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S1 Health impact estimation 

Equation S1 expresses premature mortality (M) from disease endpoint (j) in grid cell (i) as a function of the population of the 10 

grid cell (P), the baseline mortality rate (I) and relative risk (RR) at the PM2.5 concentration (c). Regional estimates were then 

calculated through summing all disease endpoints (j) over all grid cells (i), and split by state/province using shapefiles. 

𝑀𝑖,𝑗 = 𝑃𝑖𝐼𝑗(𝑅𝑅𝑗,𝑐 − 1)/𝑅𝑅𝑗,𝑐    (S1) 

To be consistent with the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD2015) , we used country- 

and disease-specific baseline mortality rates from the GBD2015 in 5-year groupings for both genders combined (Institute for 15 

Health Metrics and Evaluation, 2016). This was done for mean, upper and lower confidence intervals. 

Years of life lost (YLL) are estimated following Eq. S2 (Devleesschauwer et al., 2014), where the number of deaths per disease 

and grid cell (Mi,j) is multiplied by the age-specific life expectancy (LE) remaining at the age of death from the standard 

reference life table from GBD2015 (GBD Collaborative Network, 2016). 

YLL𝑖,𝑗 = 𝑀𝑖,𝑗LE    (S2) 20 

This study estimates health impacts from long-term exposure of whole populations to annual mean ambient PM 2.5. This study 

does not account for indoor exposure to pollution, and the health impacts resulting from ambient PM 2.5 exposure therefore do 

not represent the total PM2.5 related premature mortality burden. Household air pollution is a serious issue and there is a n eed 

to address this in conjunction with ambient air pollution both in India (Balakrishnan et al., 2013) and China (Du et al., 2018). 

 25 

mailto:c.l.s.reddington@leeds.ac.uk


2 

 

S1.1 Uncertainties 

We estimate an error in each term, and then combine the fractional errors in quadrature (i.e. square ro ot of the sum of squares). 

Uncertainty intervals at the 95% level (95UI) were determined reflecting the statistical uncertainty of the parameters in Eq.  S1 

(Lelieveld et al., 2013). This includes the population data having an uncertainty range of ±2%  (GPWv4, 2016). The GBD2015 

baseline mortality estimates  (Institute for Health Metrics and Evaluation, 2016) have defined upper and lower uncertainty 5 

values. For India, the 95UI in annual mean PM2.5 concentrations was estimated for each grid cell through ass uming a Gaussian 

distribution and applying ±2 standard deviations from weekly PM 2.5 concentrations. The uncertainties in PM2.5 were then 

applied to the derived uncertainties in the IER for the RR at both 5% and 95% confidence levels for India as in Conibea r et al. 

(2018a). 
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Supplementary tables 

Table S1. Comparison of sector-specific averted or attributed annual premature mortality estimates for China from this study 20 

and previous studies. Sector-specific mortality estimates are split into those calculated using the substitution approach (i.e. the 

number of averted premature mortalities resulting from complete mitigation of each sector) and those calculated using the 

attribution approach (i.e. the number of premature mortalities attributed to each sector). To compare with previous studies t hat 

have used the mortality-attribution method (see Table 3) we have calculated the number of annual premature mortalities  

attributed to each emission sector for this study. Emission sectors are: agriculture (AGR), open biomass burning (BBU), power 25 

generation (ENE), industrial non-power (IND), residential energy use (RES) and land transport (TRA). 
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 Reference 
PM2.5-mortality 

(all sources) 
RES IND ENE TRA BBU  AGR 

  Substitution Approach 

Silva et al. 

(2016)a 

1,060,000 

(696,000-

1,440,000) 

223,000 

(158,000- 

299,000) 

178,000 

(127,000- 

239,000) 

117,000 

(84,500- 

156,000) 

48,000 

(34,700-

62,500) 

- - 

Butt et al. 

(2016) 
- 

121,075 

(44,596 – 

195,443) 

- - - - - 

Aunan et al. 

(2018) 

1,146,000 

(1,088,000- 

1,181,000) 

397,000 

(340,000- 

442,000) 

- - - - - 

Butt et al., 

in prep. 
(2019) 

- 

187,472 

(153,938 - 
224,457) 

- - - - - 

This study  

1,046,900 

(846,100-  

1,286,900) 

187,900 

(140,700- 

250,300) 

203,600 

(152,300- 

271,100) 

22,300 

(16,500- 

30,400) 

14,800 

(10,800-

20,500) 

7,300 

(5,600-  

9,300) 

500 

(300- 

700) 

  Attribution Approach 

Lelieveld et 
al. (2015)b 1,357,000 434,240 108,560 244,260 40,710 13,570 393,530 

Archer-

Nicholls et 

al. (2016) 

916,000  

(821,000-

933,000) 

341,000 

(306,000-

370,000) 

- - - - - 

GBD-

MAPS 

(2016)c 

915,898  

(821,470-

993,077) 

177,494 

(159,160-

192,519) 

250,374 

(224,455-

271,509) 

86,531 

(77,654-

93,804) 

137,395 

(123,182-

148,899) 

70,228 

(63,006-

76,067) 

- 

Hu et al. 

(2017)d 

1,300,000 

(594,000- 

1,777,000) 

282,000 

(129,000- 

386,000) 

397,000 

(181,000- 

542,000) 

134,000 

(61,000- 

183,000) 

74,000 

(34,000- 

101,000) 

64,000 

(29,000- 

87,000) 

159,000 

(72,000- 

217,000) 

Gao et al. 

(2018) 

1,331,100 
(824,800- 

1,914,600) 

- - 
520,000 
(324,300-

747,300) 

- - - 

Gu et al. 

(2018)b 

1,143,000 

(168,000-

1,796,000) 

229,000 

(34,000-

354,000) 

414 000 

(61,000-

640,000)) 

183,000 

(27,000- 

288,000) 

73,000 

(11,000-

115,000) 

- 

129,000 

(19,000-

203,000) 

Butt et al., 

in prep. 
(2019) 

- 

406,560 

(234,305- 
598,285) 

- - - - - 

This study 

1,046,900 

(846,100-  

1,286,900) 

398,600 

(322,200-  

 490,000) 

451,500 

(364,900-  

 555,000) 

55,000 

(44,400-  

 67,600) 

39,400 

(31,800-  

 48,400) 

10,100 

(8,100-  

 12,400) 

1,300 

(1,000-  

 1,600) 

a Values are for all of East Asia (including China). 
b Values show total and attributed premature mortality due to exposure to PM 2.5 and ozone air pollution combined. 
c Values taken from Table 7 of GBD-MAPS (2016). ENE = Powerplant coal; IND = Industrial coal + Non-coal industrial; RES = Domestic 

coal + Domestic biomass burning. 
d Values calculated from total premature mortality estimates in Table S2 and relative source contributions in Table 1 of Hu et al. (2017). 5 
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Table S2. Comparison of sector-specific averted or attributed annual premature mortality estimates for India from this study 

and previous studies. Sector-specific mortality estimates are split into those calculated using the substitution approach (i.e. 

the number of averted premature mortalities resulting from complete mitigation of each sector) and those calculated using 

the attribution approach (i.e. the number of premature mortalities attributed to each sect or). To compare with previous 

studies that have used the mortality-attribution method (see Table 3) we have calculated the number of annual premature 5 

mortalities attributed to each emission sector for this study. Emission sectors are: agriculture (AGR), open biomass burning 

(BBU), power generation (ENE), industrial non-power (IND), residential energy use (RES) and land transport (TRA). 

Reference 
PM2.5-mortality 

(all sources) 
RES IND ENE TRA BBU  AGR 

 

 Substitution Approach 

Silva et al. 

(2016) 

392,000  

(129,000-590,000) 

173,000 

(88,000- 
253,000) 

36,400 

(18,900- 
52,500) 

39,200 

(18,900- 
57,100) 

19,900 

(11,100-
28,800) 

- - 

 

Butt et al. 

(2016) 
- 

72,890 

(26,891- 

117,360) 

- - - - - 

 

Upadhyay et 
al. (2018) 

793,985 
378,295 
(175,002-

575,293) 

45,999 
(20,682-

70,021) 

18,201 
(7,777-

27,786) 

28,180 
(12,459-

42,934) 

- - 

 

Butt et al., in 

prep. (2019) 
- 

141,757 

(122,960 - 
170,933) 

- - - - - 

 

This study & 

Conibear et 

al. (2018a) 

990,000  

(660,200-

1,350,800) 

255,600 

(161,800-

339,700) 

66,500 

(44,700-

89,600) 

90,400 

(59,600-

121,500) 

43,000 

(28,900-

57,900) 

12,300 

(8,400-

16,450) 

1,000 

(700-

1,400) 

 

 Attribution Approach 

Lelieveld et 

al. (2015)a 644,993 322,497 45,150 90,299 32,250 45,150 38,700 

 

Gao et al. 
(2018) 

803,800  

(493,300- 
1,135,200) 

- - 

267,900 

(165,600- 
377,600) 

- - - 

 

GBD-MAPS 

(2018)b 

1,090,400 

(939,600- 

1,254,600) 

 267,700 

(230,000-

315,000) 

106,200 

(91,100- 

121,700) 

82,900 

(71,600- 

94,700) 

23,100 

(19,900 - 

26,400) 

66,200 

(56,700- 

76,800) 

- 

 

Guo et al. 

(2018)c 

1,040,000 

(530,000- 

1,540,000) 

577,200 

(294,150-  

854,700) 

204,880 

(104,410- 

303,380) 

70,720 

(36,040- 

104,720) 

19,760 

(10,070- 

29,260) 

- 

123,760 

(63,070- 

183,260) 

 

Butt et al., in 
prep. (2019) 

- 

324,301 

(197,379- 
464,012) 

- - - - - 

 

This study & 

Conibear et 

al. (2018a) 

990,000  

(660,200-

1,350,800) 

510,500 

(340,500- 

696,700) 

161,000 

(107,300- 

219,600) 

207,700 

(138,500- 

283,400) 

102,100 

(68,100- 

139,300) 

27,700 

(18,500- 

37,800) 

3,500 

(2,300- 

4,700) 

 

a Values show total and attributed premature mortality due to exposure to PM 2.5 and ozone air pollution combined. 
b Values taken from Table 3 of GBD-MAPS (2018). ENE = Powerplant coal; IND = Industrial coal + Brick production. 
c Sector-specific values calculated from total excess mortality and source contribution fractions in Table 2 of Guo et al. (2018). 10 
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Supplementary figures 
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Figure S1. Simulated (red) and measured (grey) daily mean surface PM2.5 concentrations during 2014 in three megacities in 

China (top panel: Beijing municipality; middle panel: Hong Kong Special Administrative Region (SAR); bottom panel: 

Shanghai municipality). The location of each megacity is indicated with a red point on the  map inset. The normalised mean  

bias factor (NMBF; Yu et al., 2006) and Pearson’s correlation coefficient (r2) between modelled and observed daily mean  10 

PM2.5 concentrations are shown in the upper left corner of the plots on the right. Measured PM 2.5 concentrations for each 

megacity are averages of measurement data from multiple stations within the city boundaries. The monitoring stations are 

operated by the China National Environmental Monitoring Center (CNEMC) for Mainland China and the Environmental 

Protection Department for the Government of Hong Kong SAR. Measurement data for Beijing and Shanghai were downloaded 

from http://beijingair.sinaapp.com/ and data for Hong Kong was downloaded from the Hong Kong Environmental Protection 15 
Department website (https://cd.epic.epd.gov.hk/EPICDI/air/station/) (see Silver et al. (2018) for further details). 
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Figure S2. Spatial distribution of (a) total estimated annual premature mortality due to long-term exposure to PM2.5 

concentrations from all sources and (b-h) averted annual premature mortality from eliminating different anthropogenic 

emission sectors over South and East Asia. Emission sectors  are: (b) Agriculture (AGR); (c) Open biomass burning (BBU);  

(d) Energy/power generation (ENE); (e) Industry (IND); (f) Residential (RES); (g) Shipping (SHP) – only estimated for the 

East Asia domain; and (h) Land transport (TRA). 5 

 

 

 

 

(a) 10 

 
(b) 

 

Figure S3. Estimated annual premature mortality due to long-term exposure to ambient PM2.5 from all sources (a) by country 

– values from this study are compared to those from GBD2015 in Cohen et al. (2017); (b) in China – values from this study 15 

are compared to previous studies listed in Table 3 and Table S1. 
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