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Abstract. Volatility plays a key role in affecting mass concentrations and lifetime of aerosol particles in the atmosphere, yet 
our knowledge of aerosol volatility in relatively polluted environment, e.g., north China remains poor. Here aerosol volatility 20 
in Beijing in summer 2017 and 2018 was measured using a thermodenuder (TD) coupled with an Aerodyne high-resolution 
aerosol mass spectrometer (AMS) and a soot particle AMS. Our results showed overall similar thermograms for most 
non-refractory aerosol species compared with those reported in previous studies. However, high mass fraction remaining and 
NO+/NO2

+ ratio for chloride and nitrate, respectively above 200 °C indicated the presence of considerable metallic salts and 
organic nitrates in Beijing. The volatility distributions of organic aerosol (OA) and four OA factors that were resolved from 25 
positive matrix factorization were estimated using a mass transfer model. The ambient OA comprised mainly semi-volatile 
organic compounds (SVOC, 63%) with an average effective saturation concentration (C*) of 0.55 µg m−3, suggesting overall 
more volatile properties than OA in megacities of Europe and US. Further analysis showed that the freshly oxidized 
secondary OA (LO-OOA) was the most volatile OA factor (SVOC = 70%) followed by hydrocarbon-like OA (HOA). In 
contrast, the volatility of more oxidized SOA (MO-OOA) was comparable to that of cooking OA with SVOC on average 30 
accounting for 60.2%. We also compared the volatility of ambient and black carbon–containing OA. Our results showed that 
the BC-containing primary OA (POA) was much more volatile than ambient POA (C*= 0.69 µg m−3 vs. 0.37 µg m−3), while 
the BC-containing SOA was much less volatile, highlighting the very different composition and properties between 
BC-containing and ambient aerosol particles.   



2 
 

1 Introduction 

Atmospheric aerosols can cause a series of health risks (Lelieveld et al., 2015) and affect the earth’s radiative balance 

(Boucher et al., 2013). As one of the most important properties, volatility modulates mass concentrations and size 

distributions of aerosol particles via gas-particle partitioning, and hence influences hygroscopicity, optical properties, and 

fate of related compounds (Topping and McFiggans, 2012;Donahue et al., 2012). Traditionally, “two-product model” (Odum 5 
et al., 1996) has been used to parameterize the volatility distribution of secondary organic aerosol (SOA), yet it often 

underestimates ambient SOA substantially (Li et al., 2013;Heald et al., 2005). Donahue et al. (2006) updated the volatility 

distribution framework using the “Volatility Basis Set” (VBS) consisting of logarithmically-spaced effective saturation 

concentration (C*) bins over a wide range which improves the model simulations of SOA significantly. However, there is 

still a large model-observation gap in predicting atmospheric organic aerosol (Zhang et al., 2013;Tsigaridis et al., 2014). One 10 
reason is our incomplete understanding of organic aerosol (OA) volatility in various environments.  

The thermodenuder (TD) coupled with Aerodyne aerosol mass spectrometer (AMS) has been widely used to measure 

chemically-resolved aerosol volatility in field campaigns (Huffman et al., 2009a;Huffman et al., 2009b) and laboratory 

studies (Kolesar et al., 2015;Saha and Grieshop, 2016). The mass or volume fraction remaining (MFR/VFR), a ratio of the 

mass/volume of the aerosol remaining after passing through a heated section to the species mass/volume without heating, is 15 
often used as an indicator of volatility, and larger MFR indicates lower volatility (Huffman et al., 2009a;An et al., 2007). For 

example, Huffman et al. (2009b) found that both ambient primary OA (POA) and SOA showed semi-volatile properties that 

contradicted with the representation of OA volatility in most traditional models. MFR is also affected by the enthalpy of 

vaporization, initial concentration, residence time in heated section, aerosol size distribution, and potential mass transfer 

resistances (Saleh et al., 2011), therefore, it may lead to erroneous conclusions using MFR only as an indicator of volatility. 20 
For example, Kostenidou et al. (2018) found that SOA species with higher MFR can be more volatile because of lower 

enthalpy of vaporization. As a result, a mass transfer model taking into account during the dynamic evaporation of the 

aerosol all these properties that affect volatility as vaporization enthalpy residence time, particle size and OA concentration 

into account is needed for better interpretation of OA volatility measurements (Riipinen et al., 2010).  

A number of studies have been conducted to investigate the OA volatility using thermogram models assuming fixed effective 25 
vaporization enthalpy and mass accommodation coefficient (Cappa and Jimenez, 2010;Lee et al., 2010;Paciga et al., 

2016;Louvaris et al., 2017;Kostenidou et al., 2018). The results showed that OA volatility distributions may vary from place 

to place, and the estimated OA volatility was sensitive to the assumed values of the effective vaporization enthalpy and the 

mass accommodation coefficient (Riipinen et al., 2010). Saha et al. (2015) used a “dual thermodenuder” system to better 

constrain the estimated values by varying both temperature and residence time. Karnezi et al. (2014) proposed an improved 30 
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experimental approach combining TD and isothermal dilution measurements and introduced a method for the estimation and 

the uncertainty range for the estimated volatility distribution together with the vaporization enthalpy and accommodation 

coefficient. Aerosol volatility can also be estimated with a semi-empirical approach from the gas and particle phase 

measurements of molecules using chemical ionization mass spectrometer equipped with a Filter Inlet for Gases and 

AEROsols (FIGAERO–CIMS). Recently, Stark et al. (2017) evaluated the volatility distributions of OA from three different 5 
methods, and found that the thermogram method from TD-AMS measurements could be the best for quantification of 

aerosol volatility distributions. 

Despite this, few volatility measurements have been reported in China, especially in northern China with high concentrations 

of PM2.5 (Sun et al., 2015;Li et al., 2017). Bi et al. (2015) measured the volatility of individual aerosol particles in the Pearl 

River Delta (PRD) region using a single particle AMS coupled with a TD. The results showed that the volatility of elemental 10 
carbon (EC)-containing particles may depend on particle types and molecular formulas of secondary ions. Cao et al. (2018) 

investigated aerosol volatility in winter in PRD region using a TD-AMS system. The results of MFR showed that 

hydrocarbon-like OA (HOA) was the most volatile OA component followed by less oxidized OOA (LO-OOA), cooking and 

biomass burning OA (BBOA), and more oxidized OOA (MO-OOA). However, aerosol volatility in different seasons and 

different regions in China remains poorly understood.  15 

In this study, aerosol volatility was measured using a TD coupled with a high-resolution AMS (TD-HR-AMS) and soot 

particle AMS (TD-SP-AMS) in summer in 2018 and 2017 in Beijing. The OA composition and variations are analyzed with 

positive matrix factorization (PMF), and the volatility distributions of OA and OA factors are quantified using the mass 

transfer model (Riipinen et al., 2010) together with the method of Karnezi et al. (2014). The volatility distributions between 

ambient OA and BC-containing OA, and the differences between 2017 and 2018 are elucidated. 20 

2 Experimental methods 

2.1 Sampling and instrumentation 

All measurements were conducted at the urban site of Institute of Atmospheric Physics, Chinese Academy of Sciences 

(39°58′28″N, 116°22′16″E). A detailed description of the sampling site is given in Xu et al. (2015). Ambient particles larger 

than 2.5 µm were first filtered out by a PM2.5 cyclone. After dried by a nafion dryer, the remaining particles passed through 25 
an Aerodyne TD, and then sampled by an HR-AMS and a Cavity Attenuated Phase Shift Single Scattering Albedo monitor 

(CAPS PMSSA, Aerodyne Research Inc.) with a total flow rate of 1.4 L min-1. The TD was operated by alternating the bypass 

line (25°C) and TD line every 15 min from 20 May to 23 June in 2018, and the HR-AMS was operated in V-mode with a 

time resolution of 3 min. The temperatures in heating section of TD were set at 50°C, 120°C and 250°C, corresponding to 
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the measured temperatures of 50°C, 116°C, 226°C, respectively. In addition, the data during the ramp period of temperature 

were also analyzed and grouped into four bins, i.e., 127°C, 109°C, 90°C and 70°C. In summer 2017, a TD made by the 

University of California, Davis (Zhou et al., 2016) coupled with the HR-AMS and SP-AMS were used to measure aerosol 

volatility from 4 June to 13 June. The temperature settings were 50°C, 100°C, 150°C and 260°C. While the operations of 

HR-AMS were the same as those in 2018, the SP-AMS was operated with laser vaporizer only, and thus it only measured 5 
refractory BC (rBC) and BC-containing aerosol species in ambient air. Considering the relatively short time measurements in 

2017, discussions regarding the summer of 2017 focus primarily on the volatility comparisons between ambient OA and 

BC-containing OA. Note that the air residence time (RT) calculated as an average plug flow rate through the heated section 

was 1.9 s and 7.4 s in 2017 and 2018, respectively due to the different flow rates. As a result, the thermograms of aerosol 

species from the two campaigns cannot be directly compared (Saha et al., 2017;An et al., 2007).   10 

2.2 AMS data analysis 

The HR-AMS data was analyzed by PIKA V 1.15D 

(http://cires1.colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/index.html). The ionization efficiency (IE) and 

relative ionization efficiencies (RIEs) were calibrated using pure NH4NO3 and (NH4)2SO4 following the standard protocols 

(Jayne et al., 2000). The RIEs used in this study were 1.4 for sulfate and 4.3 for ammonium, and the default values for 15 
organics (1.4), nitrate (1.1) and chloride (1.3). Because aerosol particles were dried and only slightly acidic as indicated by 

NH4
+

measured/NH4
+

predicted (0.92 and 0.94 in 2018 and 2017, respectively), we applied a collection efficiency (CE) as function 

of ammonium nitrate mass fraction to ambient data and a constant CE (0.5) to TD data (Huffman et al., 2009a). The 

elemental composition of OA was determined with the “Improved-Ambient (I-A)” method (Canagaratna et al., 2015). The 

data analysis of SP-AMS is similar to that of HR-AMS that was detailed in Wang et al. (2019). 20 

The particle losses through TD were corrected by the comparisons of rBC measured by SP-AMS in 2017 and the aerosolized 

NaCl measured by a scanning mobility particle sizer (SMPS, TSI Inc.) in 2018 between bypass line and TD line (Huffman et 

al., 2008). As shown in Fig. S1, the mass fraction remaining at different TD temperatures was relatively constant at 

approximately 95% in 2017, and ~90% in 2018, which are close to the values reported in London (Xu et al., 2016) and 

Shenzhen (Cao et al., 2018). In addition, the periods with low concentrations of aerosol species and OA factors were 25 
removed in data analysis due to the large uncertainties in calculating MFR (Table S1).  

2.3 Source apportionment of OA  

The high resolution OA mass spectra of both ambient (MSambient) and the combined ambient and thermally denuded data 

(MSambient+TD) were analyzed with PMF to resolve potential OA factors (Paatero and Tapper, 1994;Ulbrich et al., 2009). 
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Previous studies showed that the combined thermal denuded and bypass line data can enhance the contrast for different OA 

compounds and facilitate the separation of OA factors (Huffman et al., 2009a). We found that the HOA spectrum from 

4-factor solution showed unrealistically high m/z 44 in both MSambient and MSambient+TD. Therefore, the mass spectrum of HOA 

resolved from the period with high impacts of vehicle emissions (26 May – 7 June, 2018), and cooking OA (COA) from 

5-factor solution were used as constrains in subsequent multilinear engine (ME-2) analysis (Paatero, 1999). Four OA factors 5 
were identified including LO-OOA, MO-OOA and two primary factors, HOA and COA. Each factor was separated into 

ambient data and TD data according to the temperature shift timing recorded by the software of TD The mass spectra and 

time series of the four OA factors are shown in Fig. 1, and the comparisons between MSambient and MSambient+TD are shown in 

Fig. S2. While PMF analysis of MSambient+TD in 2017 identified four OA factors, including HOA, COA, LO-OOA and 

MO-OOA. On the other hand, that of BC-containing OA resolved a rBC-rich factor, an HOA-rich factor, and two 10 
oxygenated OA factors, LO-OOA and MO-OOA. Note that COA was not resolved from BC-containing OA likely due to the 

fact that COA and BC were externally mixed (Wang et al., 2019). Compared with HR-AMS, OA factors resolved from the 

SP-AMS spectra were much less oxidized. The O/C ratios of BC-containing ambient LO-OOA and MO-OOA were 0.26 and 

0.60, which were much lower than 0.62 and 1.21 for non-refractory OA. These results suggest that BC-containing OA, 

accounting for 49% of OA, can be substantially different from the ambient OA. A detailed description of the source 15 
apportionment of BC-containing OA is given in Wang et al. (2019).  

2.4 Estimation of OA volatility distribution  

The time-dependent aerosol evaporation in TD was simulated using the dynamic mass transfer model (Riipinen et al., 2010). 
The inputs of the model include the initial mass concentration, particle size, density calculated using the method of Kuwata 
et al. (2011), residence time, loss-corrected MFR and corresponding temperatures. The particle sizes we used for fitting are 20 
presented in Table S2. The size distribution of SOA was derived from that of m/z 44 by normalizing the integrated signals of 
m/z 44 between 30 and 1500 nm to the total concentration of SOA (Zhang et al., 2005). This approach is rationale because 
SOA was highly correlated with m/z 44 (R2=0.98), while m/z 44 in the mass spectra of POA were generally small. The size 
distribution of POA was then calculated as the difference between total OA and SOA (Xu et al., 2015). 
 25 
The measured thermograms were fitted using six logarithmically spaced C* bins including 100 µg m−3, 10 µg m−3, 1 µg m−3, 
0.1 µg m−3,  0.01 µg m−3 and 0.001µg m−3 (or 0.00001µg m−3), and different volatility ranges were chosen for each factor 
based on the best fits between the measured and predicted thermograms. Since the OA was on the order 15 µg m−3, the 
thermograms contain little information on the partitioning of compounds with C*≥1000 µg m−3. The enthalpy of 
vaporization and the mass accommodation coefficient were also estimated, which can affect the evaporation rate and 30 
corresponding volatilities. In order to explore in more detail the solution space, we discretized the parameter space and 
simulated all combinations of volatilities, ∆Hvap and am. Briefly, We used logarithmically-spaced effective saturation 
concentration bins varied the mass fraction of each bin from 0 to 1 with a step of 0.1, the vaporization enthalpy with discrete 
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values of 20, 50, 80, 100, 150 and 200 kJ mol−1, and accommodation coefficient with discrete values of 0.01, 0.05,0.1, 0.2, 
0.5 and 1. In this case, we derived 96516 different results by fitting the TD data. The combinations of all properties with the 
smallest error (top 1%) were chosen to calculate the “best estimate” following the methods described in Karnezi et al. 
(2014).  

3 Results and discussion 5 

3.1 Thermograms of aerosol species  

Figure 2 shows the thermograms of NR-PM1 species and OA factors in summer of 2018. Consistent with previous studies, 

MFRs of all species show decreasing trends as the increase of TD temperature. The total mass concentration of NR-PM1 

decreased significantly from 31.0 µg m−3 to 2.0 µg m−3 with ~7% mass left at 226°C, suggesting the presence of low 

volatility compounds. MFR varied differently among different aerosol species. Nitrate showed the fastest decreasing rate in 10 
thermograms, consistent with the results observed in London (Xu et al., 2016) and Shenzhen (Cao et al., 2018). Although 

ammonium nitrate is semi-volatile, ~10% nitrate mass was still observed at 226°C. Such a considerable remaining fraction at 

the highest temperature was also observed in southern China (Cao et al., 2018). A possible explanation is that nitrate 

measured by HR-AMS also contained less-volatile organic and inorganic nitrates (e.g., metallic nitrate and organic nitrates) 

during summertime in Beijing in 2018. As shown in Fig. 3, the ratio of NO+ to NO2
+ increased substantially as a function of 15 

TD temperature reaching ~5.5 at 116°C, which is much higher than that of pure NH4NO3 observed from the IE calibration 

(~3.5). This result supports the presence of low-volatility organic nitrates (Ng et al., 2017;Hakkinen et al., 2012). According 

to the method suggested by Farmer et al. (2010), the mass concentration of organic nitrate was estimated to be 1.3 – 3.0 µg 

m−3 assuming that the ratio of NO+/NO2
+ (RON) of organic nitrates was 5 - 10. Organic nitrates on average accounted for 27 % 

at RON =5 (11% at RON =10) of the total measured nitrates, which was lower than those during summertime in the south of 20 
China, but was comparable to those during autumn and spring (Yu et al., 2018). As shown in Fig. 3, nitrogen-containing 

organic ions (e.g. C2H6N+, CHNO+) showed higher MFR than inorganic NO+ and NO2
+ across different temperatures, 

supporting the lower volatility of nitrogen-containing compounds than ammonium nitrate.   

Chloride showed a moderate decreasing rate with 30% mass left at 226°C, a behavior quite different from pure NH4Cl that 

completely evaporated at 80°C (Huffman et al., 2009a). This result suggests that a considerable fraction of chloride 25 
measured by HR-AMS was also in the form of less volatile chloride salts (e.g., KCl) rather than ammonium chloride. The 

MFR of sulfate changed slowly before 80°C, and then decreased rapidly to approximately 88% at 226°C for the 2018 

campaign. This is different from the behavior in 2017 when MFR started declining above 150 °C (Fig. S4). Such differences 

are due a large extent to different TD characteristics (e.g., residence time). We noticed the changes in SO+/SO3
+ and 
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SO2
+/SO3

+ ratios after 100°C, suggesting the changes in sulfate composition. One explanation is the presence of 

organosulfates or other inorganic sulfate salts. As shown in Fig. 3, the MFR of CH3SO2
+, a marker ion for methanesulfonic 

acid (MSA) (Ge et al., 2012) showed a different thermogram compared to SO+, SO2
+ and SO3

+, supporting the different 

volatility between sulfate and sulfur-containing organic compounds.  

At 226°C, around 10% of the organic mass remained, accounting for ~50% of the total NR-PM1 mass (Fig. 2), indicating an 5 
important role of organics in low volatility compounds. While the contribution of low-volatility OA is close to that in 
London (Xu et al., 2016), it is much lower than that observed during the SOAR-1 and MILAGRO campaign (Huffman et al., 
2009a), which might be due to the differences in sources and composition at different sampling sites besides the different 
residence time and TD properties.   

3.2 OA composition and thermograms of OA factors 10 

PMF analysis identified four OA factors including LO-OOA, MO-OOA and two primary factors, HOA and COA in the 

summer of 2018 and 2017. Consistent with previous studies, HOA was well correlated with BC (r2 = 0.47), and COA was 

correlated with C6H10O+ (r2 = 0.75). Comparatively, LO-OOA and MO-OOA were highly correlated with C2H3O+ (m/z 43, r2 

= 0.97) and secondary inorganic aerosol (SIA, r2 = 0.91), respectively. More diagnostic correlations between OA factors and 

tracers are shown in Fig. S3. The diurnal patterns of four OA factors were also similar to those previously reported in urban 15 
Beijing. For example, HOA presented a pronounced diurnal cycle with high concentrations at night, and COA showed two 

pronounced peaks during mealtimes. Comparatively, the diurnal profiles of both LO-OOA and MO-OOA were relatively flat, 

yet the time series were quite different. As shown in Fig. 4, SOA (LO-OOA+MO-OOA as a surrogate) dominated OA during 

both periods, on average accounting for 65% and 72% in 2017 and 2018, respectively, consistent with the results from 

previous studies (Sun et al., 2018;Hu et al., 2016). LO-OOA was the dominant SOA factor, accounting for 39% and 45% of 20 
the total OA in 2017 and 2018, respectively, while the contribution of MO-OOA was comparable (~26 - 27%). The 

differences in POA (HOA+COA as a surrogate) composition between 2017 and 2018 were also observed. Although the 

contribution of HOA was comparable (11% vs. 13%), that of COA decreased from 24% in 2017 to 15% in 2018.  

As shown in Fig. 2, the MFR of HOA was 0.73 at 50°C and then decreased to 0.1 at 226°C. Half of the HOA mass 

evaporated at ~70°C (T50), which was comparable to that measured during the MILAGRO and SOAR-1 campaigns 25 
(Huffman et al., 2009a), but slightly higher than that in Shenzhen (Cao et al., 2018) and Paris (T50 = 49-54°C) (Paciga et al., 

2016). Although the mass concentration of HOA decreased substantially at higher TD temperatures, its fraction in OA 

remained relatively constant (~15%). Such results are consistent with those observed at the NK site (16%) and Detling (19%) 

(Xu et al., 2016), yet larger than that reported in Shenzhen (Cao et al., 2018). Compared to HOA, COA showed a higher T50 

(~85°C), but lower than that observed in Shenzhen (Cao et al., 2018) and Paris (Paciga et al., 2016), suggesting that COA in 30 
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Beijing might contain higher fraction of compounds with high volatility . One reason might be due to the different cooking 

methods generating OA with different volatility. Note that the MFR of COA showed slightly higher values than HOA in the 

range of 50°C to 120°C, suggesting that COA contained more compounds with high C* compared with HOA. This was also 

supported by the higher fraction of C*≥10 µg m−3 for HOA (51%) than COA (37%, see section 3.3 for more details).  

LO-OOA evaporated 33% at T=50°C in Beijing, which is comparable to that in Shenzhen (30%) (Cao et al., 2018) and Paris 5 
(Paciga et al., 2016), but higher than that in Centreville (Kostenidou et al., 2018). The concentration of LO-OOA decreased 
from 5.7 µg m−3 at ambient temperature to 0.15 µg m−3 at T=226°C, and its contribution to OA also decreased from 45% to 
15%. Comparatively, the MFR of MO-OOA showed the slowest decreasing rate in thermograms among all OA factors. As a 
result, the fraction of MO-OOA in OA showed an increasing trend and became the dominant component at 226°C (Fig. 2). 
Previous studies showed that such non-volatile organic compounds might be associated with humic-like substances (HULIS) 10 
(Wu et al., 2009), an important component of fine particles in Beijing (Ma et al., 2018). However, MO-OOA in this study 
evaporated faster than that at other sites, e.g., ~16% evaporation at T=50°C compared with 1 – 10% in Shenzhen (Cao et al., 
2018), SOAR-1 and MILAGRO campaigns (Huffman et al., 2009a). These results might suggest that MO-OOA in this study 
showed higher fraction of compounds with relatively high volatility than those previously reported at other sites due to 
different SOA composition and properties. We further checked the thermograms of NR-PM1 species and OA factors at 15 
different time periods in a day. As shown in Fig. S5, MO-OOA appeared less volatile at nighttime than daytime, while the 
diurnal changes of LO-OOA volatility were small. The reasons for the differences in the diurnal variability were likely due to 
the different volatile organic compounds (VOCs) precursors, formation mechanisms and meteorological conditions between 
day and night.  
The O/C increased as a function of TD temperature varying from 0.68 in ambient air to 1.17 at 226°C (Fig.2). Such a 20 
behavior was consistent with that previously observed at other sites (Xu et al., 2016;Cao et al., 2018), suggesting that the OA 

remaining at higher temperature was more oxidized. This is further supported by the higher MFR of oxygenated ions 

CxHyO2
+ than that of CxHyO+ (Fig. S6). Note that O/C and MFR was weakly correlated (r<0.21), suggesting that O/C might 

not be a good proxy to indicate the volatility (Hildebrandt et al., 2010;Xu et al., 2016).  

3.3 Volatility distribution of OA factors 25 

Figure 5 summarizes the volatility distributions of the total OA and four OA factors. The predicted thermograms and 

absolute OA concentrations at different volatility bins are depicted in Figs. S7 and S8. The average C* at different sites can 

be directly compared in the same VBS volatility range (Table S3). In summer 2018, the average C* of OA was 0.55 µg m−3 

with vaporization enthalpy (∆H) and mass accommodation coefficient (am) being 105 KJ mol-1 and 0.33, respectively. The 

compounds with C*=1 µg m−3, 10 µg m−3 and 100 µg m−3 referring to semi-volatile organic compounds (SVOC) (Murphy et 30 
al., 2014) contributed 17%, 19% and 28% to the total OA, respectively. Comparatively, low-volatility organic compounds 

(LVOC) with C*=0.01 µg m−3 and 0.1 µg m−3 (Murphy et al., 2014) accounted for 11% and 12%, respectively. In addition, 
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OA consisted of ~13% extremely low volatility compounds (ELVOCs with C*≤10-4 µg m−3), consistent with the remained 

organic mass fraction at 226°C (9%). The SVOC fraction in Beijing in summer 2018 was overall larger than those reported 

in Finokalia (30-60%) (Lee et al., 2010), Athens (38%) (Louvaris et al., 2017), Centreville and Raleigh (60%) (Saha et al., 

2017), and 39-73% in Mexico City (Cappa and Jimenez, 2010). Such results might suggest relatively higher volatility of OA 

in summer in Beijing than other sites, consistent with the fact that the fraction of evaporated particulate organics (28%) at 5 
50°C was larger than that observed in Shenzhen (~10%) (Cao et al., 2018), Centreville and Raleigh (Kostenidou et al., 

2018;Saha et al., 2017) and Athens (Louvaris et al., 2017),Note that the ELVOCs in Beijing in summer 2018 was comparable 

to that reported in Centreville and Raleigh (14%) (Saha et al., 2017), yet lower than that in Athens (30%) (Louvaris et al., 

2017).  

The volatility of four OA factors was different. The average volatility of MO-OOA was C*=0.70 µg m−3 (∆H = 57 KJ mol-1 10 
and am=0.31). LVOC on average accounted for 40% of MO-OOA, which is comparable to that in Centreville (44%, ∆H =89 

KJ mol-1 and am=1) during summertime (Kostenidou et al., 2018), yet lower than those observed during summertime in 

Athens and Paris (Louvaris et al., 2017;Paciga et al., 2016). These results supported a relatively more volatile nature of 

MO-OOA in Beijing during summertime compared with other cities. Similar to the variation of MFR in thermogram, 

LO-OOA with an average contribution of LVOC for 30% was more volatile (C*=1.58 µg m−3) than MO-OOA. This result 15 
suggests that the freshly oxidized SOA in Beijing is quite volatile, and may affect OA concentration substantially via 

gas-particle partitioning (Kostenidou et al., 2018).  

SVOC on average contributed 67% to HOA, which was much higher than that from diesel vehicles (May et al., 2013), and 

traffic emissions near road (Saha et al., 2018), yet close to that observed in Paris (63%) (Paciga et al., 2016). These results 

suggest that HOA from vehicle emissions in Beijing was relatively more volatile. One reason is the different types of fuel 20 
used for vehicles (Saha et al., 2018). Another reason might be due to the much lower diesel emissions in Beijing city because 

diesel trucks are only allowed to enter the 6th ring road between 0:00 – 6:00. This is consistent with the lowest MFR for HOA 

during 0:00 – 6:00 at T > 100 °C (Fig. S5). It should be noted that ELVOCs accounted for 13% HOA, which was lower than 

that in Athens (30%) (Louvaris et al., 2017), but comparable to that in Paris (11-13%) (Paciga et al., 2016). These results 

indicate that a considerable fraction of HOA was non-volatile although it was considered as one of the most volatile OA 25 
factors (Paciga et al., 2016;Cao et al., 2018). The C* of COA was 0.79 µg m−3 (∆H =95 KJ mol-1 and am = 0.39), and LVOC 

on average accounted for 40%. The average COA volatility was relatively comparable with that of MO-OOA possibly due to 

the fact that COA was dominated by fatty acids with relatively low volatilities (Mohr et al., 2009). However, compared with 

previous studies in Athens and Paris, the fraction of LVOC in COA in Beijing was much lower (40% vs. 63 – 75%) 

(Louvaris et al., 2017;Paciga et al., 2016), suggesting that COA in Beijing contained more volatile compounds likely due to 30 
the differences in cooking oils and styles.    
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3.4 Volatility comparisons between ambient OA and BC-containing OA  

Figure 4 presents a comparison of aerosol composition between HR-AMS and SP-AMS in summer in 2017. The 

BC-containing aerosol particles were dominated by OA (57%), which was much higher than that (42%) from HR-AMS 

measurements, while the contributions of secondary inorganic aerosols (nitrate, sulfate and ammonium) were 

correspondingly lower (21% vs. 46%). The composition of BC-containing OA was also substantially different from ambient 5 
OA. First, cooking OA was not observed in BC-containing OA, suggesting that COA was externally mixed with BC and was 

unlikely coated on BC. Further support is that the diurnal pattern of BC-containing OA did not present two pronounced COA 

peaks as ambient OA (Fig. S9). Second, OA coated on BC was much less oxidized compared with those in ambient aerosol 

(O/C = 0.36 vs. 0.57 on average). As a result, the volatility of BC-containing OA was expected to be different from ambient 

OA. The estimated volatility distributions and thermograms of ambient OA and BC-containing OA are presented in Figs. S10 10 
and S11. 

As shown in Fig. 6, the average volatility of BC-containing OA was C*= 0.62 µg m−3, which is larger than that of ambient 

OA (C*= 0.38 µg m−3). Consistently, a lower fraction of LVOC (41%) was observed for BC-containing OA than ambient OA 

(46%), indicating that the BC-containing OA was overall more volatile than ambient OA. We noticed that such differences in 

volatility appeared to contradict with the variations in thermograms, which show that more than 81% of ambient OA was 15 
evaporated at T=260 °C, while it was only 66% for BC-containing OA (Fig. S4). Such discrepancies can be explained by the 

lower effective vaporization enthalpy of BC-containing OA (71 vs. 54 KJ mol-1). The volatility of BC-containing ambient 

POA and SOA were also different from those of ambient OA. As shown in Fig. S9, the MFR of BC-containing ambient POA 

was ubiquitously higher than that of ambient POA across different TD temperatures, and also much higher than ambient 

POA after excluding the influences of COA. As indicated by the estimated volatility distribution, the average volatility of 20 
BC-containing ambient POA was C*= 0.69 µg m−3, which was much higher than that of ambient POA (C*= 0.37 µg m−3), 

and the contribution of LVOC was correspondingly lower (43% vs. 45%). In contrast, the BC-containing ambient SOA 

showed a lower volatility than ambient SOA as indicated by lower C* (0.30 µg m−3 vs. 0.49 µg m−3) and fraction of SVOC 

(52% vs. 57%). These results suggest that the BC-containing ambient POA contains more volatile compounds compared to 

ambient POA. One reason was likely due to the fact that the BC-containing OA contains refractory primary species which 25 
cannot be measured by HR-AMS. Another reason was that some low volatile OA from primary emissions were not coated on 

BC, for example COA, which was supported by the comparable  average volatility between BC-containing ambient POA 

and the ambient POA after excluding COA (0.69 µg m−3 vs. 0.64 µg m−3).  

The Weather Research and Forecasting/Chemistry (WRF-Chem, version 3.7.1) model was used to simulate the volatility 

distribution of SOA in the summer of 2017. The detailed physical and chemical scheme have been given in Zhang et al. 30 
(2019). As shown in Fig. 7, the compounds with C*=10 µg m−3 and 100 µg m−3 estimated from the thermogram method 
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contributed 18% and 19% to the total OA, respectively, which was comparable to that simulated by WRF-Chem (35% in 

total). However, considerable discrepancies in contributions of compounds with relatively small C* were observed. For 

example, the fraction of compounds with C*=1 µg m−3 estimated by WRF-Chem was 45%, which was much larger than that 

from the thermogram method (21%). Comparatively, the compounds with C*=0.001 µg m−3, 0.01 µg m−3 and 0.1 µg m−3 

estimated from the thermogram method were correspondingly higher (43% vs. 19%). These results suggest that current 5 
WRF-Chem model might underestimate the fraction of low volatility compounds considerably. One of the major 

uncertainties in predicting volatility distribution of SOA in WRF-Chem arises from the emission inventories, especially 

volatile, semi-volatile and intermediate volatility organic compounds. For example, Streets et al. (2003) estimated the overall 

uncertainty in non-methane VOC (NMVOC) emissions in Asia for the year 2000 to be ±130%, and the uncertainty in 

NMVOC emissions in China for the year 2005/2006 was in the range of −68% to 120% (Bo et al., 2008;Wei et al., 10 
2008;Zhang et al., 2009;Zheng et al., 2009). Therefore, semi-volatile and intermediate volatility organic compound 

emissions in China are too limited to be used in SOA simulations (Liu et al., 2017). In addition, model underestimation of 

atmospheric oxidation capacity, especially in polluted areas, due mainly to the only inclusion of the key gas-phase 

production of HONO in air quality models (Sarwar et al., 2008;Li et al., 2010;Li et al., 2011;Zhang et al., 2019), and few 

volatility bins used in WRF-Chem, especially for volatility binless than 1 μg m-3 at 300 K all contributed to the discrepancies 15 
between model simulation and observations. 

4 Conclusion and Implications 

Aerosol volatility was measured using a TD-AMS system in Beijing in the summer of 2017 and 2018. Our results showed 

overall higher fractions of SVOC and saturation concentrations for OA in Beijing compared with those in other megacities in 

Europe and US, suggesting that OA was more volatile in Beijing. In contrast, inorganic nitrate and chloride showed higher 20 
MFR in thermograms, suggesting the presence of organic nitrates and metallic salts other than ammonium nitrate and 

ammonium chloride. The volatility of OA and four OA factors were estimated with a mass transfer model. MO-OOA and 

COA showed lower volatility than LO-OOA and HOA with the contributions of LVOC being 39.8% and 40.5%, respectively. 

Comparatively, LO-OOA and HOA presented higher contributions of SVOC (70 and 67%, respectively). We also compared 

the volatility of ambient OA with that of BC-containing OA. The results showed that the BC-containing ambient POA 25 
showed much higher volatility compared with that of ambient POA (C* = 0.69 µg m−3 vs. 0.37 µg m−3), while the volatility 

of SOA was lower (C* = 0.30 µg m−3 vs. 0.49 µg m−3), highlighting the very different aerosol composition and volatility 

between ambient OA and BC-containing OA. The volatility distributions of SOA estimated from the measurement in Beijing 

were compared with those predicted by the WRF-Chem model in the summer of 2017. Compared to the results of 

WRF-Chem model, the lower fraction of compounds with C*=1 µg m−3 (21% vs. 45%) and higher fraction of compounds 30 
with C*≤0.1 µg m−3 (43% vs. 19%) estimated from thermogram methods suggest that current WRF-Chem model might 
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underestimate the fraction of low volatility compounds considerably. Therefore, the uncertainties in emission inventories of 

VOCs, semi-volatile and intermediate volatility organic compounds need to be reduced substantially to improve the model 

simulations of OA. Also, comparisons of more model-based and observation-based volatility bins (e.g., 8 or 12 bins) are 

needed in the future. 
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Figure 1. High-resolution mass spectra (left panel), time series (middle panel), and diurnal patterns (right panel) of four OA 
factors including (a) HOA, (b) COA, (c) LO-OOA and (d) MO-OOA in summer 2018. Also shown in the middle panels are the time 

series of other tracers including BC, C6H10O+, C2H3O+, and SIA. 



19 
 

 

Figure 2. Thermograms of (a) non-refractory submicron aerosol (NR-PM1) species (b) OA factors and O/C in summer 2018. (c) 

and (d) show mass fractions of NR-PM1 aerosol species and OA factors versus TD temperature. 

 

Figure 3. Thermograms of (a) C4H7+, C4H9+, CO2+, C2H3O+, (b) CH4N+, C2H6N+, C3H8N+, NO+, NO2+, CHNO+, and (c) SO+, SO2+, 5 
SO3+, CH3SO2+ in summer 2018. The variations of ratios of NO+/NO2+, SO+/SO3+ and SO2+/SO3+ are shown in (b) and (c).  
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Figure 4. Average composition of PM1 and OA in summer (a, d) 2018 and (b, e) 2017. The average composition of BC-containing 

aerosol and OA in summer 2017 is shown in (c, f).  

 

Figure 5. Predicted volatility distributions of OA and four OA factors in 2018. The error bars are the uncertainties derived using 5 
the approach of Karnezi et al. (2014). Vaporization enthalpies, accommodation coefficients, and volatility fractions of SVOC and 

LVOC for four OA factors are shown in (f).  
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Figure 6. Predicted volatility distributions of OA, POA, and SOA measured by TD-HR-AMS and TD-SP-AMS in 2017. The error 

bars are the uncertainties derived using the approach of Karnezi et al. (2014).  

 

Figure 7. Volatility distributions of SOA estimated by WRF-Chem model and thermogram method in summer 2017.  5 
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