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Abstract. To investigate characteristics of methanesulfonic acid (MSA), non-sea-salt sulfate (nss-SO42–) and organic carbon 
(OC) aerosols, aerosol and seawater samples were collected over the Southern Ocean (43°S−70°S) and the Amundsen Sea 
(70°S−75°S) during the ANA06B cruise conducted in the austral summer of 2016 aboard the Korean icebreaker IBR/V Araon. 
Over the Southern Ocean, atmospheric MSA concentration was low (0.10 ± 0.002 µg m–3), whereas its concentration increased 15 

sharply up to 0.57 µg m–3 in the Amundsen Sea where Phaeocystis antarctica (P. antarctica), a producer of dimethylsulfide 
(DMS), was the dominant phytoplankton species. Unlike MSA, mean nss-SO42– concentration in the Amundsen Sea was 
comparable to that in the Southern Ocean. Water-soluble organic carbon (WSOC) concentrations over the Southern Ocean and 
the Amundsen Sea varied from 0.048–0.16 µgC m–3 and 0.070–0.18 µgC m–3, with averages of 0.087 ± 0.038 µgC m–3 and 

0.097 ± 0.038 µgC m–3, respectively. For water-insoluble organic carbon (WIOC), its mean concentrations over the Southern 20 
Ocean and the Amundsen Sea were 0.25 ± 0.13 µgC m–3 and 0.26 ± 0.10 µgC m–3, varying from 0.083–0.49 µgC m–3 and 
0.12–0.38 µgC m–3, respectively. WIOC was the dominant organic carbon species in both the Southern Ocean and the 
Amundsen Sea, accounting for 73–75% of total aerosol organic carbon. WSOC/Na+ and WIOC/Na+ ratios in the fine mode 
aerosol particles were higher, especially in the Amundsen Sea where biological productivity was much higher than the 

Southern Ocean. The fluorescence properties of WSOC investigated using fluorescence excitation-emission matrix coupled 25 
with parallel factor analysis (EEM-PARAFAC) revealed that protein-like components were dominant in our marine aerosol 
samples, representing 69–91% of the total intensity. Protein-like component also showed a significant positive relationship 
with the relative biomass of diatoms; however, it was negatively correlated with the relative biomass of P. antarctica. These 
results suggest that protein-like component is most likely produced as a result of biological processes of diatoms in the 

Amundsen Sea. 30 
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1 Introduction 

Marine aerosols have been recognized to play an essential role in global climate due to their impact on the radiation 
budget and cloud microphysics by scattering solar radiation and acting as cloud condensation nuclei (CCN) (Andreae and 

Crutzen, 1997; O’Dowd et al., 2004). Considerable efforts have been devoted to investigating physicochemical characteristics 
of marine aerosols to elucidate the source and formation of CCN in the marine environment because of their importance for 5 
understanding the cloud-mediated effects of aerosols on climate (e.g., Hegg et al., 1991; O’Dowd et al., 1997; Vallina et al., 
2006; Furutani et al., 2008; Meskhidze and Nenes, 2010; Mochida et al., 2011; Gras and Keywood, 2017). 

The biogeochemical cycle of sulfur between the marine atmosphere and the ocean has received much attention, 
especially after the proposal by Charlson et al. (1987) who postulated that the most significant source of CCN in the marine 
environment is non-sea-salt sulfate (nss-SO42–) derived from atmospheric oxidation of dimethylsulfide (DMS). DMS produced 10 
by marine phytoplankton is the dominant sulfur species in ocean surface waters and is transported to the atmosphere through 
sea-to-air flux (Bates et al., 1992). After emission to the atmosphere, DMS is oxidized by the hydroxyl (OH), nitrate (NO3), 

and bromine oxide (BrO) radicals to form either methanesulfonic acid (MSA) or sulfur dioxide (SO2) which is further oxidized 
to nss-SO42– (e.g., Andreae et al., 1985; Gondwe et al., 2004; Read et al., 2008). The conversion of DMS into nss-SO42– aerosols 
is an essential process because of the potential interaction of sulfur aerosols with incoming solar radiation, and their role on 15 
cloud microphysics which could result in a negative climate feedback mechanism (Legrand and Pasteur, 1998). However, 
Quinn and Bates (2011) questioned the role of sulfur-containing aerosols derived from DMS in the climate feedback, but it is 

still clear that DMS emission contributes significantly to sulfur-containing aerosols acting as CCN over the oceans (Sanchez 
et al., 2018).  

In addition to atmospheric sulfur species, marine organic aerosols have recently drawn increasing attention due to their 20 
potentially significant contribution to CCN budget over the remote ocean (e.g., O’Dowd et al., 2004; Quinn and Bates, 2011; 

Gantt and Meskhidze, 2013). Ocean surface waters are enriched with small particulate organic materials including 
phytoplankton, bacteria, viruses, fragments of larger organisms and organic detritus (Quinn and Bates, 2011) as well as 
dissolved organic matter released or exuded by phytoplankton during growth, predation by grazing organisms and viral lysis 
(Biersmith and Benner, 1998). The organic fraction in surface waters can be broadly characterized as lipids, amino and fatty 25 
acids, mono- and polysaccharides and humic substances (Benner et al., 1992; Mochida et al., 2002; Gantt and Meskhidze, 

2013), which can be emitted into the marine atmosphere with sea-salt particles through bubble bursting processes (Russell et 
al., 2010; Gantt et al., 2011). Previous studies have highlighted the significance of ocean-derived organic aerosol as a critical 
component of the aerosol-cloud-climate feedback system (e.g., Kawamura et al., 1996; Kanakidou et al., 2005; Kawamura et 
al., 2010; Russell et al., 2010; Miyazaki et al., 2011; Quinn and Bates, 2011; Fu et al., 2015; Wilson et al., 2015; Miyazaki et 30 
al., 2016). For example, O’Dowd et al. (2004) revealed clear differences in ocean-derived organic carbon (OC) concentrations 

during periods of high and low biological activity, suggesting that OC derived from biological activity can enhance CCN 
concentration in the marine atmosphere, and that ocean-derived OC is a significant component of the aerosol-cloud-climate 
feedback system involving marine biota. 
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Although the importance of marine biogenic source contribution to CCN concentration has motivated numerous studies, 
quantitative measurements of the size-dependent composition of marine aerosols over high southern latitudes, especially the 

Antarctic remain sparse, due to its inaccessibility. Because of the difficulty in conducting a field observation, the sources and 
evolution of aerosols over the Antarctic are still a subject of many open questions (Giordano et al., 2017). It is, therefore, 
necessary to fill the data gap in the knowledge of marine aerosols in the Antarctic to improve understanding of the effect of 5 
ocean ecosystem on the marine aerosol-cloud-climate system. 

Polynyas, recurring areas of seasonally open water surrounded by sea ice in high latitude regions, often exhibit high 

primary productivity (e.g., Arrigo et al., 2003; Arrigo et al., 2012; Yager et al., 2012; Hahm et al., 2014) because they are the 
first polar marine systems to be exposed to the increasing springtime solar radiation (Arrigo and van Dijken, 2003; Criscitiello 
et al., 2013). Coastal polynyas surrounding Antarctica exhibit massive phytoplankton blooms during the austral summer 10 
(December–February), with most peaking in January. The productive polynyas are located in the Ross and Amundsen Seas 
while annual production in the polynyas of East Antarctica is generally low (Arrigo and van Dijken, 2003). The Amundsen 

Sea, located in West Antarctica, hosts two coastal polynyas: the Amundsen Sea Polynya (ASP) and Pine Island Bay Polynya 
(PIBP) (Arrigo and van Dijken, 2003). The ASP is the most productive polynya (per unit area) among 37 identified coastal 
polynya systems in the Antarctic (Arrigo and van Dijken, 2003) due to the combined effects of the enhanced light condition 15 
(Park et al., 2017), the abundance of macronutrients, supply of iron (Fe) from melting sea ice and/or glaciers and continental 

shelf sediments resulted from the intrusion of relatively warm, salty, and nutrient-rich Circumpolar Deep Water (CDW) (Arrigo 
et al., 2012; Dutrieux et al., 2014; Sherrell et al., 2015). Consequently, the Amundsen Sea is an ideal place to monitor a direct 
link between biological production and local emissions of sulfur compounds and organics, not only because of its remoteness 
from anthropogenic activity but also because it is an area of exceptionally high seasonal primary production. However, little 20 
is known about the distributions of atmospheric sulfur and organic species in the Amundsen Sea. 

To understand the influence of marine biological activities on atmospheric marine aerosols in the Amundsen Sea, we 
have investigated characteristics of MSA, nss-SO42–, water-soluble organic carbon (WSOC), and water-insoluble organic 
carbon (WIOC) in marine aerosols collected over the Amundsen Sea, Antarctica. Besides, we have carried out a hydrographic 
survey to examine the link between biological production and atmospheric sulfur and organic species in the Amundsen Sea. 25 
The objectives of this study are to (1) investigate the distributions of MSA and nss-SO42– over the Amundsen Sea, (2) examine 

the factors influencing atmospheric MSA concentration in the Amundsen Sea, (3) investigate the distributions of atmospheric 
WSOC and WIOC over the Amundsen Sea, and (4) estimate the source of atmospheric WSOC using a fluorescence technique.  

2 Method 

Aerosol and seawater samples were collected during the ANA06B cruise conducted over the Southern Ocean and the 30 
Amundsen Sea, Antarctica aboard the Korean icebreaker IBR/V Araon (Fig. 1). The cruise started from Christchurch, New 

Zealand on 6 January 2016, sailed over the Amundsen Sea for 23 days (14 January−5 February), and returned to Christchurch, 
New Zealand on 24 February 2016. In this study, the Southern Ocean and the Amundsen Sea are defined as the regions between 
43°S and 70°S, and between 70°S and 75°S, respectively. Although the cruise track covered the Southern Ocean (43°S−70°S) 
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and the Amundsen Sea (70°S−75°S), a significant portion of our cruise was allocated to the ASP and near-ice shelf surveys (< 
2 km from ice shelves) adjacent to the Dotson, the Getz, and the Pine Island ice shelves. 

2.1 Aerosol collection 

Two high-volume aerosol samplers (HV-1000R, Sibata Scientific Technology Ltd.) were installed on the front of the 
upper deck (20 m a.s.l.) and used to collect marine aerosols on pre-combusted (at 550°C for 6 hours) quartz filters (25 × 20 5 
cm, QR-100, Sibata Scientific Technology Ltd.). Particle size selectors for PM2.5 and PM10 were installed to each aerosol 
sampler to collect fine (D < 2.5 µm) and coarse modes (2.5 µm < D < 10 µm) aerosols on the filters, respectively. A wind-

sector controller was used to avoid contamination from the ship’s exhaust during the cruise (Jung et al., 2013, 2014). The wind-
sector controller was set to collect marine aerosol samples only when the relative wind directions were within plus or minus 
100° relative to the ship’s bow and the relative wind speeds were over 1 m s−1. The flow rate was 1000 L min−1 and the total 10 
sampling time was 3−4 days, representing a total sampling air volume of 1300−4500 m3. After sampling, the filters were stored 
frozen at −24°C before chemical analysis. Four procedural blanks were obtained by placing quartz filters in the aerosol sampler 

for 5 min on idle systems (i.e., no air flow through the filters) and processed as other aerosol samples. Meteorological variables 
(e.g., wind speed and wind direction) were continuously monitored by weather monitoring systems equipped on the research 
vessel during the cruise. 15 

2.2 Chemical analysis 

2.2.1 Ionic species 

The quartz filters, on which aerosols were collected, were cut into four equivalent subsamples. The subsamples were 
placed in acid-cleaned polypropylene bottles with the dusty side facing up. Fifty ml of Milli-Q water (> 18 MΩ cm−1, Millipore 
Co.) was added to the bottles, and the bottles were covered using polypropylene screw caps. The subsamples were sonicated 20 
for 30 min. The extraction solution was then filtered through a 13-mm diameter, 0.45-µm pore size membrane filter (PTFE 
syringe filter, Millipore Co.). The filtrates were analyzed by ion chromatography (IC; ICS 2000, Thermo Scientific Dionex) 

for anions (Cl−, MSA, NO3−, and SO42− ) and cations (Na+, NH4+, K+, Mg2+, and Ca2+). The instrumental detection limits were: 
Cl− 0.05 µg L−1, MSA 0.02 µg L−1, NO3− 0.02 µg L−1, SO42− 0.02 µg L−1, Na+ 0.02 µg L−1, NH4+ 0.14 µg L−1, K+ 0.16 µg L−1, 
Mg2+ 0.08 µg L−1, and Ca2+ 0.20 µg L−1 (Hong et al., 2015). From replicate injections, the analytical precision was estimated 25 
to be < 5%. The concentrations of nss-SO42− were calculated as total SO42− minus Na+ concentration times 0.2516, the 
SO42−/Na+ mass ratio in bulk seawater (Millero and Sohn, 1992).  

2.2.2 Water-soluble organic carbon 

Other subsamples of the quartz filters were ultrasonically extracted using the same method for ionic species 
measurements. The filtrates were analyzed by a total organic carbon (TOC) analyzer (Model TOC-L, Shimadzu Inc.) for 30 
determination of total dissolved organic carbon (TDOC), which was defined as water-soluble organic carbon (WSOC) in this 
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study. In the analytical system, inorganic carbon was removed by acidifying the samples to pH 2 by 2 M HCl and sparging for 
8 min before analysis of the total carbon content. Carbon dioxide (CO2) derived from the conversion of TDOC by high 

temperature (680°C) catalytic oxidation was measured by a nondispersive infrared (NDIR) detector to quantify TDOC 
(Miyazaki et al., 2011). Milli-Q water and consensus reference material (CRM, 42‒45 µM C for DOC, deep Florida Strait 
water obtained from University of Miami) were measured every sixth analysis to check the accuracy of the measurements. The 5 
procedural mean blank for WSOC was 180 µgC L−1, which represented 14% of mean WSOC concentration in aerosols. The 
detection limit calculated as three times of the standard deviation of the procedural blanks was 21 µgC L−1. The relative 

standard deviations of WSOC analysis for reproducibility test (at least three measurements per sample) was less than 3%. 

2.2.3 Organic and elemental carbon 

Concentrations of OC and elemental carbon (EC) were measured using the thermal optical transmission (TOT) method 10 
on a Sunset lab OC/EC analyzer (Model-4, USA) (Birch and Cary, 1996). The analytical procedures for OC and EC 
measurements are described in detail elsewhere (e.g., Miyazaki et al., 2011; Niu et al., 2012, 2013). In brief, a filter punch of 

1.54 cm2 was placed in the oven and heated in a completely pure helium environment up to 850°C to convert all OC into CO2. 
For EC measurement, the oven was cooled to 550°C and then heated until the oven temperature stepping up back to 850°C 
under a 2% oxygen-containing helium environment. All CO2 derived from the conversion of both OC and EC was measured 15 
by an NDIR detector. The equivalent OC concentration from filed blank accounted for ~15% of the average OC concentrations 
of the actual samples. Based on field blank uncertainties, detection limits for OC and EC were 0.1 µgC cm−2 and 0.02 µgC 

cm−2, respectively. In this study, WIOC was defined as the difference between OC and WSOC (i.e., WIOC = OC − WSOC) 
(Miyazaki et al., 2011). Using the propagating errors of each parameter, the uncertainty of WIOC concentration was estimated 
to be 5.8%. 20 

2.2.4 Optical measurements and excitation-emission matrix coupled with parallel factor analysis 

Absorption spectra of atmospheric WSOC were obtained from 240 to 800 nm on a Shimadzu 1800 ultraviolet-visible 

(UV-Vis) spectrophotometer (Shimadzu Inc.). Three-dimensional fluorescence excitation-emission matrices (EEMs) were 
scanned using a Hitachi F-7000 luminescence spectrometer (Hitachi Inc.) at the excitation/emission (Ex/Em) wavelengths of 
250−500/280−550 nm. The excitation and the emission scans were set at 5 nm and 1 nm steps, respectively. The UV–Vis 25 
spectra were used for inner filter correction for the EEMs according to McKnight et al. (2001). Further details on the EEM 

measurements and the procedure of post-acquisition corrections are available in previous studies (Chen et al., 2010, 2017, 
2018). The procedure for Raman Unit (RU) normalization can be found elsewhere (Lawaetz and Stedmon, 2009). Parallel 
factor (PARAFAC) modeling was performed using MATLAB 7.0.4 with the DOMFluor toolbox. All corrected EEMs of 
aerosol samples were used for modeling. The number of fluorescent components was determined based on split-half validation. 30 
The biological index (BIX), an index of recent biological and autochthonous contribution, was calculated according to Huguet 

et al. (2009). 
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2.3 Hydrographic data 

2.3.1 Chlorophyll-a  

2.3.1.1 In situ measurement  

Seawater samples were collected from 4 to 5 layers in the upper 100 m at 46 stations in the Amundsen Sea using a 
conductivity-temperature-depth (CTD) and a rosette system holding 24-10L Niskin bottles (SeaBird Electronics, SBE 911 plus) 5 
(Fig. 1). Seawater sample for chlorophyll-a (Chl-a) analysis was filtered through a GF/F filter (47 mm, Whatman), which was 
then extracted with 90% acetone for 24 hours. Chl-a was measured onboard using a fluorometer (Trilogy, Turner Designs, 
USA) (Lee et al., 2016). 

2.3.1.2 Satellite observation  

Monthly composite of sea surface Chl-a concentration (mg m‒3) was obtained from Moderate Resolution Imaging 10 
Spectroradiometer (MODIS) Aqua data available from the Goddard Space Flight Center, NASA. The spatial resolution of the 
data was approximately 9 km per pixel (http://oceandata.sci.gsfc.nasa.gov). 

2.3.2 Dissolved organic carbon 

Seawater sample was drawn from the Niskin bottle by gravity filtration through an inline pre-combusted (at 550°C for 
6 hours) Whatman GF/F filter held in an acid-cleaned (0.1 M HCl) polycarbonate 47 mm filter holder (PP-47, ADVANTEC). 15 
The filter holder was attached directly to the Niskin bottle spigot. The filtrate was collected in an acid-cleaned glass bottle and 
then distributed into two pre-combusted 20 ml glass ampoules with a sterilized serological pipette. Each ampoule was sealed 
with a torch, quick-frozen, and preserved at ‒24°C until the analysis in our land laboratory. Analysis of dissolved organic 

carbon (DOC) was performed by high-temperature combustion using a Shimadzu TOC-L analyzer. Milli-Q water (blank) and 
consensus reference material (CRM, 42‒45 µM C for DOC, deep Florida Strait water obtained from University of Miami) 20 
were measured every sixth analysis to check the accuracy of the measurements. Analytical errors based on the standard 
deviations for replicated measurements (at least three measurements per sample) were within 5% for DOC. 

2.3.3 Particulate organic carbon 

For determination of particulate organic carbon (POC), seawater sample was drawn from the Niskin bottle into an amber 
polyethylene bottle. Known volumes (500 ml‒1 L) of seawater were filtered onto pre-combusted Whatman GF/F filters (25 25 
mm) under gentle vacuum at < 0.1 MPa. The filter samples were stored at ‒80°C until the analysis in our land laboratory. 
Before POC analysis, the filter samples were freeze-dried and then exposed to HCl fumes for 24 hours in a desiccator to 
remove inorganic carbon from the samples. Measurement of POC was carried out with a CHN elemental analyzer (vario 

MACRO cube, Elementar, Germany). Acetanilide was used as a standard. The precision of these measurements was ± 4%. 
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2.3.4 Phytoplankton taxonomic composition 

Phytoplankton taxonomic composition was assessed using High Performance Liquid Chromatography (HPLC) analysis 
of accessory photosynthetic pigment concentrations. For the analysis of photosynthetic pigments, 1−2 L of seawater samples 

were filtered onto 47 mm Whatman GF/F filters and stored at −80°C until the analysis in our land laboratory. The filters were 
extracted with 3 ml of 100% acetone, ultrasonicated for 30 seconds and maintained under 4°C in dark for 15 hours. Debris 5 
was removed by filtering through 0.45 µm Teflon syringe filters. Before injection, the extracts were diluted with distilled water 
(1 ml of extract plus 0.3 ml of distilled water) to avoid the peak distortion of the first eluting pigments. Pigments were assessed 

by HPLC analysis following the method of Zapata et al. (2000). Before analysis, the instrument (Agilent series 1200 
chromatographic system, Germany) was calibrated using standard pigments (DHI, Denmark). A C8 column (250 mm × 4.6 
mm, 5 µm particle size, Agilent XDB-C8, USA) was used for pigment separation. HPLC pigment data was processed using 10 
CHEMTAX (CHEMical TAXonomy), a matrix factorization program to calculate the absolute Chl-a biomass of major algal 
groups. Twelve pigments were chosen for CHEMTAX analysis, and seven pigment algal groups were defined according to 

Wright et al. (2010), including Phaeocystis antarctica (P. antarctica), diatoms, and cryptophytes. 

3 Results and discussion 

3.1 Atmospheric MSA over the Southern Ocean and the Amundsen Sea 15 

Concentration of MSA in bulk (fine + coarse) aerosols during the cruise ranged from 0.038–0.57 µg m–3, with an average 
of 0.22 ± 0.14 (mean ± one standard deviation) µg m–3. About ~80% (median values for all data) of MSA existed in the fine 

mode aerosols. Over the Southern Ocean (43°S−70°S, samples A1–A2), the MSA concentration was relatively low (mean: 
0.10 ± 0.002 µg m–3), whereas its concentration over the Amundsen Sea (70°S–75°S, samples A3–A9) increased sharply up 
to 0.35 µg m–3 and showed high spatial variability (range: 0.096–0.57 µg m–3, mean: 0.28 ± 0.15 µg m–3), with the highest 20 
value observed in the ASP (Fig. 2a). As expected, however, the MSA concentration gradually decreased from 0.29 µg m–3 to 
0.038 µg m–3 with distance from the ASP (i.e., from the Amundsen Sea to the Southern Ocean, samples, A10–A14, mean: 0.18 

± 0.11 µg m–3). The MSA concentration from this study was in reasonable agreement with previously published results 
obtained over the regions near the Antarctic continent during the austral summer when air masses originated from the western 
Antarctic coastal regions (60°S−70°S, 0.05–0.26 µg m–3, Chen et al., 2012). However, our mean MSA concentration in the 25 
Amundsen Sea was about 1.8–4.4 times higher than those observed at Antarctic research stations during the austral summer, 
such as Palmer Station (64.77°S, 64.05°W, 0.122 ± 0.127 µg m–3, December 1990–March 1991, Savoie et al., 1993), Halley 

Station (75°35′S, 26°19′W, 0.14 µg m–3, January–February 2005, Read et al., 2008), Neumayer Station (70°39′S, 8°15′W, 
0.154 ± 0.077 µg m–3, monthly mean in January from 1983–1995, Minikin et al., 1998), and Dumont D’Urville Station (66°40′S, 
140°1′E, 0.063 ± 0.019 µg m–3, monthly mean in January from 1991–1995, Minikin et al., 1998). Although the mean MSA 30 
concentration was much higher than those observed at the Antarctic research stations, the maximum of MSA in the Amundsen 

Sea was comparable to the highest concentration measured at Palmer Station (0.57 µg m–3, Savoie et al., 1993), implying that 
the source strength for MSA is greater in the Amundsen Sea. These differences in atmospheric MSA concentrations among 
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coastal Antarctic regions presumably reflect regional differences in factors controlling MSA abundance in the marine 
atmosphere, such as spatial variations of phytoplankton bloom, phytoplankton taxonomic composition, emission flux of DMS, 

atmospheric oxidative capacity, atmospheric transport and removal (Minikin et al., 1998; Gondwe et al., 2004; Chen et al., 
2012; Criscitiello et al., 2013; Jung et al., 2014). 

3.2 Factors influencing atmospheric MSA concentration over the Amundsen Sea 5 

Various factors appear to influence atmospheric MSA concentration in the Amundsen Sea. According to Arrigo and 
van Dijken (2003), 5 years (1997–2002) averaged Chl-a level in the ASP during the month of January (6.98 ± 3.32 mg m–3) is 

more than 2 times higher than that in the Ross Sea Polynya (2.67 ± 0.82 mg m–3). Indeed, satellite ocean color images 
(http://oceancolor.sci.gsfc.nasa.gov) exhibited persistently high Chl-a levels in the ASP during the sampling period (Fig. 3), 
implying a strong influence of biogenic source on atmospheric MSA in the Amundsen Sea.  10 

In addition to the high productivity, phytoplankton taxonomic assemblages could be a significant factor influencing 
atmospheric MSA abundance. In general, phytoplankton taxonomic abundances in the Amundsen Sea are dominated by 

haptophyte P. antarctica (e.g., Lee et al., 2016; Yager et al., 2016), which produces large amounts of DMS in Antarctic waters 
(Liss et al., 1994; Schoemann et al., 2005). During the cruise, P. antarctica was the dominant phytoplankton species in the 
upper 50 m, accounting for 42 ± 19% of phytoplankton biomass (Chl-a), with lesser abundances of diatoms (39 ± 17%) found 15 
throughout the polynya and sea ice zone (see Supplement, Fig. S1). In addition, extremely high concentrations (> 150 nM) and 
fluxes (85 ± 119 µmol m–2 d–1) of DMS have been observed in the region where phytoplankton assemblages were dominated 

by P. antarctica during the cruise (Kim et al., 2017), which are consistent with previous results observed in the Amundsen Sea 
(Tortell et al., 2012).  

We investigated the relationships between atmospheric MSA concentration and the variables mentioned above, to 20 
examine factors influencing atmospheric MSA concentration in the Amundsen Sea. Atmospheric MSA concentration showed 

no relationship with either in situ sea surface Chl-a concentration (r = 0.029, p > 0.05) (Fig. S2) or the relative biomass of P. 
antarctica (r = 0.30, p > 0.05). This suggests that Chl-a concentration and phytoplankton taxonomic composition are not direct 
factors determining atmospheric MSA concentration over the Amundsen Sea. On the other hand, DMS flux (data from Kim et 
al., 2017) averaged for the duration of each aerosol sampling showed a somewhat similar variation trend to that of atmospheric 25 
MSA concentration (Fig. 4a), but no correlation was found between atmospheric MSA and DMS flux (r = 0.18, p > 0.05, Fig. 

4b); however, if the single outlying point (i.e., assuming that relatively low atmospheric MSA concentration compared to the 
highest DMS flux is affected by the highest mean wind speed during the sampling duration of sample A6) is excluded from 
Fig. 4b, atmospheric MSA concentration showed a significant relationship with DMS flux (r = 0.78, p < 0.05). DMS 
concentration in surface water showed a similar variation trend to that of DMS flux since DMS concentration in surface water 30 
is a key factor determining sea–air DMS flux. A similar result was found between atmospheric MSA and DMS concentrations 

in surface water, showing no correlation (r = 0.20, p > 0.05). However, the relationship between atmospheric MSA and DMS 
concentrations in surface water becomes statistically significant (r = 0.77, p < 0.05) when the single outlying point (i.e., sample 
A6) is excluded (not shown). DMS fluxes typically rely on gas transfer velocity, which is frequently parameterized as a 
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function of wind speed (Wanninkhof, 2014). Measurement and parameterization of the gas transfer velocity are more 
challenging and subject to greater uncertainty, particularly at high wind speeds (Smith et al., 2018). As the gas transfer velocity 

increases with increasing wind speed, DMS flux can be overestimated especially, in higher latitudes where DMS is commonly 
found at high concentrations in surface water, and where both low temperatures and high winds are typical (McGillis et al., 
2000). Despite the uncertainty in DMS flux (Fig. 4), given the lifetime of DMS is approximately 1–2 days (Kloster et al., 2006; 5 
Read et al., 2008), our results revealed that the local sea–air DMS flux affected directly atmospheric MSA concentration in 
the Amundsen Sea, and that the higher atmospheric MSA concentrations observed over the Amundsen Sea compared to those 

over the Southern Ocean and in coastal Antarctic regions were attributed to the higher DMS concentrations produced by P. 
antarctica and to the higher DMS fluxes in the Amundsen Sea. 

3.3 Atmospheric nss-SO42– over the Southern Ocean and the Amundsen Sea 10 

Concentration of nss-SO42– in bulk (fine + coarse) aerosols during the cruise ranged from 0.30–0.87 µg m–3, with ~79% 
(median values for all data) of nss-SO42– being present on fine mode aerosols (Fig. 2b). Mean concentration of nss-SO42– during 

the cruise was 0.61 ± 0.17 µg m–3. Over the Southern Ocean (43°S−70°S, samples A1–A2 and A11–A14), the nss-SO42– 
concentration ranged from 0.30–0.87 µg m–3 (mean: 0.60 ± 0.23 µg m–3), whereas its concentration over the Amundsen Sea 
(70°S–75°S, samples A3–A10) varied from 0.49–0.81 µg m–3 (mean: 0.62 ± 0.10 µg m–3). Surprisingly, our mean nss-SO42– 15 
concentration in the Amundsen Sea was about 1.5 and 2.5 times higher than those observed at American Samoa (14.25°S, 
170.58°W, 0.41 ± 0.17 µg m–3, seasonal average (December–February) from 1990–1992, Savoie et al., 1994) and over the 

South Pacific (8°S–55°S, mean: 0.25 ± 0.17 µg m–3, range: 0.094–0.62 µg m–3, January–March 2009, Jung et al., 2014), 
respectively. In addition, the mean nss-SO42– concentration in the Amundsen Sea was also a factor of 1.6–4.4 higher than those 
observed at Palmer Station (0.24 ± 0.16 µg m–3, December 1990–March 1991, Savoie et al., 1993), Halley Station (0.14 ± 20 
0.017 µg m–3, monthly mean in January from 1991–1993, Legrand and Pasteur, 1998), Neumayer Station (0.38 ± 0.13 µg m–

3, monthly mean in January from 1983–1995, Minikin et al., 1998), and Dumont D’Urville Station (0.34 ± 0.039 µg m–3, 
monthly mean in January from 1991–1995, Minikin et al., 1998) during the austral summer. 

Unlike MSA, the mean nss-SO42– concentration in the Amundsen Sea was comparable to that in the Southern Ocean, 
although the variation trend of nss-SO42– in the Amundsen Sea was similar to that of MSA, suggesting that nss-SO42– was 25 
affected by marine source and large-scale transport (Korhonen et al., 2008). Indeed, nss-SO42– showed a strong correlation (r 

= 0.98, p < 0.01) with MSA in the Amundsen Sea, whereas no relationship was found between them in the Southern Ocean (r 
= 0.51, p > 0.05) (Fig. S3), suggesting that the local emission of DMS is a significant source of nss-SO42– in the Amundsen 
Sea. It is worth mentioning that nss-SO42– can be formed from the homogeneous nucleation of new particles involving H2SO4 
or from the condensation of gas-phase DMS oxidation products onto existing particles (e.g., Covert et al., 1992; Quinn and 30 
Bates, 2011). Recently, Sanchez et al. (2018) identified two types of SO42– particles using an Event-Trigger Aerosol-Mass-

Spectrometer (ET-AMS), and reported that 63% of SO42– was derived from newly formed particles in the free troposphere and 
38% of SO42– was formed from the condensation of DMS products onto existing particles in the clean marine conditions, 
revealing the importance of phytoplankton-produced DMS emission for CCN in the Atlantic. In this study, it is hard to 
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distinguish nss-SO42– derived from new particle formation from nss-SO42– formed by the condensation of DMS products onto 
existing particles because of the limitations related to the method to collect data. However, the significant correlation of nss-

SO42– with MSA in the Amundsen Sea suggests that DMS emission from the Amundsen Sea plays a crucial role in the 
formation of nss-SO42– aerosol particles that can act as CCN. 

On the other hand, the statistically insignificant relationship between nss-SO42– and MSA in the Southern Ocean could 5 
result from the influence of anthropogenic sources in the Southern Ocean. During the cruise, as shown in Fig. 5a, high (> 0.1 
µg m–3) nitrate (NO3–) concentrations were observed during the collection of aerosol samples A1 and A13 when air masses 

originated from the Southern Ocean and thereafter swept over large regions of New Zealand (Fig. S4); however, NO3– 
concentrations in the other samples were quite low (< 0.03 µg m–3). Although NO3– was observed in the other aerosol samples, 
we cannot assert that all aerosol samples were influenced by anthropogenic sources without another anthropogenic tracer data 10 
set (e.g., 210Pb) because, in addition to anthropogenic sources, NO3– can be produced in clouds (Hegg and Hobbs, 1988) or 
derived from a weak oceanic source (Luo et al., 2018). Nevertheless, our results suggest that nss-SO42– in the two samples 

collected over the Southern Ocean were most likely affected by anthropogenic sources, resulting in the lack of correlation. 
Another possible explanation for the insignificant relationship between nss-SO42– and MSA is entrainment of nucleated nss-
SO42– particles into the marine boundary layer of the Southern Ocean from the free troposphere by turbulent diffusion and 15 
large-scale transport (Korhonen et al., 2008; Woodhouse et al., 2010). Sanchez et al. (2018) reported that the lack of correlation 

between SO42– particle and atmospheric DMS (or its oxidation products) could result from the competition for DMS and its 
oxidation products with the competing sinks of condensation onto existing particles and vertical transport to the free 
troposphere. The lack of correlation between nss-SO42– and MSA in the Southern Ocean, therefore, could have resulted from 
the influence of anthropogenic sources and the input of nss-SO42– from the free troposphere. Although our data set is not 20 
sufficiently complete to allow a meaningful analysis of this likely explanation, the result for nss-SO42– concentrations from 

this study would be valuable for filling the data gap, especially for the Amundsen Sea during the austral summer, and be 
helpful for validation of modeling of sulfur-containing aerosols.   

3.4 MSA/nss-SO42– ratios over the Southern Ocean and the Amundsen Sea 

There have been several field studies investigating the MSA/nss-SO42– ratio in the Southern Ocean during the austral 25 
summer (range: 0.32–0.53, the South Pacific (40°S−45°S), Berresheim et al., 1990; range: 0.12–0.24, Cape Grim (40°41′S , 

144°41′E), Ayers et al., 1991; range: 0.17–0.32, the South Pacific (30°S−60°S), Bates et al., 1992; range: 0.096–0.49, the 
South Pacific (40°S−56°S), Jung et al., 2014). 

During the cruise, the MSA/nss-SO42– ratio in bulk aerosols varied from 0.12 to 0.70 (mean: 0.35 ± 0.17), with lower 
ratios in marine aerosols collected over the Southern Ocean (range: 0.12–0.51, mean: 0.26 ± 0.14) and higher values over the 30 
Amundsen Sea (range: 0.20–0.70, mean: 0.44 ± 0.16), showing a similar variation trend (r = 0.92, p < 0.01) to that of MSA 

(Fig. 5b). This result suggests that atmospheric MSA plays a key role in the variation in MSA/nss-SO42– ratio over the Southern 
Ocean and the Amundsen Sea during the austral summer since atmospheric nss-SO42– concentrations in the Southern Ocean 
were quite comparable to the values in the Amundsen Sea.  
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3.5 Atmospheric WSOC and WIOC over the Southern Ocean and the Amundsen Sea 

Concentration of WSOC in bulk (fine + coarse) aerosols during the cruise ranged from 0.048–0.18 µgC m–3, with an 
average of 0.092 ± 0.037 µgC m–3 (Fig. 6a). The WSOC concentrations over the Southern Ocean (43°S−70°S, samples A1–

A2 and A11–A14) and the Amundsen Sea (70°S–75°S, samples A3–A9) varied from 0.048–0.16 µgC m–3 and 0.070–0.18 µgC 
m–3, with averages of 0.087 ± 0.038 µgC m–3 and 0.097 ± 0.038 µgC m–3, respectively. For WIOC, its mean concentrations 5 
over the Southern Ocean and the Amundsen Sea were 0.25 ± 0.13 µgC m–3 and 0.26 ± 0.10 µgC m–3, varying from 0.083–0.49 
µgC m–3 and 0.12–0.38 µgC m–3, respectively (Fig. 6b). We expected much higher WSOC and WIOC concentrations in the 

Amundsen Sea than the Southern Ocean because of extremely high Chl-a concentration in the Amundsen Sea (Fig. 3). However, 
no significant differences of mean WSOC and WIOC concentrations were found between the Southern Ocean and the 
Amundsen Sea, suggesting that Chl-a concentration is not a direct factor controlling atmospheric OC concentration in our 10 
study area (Quinn et al., 2014), although a significant correlation between atmospheric OC and Chl-a concentrations was 
observed in the Austral Ocean (Amsterdam Island, 37°48′S, 77°34′E, Sciare et al., 2009).  

Both WSOC and WIOC mainly existed in fine mode particles, and the percentages of WSOC and WIOC present in fine 
aerosol particles were ~93% and ~74%, respectively (median value for all data). During the cruise, WIOC was the dominant 
OC species in both the Southern Ocean and the Amundsen Sea, accounting for 75% and 73% of total aerosol organic carbon, 15 
respectively (Fig. 6c). These results were consistent with the previous studies. For example, O’Dowd et al. (2004) observed a 
dominant water-insoluble OC fraction (~45%) in fine marine aerosol collected during periods of phytoplankton bloom in the 

North Atlantic. Moreover, Facchini et al. (2008) reported that OC observed through a bubble bursting experiment and a field 
measurement (at Mace Head) was mainly water-insoluble, accounting for 77 ± 5% of the primary marine aerosol fraction in 
the submicron size range, and that WIOC consisted of colloids and aggregates exuded by phytoplankton. Given that 20 
atmospheric WIOC is mechanically produced through bubble bursting processes from hydrophobic organic matter that 

accumulates in the ocean surface (Facchini et al., 2008; Gantt et al., 2011; Miyazaki et al., 2011), the dominance of WIOC 
suggests that water-insoluble organic matter exuded by phytoplankton is more accumulated in sea surface water and emitted 
into the marine atmosphere via bubble bursting and breaking waves by local wind.  

Our mean values of WSOC and WIOC in the Amundsen Sea were comparable to the results by Sciare et al. (2009) who 25 
reported that the mean concentrations of WSOC and WIOC observed at Amsterdam Island (37°48′S, 77°34′E) during the 

austral summer (January) were 0.083 ± 0.028 µgC m–3 and 0.19 ± 0.062 µgC m–3, respectively. It is worth noting that 
atmospheric WSOC and WIOC show seasonal variations, with maximum values during austral summer (January) and 
minimum concentrations during winter (Sciare et al., 2009). These variations are attributable to pronounced seasonal variations 
in biogenic marine productivity. Given that our study was carried out during the austral summer, the concentrations of WIOC 30 
and WSOC from this study would be considered as maximum values in the Amundsen Sea. Although our results were 

supported by previous studies as mentioned above, the spatial variability in WSOC and WIOC concentrations has been 
observed over various oceanic regions by previous studies. For instance, Fu et al. (2015) reported that atmospheric OC species 
concentrations observed at Alert, in the Canadian High Arctic were 0.186 µgC m–3 (range: 0.041–0.30 µgC m–3) for WSOC 
and 0.068 µgC m–3 (range: 0.022–0.12 µgC m–3) for WIOC. The results by Fu et al. (2015) were 1.9 times higher and 3.8 times 35 
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lower than our mean concentrations of WSOC and WIOC in the Amundsen Sea, respectively. In addition, Miyazaki et al. 
(2011) reported that mean concentrations of WSOC and WIOC observed over the western North Pacific (40°N–44°N) were 

0.65 ± 0.27 µgC m–3 and 0.56 ± 0.19 µgC m–3, which were a factor of 6.7 and 2.2 higher than those in the Amundsen Sea, 
respectively. These differences in WSOC and WIOC concentrations among the oceanic regions presumably reflect regional 
differences in factors influencing atmospheric WSOC and WIOC concentrations, such as source strength for volatile organic 5 
compounds emitted from biogenic sources (BVOCs), atmospheric oxidative capacity (e.g., OH, NO3 and ozone), 
meteorological condition (e.g., wind speed), DOC and POC concentrations in sea surface water, atmospheric transport and 

removal (e.g., Facchini et al., 1999; Kanakidou et al., 2005; Sun et al., 2006). 

3.6 WIOC/Na+ and WSOC/Na+ ratios and relationships of WIOC and WSOC with Na+ over the Southern Ocean and 
the Amundsen Sea 10 

Breaking waves on the ocean surface generate air bubbles that scavenge organic matter from seawater. When injected 
into the atmosphere, these bubbles burst, yielding sea spray aerosols enriched in organic matter, relative to seawater (Quinn et 

al., 2014). Sea spray aerosols have been defined as the hydrated droplets encapsulating dissolved sea-salt and entrained organic 
matter (O’Dowd et al., 2008). Previous studies have revealed that organic matter is enriched in sea spray aerosol particles 
produced by bubble bursting processes in the fine and ultrafine aerosol size fractions, suggesting that sea spray aerosol particles 15 
have an important role in transferring organic matter from the sea surface to the atmosphere (Facchini et al., 2008; O’Dowd et 
al., 2008). During the cruise, ~76% of Na+, a tracer of sea spray, was associated with the coarse mode particle (Fig. 7a). 

Moreover, statistically significant relationships were found between mean wind speed and Na+ concentrations in fine (r = 0.54, 
p < 0.05) and coarse (r = 0.69, p < 0.01) mode aerosols, reflecting that Na+ was formed from bubble bursting by local wind. 
Although Na+ was predominantly associated with the coarse mode particle, WSOC/Na+ and WIOC/Na+ in the fine mode 20 
aerosol particles were higher than those in the coarse mode aerosol particles, especially in the Amundsen Sea where biological 
productivity was much higher than the Southern Ocean (Fig. 7b). In the Southern Ocean, the WSOC/Na+ ratio in the fine mode 

particles varied from 0.045–0.40, whereas the WSOC/Na+ ratio in the Amundsen Sea ranged from 0.17–0.89. The average 
WSOC/Na+ ratio in the Amundsen Sea (0.40 ± 0.24) was substantially higher than that in the Southern Ocean (0.16 ± 0.12). 
For the WIOC/Na+ ratio in the fine mode particles, similar results were observed. The WIOC/Na+ ratios in the Southern Ocean 25 
and the Amundsen Sea varied from 0.038–0.97 and 0.26–2.4, with averages of 0.35 ± 0.31 and 0.91 ± 0.73, respectively; 

however, WIOC/Na+ ratio in the fine mode aerosol particles was much higher than WSOC/Na+, suggesting that bubble bursting 
at the ocean surface is a major source of atmospheric WIOC and that WIOC is more accumulated in the sea surface water. 
These results show that the higher marine biological activities in the Amundsen Sea can be a significant factor leading to the 
higher OC/Na+ ratios, indicating a linkage between OC emission and biological activities (Fig. 3). 30 

Because sea spray aerosols are emitted as a result of wind-driven bubble bursting, correlations of organic aerosol mass 

concentrations with sea spray aerosols (i.e., Na+), whose concentration are related to local wind speeds, have been used to 
attribute their origin to marine sources because submicron Na+ is known to form primary aerosols from evaporating seawater 
droplets (Russell et al., 2010). In this study, we investigated relationships of WIOC and WSOC concentrations with Na+ 
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concentration in the fine modes since both WIOC and WSOC were primarily associated with the fine mode particles (Figs. 6a 
and 6b). The submicron WIOC showed no statistically significant relationships with submicron Na+ over the Southern Ocean 

and the Amundsen Sea (Fig. 8a), although WIOC/Na+ ratio in the fine mode aerosol particles was much higher (Fig. 7b). 
Similarly, Boreddy et al. (2018) found no correlation between sea-salt and WIOC in the western North Pacific. The increase 
in sea-salt particle flux under higher wind speed conditions shifts the sea spray aerosol size distribution towards larger sizes 5 
and accelerates their dry deposition and gravitational settling from the atmosphere (de Leeuw et al., 2011). Thus, theses 
insignificant relationships between WIOC and Na+ in the fine modes could result from the differences in local wind speeds 

and local biological activities, because wind speed, a key factor determining sea spray aerosols, controls the local flux rather 
than local concentration of marine particles (Monahan and O’Muircheartaigh, 1986). Our results are further supported by the 
study of Ceburnis et al. (2008), who found WIOC and sea-salt exhibited upward fluxes observed through gradient flux 10 
measurements, suggesting a primary production mechanism for WIOC. Although we found no significant relationships 
between WIOC and Na+ in the fine modes, the high WIOC/Na+ ratio in the fine mode aerosol particles (Fig. 7b) indicates that 

WIOC was predominantly of primary origin (Ceburnis et al., 2008). However, the WIOC production by secondary processes 
cannot be completely excluded either (Ceburnis et al., 2016), but we have no evidence of that. 

Unlike the relationship between WIOC and Na+, submicron WSOC showed a strong correlation (r = 0.94, p < 0.01) 15 
with submicron Na+ in the Amundsen Sea (Fig. 8b). In addition, we also found a significant correlation (r = 0.93, p < 0.01) 

between WSOC and MSA concentrations in the Amundsen Sea (Fig. 8c). However, in the Southern Ocean, WSOC showed 
no significant relationship with submicron Na+ or MSA. MSA is produced by atmospheric oxidation of DMS, which is released 
as a gas phase from marine biological activities and thus can be used as an indicator of secondary aerosols of marine biogenic 
origin (Miyazaki et al., 2011). As described in section 3.2, Kim et al. (2017) observed extremely high DMS concentrations (> 20 
150 nM) in surface water during our cruise, and MSA concentration showed a strong correlation with DMS flux in the 

Amundsen Sea. Consequently, the strong correlations between WSOC, Na+ and MSA in the Amundsen Sea implies that the 
Amundsen Sea that has the most productive polynya in the Antarctic is a strong source region of BVOCs, and that WSOC was 
formed by the condensation of BVOCs released from sea surface onto preexisting submicron sea spray aerosols through gas-
to-particle conversion due to a higher surface-to-volume ratio of submicron aerosols (Romakkaniemi et al., 2011). On the other 25 
hand, the poor correlations between WSOC, Na+, and MSA in the Southern Ocean implies the differences in local source 

strength of BVOCs and that the presence of DMS in seawater and its subsequent oxidation to MSA were not necessarily linked 
to the formation of submicron WSOC over the Southern Ocean (Miyazaki et al., 2016). 

3.7 Fluorescence properties of WSOC over the Southern Ocean and the Amundsen Sea 

Fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) has been widely used 30 
to investigate the sources and optical properties of dissolved organic matter in terrestrial and oceanic systems (e.g., Coble, 

1996, 2007; Stedmon et al., 2003; Yamashita et al., 2011; Retelletti Brogi et al., 2018). Moreover, recent field studies 
demonstrated that EEM-PARAFAC provides useful information for characterizing atmospheric OC in aerosols and rainwater 
(e.g., Fu et al., 2015; Miyazaki et al., 2018; Yang et al., 2019).  
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As described in section 3.6, our results strongly suggested that the submicron WSOC observed in the Amundsen Sea 
was formed by the condensation of BVOCs onto preexisting submicron sea spray aerosols by showing the strong correlations 

with Na+ and MSA. To further elucidate the sources of WSOC, we investigated the fluorescence properties of WSOC in the 
fine mode using EEM-PARAFAC. Fluorophores in WSOC were divided into three primary types on the basis of their peak 
position (Fig. 9). The spectral features of component 1 (C1, Ex/Em: 300/344 nm) was similar to the component previously 5 
identified in in coastal and oceanic waters as well as the polar ocean and was thought to be phytoplankton-derived (or ice 
algae-derived) protein-like component (Stedmon et al., 2007, 2011, Retelletti Brogi et al., 2018). Component 2 (C2, Ex/Em: 

276/326 nm) was assigned as a tryptophan-like fluorophore, which has been considered to be a labile component produced as 
a result of biological production in marine environments (Coble et al., 1998; Yamashita and Tanoue 2003). Component 3 (C3, 
Ex/Em: <260/458 nm) spectra were characterized as representing terrestrial humic-like fluorophores (Coble et al., 1996; 10 
Yamashita and Tanoue, 2003; Chen et al., 2010; Chen et al., 2018). During the cruise, the C1 fluorescence intensity was much 
higher and variable, varying between 0.0133 and 0.139 RU (Fig. 10a). In comparison, the fluorescence intensity of C2 (range: 

0.0195–0.0518 RU) and C3 (range: 0.00857–0.0351 RU) was much less variable. Among the three components, the protein-
like C1 was the dominant fluorescence component in our marine aerosol samples, accounting for 31–73% of the total intensity, 
and the relative contributions of tryptophan-like C2 and terrestrial humic-like C3 were found to represent 17–50% and 8–31%, 15 
respectively (Fig. 10b). In our marine aerosol samples, protein-like components (i.e., C1 and C2) represented 69–91% of the 

total intensity. 
Despite the extremely high Chl-a concentration in the Amundsen Sea (Fig. 3), we found no significant difference of the 

average values of protein-like C1 and tryptophan-like C2 fluorescence intensity between the Amundsen Sea and the Southern 
Ocean. However, relatively much higher values of C1 and C2 fluorescence intensity were observed when the ship approached 20 
the Amundsen Sea (i.e., samples A3 and A4), passing through the sea ice zone (Figs. 1b and 10a). The C1 and C2 fluorescence 

intensity values sharply decreased and remained relatively low in the Amundsen Sea, and then gradually increased from the 
Amundsen Sea to the Southern Ocean. As mentioned in section 3.2, P. antarctica was the dominant phytoplankton species in 
the Amundsen Sea, whereas diatoms formed a major group in the marginal sea ice zone (Lee et al., 2016). Interestingly, 
fluorescence intensity of C1 showed a significant positive relationship with the relative biomass of diatoms (r = 0.89, p < 0.01); 25 
however, it was negatively correlated with the relative biomass of P. antarctica (r = –0.79, p < 0.05) (Figs. 10c and 10d). 

Phytoplankton can emit several types of BVOCs, such as isoprene, monoterpenes, and amines that have the potential to form 
SOA (Meskhidze et al., 2011). Sabolis (2010) reported that diatoms were the largest emitters of most of the observed BVOC 
(including isoprene, monoterpenes, chloroform, and iodomethane) and that the other phytoplankton species (e.g., 
dinoflagellates, haptophytes, and Prochlorococcus) showed variable production rates for different BVOC, showing a strong 30 

dependence on phytoplankton speciation for BVOC production. Consequently, our results suggest that protein-like 
components are most likely produced as a result of biological processes of diatoms. 

The biological index (BIX) has been used to estimate the contribution of autochthonous biological activity (Fu et al., 
2015; Miyazaki et al., 2018). An increase in BIX is related to an increase in the contribution of microbially derived organics. 
High BIX values (> 1) have been shown to correspond to a predominantly biological or microbial origin of dissolved organic 35 
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matter and to the presence of organic matter freshly released into water, whereas low values (< 0.6) indicate little biological 
material (Huguet et al., 2009). In this study, the BIX values ranged from 1.17–3.61, with an average of 2.23 ± 0.807 (Fig. 10b). 

The high BIX values also supported that the fluorescence properties of WSOC were influenced by marine biological activities. 

4 Conclusions 

Characteristics of atmospheric sulfur (i.e., MSA and nss-SO42–) and OC (i.e., WSOC and WIOC) species in marine 5 
aerosols, and the environmental factors influencing their distributions were investigated over the Southern Ocean and the 
Amundsen Sea during the austral summer. In the Amundsen Sea, atmospheric MSA concentration drastically increased (up to 

0.57 µg m–3), suggesting significant influences of marine biological activities on atmospheric MSA. The higher MSA 
concentration was attributed to exceptionally high seasonal primary production during the austral summer, the dominance of 
P. antarctica with respect to phytoplankton biomass, and extremely high DMS concentrations produced by DMS-producing 10 
algae species (e.g., P. antarctica) in the Amundsen Sea. 

WIOC was the dominant OC species in both the Southern Ocean and the Amundsen Sea, accounting for 75% and 73%, 

respectively. Despite extremely high Chl-a concentration in the Amundsen Sea, no significant differences of mean WSOC and 
WIOC concentrations were found between the Southern Ocean and the Amundsen Sea. However, the higher WSOC/Na+ and 
WIOC/Na+ ratios were observed in the submicron aerosol particles, especially in the Amundsen Sea where biological 15 
productivity was much higher than the Southern Ocean. 

It is worth noting that the simultaneous measurements of chemical species in marine aerosols as well as chemical and 

biological properties of seawater in the Amundsen Sea allowed a better understanding of the effect of ocean ecosystem on OC 
species. Moreover, the fluorescence properties of WSOC revealed that protein-like components are most likely produced as a 
result of biological processes of diatoms. 20 

West Antarctica is one of the fastest-warming regions globally (Bromwich et al., 2013). Ice shelves and glaciers in the 

Amundsen Sea have been shrinking at a remarkable rate (Rignot et al., 2008). Moreover, sea ice coverage is decreasing fast in 
the western Antarctic (Stammerjohn et al., 2012). Because ocean buoyancy, stratification, and trace metal distribution are 
affected by these changes, the regional oceanography, phytoplankton community structure and biogeochemical cycles of sulfur 
and carbon in the Amundsen Sea are likely affected as well (Yager et al., 2012). Further studies, therefore, are required to 25 
understand more clearly biogeochemical cycles of sulfur and carbon between the ocean and the marine atmosphere and should 

focus on long-term monitoring of atmospheric sulfur and OC species in the Amundsen Sea. 

5 Data availability 

The data used in this study is available on request to the correspondence author Jinyoung Jung 
(jinyoungjung@kopri.re.kr). 30 
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Figure 1: Cruise track of the ANA06B. Panel (a) shows the entire cruise track (pink line) with bathymetry, aerosol (red circles) and 
seawater sampling (orange circles) locations. Each aerosol sampling start point represents the end of the previous sampling period. 

Dotted pink line (from Christchurch, New Zealand to A1 sampling location) indicates that no aerosol sampling was conducted. 
Yellow arrows and green dotted rectangle indicate the moving direction of the ship and the location of the Amundsen Sea, 5 
respectively. Panel (b) shows the cruise tack in the Amundsen Sea with sea ice concentration on 6 January 2016. Sea ice concentration 

was obtained from the Advanced Microwave Scanning Radiometer (AMSR) 2 sea ice maps (Spreen et al., 2008). 
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Figure 2. Concentrations of methanesulfonic acid (MSA) (a) and non-sea-salt sulfate (nss-SO42−) (b) against sample I.D. in aerosols 
collected over the Southern Ocean (43°S−70°S) and the Amundsen Sea (70°S−75°S). Black solid circle lines in panels (a) and (b) 

indicate the latitude of half-way point between each aerosol sampling start and endpoint. Double arrows in upper panels show the 5 
sampling locations of aerosol samples. 
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Figure 3. Monthly composite chlorophyll-a concentrations in the Southern Ocean (a) and the Amundsen Sea (b) for January 2016. 
The cruise track (pink line) and aerosol sampling locations (red circles) are also shown. Each aerosol sampling start point represents 
the end of the previous sampling period. The green dotted rectangle in panel (a) indicates the location of the Amundsen Sea. Sea ice 

distribution on 6 January 2016 is shown in panel (b). 5 
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Figure 4. Dimethylsulfide (DMS) flux (data from Kim et al., 2017) (a) against aerosol sample I.D. and the correlation between MSA 
concentration and DMS flux (b). Each DMS flux in both panels (a) and (b) represents its mean value for each aerosol sampling time. 
The gray hatched areas in panel (a) denote that no DMS measurement was conducted. Pink solid circle line in panel (a) indicates the 
mean and standard deviation of wind speeds for each aerosol sampling time. Double arrows in panel (a) show the sampling locations 5 
of aerosol samples. In panel (b), the red line indicates the correlations between MSA concentration and DMS flux when all data sets 
were used, and the blue line shows their correlation when the outlier (circled point; i.e., sample A6) is excluded. 
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Figure 5. Nitrate (NO3–) concentration (a) and MSA/nss-SO42− ratio (b) against aerosol sample I.D. Double arrows in upper panels 
show the sampling locations of aerosol samples. Black solid circle lines in panels (a) and (b) indicate the latitude of half-way point 

between each aerosol sampling start and endpoint.  
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Figure 6. Concentrations of water-soluble organic carbon (WSOC) (a), water-insoluble organic carbon (WIOC) (b), and organic 
carbon (i.e., OC = WSOC + WIOC) (c) against sample I.D. in aerosols collected over the Southern Ocean (43°S−70°S) and the 
Amundsen Sea (70°S−75°S). Black solid circle lines indicate the latitude of half-way point between each aerosol sampling start and 

endpoint. Double arrows in panel (a) show the sampling locations of aerosol samples. 5 
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Figure 7. Concentration of Na+ (a), WIOC/Na+ and WSOC/Na+ ratios in both fine and coarse modes (b) against aerosol sample I.D. 

Pink solid circle line in panel (a) indicates the mean and standard deviation of wind speeds for each aerosol sampling time.  
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Figure 8. Relationships of WIOC (a) and WSOC (b) with Na+ in fine modes over the Southern Ocean (solid triangles) and the 
Amundsen Sea (solid circles). Panel (c) shows relationships between WSOC and MSA concentrations over the Southern Ocean (open 
triangles) and the Amundsen Sea (open circles). 
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Figure 9. EEM contour plots of three fluorescent components C1−C3 (a−c) identified using EEM-PARAFAC in the fine mode aerosol 

particles (D < 2.5 µm) collected over the Southern Ocean and the Amundsen Sea, and excitation and emission spectra of C1−C3 5 
(d−f). 
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Figure 10. Variations of fluorescence intensities (a), relative contributions of C1−C3 and biological index (black solid square line) (b) 
in the fine mode aerosol particles (D < 2.5 µm) collected over the Southern Ocean and the Amundsen Sea. Black solid circle line in 

panel (a) indicates the latitude of half-way point between each aerosol sampling start and endpoint. Double arrows in panel (a) show 
the sampling locations of aerosol samples. Panels (c) and (d) show the relationship of fluorescence intensity of C1 with the relative 5 
biomass of diatoms and Phaeocystis antarctica (P. antarctica) observed in the Amundsen Sea, respectively. 
 

 
 


