely that open biomass burning emissions are underestimated in Southeast 

Asia (Reddington et al., 2016; Lasko et al., 2017), and so may make a larger contribution to PM2.5 concentrations than reported 

here. 

The contribution of natural sources (e.g. biogenic SOA, sea spray and mineral dust) and minor sources to population -weighted 5 

annual mean PM2.5 is relatively large in China and Mainland Southeast Asia compared to the Indian Subcontinent. Shi et a l. 

(2016) also found a relatively large combined contribution from windblown dust, SOA and sea salt to province -average PM2.5 

concentrations in China (17%; calculated as the average over the provinces included in our model domain).  

The residual PM2.5 concentration classed as from “natural and minor” sources also depends on the non -linear effects of 

simulated air pollutant concentrations when emissions are eliminated in the model. Since the atmospheric chemistry, aerosol 10 

processes and meteorology are fully coupled in WRF-Chem, eliminating primary air pollutant emissions may act to increase 

PM2.5 concentrations through changes in wind speed, boundary layer depth, secondary aerosol formation, aerosol removal etc. 

This would act to increase the calculated contribution of “natural and minor” sources to simulated population-weighted annual 

mean PM2.5 concentrations, although this is typically less than 1%.  

3.2.2 Contribution of emission sectors to PM2.5 by state or province 15 

Figure 3 shows the contribution of each emission sector to the population-weighted annual mean PM2.5 concentration in each 

province in China (within the model domain) and each state in India. In all Chinese provinces, either industrial or residential 

emissions make the largest contributions to population-weighted annual mean PM2.5 concentrations, with the exception of 

Hainan Island where natural and minor sources make the largest contribution (Fig. 3a). The contributions from residential 

emissions range from 17 to 50%, in general with larger contributions from this sector in northern, western and central provinces 20 

compared to southern and south-eastern provinces e.g. contributions in Beijing (41%), Sichuan (49%) and Hubei (41%) 

compared to Guangdong (26%) and Shanghai (17%). This is due to greater emissions from heating in colder northern and 

mountainous regions in winter months (Archer-Nicholls et al., 2016). The contribution of the industrial sector to population-

weighted annual mean PM2.5 is prevalent across all provinces (range 23 to 60%), with the largest contributions in the major 

steel-producing provinces of Hebei (47%) and Jiangsu (47%), in the major coal-producing province of Shanxi (52%) and in 25 

Shanghai (60%). 

The contributions from the other emission sectors (land transport, power genera tion, agriculture, shipping and open biomass 

burning) to population-weighted annual mean PM2.5 are relatively small (<13%) in all provinces. The contribution of power 

generation emissions ranges from 3% to 11%, with the greatest contribution in the provinces of Zhejiang (9%) and Ningxia 

(11%). The land transport sector generally makes the largest contributions in eastern and south -eastern provinces relative to 30 

provinces in other regions of China, with largest the contributions in Shanghai (6%) and Beijng (6%). We find that the 
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contributions of shipping and agricultural emissions across China are particularly small relative to the other sectors, with the 

largest contributions in the Special Administrative Region (SAR) of Hong Kong (2.5% and 0.5%, respectively ). 

The largest contributions from open biomass burning emissions are seen in the south-western and southern provinces of China, 

with the largest contribution in Yunnan province (12%). These provinces are influenced by transport of smoke from fires in 

Mainland Southeast Asia and northeast India during the burning season (~February to April; see Fig. 5) (Huang et al., 2013;  5 

Zhu et al., 2017). Local fires also occur in these regions (Zhang et al., 2016; Zhu et al., 2017; Zhou et al., 2017) which will 

also contribute to simulated province-average PM2.5 concentrations.  

In India (Fig, 3b), residential emissions make the largest contribution to population -weighted annual mean PM2.5 

concentrations in all states (range 29 to 64%), with the exception of Delhi, where road transport contributes the largest fraction 

(as reported by Conibear et al. (2018a)). In general, the contributions of residential emissions are larger than in Chinese 10 

provinces, particularly in the northern and northeastern states, with the largest co ntributions in West Bengal (61%), Sikkim 

(60%), Assam (60%), and Bihar (64%). Land transport emissions also generally contribute a larger fraction to the population -

weighted annual mean PM2.5 in Indian states (range 6 to 34%) compared to in Chinese provinces (range 1 to 6%), with the 

largest contributions in Delhi (34%) and Haryana (25%).  

The power generation sector makes relatively large contributions to the population-weighted annual mean PM2.5 across India 15 

(range 13 to 31%), with larger contributions in all Indian states compared to Chinese provinces within the model domain (range 

3 to 10%). The largest contributions of power generation emissions are in the states of Central India: Chhattisgarh (31%), 

Jharkhand (25%), Maharashtra (24%) and Andhra Pradesh (25%), likely due to the large coal-fired power plants located in 

these states (clustered at the pit heads of coal mines; Guttikunda and Jawahar (2014)). In contrast, contributions from the 

industrial sector are smaller in almost all states in India (range 11 to 26%) compared to the provinces in China (range 23 to 20 

60%), with the largest contributions in Gujarat (26%) and Maharashtra (20%). 

Open biomass burning emissions make relatively large contributions to PM 2.5 in northern and northeastern states in India, 

particularly in Mizoram (27%), Manipur (23%) and Nagaland (22%). Agricultural fires (involving burning of crop residues) 

are widespread across northern India (Vadrevu et al., 2015) with substantial impacts on regional air quality (Liu et al., 2018;  

Sakar et al., 2018). Northeastern states may also be affected by transported smoke from deforestation and agricultural fires in 25 

neighbouring Myanmar. 

3.2.3 Dominant emission sector contributions to PM2.5 

Figure 4 shows the spatial distribution of the anthropogenic emission sectors that yield the largest reduction in simulated annual 

mean surface PM2.5 concentrations. Over the majority of the Indian Subcontinent, excluding residential emissions leads to the 

largest reduction annual mean PM2.5. In some small regions of India, the largest reductions in PM2.5 are achieved by excluding  30 
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the power generation (in parts of central-east India), transport (in Delhi), and industrial (in eastern Maharashtra and central 

Gujarat) sectors.  

Excluding residential emissions also yields the largest reductions in annual mean PM2.5, relative to the other emission sectors, 

in Vietnam, southern Myanmar, central Laos and Cambodia, and southern and eastern parts of China. In central and south-

eastern China and central Thailand, the largest reductions in annual mean PM2.5 are achieved by excluding industrial emissions. 5 

In other parts of Mainland Southeast Asia (northern and eastern regions of Myanmar and Thailand, and northern and southern 

regions of Cambodia and Laos), excluding fire emissions gives the largest reductions in simulated annual mean PM 2.5 

concentrations relative to the other emission sectors.  

3.2.4 Seasonal variation in dominant emission sector contributions to PM2.5 

Figure 5 shows the seasonal variation in the dominant emission sectors contributing to surface PM2.5 over the South Asia and 10 

East Asia model domains. Seasonal variation in anthropogenic sources contributing to PM 2.5 is relatively low over much of 

the Indian Subcontinent. Over this region, excluding emissions from residential energy use yields the largest reduction in 

seasonal mean PM2.5 concentrations throughout the year, with a small increase in the areas dominated by industrial emissions 

(in Maharashtra and Gujarat in western India) during March to August and power generation emissions (in central India) during 

March to May. In northeastern India, the dominant emission sector switches from residential to open biomass burning during 15 

March to May. Open biomass burning emissions can also be seen to dominate over re sidential emissions in northern India 

(states of Punjab and Haryana) during September to November, likely due to agricultural burning of rice residues.  

In contrast to India, there is strong seasonal variation in the dominant emission sectors in Mainland So utheast Asia. During 

December to February, excluding emissions from residential energy use yields the largest reduction in seasonal mean PM 2.5 

over much of the region, with fire emissions dominating seasonal mean PM 2.5 in Cambodia. During March to May, excluding  20 

fire emissions yields the largest reduction in seasonal mean PM2.5 over most of Mainland Southeast Asia, but also in Taiwan, 

northern Philippines, eastern India, and south-west China. During July to November, the largest reductions in seasonal mean 

PM2.5 are achieved by excluding industrial emissions in central and southern Thailand (and Laos during September to 

November), power generation emissions in northern Thailand and residential emissions in Myanmar, Cambodia and Vietnam.  

In China, excluding emissions from residential energy use yields the largest reduction in seasonal mean PM 2.5 concentrations 25 

during the winter months (December to February), with the exception of the heavily industrialised regions of the Pearl River 

Delta (PRD) and Yangtze River Delta (YRD) where industrial emissions dominate. During March to November, excluding  

either residential or industrial emissions yield the largest reductions in seasonal mean PM 2.5 in central, eastern and south-

eastern China, depending on the specific region. 
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3.3 Impacts of emission sectors on human health 

Table 1 shows the percentage of population exposed to PM 2.5 concentrations above the WHO Air Quality Guideline (AQG) 

limits for each country in the model domain. Our model simulations show that in 2014, the vast majority of the South and East 

Asian population was exposed to annual mean PM2.5 concentrations in excess of the WHO AQG of 10 μg m-3 (range per 

country: 43-100%) and the WHO Level 2 Interim Target (IT-2) of 25 µg m-3 (range per country: 0-100%). 5 

Figure 6a shows the total annual premature mortality due to long-term exposure to ambient PM2.5 from all sources in India, 

China, and countries in Mainland Southeast Asia. The spatial distribution of PM 2.5-related disease burden in South and East 

Asia is shown in Fig. S2. We estimate the total annual premature mortality in China (including Taiwan) to be 1,047,000 (95% 

uncertainty interval (95UI): 846,000–1,287,000), with 19,679,000 (95UI: 15,622,000–24,580,000) years of life lost (YLL) 

compared to 990,000 (95UI: 660,000–1,350,000) annual premature mortalities and 24,606,000 (95UI: 14,567,000–32,698,000) 10 

YLL in India (Conibear et al., 2018a). The disease burden attributable to exposure to ambient PM 2.5 in China is dominated by 

stroke (29%; Fig. 6a) IHD (26%) and COPD (26%), with smaller contributions from LC (13%) and LRI (6%). In India, the 

fractions of mortality attributable to stroke (14%) and LC (2%) are less than in China, with larger fractions from COPD (31%), 

IHD (35%) and LRI (17%).  

In Mainland Southeast Asia, we estimate the total annual premature mortality as 109,000 (95UI: 66,000–160,000) with 15 

2,304,000 (95UI: 1,309,000–3,540,000) YLL. The fraction of premature mortality estimated for each country in Southeast 

Asia scales roughly with population, with the largest fractions in Vietnam (42%) and Thailand (31%) and smallest in Laos 

(3%). The disease burden is dominated by IHD in Cambodia (40%) and Laos (37%), by stroke in Vietnam (33%) and Myanmar 

(33%), and by LRI in Thailand (31%). 

Our estimates of the total premature mortality due to long-term exposure to ambient PM2.5 compare well with those from 20 

GBD2015 (Cohen et al., 2017) for China, India and countries in Southeast Asia and (Fig. S3a). The mean estimates from this 

study lie well within the uncertainty bounds of the values reported by Cohen et al. (2017) for each country, with the exce ption  

of Myanmar. For Myanmar, the mean value of Cohen et al. (2017) is higher than the value from this study by a factor 1.5, but 

lies within our estimated uncertainty range. 

Figure 6b and Table 2 show the sector-specific averted annual premature mortality due to a reduction in exposure to ambient  25 

PM2.5, using the “substitution” method as described in Sect 2.2 and Conibear et al. (2018a). The spatial distribution of averted 

disease burden is shown in Fig. S2b-h. The summation of sector contributions is 437,000 (95UI: 327,000–583,000) premature 

mortalities per year in China and Taiwan (42% of the control simulation), 48,000 (95UI: 27,000–74,000) premature mortalities  

per year in Southeast Asia (44% of the control simulation) and 469,000 (95UI: 304,000–626,000) premature mortalities per 

year in India (47% of the control simulation; Conibear et al., 2018a). It is important to note that these values are substant ially 30 

lower than if we were to use the attribution method as used in other studies (e.g. Lelieveld et al., 2015; Archer-Nicholls et al., 

2016; GBD-MAPS, 2016; Gao et al., 2018) because of the non-linear exposure-response relationship (Conibear et al., 2018a). 
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When using the attribution method, Conibear et al. (2018a) obtained a summation of 1,012,000 (95UI: 675,000–1,381, 000) 

annual premature mortalities in India; equivalent to 102% of the control simulation. 

The industrial emission sector is the dominant contributor to premature mortalities due to exposure to ambient PM 2.5 in China 

and Thailand. Eliminating emissions from the industrial emission sector would avert 204,000 (95UI: 152,000–271,000) annual 

premature mortalities in China and 13,000 (8,000–20,000) annual premature mortalities across Southeast Asia.  5 

Residential energy use is the dominant contributor to premature mortalities due to exposure to ambient PM 2.5 in Vietnam, 

Myanmar and Cambodia and the second largest contributor in China, Thailand and Laos. Eliminating emissions from 

residential energy use would avert 188,000 (95UI: 141,000–250,000) and 24,000 (95UI: 13,000–36,000) annual premature 

mortalities in China and Southeast Asia, respectively. 

Open biomass burning is  the dominant contributor to premature mortalities due to exposure to ambient PM 2.5 in Laos. 10 

Preventing open biomass burning in Eas t Asia would avert 8,000 (95UI: 4,000-13,000) annual premature mortalities across 

Southeast Asia and 7,000 (95UI: 6,000-9,000) annual premature mortalities in China. 

The land transport and energy generation emission sectors are not dominant contributors to the national/regional annual 

premature mortality estimates in Fig. 6 and Table 2. However, eliminating emissions from these sectors would still yield a 

substantial human health benefit in China, averting 15,000 (95UI: 11,000-20,000) and 22,300 (95UI:16,000-30,000) annual 15 

premature mortalities , respectively. 

4. Comparison to previous studies  

Table 3 summarises the previous studies that have quantified the emission source/sector contributions to PM 2.5 and associated 

health burden in China and India. These studies have used a range of different of approaches, methods and tools, which lead 

to a wide range in estimates of sector-specific contributions to PM2.5 concentrations (Fig. 7; Tables 4 and 5) and annual 20 

premature mortalities (Figs. 8 and S3; Tables  S1 and S2). 

For China we compare the total annual premature mortality estimate from this study to estimates from the previous studies 

listed in Table 3 (Fig. S3b). Our estimate (1,046,900 (95UI: 846,100- 1,286,900)) sits well within the multi-model range of 

916,000 to 1,357,000 (UI: 594,000–1,915,000) premature mortalities. Despite the large differences in modelling tools, 

emissions inventories and health functions used in these studies, our estimate (and uncertainty range) for China overlaps wit h 25 

all previous estimates in Fig. S3 apart from Lelieveld et al. (2015) (whose estimate also includes premature mortality due to 

exposure to ozone and does not report a UI specifically for China). We note that the larger mortality estimate from Lelieveld  

et al. (2015) will primarily be due to the GBD2010 exposure-response function, which predicted much larger relative risks for 

cardiovascular diseases (IHD and stroke) compared to relative risks from GBD2015. The multi-model mean for China is: 

1,135,000 (UI: 746,000-1,398,000) annual premature mortalities. It is important to note that these estimates apply to a range 30 
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of years (ranging from 2001 to 2014 in terms of meteorology and from 2005 to 2015 in terms of anthropogenic emissions; 

Table 3). 

Figure 7 compares estimates of sector-specific contributions to annual mean PM2.5 concentrations in China and India. Previous 

studies consistently find that residential energy use and industry are the dominant emission sectors in China for annual mean  

PM2.5 (Fig. 7a and Table 4). Residential emissions contribute an average of 26% (13-38%) and industrial emissions contribute 5 

an average of 30% (8-43%) to annual mean PM2.5 concentrations in China (see Fig. 7a and Table 4). Other sectors make a 

smaller contribution, with emissions from power generation contributing an average of 14% (range 5-33%), land transport an 

average of 7% (range 3-15%), open biomass burning an average of 4% (range 1-8%) and agriculture an average of 13% (range 

0.1-29%).  

In India, previous studies consistently find that residential emissions dominate contributions to annual mean PM 2.5 10 

concentrations (Fig. 7b and Table 5), with an average contribution of 38% (22-56%) over all studies. Other sectors make a 

smaller contribution, with emissions from industry contributing an average of 14% (range 7-20%), power generation an 

average of 18% (range 7-40%), land transport an average of 8% (range 2-20%), open biomass burning an average of 5% (range 

3-7%) and agriculture an average of 6% (range 0.3-12%). 

Although previous studies consistently agree on the dominant emission sectors contributing to ambient PM 2.5 concentrations 15 

in India and China, there is considerable variability in the estimated contribution from each sector. For most sectors the 

fractional contribution from any one sector varies by a factor of 2 to 5, with the largest range for open biomass burning (up to 

a factor of 8) and agriculture (greater than a factor of 10). There have been fewer studies quantifying the contribution of 

agriculture to PM2.5 concentrations in China and India, and the contribution of this sector has the largest uncertainty. Following  

this, our study is the only one in Table 3 to quantify the contribution of shipping emissions to population -weighted annual 20 

mean PM2.5, and so the contribution of this  sector is also likely to be uncertain. However, we notes that the contribution of 

shipping emissions to PM2.5 concentrations is only likely to be important for coastal regions (Lv et al., 2018) and relatively  

small compared to other emission sectors. 

The different model simulation and anthropogenic emission years will contribute to the range across previous studies, 

particularly since China and India have experienced rapid changes in emissions in the last decade (Saikawa et al., 2017; Zhen g 25 

et al., 2018). Reducing the multi-model range in the future will require up-to-date and consistent anthropogenic emissions 

inventories (with improved quantification of the fractional contributions of the different sectors) to use in air quality mod els. 

It will also be important to run the same air quality models at different spatial resolutions to ensure that the fractional 

contributions of some sectors (e.g. land transport and residential energy use) to ambient PM 2.5 concentrations are not 

underestimated due to missing or underrepresented sub-grid emission sources. Model grid resolution is also important to 30 

consider when estimating the health impacts of emissions from different sectors, particularly for land transport and resident ial 

energy use, where the exposure (or intake fraction) depends strongly on co-location of sources and high population (U.S. 
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National Research Council, 2012). Comparing model results of emission sector contributions with in -situ, source 

apportionment measurements (as in Karagulian et al. (2017)) may help to constrain the range in multi-model estimates.  

The large variability in the disease burden estimates (Tables S1 and S2) are strongly influenced by the exposure -response 

function used in each study. The IER functions were developed for GBD2010 by  Burnett et al., (2014). Each subsequent GBD 

study (2013, 2015, 2016, and 2017) updates the coefficients used to calculate relative risk within the IER functions (Sects. 2.2 5 

and S1) due to the incorporation of more epidemiological evidence. In general, wit h the same PM2.5 concentration fields, 

applying coefficients from GBD2010 will yield the highest estimates of relative risk and mortality; applying coefficients fro m 

GBD2013 will yield the lowest estimates; while applying coefficients from GBD2015 and GBD2016 will yield medium 

estimates. Results from GBD2017 give slightly lower estimates of risk and mortality than GBD2015 and GBD2016, primarily  

due to the different approach to combine risk from household and ambient PM 2.5 and avoid overestimation for those exposed 10 

to both. A recent study that constructed a PM2.5-mortality hazard ratio function based only on cohort studies of ambient air 

pollution, rather than the IER approach of integrating several sources (ambient and household air pollution, passive and ac tive 

smoking), finds estimates that are 120% higher than the GBD2015 IER (Burnett et al., 2018). Future work should move to 

using consistent and up-to-date exposure-response functions to reduce the multi-model range in health impact estimates, 

although the associated uncertainty range will likely remain large. 15 

5. Summary and conclusions 

In this study we used a high-resolution air quality model to explore the contribution of seven different anthropogenic emission 

sectors to surface PM2.5 concentrations across South and East Asia, and calculated the human health impacts if emissions from 

each of these sectors were to be eliminated.   

We found that the vast majority of the South and East Asian populations are exposed to annual mean PM 2.5 concentrations 20 

exceeding the WHO Air Quality Guideline, which we estimated to cause 1,047,000 (95U: 846,000–1,287,000), 990,000 (95UI: 

660,000–1,350,000), and 109,000 (95UI: 66,000–160,000) annual premature mortalities in China, India and Mainland 

Southeast Asia, respectively. Emissions from the residential, industrial and open biomass burning sectors dominate 

contributions to population-weighted annual mean PM2.5 concentrations in South and East Asia. Eliminating emissions from 

these sources would substantially reduce the population exposed to ambient concentrations of PM2.5 above the WHO Air 25 

Quality Guideline and avert numerous PM2.5-related premature mortalities and years of life lost. 

In China, we found that eliminating emissions from the industrial sector yielded the largest reduction in population-weighted 

annual mean PM2.5 concentrations (by 43% in our study; on average 29% across previous studies); averting the largest number 

of annual premature mortalities (204,000 (95UI: 152,000-271,000) in our study). Eliminating residential solid-fuel combustion 

also yielded substantial reductions in population-weighted annual mean PM2.5 concentrations (by 38% in our study, on average 30 

29% across previous studies) and annual PM2.5-related premature mortalities (188,000 (95UI: 141,000–250,000) in our study). 
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In Southeast Asia, eliminating emissions from residential solid-fuel combustion yielded the largest reductions in population-

weighted annual PM2.5 in Myanmar (by 38%), Vietnam (by 52%) and Cambodia (by 45%) and the second largest reduct ions 

in Thailand (by 20%) and Laos (by 25%). Removing this sector would avert 24,000 (95UI: 13,000-36,000) annual premature 

mortalities across the region. Other important emission sectors in this region are industry and open biomass burning, removin g 

these emissions would avert 13,000 (95UI: 8,000-20,000) and 8,000 (95UI: 4,000-13,000) annual premature mortalities in 5 

Southeast Asia, respectively. 

Future work should focus on identifying the most effective options within the residential, industrial and open b iomass burning 

emission sectors to improve air quality across South and East Asia. For the residential sector, switching from solid -fuel 

combustion to combustion of clean fuels (such as Liquefied Petroleum Gas (LPG)) will likely be the most effective optio n. 

Large reductions in ambient PM2.5 concentrations have already been achieved in China between 2005 and 2015, which may  10 

have been driven by a reduction in residential emissions from widespread adoption of clean fuels (due to increasing wealth 

and urbanisation rather than control policies) (Zhao et al., 2018). However, despite reductions in ambient PM 2.5 concentrations, 

exposure to air pollution in China remains a leading risk factor for human health. In India, there are programmes now in plac e 

to promote LPG to the poorest households (Goldemberg et al., 2018), aiming to increase the use of LPG from 30% in 2015 to 

90% by the early 2020’s. The air quality benefits of these programmes in India are yet to be explored. 15 

Anthropogenic emissions are changing rapidly across Asia, leading to large changes in air pollutant concentrations (e.g. Silver 

et al., 2018), so future work should include more up-to-date emission inventories that are becoming available for China and 

India to explore how the contributions of emiss ion sectors to PM2.5 pollution have changed over time. There is a strong need 

for development of up-to-date anthropogenic emission inventories for countries in Southeast Asia to improve our 

understanding of the contributions of pollution sources in this region for recent years.  20 

Previous studies agree that emissions from the residential and industrial sectors dominate population -weighted PM2.5 

concentrations in China and emissions from the residential sector dominate in India. Despite this qualitative agree ment, we 

found the contribution of individual sectors varied by a factor of 2-5 or more. It will be important for future work to explore 

the reasons for these differences between model estimates of the contribution of different sources to air pollutant con centrations 

and the associated health burden. 25 

This study can inform effective emission-reduction strategies at the local level across South and East Asia to improve air 

quality and reduce the substantial disease burden from air pollution exposure. Our work has demonstrated that the combustion 

of solid fuels dominates contributions to ambient PM2.5 concentrations and associated health effects in India, China and 

Mainland Southeast Asia. We therefore recommend that emission-reduction strategies in these countries should focus on 

reducing the combustion of solid fuels in homes, industry, and through open burning. 30 
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Table 1. Summary of annual mean PM 2.5 measurements from the World Health Organization (WHO) Ambient (outdoor) air quality database 

(2016, 2018). The table shows the number of stations with available data, the year(s) the measurements were conducted and the number of 

reported PM 2.5 concentrations that were converted from PM 10 measurements (see Sect. 2.3). The model normalised mean bias factor (NMBF; 

Yu et al., 2006) and Pearson’s correlation coefficient (r) against observations are given for each country with available WHO measurements. 

The simulated population-weighted annual mean PM 2.5 concentration is given for each country within the model domain (shown in Fig 1) 5 

and the percentage of population “exposed to” (in the same model grid cell as) annual mean PM 2.5 concentrations greater than the WHO Air 

Quality Guideline (AQG; 10 µg m-3) and WHO Interim Target 2 (IT-2; 25 µg m-3) (WHO, 2006; 2016). 

Country No. of 

stations 

Year(s) of 

measurements 

Measured/ 

converted PM2.5 

Model 

NMBF; r 

Model 

population-
weighted PM2.5 

(µg m-3) 

% of population 

exposed to PM2.5 
> WHO AQG; 

WHO IT-2 

Bangladesh 8 2014 Measured -0.26;  0.33 67.1 100%; 100% 

Bhutan 4 2013, 2014 Converted -0.63;  0.41 46.3 100%; 92% 

Cambodia - - - - 24.4 100%; 40% 

China 193 2014 
Measured: 192 

Converted 1 
+0.33;  0.76 72.3 97%; 94% 

India 127 2012-2016 
Measured: 21 

Converted: 106 
-0.05;  0.37 57.7 99%; 97% 

Rep. of 
Korea 

15 2014 Converted -0.32;  0.11 20.4 98%; 16% 

Laos - - - - 27.2 100%; 72% 

Myanmar 16 
2009, 2012, 
2013, 2015 

Converted -1.27;  0.34 25.7 100%; 60% 

Nepal 1 2013 Measured -0.81;  - 50.6 100%; 88% 

Pakistan 6 2009-2011, 2013 Measured -0.80;  0.64 38.8 96%; 65% 

Philippines 19 2013, 2015, 2016 
Measured: 14 

Converted: 5 
-1.05;  0.19 8.1 43%; 0% 

Thailand 22 2014 Converted +0.06;  0.38 24.5 89%; 57% 

Vietnam 2 2016 Measured: 2  +0.46;  - 44.2 100%; 81% 
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Table 2. Estimated total annual premature mortality due to exposure to ambient PM 2.5 in countries in South and East Asia.  Also shown is 

the averted annual premature mortality per country due to a reduction in exposure to ambient PM 2.5, calculated using the substitution method. 

Averted premature mortality estimates are given for each emission sector: agriculture (AGR), biomass burning (BBU), power generation 

(ENE), industrial non-power (IND), residential energy use (RES), shipping (SHP; East Asia only) and land transport (TRA). Values in bold 5 

show the emission sector that gives the largest  averted premature mortality for each country/region. “SE Asia” includes Myanmar, Thailand, 

Laos, Cambodia and Vietnam (results for these countries are also shown separately). China includes Hong Kong SAR, Macau SAR and 

Taiwan. Values in parentheses represent the 95% uncertainty intervals (95UI). Values are rounded to the nearest 100. Negative values 

represent increases in estmiated premature mortality when an emission sector is removed (due to a increase in simulated PM 2.5 

concentrations). 10 

Country/ 

region 
All sources AGR BBU ENE IND RES SHP TRA 

China (incl. 

Taiwan) 

1,046,900 
(846,100-  

1,286,900) 

500 
(300- 

700) 

7,300 
(5,600-  

9,300) 

22,300 
(16,500- 

30,400) 

203,600 
(152,300- 

271,100) 

187,900 
(140,700- 

250,300) 

700 
(500-

900) 

14,800 
(10,800-

20,500) 

India 
990,000 
(660,200-

1,350,800) 

1,000 
(700-

1,400) 

12,300 
(8,400-

16,450) 

90,400 
(59,600-

121,500) 

66,500 
(44,700-

89,600) 

255,600 
(161,800-

339,700) 

- 
43,000 
(28,900-

57,900) 

SE Asia 
108,700 
(65,800- 

160,000) 

-200 (-
300 to -

100) 

8,200 
(4,400-  

12,800) 

1,900 
(1,100- 

3,000) 

13,300 
(7,600- 

20,000) 

23,700 
(13,200- 

36,200) 

100 
(100-

100) 

1,200 
(700- 

1,900) 

Myanmar 

20,200 

(10,100- 
33,100) 

0 (-100-
0) 

3,000 

(1,400-  
5,200) 

400 (200- 
600) 

1,300 (600- 
2,200) 

4,800 

(2,200- 
8,000) 

0 (-
100-0) 

100 

(100-
300) 

Thailand 

33,400 

(21,100-  
47,800) 

-100 (-

100-0) 

3,100 

(1,800-  
4,600) 

900 (500- 

1,300) 

6,600 

(3,900-
9,700) 

4,000 

(2,400- 
5,900) 

0 (0-

0) 

700 

(400- 
1,100) 

Laos 

3,000 

(1,800- 
4,500) 

0 (0-0) 

500 

(300- 
800) 

100 (0-

100) 

300 (200-

400) 

400 (200- 

700) 

0 (0-

0) 
0 (0-0) 

Cambodia 

6,500 

(4,100- 

9,200) 

0 (0-0) 

500 

(300-

700) 

100 (0-

100) 

400 (200-

600) 

1,700 

(1,000-

2,500) 

0 (0-

0) 

100 (0-

100) 

Vietnam 

45,600 

(28,500-  

65,400) 

-100 (-

100-0) 

1,000 

(600- 

1,500) 

500 (300-

800) 

4,700 

(2,700-

7,100) 

12,800 

(7,400-

19,000) 

100 

(100-

200) 

300 

(200-

400) 
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Table 3. Summary of studies quanitfying sector-specific contributions to PM 2.5 concentrations and PM 2.5-related disease burden in China 

and/or India (shown in order of publication year). The approaches used to estimate the sector-specific contributions are given based on 

desriptions included in the published papers and suplementary information. The model grid spacing/resoluton is given in terms  of longitude 

x latitiude (for grid reolsutions in degrees, approximate conversions to km at the equator are also given). 

Reference 

Estimation approach for 

sector-specific contributions  Meteorol

ogy year 
Region 

Model (grid 

resolution) 

Anthropogenic 

emissions 

Exposure-
response 

function 
PM2.5  

Health 

burden 

Lelieveld et 

al. (2015) 

Source-

removal 
Attribution 2010 Global 

EMAC 

(1.1°×1.1° ~122 

x 122 km) 

EDGAR for 

2010 
GBD2010 

Silva et al. 

(2016) 

Source-

removal 
Substitution 2005 Global 

MOZART-4 

(0.50°x0.67° 
~56 x 74 km) 

RCP8.5 for 

2005a GBD2010 

Archer-

Nicholls et 

al. (2016) 

Source-

removal 
Attribution 2014 China 

WRF-Chem 

v3.6.1 (27 x 27 

km) 

EDGAR-

HTAPv2 for 

2010 

GBD2013 

GBD-MAPS 

(2016) 

Source-

tagging 
Attribution 2012 China 

GEOS-Chem 

East Asia 

(0.50° x0.67° 

~56 x 74 km)b 

MIX (for 2010) 

updated for 

2013 

GBD2013 

Butt et al. 

(2016) 

Source-

removal 
Substitution 2000 Global 

GLOMAP (2.8° 

x2.8° ~310 x 

312 km) 

MACCity for 

2000 

Ostro 

(2004) 

Karagulian 

et al. (2017) 

Source-

tagging 
N/A 2001 Global 

TM5-FASST 

(1°×1° ~110 x 
110 km)  

EDGAR-

HTAP2 for 
2010 

N/A 

Shi et al. 

(2017) 

Source-

tagging 
N/A 2013 China 

Source-oriented 

CMAQ (36 x 
36 km) 

MEIC for 2013 N/A 

Hu et al. 
(2017) 

Source-
tagging 

Attribution 
Not 
specified 

China 

WRF v3.6.1 + 

Source oriented 
CMAQ (36 x 

36 km) 

MEIC for 2013 GBD2010 

Aunan et al. 

(2018) 

Source-

removal 
Substitution 2012 China 

GEOS-Chem 
East Asia 

(0.50° x0.67° 

~56 x 74 km) 

2010 emissions 

updated for 

2013 (Ma et al., 

2017) 

GBD2010 

(Lookup 
table from 

Apte et al. 

(2015)c) 

Gao et al. 

(2018) 

Source-

tagging 
Attribution 2013 

China & 

India 

WRF-Chem 

v3.6.1 (60 x 60 

km) 

MIX for 2010 

(with MEIC for 

2013) 

GBD2015 

GBD-MAPS 

(2018) 

Source-

removal 
Attribution 2012 India 

GEOS-Chem 
South Asia 

(0.50°x0.67° 

~56 x 74 km)b 

IITB for 2015d GBD2015 

Gu et al. 

(2018) 

Source-

removal 
Attribution 2010 China 

WRF v3.7.1 + 

CMAQ v4.7.1 
(27 x 27 km) 

HTAPv2 for 

2010 

Gu and Yim 

(2016) 
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Guo et al. 

(2018) 

Source-

tagging 
Attribution 

Not 

specified 
India 

WRF v3.7.1 + 

CMAQ 5.0.1 
(36 x 36 km) 

EDGAR v4.3.1 

for 2010 
GBD2010 

Upadhyay et 

al. (2018) 

Source-

removal 
Substitution 2010 India 

WRF-Chem 

v3.6 (10 x 10 

km) 

EDGAR-

HTAPv2 for 

2010 

GBD2015; 

Chowdhury 

and Dey, 

2016 

Butt et al., 

in prep. 

(2019) 

Source-

removal 
Substitution 2015 Global 

TOMCAT-

GLOMAP (2.8° 

x2.8° ~310 x 

312 km) 

ECLIPSE for 

2015 
GBD2015 

This study 

& Conibear 

et al. 

(2018a) 

Source-

removal 

Substitution & 

attribution 
2014 

South & 

East 

Asia 

WRF-Chem 

v3.7.1 (30 x 30 

km) 

EDGAR-

HTAPv2 for 

2010 

GBD2015 

a Representative Concentration Pathway 8.5 global emissions inventory for 2005 (Riahi et al. 2011). 
b Spatially resolved fractional contributions of different source sectors estimated with GEOS-Chem simulations were multiplied by high-

resolution ambient PM 2.5 concentration estimates developed for the GBD2015 project to estimate the ambient PM 2.5 concentrations 

attributable to each source sector. 
c Derived from the IER functions for exposure to PM 2.5 and five mortality end-points, as established by Burnett et al. (2014). 5 
d IITB (the India Institute of Technology – Bombay) emission inventory (see GBD-MAPS (2018)). 
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Table 4. Comparison of relative sector-specific contributions to simulated annual mean PM 2.5 concentrations over China from this study and 

previous studies. Emission sectors are: agriculture (AGR), biomass burning (BBU), power generation (ENE), industrial non-power (IND), 

residential energy use (RES), land transport (TRA) and shipping (SHP). The largest relative contribution for each study is in bold. The 

average over all studies (multi-model mean) is shown for population-weighted, area-weighted, and all annual mean PM 2.5 concentrations 

and relative contributions. 5 

Reference 
Population-weighted 
or area-weighted 

annual mean PM2.5 

Annual mean 
PM2.5 

concentration 

for China 

Relative sector-specific contributions to simulated 

annual mean PM2.5 concentrations (%) 

RES IND ENE TRA BBU  AGR SHP 

Lelieveld et al. (2015) Population-weighted - 32 8 18 3 1 29  - 

Silva et al. (2016)a Population-weighted 34.2 32 26 17 6  -  -  - 

Archer-Nicholls et al. 

(2016) 

Not specified (assume 

population-weighted) 
- 37 - - - - -  - 

GBD-MAPS (2016)b Population-weighted 54.3 19.2 27.3 9.4 15.0 7.6 -  - 

Karagulian et al. (2017)c Not specified (assume 
population-weighted) 

55 26.7 38.2 14.5 6.4 3.0 11.3  - 

Hu et al. (2017) Population-weighted 62.6 21.7 30.5 10.3 5.7 4.9 12.2  

Aunan et al. (2018)d Population-weighted 58 19.0 -  -  -   -  -  - 

Butt et al., in prep. (2019) Population-weighted - 34 - - - - - - 

This study  Population-weighted 72.3 38.1 43.1 5.3 3.8 1.0 0.1 0.1 

Butt et al. (2016) Area-weighted - 13 - - - - - - 

Shi et al. (2017)e Area-weighted  - 18.5 26.6 9.6 4.7 6.4 10.8  - 

Gao et al. (2018)f Area-weighted - 24.2 35.7 33.2 6.9 - -  - 

Gu et al. (2018)g Area-weighted - 24.9 32.0 12.8 7.3 - 15.6 - 

This study Area-weighted 32.2 39.1 37.1 5.3 3.1 2.9 0.1 0.1 

Multi-model mean Population-weighted 56 29 29 12 7 4 13 - 

Multi-model mean Area-weighted - 24 33 15 6 5 9 - 

Multi-model mean All values 52 26 30 14 7 4 13 - 

a
 Relative contributions are for all of East Asia (including China). 

b
 Relative contributions calculated using mean values from Table 6 of GBD-MAPS (2016). ENE = Power plant coal; IND = Industrial coal + Non-

coal industrial; RES = Domestic coal + Domestic biomass burning. 
c
 Relative contributions calculated from national annual mean PM2.5 concentrations in Sect. 3.1 of Karagulian et al. (2017). Missing sector for China 

(open biomass burning) was calculated from the remaining fraction of PM2.5 (Table T5 is missing from the report). 10 
d
 Relative contributions calculated from values of "population-weighted exposure to ambient air pollution" in Table 1 of Aunan et al. (2018).  

e
 Relative contributions calculated as average fractions across all provinces from Table 3 of Shi et al. (2017).  

f
 Relative contributions taken from Fig. S5 of Gao et al. (2018), showing sectoral contributions to area-weighted mean PM2.5 concentrations.  

g
 Relative contributions for RES, IND and TRA sectors taken from the text (Sect. Impacts on air quality of Gu et al. (2018)) assuming these refer to 

area-weighted annual mean concentrations. Individual relative contributions for AGR and ENE sectors calculated from combined value in text 15 
(28.4%) and relative contributions of population-weighted concentrations in Fig. 2 of Gu et al. (2018).  
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Table 5. Comparison of relative sector-specific contributions to simulated annual mean PM 2.5 concentrations over India from this study and 

previous studies. Emission sectors are: agriculture (AGR), biomass burning (BBU), power generation (ENE), industrial non-power (IND), 

residential energy use (RES), and land transport (TRA). The largest relative contribution for each study is in bold. The average over all 

studies (multi-model mean) is shown for population-weighted, area-weighted, and all annual mean PM 2.5 concentrations and relative 

contributions.  5 

Reference 

Population-weighted 

or area-weighted 

annual mean PM2.5 

Annual mean 

PM2.5 

concentration 

for India 

Relative sector-specific contributions to 
simulated annual mean PM2.5 concentrations 

(%) 

RES IND ENE TRA BBU  AGR 

Lelieveld et al. (2015) Population-weighted - 50 7 14 5 7 6 

Silva et al. (2016) Population-weighted 28.5 43 11 15 7  -  - 

Karagulian et al. (2017)a Not specified (assume 
population-weighted) 

51 42 18 21 10 -  - 

GBD-MAPS (2018)b Population-weighted 74.3 23.9 9.9 7.6 2.1 5.5  - 

Guo et al. (2018) Population-weighted 32.8 55.5 19.7 6.8 1.9  - 11.9 

Butt et al., in prep. 

(2019) 
Population-weighted - 28 - - - - - 

This study & Conibear et 

al. (2018a) 
Population-weighted 57.2 51.6 16.3 21.0 10.3 2.8 0.3 

Butt et al. (2016) Area-weighted - 22 - - - - - 

Gao et al. (2018)c Area-weighted - 23.9 16.2 40.1 19.8  - - 

This study & Conibear et 
al. (2018a) 

Area-weighted 42.1 47.4 15.2 22.4 10.3 4.0 0.3 

Multi-model mean Population-weighted 49 42 14 14 6 5 6 

Multi-model mean Area-weighted - 31 16 31 15 - - 

Multi-model mean All values 49 38 14 18 8 5 6 

a Relative contributions calculated from national annual mean PM 2.5 concentrations quoted in Sect. 3.1 of Karagulian et al. (2017). Two 

sectors are missing for India (biomass burning and agriculture) so we were unable to calculate these fractions (Table T5 is missing from 

the report). 
b Relative contributions taken from Table 2 of GBD-MAPS (2018). 
c Relative contributions taken from Fig. S5 of Gao et al. (2018), showing sectoral contributions to national mean PM 2.5 concentrations. We 10 

assume the fraction quoted in the text (32% in India; Gao et al., 2018) is the contribution to the population-weighted annual mean PM 2.5 

concentration. 
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(a) 

 

(b) 

 

Figure 1. Simulated and measured annual mean surface PM 2.5 concentrations across South and East Asia. Observation data is from the 5 

World Health Organization database, 2016 & 2018. (a) Map of the simulated surface distribution of annual mean PM 2.5 for 2014 (underlying 

colours); overlying circles show measured annual mean PM 2.5 concentrations for available years (2009-2016). Regions in grey are outside 

the model domain. (b) Simulated versus measured annual mean PM 2.5 concentrations. Circles show measured annual mean PM 2.5 

concentrations for the year 2014; diamonds show measured annual mean PM 2.5 concentrations for years other than 2014. All simulated 

annual mean PM 2.5 concentrations are for the year 2014. The normalised mean bias factor (NMBF; Yu et al., 2006) and Pearson’s correlation 10 

coefficient (r) between simulated and measured values are displayed in the top left corner. 
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Figure 2. Relative contributions of different anthropogenic emission sectors to population-weighted annual mean PM 2.5 concentration by 

country in South and East Asia. Emission sectors include: agriculture (AGR), power generation (ENE), industrial non-power (IND), 

residential energy use (RES), land transport (TRA), open biomass burning (BBU) and shipping (SHP; China and Mainland Southeast Asia 

only). Where the percentage contributions from each sector do not add up to 100%, the residual fraction is assigned to “Natural and minor 5 

sources” (NAT). Relative contribution values of 10% or greater are shown on the quadrants. Results are shown for the region of China 

contained within the model domain, which accounts for 92% of the Chinese population (Sect 2.2). 
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Figure 3. Contribution of different emission sectors to population-weighted annual mean PM 2.5 concentration (a) by 

province/municipality/region in China; and (a) by state in India (Union Territories are not shown individually apart from Delhi National 

Capital Territory (NCT)). The colour of each province in China and each state in India indicates the sector that dominates contributions to 

population-weighted annual mean PM 2.5 in that province or state. The emission sectors are: agriculture (AGR), power generation (ENE), 

industrial non-power (IND), residential energy use (RES), land transport (TRA), open biomass burning (BBU) and shipping (SHP; China 5 

only). Where the percentage contributions from each sector do not add up to 100%, the residual fraction is assigned to “Natural and minor 

sources” (NAT).  
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Figure 4. Spatial distribution of the dominant anthropogenic emission sectors for annual mean PM 2.5 in South and East Asia. The dominant 

emission sector is calculated for each model grid cell as the emission sector that gives the largest reduction in simulated annual mean surface 

PM 2.5 concentration i.e. results in the largest absolute difference in µg m-3 from the control simulation. Regions in grey are outside the model 

domain. 5 

 
Figure 5. Spatial distribution of the dominant anthropogenic emission sectors for seasonal mean PM 2.5 in South Asia (top panel) and East 

Asia (bottom panel). DJF = December, January, February mean; MAM = March, April, May mean; JJA = June, July, August mean; SON = 

September, October, November mean. As for Fig. 4, the dominant emission sector is calculated for each model grid cell as the emission 

sector that gives the largest reduction in simulated seasonal mean surface PM 2.5 concentration i.e. results in the largest absolute difference 10 

in µg m-3 from the control simulation. Regions in grey are outside the model domain. The emission sectors are: agriculture (AGR), power 

generation (ENE), industrial non-power (IND), residential energy use (RES), land transport (TRA), open biomass burning (BBU) and 

shipping (SHP; East Asia only). 
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Figure 6. (a) Total annual premature mortality per country due to long-term exposure to ambient PM 2.5 from all emission sources. The 

colours show premature mortality by disease (chronic obstructive pulmonary disease (COPD), ischaemic heart disease (IHD), stroke (STR), 5 

lung cancer (LC), and lower respiratory infection (LRI)). (b) The number of averted annual premature mortalities due to a reduction in 

exposure to ambient PM 2.5, achieved by eliminating emissions from each sector individually (agriculture (AGR), power generation (ENE), 

industrial non-power (IND), residential energy use (RES), land transport (TRA), open biomass burning (BBU) and shipping (SHP; East Asia 

only). (c) The number of averted annual premature mortalities per 100,000 head of pop ulation. Error bars in (a), (b) and (c) represent 95% 

uncertainty intervals calculated from combining fractional errors in quadrature (see Sect. S1.1 in Supplementary Material). Mortality 10 

estimates for China include Hong Kong SAR, Macau SAR and Taiwan. 
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Figure 7. Comparison of relative sector-specific contributions to annual mean PM 2.5 concentrations in (a) China and (b) India from this 

study and previous studies. Bars show sector contributions to population-weighted annual mean PM 2.5 concentrations, with the exception of 

the bars associated with studies shown in the legend with an asterisk, which show estimated sector contributions to surface area-weighted 5 

annual mean PM 2.5 concentrations. In our study, population-weighted and area-weighted values differ by less than six percentage points. 

The mean relative contribution of each sectors is shown above the bars with the range of values (minimum to maximum) in parenthesis. The 

values for each study are also shown in Tables 4 and 5. The emission sectors are: agriculture (AGR), power generation (ENE), industrial 

non-power (IND), residential energy use (RES), land transport  (TRA), and open biomass burning (BBU). 
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