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Abstract 14 

Gasoline evaporative emissions have become an important anthropogenic source of urban 15 

atmospheric volatile organic compounds (VOCs) and secondary organic aerosol (SOA). These 16 

emissions have a significant impact on regional air quality, especially in China where car ownership 17 

is growing rapidly. However, the contribution of evaporative emissions on the secondary aerosol 18 

(SA) is not clear in air pollution complex in which high concentration of SO2 and NH3 was present. 19 

In this study, the effects of SO2 and NH3 on SA formation from unburned gasoline vapors were 20 

investigated in a 30 m3 indoor smog chamber. It was found that increase in SO2 and NH3 21 

concentrations (0−151 ppb and 0−200 ppb, respectively) could promote linearly the formation of 22 

SA, which could be enhanced by a factor of 1.6−2.6 and 2.0−2.5, respectively. Sulfate was most 23 

sensitive to the SO2 concentration, followed by organic aerosol, which was due not only to the acid 24 

catalytic effect, but also related to the formation of organic sulfur-containing compounds. In the 25 

case of increasing NH3 concentration, ammonium nitrate increased more significantly than organic 26 

aerosol, and nitrogen-containing organics were also enhanced, as revealed by the results of positive 27 

matrix factorization (PMF) analysis. New particle formation (NPF) and particle size growth were 28 

also significantly enhanced in the presence of SO2 and NH3. This work indicates that gasoline 29 

evaporative emissions will be a significant source of SA, especially in the presence of high 30 

concentrations of SO2 and NH3. Meanwhile, these emissions might also be a potential source of 31 

sulfur- and nitrogen-containing organics. Our work provides a scientific basis for the synergistic 32 

emission reduction of secondary aerosol precursors, including NOx, SO2, NH3 and particularly 33 

VOCs, to mitigate PM pollution in China.  34 
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1 Introduction 38 

Many areas in China such as the Beijing - Tianjin - Hebei region (BTH), Yangtze River Delta (YRD), 39 

Sichuan Basin and Pearl River Delta (PRD) are suffering from severe haze events (Li et al., 2017; Sun et al., 40 

2016; Shen et al., 2015; He et al., 2014; Huang et al., 2014; Guo et al., 2014; Tan et al., 2009). Haze pollution 41 

has attracted widespread attention in recent years because of its adverse effects on human health, climate 42 

change and visibility (Thalman et al., 2017; Davidson et al., 2005; Pöschl, 2005).  43 

During the haze events, high concentrations of SO2, NH3, and volatile organic compounds (VOCs) have 44 

always been observed (Zou et al., 2015; Liu et al., 2013; Meng et al., 2011; Yang et al., 2009), which are the 45 

precursors of secondary aerosol. Although the emission of SO2 has decreased continuously since 2005 (Lu 46 

et al., 2010), China is still the largest contributor of SO2 emissions in the world, mainly owing to the great 47 

demand for coal combustion (Bauduin et al., 2016). Also, high concentrations of SO2 of more than 100 ppb 48 

(parts per billion) have been observed in northern China, especially during the heating period (Hou et al., 49 

2016; Tong et al., 2016; Yang et al., 2009). As for atmospheric NH3, as an alkaline inorganic gas, its main 50 

emission source is agricultural practices in China (Zhang et al., 2018; Fu et al., 2015). Vehicles equipped 51 

with three-way catalytic converters also contributes to NH3 emission in the urban areas (Sun et al., 2017). 52 

Sometimes, high concentrations of NH3 of up to 100 ppb have been observed in Beijing, China (Ianniello et 53 

al., 2010), which mainly derived from the regionally transportation of agricultural activity and fertilizer use, 54 

while could not exclude the influence by traffic emissions at local Beijing (Pan et al., 2016; Kang et al., 55 

2016). With respect to VOCs, aromatics from anthropogenic sources (especially vehicle-related sources in 56 

urban areas) are critical secondary organic aerosol (SOA) precursors (Liu et al., 2015a; Gordon et al., 2014; 57 

Platt et al., 2013; Calvert et al., 2002). These aromatics could react with oxidants (e.g., O3, OH, and NO3 58 

radicals), and undergo multi-step oxidative processes to form multifunctional products, which have 59 
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sufficiently low volatility to contribute to SOA via gas-particle partitioning (Hallquist et al., 2009; Atkinson 60 

and Arey, 2003).  61 

Researches have shown that secondary aerosol (SA) makes a significant contribution (30−77%) to 62 

PM2.5 (particles with diameter less than 2.5 µm) during the severe haze events in China (Huang et al., 2014; 63 

Guo et al., 2014; Jimenez et al., 2009). However, there still exists a significant gap between the predicted 64 

SA derived from the current atmospheric quality models and that observed in field observations (Zhao et al., 65 

2018; Yang et al., 2018; Zheng et al., 2015). Therefore, considering the characteristics of complex pollution 66 

in China, it is crucial to study the synergistic effects of SO2 and NH3 on the formation of SA, which have 67 

been considered an important potential source of SA formation (Zhao et al., 2018; Chu et al., 2016; Liu et 68 

al., 2016; Santiago et al., 2012; Na et al., 2007). 69 

A few studies have focused on the influence of SO2 or NH3 on SA formation. Jang and Kamens (2001) 70 

first reported the acid-catalytical effect of acidic H2SO4 on the oxidation of atmospheric carbonyls. And the 71 

promotion effect of SO2 were further found on the SA formation from typical biogenic (e.g., isoprene and α-72 

pinene) (Lin et al., 2013; Jaoui et al., 2008; Kleindienst et al., 2006; Edney et al., 2005) and anthropogenic 73 

(e.g., toluene, o-xylene, 1,3,5-trimethylbenzene, and gasoline vehicle exhaust) precursors (Chu et al., 2016; 74 

Liu et al., 2016; Santiago et al., 2012) through acid-catalyzed heterogeneous reactions (Jang et al., 2002; 75 

Jang et al., 2003a, b; Czoschke et al., 2003), which promote the reactive uptake process of organic species 76 

or enhance the formation of high-molecular-weight compounds (Liggio and Li, 2008; Liggio et al., 2007; 77 

Liggio and Li, 2006). With regard to the role of NH3 in SA formation, knowledge is still limited. In previous 78 

studies, inconsistent impacts of NH3 on SA formation have been reported under different precursor systems. 79 

For example, NH3 could elevate SA formation in the α-pinene/ozone oxidation system through acid-base 80 

reactions (Na et al., 2007), while the effects of NH3 neutralization were masked by other multiple factors 81 
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and did not show significant influence on isoprene-derived SOA formation (Lin et al., 2013), and addition 82 

of NH3 even significantly reduced the SA formation in the styrene/ozone system, which was caused by 83 

nucleophilic attack from the NH3 molecule leading to rapid decomposition of the major aerosol products (Na 84 

et al., 2006). For the photo-oxidation of aromatic VOCs (e.g., toluene, o-/m-/p-xylene), the presence of NH3 85 

could facilitate new particle formation (NPF) and particle growth, subsequently leading to increased SA 86 

formation (Li et al., 2018; Liu et al., 2015b). 87 

At the present time, the effects of SO2 and NH3 on SA formation have rarely been studied under highly 88 

complex pollution conditions (Chu et al., 2016). Vehicular evaporative emissions have been reported to be 89 

non-negligible contributors (39.20 %) to ambient VOCs from anthropogenic sources compared with 90 

vehicular tailpipe emissions (Liu et al., 2017a). In addition to short-chain alkanes, a certain proportion of 91 

aromatics and alkanes (C6 to C12) were also contained in the evaporative emissions (Liu et al., 2008; Zhang 92 

et al., 2013). Previous studies have reported that aromatics and long-chain (C6 to C19) alkanes, which are 93 

intermediate volatility organic compounds (IVOCs) (Donahue et al., 2006), could contribute to SOA 94 

formation (Pye and Pouliot, 2012; Tkacik et al., 2012; Lim and Ziemann, 2005). Therefore, it is necessary 95 

to study the influence of SO2 and NH3 on SA formation from evaporative emissions.  96 

In this study, unburned gasoline vapors were used as a substitute for evaporative emissions, and the 97 

roles of SO2 and NH3 on SA formation from the photo-oxidation of unburned gasoline vapors were 98 

investigated in a 30 m3 indoor smog chamber, in order to understand the formation potential of SA from 99 

oxidation of gasoline vapor in the cocktail of pollutants in Beijing. The respective influences of SO2 and 100 

NH3 on both the microphysics and chemistry of SA formation were examined. Meanwhile, the chemical 101 

compositions of the formed SOA in the presence of SO2 and NH3 were further explored by applying positive 102 

matrix factorization (PMF) analysis. The formation potentials of SA, sulfur- and nitrogen-containing 103 
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organics from vehicular evaporative emissions in the presence of SO2 and NH3 were evaluated and discussed. 104 

2 Materials and Methods 105 

2.1 Gasoline fuel 106 

The utilized gasoline fuel with grade 92# was collected (refer to the standard Method for manual 107 

sampling of petroleum liquids (GB/T 4756-2015)) from a gas station located in Beijing. The gasoline 108 

complies with the China V gasoline fuel standard. It contains 65.1 % (v/v) alkanes (C6 to C12), 22.8 % (v/v) 109 

aromatics (mainly including benzene, toluene, xylene, trimethylbenzene) and 12.1 % (v/v) alkenes. The 110 

composition of the gasoline is similar to the gasoline collected in North China reported by Tang et al. (2015) 111 

and could represent the gasoline used in most areas of China for studying SA formation potential. Details of 112 

the gasoline composition are given in Table S1.  113 

2.2 Smog chamber facility 114 

A series of photochemical experiments with unburned gasoline vapors in the absence or presence of 115 

SO2 or NH3 were performed in a 30 m3 indoor smog chamber at the Research Center for Eco-Environmental 116 

Sciences, Chinese Academy of Sciences (RCEES-CAS). The detailed schematic structure of the indoor smog 117 

chamber is given in Fig. S1 in the Supplement and described elsewhere (Chen et al., 2019a, b). Briefly, the 118 

cuboid chamber reactor (L × W × H = 3.0 × 2.5 × 4.0 m, S/V = 1.97 m-1) was irradiated by 120 UV lamps 119 

(Philips) with peak intensity at 365 nm, providing a NO2 photolysis rate of 0.55 min-1. The interior was 120 

coated with 125 μm-thick FEP100 film (DuPontTM, US) and the chamber was located in a temperature-121 

controlled room, in which the temperature (T) and relative humidity (RH) could be controlled mechanically. 122 

A three-wing stainless-steel fan coated with Teflon was installed inside the reactor to guarantee that the gas 123 

and particle phase species mix sufficiently before photochemical reaction. 124 

The chamber was also equipped with a series of gas- and particle-phase monitoring instruments. For 125 
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gaseous NOx, O3 and SO2, a chemiluminescence analyzer (Model 42i-TL, Thermo Fisher Scientific, USA), 126 

a UV photometric analyzer (Model 49i, Thermo Fisher Scientific, USA) and a pulsed fluorescence analyzer 127 

(Model 43i, Thermo Fisher Scientific, USA) were used to monitor the concentrations in real time, 128 

respectively. The VOC species in gasoline were measured with a gas chromatograph (7890B GC, Agilent, 129 

USA) equipped with a DB-624 column (60 m × 0.25 mm × 1.40 μm, Agilent, USA) and a mass spectrometry 130 

detector (5977A MS, Agilent, USA) (GC-MS). In addition, proton-transfer-reaction time of flight mass 131 

spectrometry (PTR-TOF) (Ionicon Analytik GmbH, Austria) was also used for the measurement of gas-132 

phase hydrocarbons and their intermediate products (Yuan et al., 2017). The size distribution and number 133 

concentration of the formed particulate matter (PM) were measured using a scanning mobility particle sizer 134 

(SMPS, TSI, USA), which was composed of a differential mobility analyzer (DMA, 3080 Classifier, TSI, 135 

USA) coupled with a condensation particle counter (CPC, 3776, TSI, USA). The mass concentration was 136 

estimated based on the volume concentration and the density of PM calculated from the equation ρ = dva/dm, 137 

where dva is the mean vacuum aerodynamic diameter measured by an Aerodyne high-resolution time-of-138 

flight aerosol mass spectrometer (HR-ToF-AMS) and dm is the mean electrical mobility diameter measured 139 

by SMPS (DeCarlo et al., 2004). The calculated density of PM ranged from 1.5 to 1.6 g cm-3 in the different 140 

reaction systems, which was in the range of density of SOA derived from aromatic hydrocarbons (1.24−1.48 141 

g cm-3) (Sato et al., 2010) and ammonium nitrate (NH4NO3, 1.72 g cm-3) (Bahreini et al., 2005) and could 142 

be comparable with the previous studies (Li et al., 2018). The mass concentration and chemical composition 143 

of PM were simultaneously monitored using a high-resolution time-of-flight aerosol mass spectrometer (HR-144 

ToF-AMS, Aerodyne Research Inc. USA). For all experiments, the HR-ToF-AMS operated in a cycle 145 

including two modes, 3 min V mode and 2 min W mode. Specifically, V mode (higher signal) can obtain the 146 

mass concentrations of the aerosols and W mode (higher resolution) can obtain high resolution mass spectral 147 
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data. The inlet flow rate, ionization efficiency (IE), and particle sizing were calibrated according to the 148 

standard protocols (Drewnick et al., 2005; Jimenez et al., 2003; Jayne et al., 2000), using the size-selected 149 

pure ammonium nitrate (AN) particles. All HR-ToF-AMS data were analyzed with ToF-AMS analysis 150 

toolkit SQUIRREL 1.57I/PIKA 1.16I version, in Igor Pro Version 6.37. HR-ToF-AMS results were also 151 

corrected using the mass concentration derived from SMPS according to the same method as Gordon et al. 152 

(2014), details of this correction are shown in the Supplement. As for the RH control system, it is achieved 153 

by vaporizing Milli-Q ultrapure water contained in a 5.0 L high pressure resistant container and the water 154 

vapor is flushed with purified dry zero air into the chamber. T and RH were monitored real-time using a 155 

hydro-thermometer (Vaisala HMP110) during the entirety of each experiment. 156 

2.3 Wall loss corrections 157 

The measured particle concentration was corrected in accordance with the relationship between the 158 

deposition rate (kdep) and particle diameter (Dp, nm) (i.e., kdep = 4.15  10-7  Dp
1.89 + 1.39  Dp

-0.88), which 159 

was described by Takekawa et al. (2003). The wall loss rates of NO2, NO, O3, SO2 and VOC species were 160 

determined to be (1.67 ± 0.25)  10-4, (1.32 ± 0.32)  10-4, (3.32 ± 0.21)  10-4, (4.52 ± 0.11)  10-4 and (2.20 161 

± 0.39)  10-4 min-1, respectively. Therefore, the wall loss of gas phase species was evaluated to be less than 162 

5% of their maximum concentration in this study.  163 

Wall losses of semi-volatile organic compounds (SVOCs) and low-volatility organic compounds 164 

(LVOCs) would lead to a substantial underestimation of SA formation (Krechmer et al., 2016; Ye et al., 2016; 165 

Zhang et al., 2015; Zhang et al., 2014), which is caused by the competition between these vapors condensing 166 

onto particles versus onto chamber walls. This competition could be evaluated by the corresponding 167 

timescales associated with reaching gas-to-particle partitioning equilibrium (τ̅g-p) and vapor wall loss (τg-w) 168 

(Zhang et al., 2014), and this underestimation of SA formation could be approximately quantified by the 169 
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ratio of these two timescales (i.e., τ̅g-p/τg-w). According to the methods described by Zhang et al. (2014), τ̅g-170 

p and τg-w could be estimated assuming an upper bound and a lower bound of the molecular mass of organic 171 

vapors (MW) (100−300 g mol-1) (as discussed in the Supplement). In order to accurately quantify the SA 172 

formation, the underestimation caused by the loss of SVOCs and LVOCs (include sulfuric acid gas) to the 173 

chamber walls was taken into account in this study. In this study, the SA yields were underestimated by a 174 

factor of 1.97−2.82 fold when considering the ratio of these two timescales (i.e., τ̅g-p/τg-w), which showed a 175 

decreasing trend with the increase of the SO2 and NH3 initial concentrations, suggesting that an increasing 176 

proportion of vapors is partitioned onto the suspended particle surface rather than the chamber wall. 177 

2.4 Experimental conditions 178 

Prior to each experiment, the chamber reactor was flushed by purified and dry zero air for about 24−36 179 

h at a flow rate of 100 L min-1 until almost no gas-phase species (i.e., NOx, O3 and SO2) could be detected 180 

(< 1 ppb) and the particle number concentration was < 10 cm-3. Before the experiments, the chamber was 181 

humidified to ~50 % RH by passing purified zero air through ultra-pure water (18.2 MΩ, Millipore Milli-182 

Q). After that, a known volume of liquid gasoline (100 μL) was injected into the chamber through a heated 183 

Teflon line system (~100 C) carried by purified dry zero air to ensure that all were evaporated into the 184 

chamber. Subsequently, NO, SO2 or/and NH3 were successively injected into the chamber from standard gas 185 

cylinders using mass flow controllers. The initial VOCs/NOx ratio (ppbC ppb-1) was kept constant (Table 1). 186 

In order to reduce the adsorption of NH3 in the pipeline, the NH3 flow in a bypass line was balanced for 187 

about 30 min before it was injected into the chamber. The concentrations of NO and SO2 were continuously 188 

monitored until they were stable, ensuring that the gaseous species mixed well in the chamber. For the 189 

concentration of NH3, the value was estimated according to the amount of NH3 introduced and the volume 190 

of the reactor chamber. The experiment was then conducted for about 8 h after turning off the fan and turning 191 
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on the UV lights. All the experiments were performed at a temperature of 26 ± 1 C and wet conditions (RH 192 

= 50 ± 3 %). The detailed experimental conditions are listed in Table 1. The letters in the abbreviations 193 

represent the reactants introduced into the chamber reactor for each experiment. For example, SGN is an 194 

experiment with the presence of sulfur dioxide (S), gasoline vapor (G), and nitrogen oxides (N). Four 195 

experiments (Exps. SGN1, SGN2, SGN3, and SGN4) were carried out at different SO2 initial concentrations. 196 

AGN is an experiment with the presence of ammonia (A), gasoline vapor (G), and nitrogen oxides (N). Two 197 

experiments (Exps. AGN1 and AGN2) were carried out at different NH3 initial concentrations. 198 

3 Results and discussion 199 

3.1 Effect of SO2 and NH3 on the gas-phase species 200 

Time-resolved concentrations of inorganic and organic gas-phase species during the photo-oxidation of 201 

gasoline/NOx in the absence or presence of SO2 and NH3 are shown in Fig. S2 and Fig. S3 in the Supplement, 202 

respectively. After turning on the UV lights, NO was rapidly converted to NO2. At the same time, O3 was 203 

gradually generated, with a maximum concentration of up to 350 ppb (Fig. S2). As shown in Fig. S2, there 204 

was no obvious difference in the variation of NOx and O3 in the presence of SO2 or NH3. Additionally, the 205 

decay of typical VOC precursors (e.g., benzene, toluene, methylcyclopentane, methylcyclohexane) 206 

measured by PTR-TOF and GC-MS are given in Fig. S3, which traced very closely with each other (Fig. S4, 207 

in the Supplement). There were also no observable differences in these precursors VOCs among these 208 

experiments. According to the decay curves of aromatic hydrocarbons, the OH radical concentrations were 209 

estimated to be (7.54−8.40) × 106 molecules cm-3, which were also similar among these experiments. This 210 

was consistent with the previous study conducted by Chu et al. (2016), who found that the presence of SO2 211 

and NH3 did not significantly impact the OH concentration during the photo-oxidation of toluene in the 212 

presence of NOx. 213 
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However, as for the gas-phase intermediates formed during the photo-oxidation of gasoline/NOx under 214 

different conditions, such as small molecule oxygenated VOCs (OVOCs), which could also be measured by 215 

PTR-TOF. The time series of OVOCs concentration would vary with the concentration of SO2 and NH3. For 216 

example, we observed that acetic acid concentration decreased with the increased concentration of SO2 (Fig. 217 

S5, in the Supplement), suggesting that the uptake of acetic acid may be enhanced. This phenomenon was 218 

consistent with those reported by Liggio and Li (2006), who observed that the uptake of organic compounds 219 

under acidic conditions would be enhanced significantly. Moreover, the presence of high concentrations of 220 

SO2 would generate gaseous H2SO4, which would contribute to the formation of particle phase, as discussed 221 

in the next section. Similarly, the concentration of acetic acid also shown an obviously decreased trend in 222 

the presence of NH3 (Fig. S5, in the Supplement), which could be caused by the reaction of acid-base reaction 223 

or the uptake of acetic acid in the presence of NH3 (Liu et al., 2015c). 224 

3.2 Role of SO2 in secondary aerosol formation 225 

To investigate the effects of SO2 on SA formation from the photo-oxidation of gasoline/NOx, smog 226 

chamber experiments with different SO2 initial concentrations were carried out (Table 1). As shown in Fig. 227 

1, compared to the experiments without the addition of SO2, the SA concentration was enhanced to different 228 

degrees (1.6−2.6 times) in the presence of different SO2 concentrations (35−151 ppb, i.e., 100−431 μg m-3). 229 

As for each chemical species (i.e., organics, nitrate, sulfate, and ammonium), they all showed a trend of 230 

linear increase with the increase of SO2 concentration (Fig. 2), especially for the sulfate (k = 8.4×10-2) and 231 

organic aerosol (k = 2.9×10-2). Previous studies have also revealed its promoting role on SA formation from 232 

different precursors (Zhao et al., 2018; Liu et al., 2017b; Díaz-de-Mera et al., 2017; Liu et al., 2016; Chu et 233 

al., 2016). 234 

Additionally, the particle number concentrations and size growth were greatly enhanced by the presence 235 
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of SO2. As evident from Fig. 3, the corresponding maximal particle number concentrations (5.82 × 104−1.91 236 

× 105 cm-3) were significantly enhanced by a factor of 2.9−3.3 in the presence of SO2. This universal 237 

phenomenon has been reported by many studies (Díaz-de-Mera et al., 2017; Liu et al., 2017b; Liu et al., 238 

2016; Chu et al., 2016). For example, the maximal particle number concentrations were enhanced by the 239 

presence of SO2 (~130 ppb) to one order of magnitude in the photo-oxidation of high concentration 240 

toluene/NOx (Chu et al., 2016). For complex precursor systems (gasoline vehicle exhaust), Liu et al. (2016) 241 

have also found that under high SO2 concentration (~150 ppb) conditions, the maximum particle number 242 

concentrations increased by 5.4−48 times compared to those without SO2 during the photo-oxidation of 243 

gasoline vehicle exhaust. This higher magnification of SO2 might be related to the different VOCs 244 

composition between evaporative emissions and gasoline vehicle exhaust, especially the aromatic and 245 

IVOCs (Liu et al., 2017). Our recent study demonstrated that SOA formation could be significantly enhanced 246 

by the increase of aromatic content (Chen et al., 2019b). Those unspeciated organic emissions (e.g., IVOCs) 247 

from gasoline vehicle exhaust would also have a significant contribution to SOA formation (Jathar et al., 248 

2014; Gordon et al., 2014). Moreover, a small amount of POA was present in the initial reaction systems in 249 

Liu et al. (2016). These enhanced SOA formation and the pre-existing POA would provide larger surface 250 

areas for the condensation and heterogeneous uptake of low-volatility vapors (e.g., gaseous H2SO4), then 251 

promoting a higher magnification in particle number concentrations in the presence of SO2. The higher initial 252 

mixing ratios of precursors (2.2−4.3 ppm) was also present in the reaction systems conducted by Liu et al. 253 

(2016), which would further be beneficial to the SOA formation. In addition, size distributions of generated 254 

SA in smaller size ranges (4−160 nm) were also determined using another SMPS equipped with a nanometer 255 

differential mobility analyzer (Nano-DMA), indicating that the new particle formation (NPF) phenomenon 256 

was enhanced significantly when the SO2 concentration increased (Fig. S6). The presence of high 257 
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concentrations of SO2 would generate sulfuric acid (H2SO4), which would contribute to nucleation and 258 

increase the total particle number concentrations (Zhao et al., 2018; Sipilä et al., 2010). As the SO2 259 

concentration increased from 35 ppb to 151 ppb, the maximal particle diameters (144−172 nm) became 260 

larger, which will have a direct impact on the scattering and absorption of light (Seinfeld and Pandis, 2016). 261 

An enhancement effect of SO2 on the surface area of particles was also observed. As shown in Table 1, the 262 

surface area of aerosol particles at the end of each experiment increased from 1.12 × 103 to 2.46 × 103 μm2 263 

cm-3 when the SO2 concentration increased from 0 to 151 ppb. The larger surface area would be beneficial 264 

to the condensation and heterogeneous uptake of low-volatility vapors (Chapleski et al., 2016), consequently 265 

leading to higher SA yield in the presence of SO2 (Table 1) (Santiago et al., 2012). Additionally, it is worth 266 

noting that there was a discrepancy between the magnification of particle number concentrations, surface 267 

areas and SO2 concentrations. On one hand, there might be some particles, especially nanoclusters, were lost 268 

to the chamber wall and not be detected; on the other hand, the initial size of nanoclusters contributed from 269 

gaseous H2SO4 was small enough (sub-3 nm) (Chu et al., 2019; Sipilä et al., 2010) and couldn’t be detected 270 

by our general SMPS. That is to say, the particle number concentrations and surface areas measured by our 271 

SMPS might be the particles after growing up by collision. This could be supported by the enhancement in 272 

the particle diameters (144−172 nm) and sulfate concentrations (13−38 μg m-3) in the presence of SO2. After 273 

considering the underestimation of particles formation (factor of 1.97−2.82, seen in Section 2.3), the sulfate 274 

concentrations will be enhanced by a factor of 5.8 when comparing between experiments SGN 1 and SGN 275 

4. 276 

In order to further investigate the role of SO2 in the chemistry of SOA formation, the particle acidities 277 

were estimated using the E-AIM model (Model II: H+ - NH4
+ - SO4

2- - NO3
- - H2O) (Clegg and Brimblecombe, 278 

2005; Wexler and Clegg, 2002; Clegg et al., 1998). The concentrations of chemical components (i.e., NH4
+, 279 
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SO4
2-, and NO3

-) at the time when the SOA formation rate reached its peak were used as the inputs of the 280 

model. As shown in Fig. 4, the H+ concentration was increased from 8.5 to 32.5 nmol m-3 with the increase 281 

of SO2 concentration under moderate humidity conditions (RH = 50 %) and the higher SOA concentration 282 

and SOA yield could be well explained by the enhancement of the particle acidities (R2 = 0.960 and R2 = 283 

0.986, respectively). The higher SOA concentration and SOA yield were related to the acid-catalyzed 284 

reactions of multifunctional aldehydes (e.g., glyoxal and methylglyoxal), which were the products of 285 

aromatic hydrocarbons in the gasoline vapors through the gas-phase photo-oxidation. Hemiacetals, acetals 286 

and alcohols could be generated through the acid-catalyzed heterogeneous reactions of glyoxal (Czoschke 287 

et al., 2003; Jang et al., 2002). These low-vapor-pressure products generated from heterogeneous reactions 288 

preferentially contribute to the SOA formation (Kroll and Seinfeld, 2008; Cao and Jang, 2007; Casale et al., 289 

2007; Jang et al., 2002).  290 

In addition, the sulfur-containing organics formed in the presence of SO2 might be another reason for 291 

the increase of SOA yield (Kundu et al., 2013; Liggio et al., 2005). Jaoui et al. (2008) have reported that the 292 

acidic aerosol generated in the presence of SO2 could lead to sulfur-incorporating reactions in the particle 293 

phase during the photo-oxidation of α-pinene/toluene/NOx mixtures. Sulfur-containing organics could be 294 

generated via reactions of organic species (e.g., polycyclic aromatic hydrocarbons (PAHs), C10−C12 alkanes, 295 

alcohols, epoxides) with sulfate, bisulfate or sulfuric acid, especially under high relative humidity and acidity 296 

conditions (Riva et al., 2015, 2016; Huang et al., 2015; Hatch et al., 2011; Surratt et al., 2007; Liggio et al., 297 

2005). Huang et al. (2015) have revealed that sulfur-containing organics with R-O-SO3
- functional groups 298 

will yield S-bearing organic fragments (CxHyOzS) during ionization, which subsequently could be detected 299 

by HR-ToF-AMS and used as marker ions to quantify them. In our gasoline/NOx experiments in the presence 300 

of SO2, the ions CSO+, CH3SO2
+ and CH3SO3

+ could be separated (Fig. S7), although uncertainty might be 301 
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induced in the peak-fitting of the highly abundant ions C2H4O2
+, C6H7

+, and C5H3O2
+. These characteristic 302 

ions (i.e., CSO+, CH3SO2
+ and CH3SO3

+) also have been observed from sulfur-containing organics in 303 

previous field measurements (Huang et al., 2015; Farmer et al., 2010). According to the estimation method 304 

for sulfur-containing organics mentioned in Huang et al. (2015), we found that the signal of these ions and 305 

the concentrations of sulfur-containing organics increased with the SO2 initial concentration (Fig. 5). The 306 

conservative lower-bound estimated concentrations of sulfur-containing organics (13−26 ng m-3) were 307 

comparable to those (~ 20 ng m-3) observed in the mid-Atlantic United States, which were derived from 308 

biogenic and anthropogenic hydrocarbons (Meade et al., 2016). Additionally, it should be noted that the 309 

sulfur-containing organics concentration in this study might be underestimated by the HR-ToF-AMS when 310 

considering one cannot resolve all the sulfur-containing fragments that may exist, and some of the sulfur-311 

containing organics might fragment into masses that do not contain sulfur and thus are quantified as organic. 312 

Furthermore, the relative ionization efficiency (RIE) for the sulfur-containing organics fragments was 313 

assumed to be equivalent to the remainder of the organics (1.3), since a RIE value for sulfur-containing 314 

organics is unknown. This may introduce an additional uncertainty to the quantitation of sulfur-containing 315 

organics. Therefore, photo-oxidation of gasoline vapor in the presence of SO2 might be a noteworthy source 316 

of sulfur-containing organics, although the concentration was very low compared to that of generated SO4
2- 317 

(~ 0.1% of SO4
2-).  318 

3.3 Role of NH3 in secondary aerosol formation 319 

Similarly, the role of NH3 in SA formation was examined. It is worth noting that ammonium aerosols 320 

were formed without the addition of gaseous NH3 (Fig. S8, in the Supplement), which signified that some 321 

NH3 was present in the background air in the chamber or introduced during the humidification process of 322 

the chamber (Liu et al., 2015c). Unfortunately, appropriate instruments are unavailable to measure the exact 323 
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concentration of background NH3 in the chamber. According to the concentration of generated ammonium 324 

aerosols, the concentration of background NH3 was estimated to be ~15 ppb using the E-AIM model (Clegg 325 

and Brimblecombe, 2005; Wexler and Clegg, 2002; Clegg et al., 1998). Therefore, for the experiments with 326 

the presence of NH3, the concentration of injected NH3 (150−200 ppb) was much higher than this value to 327 

identify the effect of NH3 on SA formation. The SA concentration was enhanced by a factor of 2.0−2.5 in 328 

the presence of NH3, as shown in Fig. S9a. The formation of SOA, NO3
- and NH4

+ was enhanced to varying 329 

degrees. The increase of NO3
- and NH4

+ could be attributed to the formation of inorganic NH4NO3 in the 330 

presence of NH3. The NO+/NO2
+ ratio, which could be derived from HR-ToF-AMS, has often been used as 331 

a proxy for identification of inorganic nitrate and organic nitrogen compounds (Farmer et al., 2010; Sato et 332 

al., 2010; Rollins et al., 2009). Generally, the NO+/NO2
+ ratio of inorganic nitrate (1.08−2.81) is lower than 333 

that of organic nitrogen compounds (3.82−5.84) (Liu et al., 2016). In this study, the NO+/NO2
+ ratio became 334 

substantially lower (~ 2.00) in the presence of NH3 compared with that in the absence of NH3 (~ 5.46). 335 

Therefore, NH4NO3 was the dominant nitrate species in the presence of NH3. As for the reason for SOA 336 

enhancement, the presence of NH3 could react with some organic acids and subsequently contribute to SOA 337 

formation (Na et al., 2007; Na et al., 2006), which could be supported by the increase of N/C (from 0.016 to 338 

0.033) with increasing NH3 concentration at similar concentrations of NOx. In addition, we have found that 339 

the presence of NH3 readily increased the particle diameter and number concentration of SA generated in the 340 

photo-oxidation of gasoline (Figs. S9b and S9c), which revealed that NH3 played an important role in new 341 

particle formation (NPF). These are consistent with the simulation results finding that NH3 promotes 342 

atmospheric NPF and also the conversion of SO2 and NO2 (Jiang and Xia, 2017). The increased surface area 343 

of particles was also observed (Table 1, 2.07 × 103 and 2.48 × 103 μm2 cm-3) as the NH3 concentration 344 

increased from 0 to 150 and 200 ppb. Similarly, the larger surface area would favor the partitioning of low-345 
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volatility vapors to the particle phase, leading to the higher SA yield (Table 1). 346 

Previous studies have reported that the reaction of carbonyl compounds (e.g., glyoxal) could be 347 

catalyzed by NH4
+ ions through a Bronsted acid pathway or an iminium pathway, which could generate N-348 

containing products and oligomers (Nozière et al., 2009), and then contribute a substantial fraction to SOA 349 

(Liu et al., 2015c; Farmer et al., 2010; Cheng et al., 2006). Researchers have identified the characteristic 350 

fragments of nitrogen-containing organics as CxHyNn and CxHyOzNn using HR-ToF-AMS (Lee et al., 2013; 351 

Farmer et al., 2010; Galloway et al., 2009). In this study, the typical normalized mass spectrum of N-352 

containing fragments in SOA after 480 min of photo-oxidation reaction at different concentrations of NH3 353 

are given in Fig. 6. The prominent peaks in the CxHyNn family were at m/z 27 (CHN+), 30 (CH4N+), 354 

40(C2H2N+), 41(CHN2
+, C2H3N+), 42(C2H4N+), 43(C2H5N+), 54(C2H2N2

+, C3H4N+), 55(C3H5N+), and 355 

68(C3H4N2
+, C4H6N+); and the CxHyOzNn fragments were dominated by 45(CH3ON+), 46(CH4ON+), 356 

59(C2H5ON+), 63(CH5O2N+), 73(C2H5ON2
+, C3H7ON+), 86(C3H4O2N+, C3H6ON2

+), 91(C3H9O2N+), 357 

97(C4H5ON2
+), and 104(C3H6O3N+, C4H10O2N+). The N-containing fragments observed in the experiment 358 

without added NH3 could be attributed to the reactions between organic peroxy (RO2) radicals and NOx 359 

(Arey et al., 2001) or uptake of background NH3 by SOA. Additionally, it was obvious that the signal 360 

intensities of most N-containing fragments became significantly stronger as the NH3 concentration increased 361 

(150−200 ppb). Therefore, a considerable amount of nitrogen-containing organics (the ratio of nitrogen-362 

containing organics to SOA was about 6.7−7.7%) was formed during the photo-oxidation of gasoline vapor 363 

in the presence of NH3. This was consistent with the previous study conducted by Liu et al. (2015c), who 364 

observed the formation of organic nitrogen compounds in the SOA generated from the OH oxidation of m-365 

xylene. The promoting role of NH3 in the formation of N-containing species was also observed in the reaction 366 

system of ozonolysis and photo-oxidation of α-pinene (Babar et al., 2017). 367 
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In addition, elemental analysis was also carried out to elucidate the SOA chemical composition and 368 

SOA formation mechanisms (Chhabra et al., 2011; Heald et al., 2010) at different concentrations of NH3. 369 

The time evolution of H/C and O/C in SOA formed from the photo-oxidation of gasoline vapor at different 370 

concentrations of NH3 is shown in Fig. 7. As evident from Fig. 7, all data points are located in the triangular 371 

area for slope between -1 and 0, which suggests that SOA formation from the photo-oxidation of gasoline 372 

vapor is a combination of carboxylic acid and alcohol/peroxide (Heald et al., 2010). Moreover, in the 373 

presence of NH3, as shown in Fig. 8, N/C increased as reaction proceeded in the initial oxidation stage 374 

(0−120 min), accompanied by a rapid increase of O/C (0.12−0.67), a decrease of H/C (2.12−1.61), and a 375 

rapid formation of SOA. During this stage, the photo-oxidation of VOC precursors leads to a rapid increase 376 

in O/C and a rapid decrease in H/C. The termination chemistry of NOx with free radicals and the NH3 uptake 377 

result in a rapid increase in N/C. As the reaction proceeded further (120−300 min), an increase of H/C which 378 

should be caused by NH3 uptake resulted in an almost constant oxidation state of SOA in the continuous 379 

photo-oxidation, accompanied by an increase in the SOA concentration. Nozière et al. (2009) have reported 380 

that N-containing products would be generated from carbonyl compound (e.g., glyoxal) self-reactions 381 

catalyzed by NH4
+ ions, which will have a dramatic impact on the volatility of oxidation products and the 382 

yield of SOA (Ortiz-Montalvo et al., 2014). In the last stage of the reaction (360−480 min), NH3 uptake 383 

might reach saturation; therefore, H/C and N/C are almost constant. Comparing experiments with different 384 

concentrations of NH3, the average H/C shows an obvious increase (1.53−1.70) while the average O/C 385 

(0.70−0.78) shows a slight increase with the increase of NH3 concentration (0−200 ppb), seen in Fig. S10. 386 

The slope in the Van Krevelen diagram shows a trend from slope = -1 to slope = 0 (Fig. S10), indicating that 387 

the formed carboxylic acid would further react with NH3 via acid-base reaction to generate an ammonium 388 

salt of a carboxylate anion in the presence of NH3 (Na et al., 2007). Xu et al. (2018) recently found that 389 
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imidazole products containing multiple oxygen atoms could be generated through heterogeneous reactions 390 

between NH3 and carbonyl compounds (e.g., glyoxal), which might also contribute to the increase in the 391 

O/C of the SOA. 392 

3.4 Different roles of SO2 and NH3 in SOA chemical properties  393 

The chemical properties of the SOA generated under the different concentration of SO2 or NH3 were 394 

further compared by applying positive matrix factorization (PMF) analysis to the HR-ToF-AMS data, 395 

respectively (Chu et al., 2016; Liu et al., 2014). The details of PMF analysis are given in the Supplement. 396 

For the experiments under different SO2 concentration conditions (i.e., Exps. GN, SGN1, SGN2, SGN3 and 397 

SGN4), two factors (Factor 1-S and Factor 2-S, Fig. S11a) were identified from the PMF analysis, and the 398 

difference mass spectra (m/z 12−170) between the two factors and the time series of the mass concentrations 399 

are shown in Fig. 9. The intensity of CxHy and S-bearing organic fragments (CxHyOzS) in Factor 1-S was 400 

obviously stronger than that in Factor 2-S. Meanwhile, fragments in the high m/z range (> 110 Da) were 401 

more abundant in Factor 1-S (Fig. 9a, marked in red box). By contrast, the fragments containing oxygen in 402 

Factor 2-S were more abundant than in Factor 1-S, such as the typical fragment CO2
+ (m/z 44). Therefore, 403 

Factor 1-S was tentatively assigned to the less-oxygenated organic aerosol and oligomers, while Factor 2-S 404 

was more-oxygenated organic aerosol (Ulbrich et al., 2009). Similarly, for the experiments at different NH3 405 

concentration (i.e., Exps. GN, AGN1 and AGN2), two factors (Factor 1-N and Factor 2-N, Fig. S11b) were 406 

also identified in the same way. According to Fig. 10, Factor 1-N was tentatively assigned to the less-407 

oxygenated organic aerosol and oligomers, while Factor 2-N was more-oxygenated organic aerosol and 408 

nitrogen-containing organics. 409 

As shown in Fig. 9b and Fig. 10b, these two factors both had different time series during the entire 410 

reaction. With respect to Exps. GN, SGN1, SGN2, SGN3 and SGN4, Factor 1-S was formed later (~ 30 min) 411 
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than Factor 2-S, and then continuously increased during the entire reaction. Comparing experiments with 412 

different SO2 concentrations, the maximum concentration of Factor 1-S, which was related to the less-413 

oxygenated organic aerosol and oligomers, was enhanced with increased SO2 concentration (R2 = 0.881, Fig. 414 

9c). This suggested that the presence of SO2 was prone to decrease the oxidation state of organic aerosol via 415 

acid-catalyzed reactions and enhance the formation of oligomers (Liu et al., 2016), which was consistent 416 

with the evolution of O/C vs. H/C shown in Fig. S12. Moreover, the gradually increasing concentration of 417 

Factor 1-S was related to the formation of sulfur-containing organics in the presence of SO2 (Blair et al., 418 

2017). By contrast, Factor 2-S was first gradually increased with the progress of the reaction and then 419 

decreased after reaching a peak (i.e., inflection point). And the time to reach the inflection point was affected 420 

by the SO2 concentration (Fig. 9b). As the initial concentration of SO2 increased from 0 ppb to 151 ppb, the 421 

time corresponding to the inflection point decreased, which indicated that the adverse influence of acid 422 

catalysis on Factor 2-S was gradually enhanced. In addition, the maximum concentration of Factor 2-S was 423 

negatively related with SO2 concentration (R2 = 0.987, Fig. 9c); this suggested that the presence of SO2 and 424 

acid catalysis was adverse to the formation of more-oxygenated organic aerosol, leading to the decrease of 425 

the oxidation state of organic aerosol (Fig. S12). 426 

By contrast, for Exps. GN, AGN1 and AGN2, Factor 1-N was first increased with the progress of the 427 

reaction and then gradually decreased after reaching a peak (Fig. 10b); while Factor 2-N was formed later 428 

(~ 30 min) than Factor 1-N, and then continuously increased during the entire reaction. This phenomenon 429 

was consistent with the expected behavior, that less-oxidized organic aerosol would be further oxidized to 430 

form more-oxidized organic aerosol. When comparing experiments with different NH3 concentrations, it 431 

was observed that the concentration of Factor 2-N increased with increasing NH3 concentration. Meanwhile, 432 

Factor 2-N, which was related to the more-oxidized organic aerosol and nitrogen-containing organics, was 433 
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a dominant factor in the presence of NH3, and its maximum concentration was enhanced with the increase 434 

in NH3 concentration (R2 = 0.988, Fig. 10c). Thence, the formation of more-oxygenated organic aerosol and 435 

nitrogen-containing organics will be enhanced with the increase of NH3 concentration. In contrast, a negative 436 

correlation was observed between the maximum concentration of Factor 1-N and NH3 concentration (R2 = 437 

0.876, Fig. 10c); this revealed that less-oxygenated organic aerosol was gradually transformed to more 438 

oxidized species and nitrogen-containing organics in the presence of NH3. 439 

4 Conclusions 440 

In this study, SA formation from the photo-oxidation of gasoline/NOx in the presence of SO2 or NH3 441 

was investigated. Our experimental results demonstrated that SA was enhanced by a factor of 1.6−2.6 or 442 

2.0−2.5, respectively, with the increase of SO2 or NH3 concentration (0−151 ppb and 0−200 ppb, 443 

respectively). Meanwhile, both secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) 444 

were increased by varying degrees. In the presence of SO2, SO4
2- was the most sensitive linear increase with 445 

the increase of SO2 concentration, and SOA was also greatly enhanced due to the acid catalytic effect and 446 

the formation of sulfur-containing organics. In the presence of NH3, NH4NO3 was most enhanced, following 447 

by SOA. The formation of nitrogen-containing organics was also promoted by the presence of NH3. 448 

Meanwhile, conspicuous new particle formation (NPF) and particle size growth were enhanced in the 449 

presence of SO2 or NH3. 450 

In this study, a linear relationship between the SA yield and SO2 or NH3 concentration was also obtained 451 

(Fig. S13). Considering the typical concentrations of SO2 and NH3 of 40 ppb and 23 ppb in haze pollution 452 

in the north China plain (Cheng et al., 2016), and the lower aromatics content (~ 10%) in vehicular 453 

evaporative emissions (Zhang et al., 2013), the SA yield is roughly estimated to be about 0.20. Recently, an 454 

updated emission inventory of vehicular evaporative emissions was reported to be 1.65 Tg yr-1 (Liu et al., 455 
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2017a). Then, the SA formed from the photo-oxidation of VOCs emitted by vehicular evaporation in the 456 

presence of SO2 and NH3 is roughly estimated to be 0.33 Tg yr-1, which is about 1.5 times as much as the 457 

primary PM2.5 emissions from transportation (0.21 Tg yr-1) in China (Jing et al., 2015; Zhang et al., 2007) 458 

and accounting for about 21 % of the SOA production (1.6 Tg yr-1) from anthropogenic precursors estimated 459 

by global chemical transport model (Farina et al., 2010). In addition, the photo-oxidation of long-chain 460 

alkanes (> C6, IVOCs) contained in evaporative emissions would also contribute to SOA formation (Pye 461 

and Pouliot, 2012; Tkacik et al., 2012; Presto et al., 2009; Lim and Ziemann, 2005; Zhao et al., 2016). This 462 

estimate suggests that vehicular evaporative emissions will be a significant source of SA in the presence of 463 

SO2 and NH3, although the estimate might have a high uncertainty due to the fact that SA yield might vary 464 

considerably under different atmospheric conditions. Meanwhile, in the presence of NOx, SO2 and NH3, 465 

vehicular evaporative emissions may be a potential source of sulfur- and nitrogen-containing organics, 466 

according to the results obtained from our study. Sulfur- and nitrogen-containing organics will have an 467 

adverse influence on the climate by light absorption and/or by affecting aerosol hygroscopicity (Staudt et al., 468 

2014; Nguyen et al., 2012), and they also have a significant contribution to SOA and nitrogen or sulfur 469 

budgets (Lee et al., 2016; Shang et al., 2016).  470 

Therefore, under the compound pollution conditions of SO2 and NH3, synergistic emission reduction of 471 

vehicular evaporative emissions, SO2 (e.g., coal-fired flue gas) and NH3 (e.g., emitted from agricultural non-472 

point source and traffic emissions) should be taken into consideration by policy makers for future 473 

management, which will contribute to reducing the burden of PM2.5, and then cut the environmental, 474 

economic and health costs caused by PM pollution. Our work will provide a scientific basis for taking 475 

corresponding control measures to relieve haze events in China. Additionally, there might be some 476 

differences between the VOCs composition of gasoline vapors directly injected to the smog chamber and 477 
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vehicular evaporative emissions. Thus, further work should be focused on SA formation directly from 478 

vehicular evaporative emissions under coexisting SO2 and NH3 conditions to shed light on the formation 479 

mechanism of SA under more atmospherically relevant conditions. 480 
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Table 1. Summary of experimental conditions in this study. 879 

Exp. a 
RH 

(%) 

T 

(C) 

SO2 NH3
 b HC0 NOx,0 HC0/NOx,0 Surface c ΔHC ΔM SA 

yield d (ppb) (ppb) (ppb) (ppb) (ppbC ppb-1) (μm2 cm-3) (μg m-3) (μg m-3) 

GN 50±3 26±1 − − 411.0 128.4 20.61 1.12×103 747.8 34.6 0.130 

SGN1 50±3 26±1 35 − 419.8 121.0 22.34 1.73×103 871.6 58.0 0.155 

SGN2 50±3 26±1 74 − 412.0 121.3 21.88 2.06×103 866.2 77.8 0.193 

SGN3 50±3 26±1 116 − 383.6 119.8 20.62 2.23×103 791.1 87.1 0.226 

SGN4 50±3 26±1 151 − 394.4 125.9 20.17 2.46×103 810.7 106.3 0.258 

AGN1 50±3 26±1 − 150 413.8 120.4 22.12 1.79×103 700.6 47.6 0.158 

AGN2 50±3 26±1 − 200 411.5 122.6 21.61 2.23×103 749.1 58.3 0.166 

a Letters in abbreviations represent the reactants introduced into the chamber reactor, i.e., “G” represents 880 

gasoline, “N” represents nitrogen oxides, “S” represents sulfur dioxide, “A” represents ammonia. 881 

b The concentration of NH3 is estimated by the amount of NH3 added and the volume of the smog chamber. 882 

c The surface area of aerosol particles measured by SMPS after 480 min of each experiment. 883 

d SA yield was calculated after taking vapor and particle wall loss into account.884 
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 885 

Fig. 1. Time series of secondary aerosol concentrations during the photo-oxidation experiments with different SO2 886 

concentrations (Exps. GN, SGN1, SGN2, SGN3, and SGN4). 887 

 888 

Fig. 2. Linear relationship between the concentration of chemical species (i.e., organic (green), nitrate (blue), sulfate (red), and 889 

ammonium (orange)) and SO2 under different SO2 initial concentration conditions (Exps. GN, SGN1, SGN2, SGN3, and 890 

SGN4). Each line represents a linear fitting and the k values are the corresponding slopes for each chemical species. 891 
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 892 

Fig. 3. Time series of the size distributions for the generated secondary aerosol during the photo-oxidation experiments with 893 

different SO2 initial concentrations (Exps. GN, SGN1, SGN2, SGN3, and SGN4). Dp,max and Nmax represent the maximal 894 

diameter and number concentration of generated secondary aerosol, respectively, during each photo-oxidation experiment. 895 

 896 

Fig. 4. Relationship between SOA concentration (left y axis), corrected SOA yield (right y axis) and H+ concentration, which 897 

was used to characterize the particle acidities. The H+ concentration presented in this plot was the value when the SOA 898 

formation rate reached the peak during each experiment (Exps. SGN1, SGN2, SGN3, and SGN4). 899 
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 900 

Fig. 5. Signal of fitted peaks, i.e., CSO+, CH3SO2
+, CH3SO3

+ (right y axis) and sulfur-containing organics concentration (left 901 

y axis) as a function of SO2 initial concentration.  902 

 903 

Fig. 6. Typical normalized mass spectra of N-containing fragments in SOA formed from the photo-oxidation of gasoline vapor 904 

at different concentrations of NH3 (Exps. GN, AGN1 and AGN2).  905 
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 906 

Fig. 7. Time evolution of H/C and O/C in SOA formed from the photo-oxidation of gasoline vapor at different concentrations 907 

of NH3 (Exp. GN, AGN1 and AGN2). The numbers (i.e., -1, -0.5, 0, 0.5, and 1) labeling the dashed lines show the average 908 

carbon oxidation state (OSc ＝ 2×O/C−H/C) (Kroll et al., 2011). The black lines represent the addition of functional groups 909 

to an aliphatic carbon (Heald et al., 2010). 910 
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  911 

Fig. 8. Time evolution of (a) O/C, H/C and N/C and (b) SOA concentration in the photo-oxidation of gasoline vapor in the 912 

presence of 150 ppb NH3 (Exp. AGN1).913 
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 914 

 915 

 916 

Fig. 9. (a) Difference mass spectra (Factor 1-S−Factor 2-S) between the two factors, (b) Time series of the mass concentration, 917 

and (c) Relationship between the concentration of SO2 and the maximum concentration of the two factors identified by 918 

applying PMF analysis to the AMS data derived from the experiments at different concentrations of SO2 (Exps. GN, SGN1, 919 
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SGN2, SGN3 and SGN4).920 
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 921 

 922 

 923 

Fig. 10. (a) Difference mass spectra (Factor 1-N−Factor 2-N) between the two factors, (b) Time series of the mass 924 

concentration, and (c) Relationship between the concentration of NH3 and the maximum concentration of the two 925 

factors identified by applying PMF analysis to the AMS data derived from the experiments at different 926 
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concentrations of NH3 (Exps. GN, AGN1 and AGN2).  927 


