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Abstract. The TROpospheric WAter RAdiometer (TROWARA) continuously measures integrated water vapour (IWV) with a

time resolution of 6 seconds at Bern in Switzerland. During summer, we often see that IWV has temporal fluctuations during

daytime while the night-time data are without fluctuations. The data analysis is focused on the year 2010 where TROWARA

has a good data quality without data gaps. We derive the spectrum of the IWV fluctuations in the period range from about 1 to

100 min. The FFT spectrum with a window size of 3 months leads to a serious underestimation of the spectral amplitudes of the5

fluctuations. Thus, we apply a band pass filtering method to derive the amplitudes as a function of period Tp. The amplitudes

are proportional to T 0.5
p . Another method is the computation of the moving standard deviation with time window lengths from

about 1 to 100 min. Here, we get similar results as for the band pass filtering method. At all periods, the IWV fluctuations

are strongest during summer while they are smallest during winter. We derive the diurnal variation of the short-term IWV

fluctuations by applying a moving standard deviation with a window length of 10 min. The daily cycle is strongest during the10

summer season with standard deviations up to 0.22 mm at about 14:00 CET. The diurnal cycle disappears during winter time.

Using the meteorological weather station at Bern, we derive the diurnal cycle of the short-term fluctuations of the specific

kinetic energy ek. Since these data have a temporal resolution of 10 min, we apply a 20 min-moving standard deviation. The

derived short-term ek fluctuations can be regarded as a proxy of turbulent kinetic energy (TKE). During summer time, the

20 min-moving standard deviation of ek increases during daytime and has a similar diurnal cycle like the short-term IWV15

fluctuations. Thus, we conclude that the diurnal cycle of the short-term IWV fluctuations is caused by turbulence associated

with large convective heating during daytime in summer.

1 Introduction

The spatio-temporal variability of integrated water vapour (IWV) on scales of less than 10 km and hours was assessed by20

Steinke et al. (2015) using various instruments and atmospheric numerical simulations. The model runs showed IWV variabil-

ities of the order of 0.4 mm (or kg m−2) for differences in space of 3-4 km or time of 10-15 min during the presence of a
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boundary layer. Passive microwave radiometry can provide a high temporal resolution of 10 seconds for IWV measurements.

Steinke et al. (2015) reported about standard deviations of IWV observed by microwave radiometers exceeding 1 mm even at

short time scales of a few minutes. To our knowledge there are no other studies on the IWV variability at very short scales from

1 to 20 min. Since the short-term IWV fluctuations are likely connected with atmospheric waves and turbulence, we expect a

seasonal and diurnal variation of the IWV variability which was not investigated by Steinke et al. (2015) and others. However,5

Steinke et al. (2015) suggested that the short-term IWV variability at time scales of 15 min or less is induced by atmospheric

turbulence which was simulated by their high-resolution model.

The TROpospheric WAter RAdiometer (TROWARA) has measured continuously integrated water vapour (IWV) with a

time resolution of 6 seconds at Bern in Switzerland since 2009. In the time from 1994 to 2008 the temporal resolution was 10

seconds. Thus, it is no problem to analyse the IWV variability at Bern on time scales from 1 to 100 min as function of local10

time and season. The short-term IWV variability is possibly connected with the growth of the atmospheric boundary layer

during daytime in summer. Convective heating and associated turbulence generate variable vertical winds and circulation cells

leading to a variable vertical water vapour flux during daytime. We expect that IWV can significantly change during daytime if

the antenna beam of the radiometer transects an updraft or downdraft region in the lower troposphere. Numerical simulations

(Stull, 1988; Yamada and Mellor, 1975) show that the turbulent kinetic energy (TKE) has a strong diurnal cycle with increases15

of TKE from 0.05 J kg−1 at night-time to about 1 J kg−1 at daytime. The maximum occurs at a height of about 300 m above

the surface. This increase of TKE is associated with the presence of a convective mixed layer during daytime reaching from the

surface to 1.5 km or higher. Lüdi and Magun (2002) determined turbulence parameters in the lower troposphere by analyzing

the scintillations of a microwave link between a transmitter and a receiver.

The diurnal cycle in IWV over Bern was described by Hocke et al. (2017) using hourly data of the TROWARA radiometer.20

The diurnal cycle in IWV goes from about -0.5 mm (relative to the daily mean value) in the morning hours to about +0.5 mm

during the evening hours. This IWV variation is less than 5%, and it can be assumed that the diurnal cycle in IWV has no

direct influence on the diurnal cycle of short-term IWV variability. Nevertheless, the diurnal cycle in IWV can be understood

as a residual upward flux of tropospheric water vapour during daytime so that the accumulation of IWV achieves a maximum

in the evening hours.25

Using observations of wind profilers, radiometers and lidars, Collaud Coen et al. (2014) derived the climatology of the

atmospheric boundary layer at Payerne which is closely located to Bern in the Swiss plateau. They also compared the observed

height of the boundary layer to the modeled height. The regional weather model predicted a boundary layer height of about

1800 m during summer from May to August while the observations indicated a boundary layer height of about 1500 m or

less. During winter the boundary layer height decreased to about 500 m where the model gave slightly lower values than30

the observations. Generally, vertical profiles of specific humidity or relative humidity can be used to determine the height of

the atmospheric boundary layer as described by Seidel et al. (2010). The boundary layer is assumed to be moister than the

free troposphere so that the vertical gradient of humidity becomes minimal (extreme) at the height level of the atmospheric

boundary layer. This vertical gradient method of humidity also shows that there is a connection between IWV and the moist

boundary layer.35
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The aim of the present study is to give mean values of the amplitudes of the short-term IWV fluctuations in the period range

from 1 to 100 min. These mean values may guide modeling studies about water vapour convection and circulation cells in

the lower troposphere. Further, we derive the dependence of the short-term IWV variability on the season and the local time.

Section 2 describes the TROWARA radiometer and the weather station of the University of Bern. Section 3 explains the data

analysis to obtain the amplitudes or the moving standard deviation of the IWV variability. Section 4 presents the results on5

the short-term IWV variability and the standard deviation of the specific kinetic energy where the latter is derived from the

horizontal wind speed measurements of the weather station. Concluding remarks are given in section 5.

2 Measurement instruments and retrieval

2.1 TROWARA

Our study is focused on the IWV observations of the TROpospheric WAter RAdiometer (TROWARA). TROWARA is a dual-10

channel microwave radiometer, and its design and construction were described by Peter and Kämpfer (1992) and Morland

(2002). Two ferrite circulator switches at each frequency channel of the radiometer perform the change from the antenna to

the noise diodes. The noise diodes serve as hot and cold reference loads. The developed radiometer model considers the mea-

surements of the reflection and transmission coefficients of all radiometer components including the ferrite switches (Morland,

2002). In addition, a tipping curve calibration is performed by using the variable brightness temperature of the clear sky at15

different elevation angles of the antenna. The instrument is very stable so that the tipping curve calibration is only required 2

or 3 times per year.

TROWARA measures the vertically-integrated water vapour (IWV) which is also known as precipitable water vapour. Fur-

ther, TROWARA provides the vertically-integrated cloud liquid water (ILW), also known as liquid water path. The instrument is

operated inside a temperature-controlled room on the roof of the building for Exakte Wissenschaften (EXWI) of the University20

of Bern (46.95◦N, 7.44◦E, 575 m a.s.l.). The antenna receives the atmospheric radiation inside the room through a microwave

transparent window. This indoor operation of TROWARA allows the measurement of IWV even during rainy periods.

The antenna beam of TROWARA has a full width at half power of 4◦ and is pointing the sky at an zenith angle of 50◦ towards

south-east. At 1 km above surface, the horizontal diameter of the sounding volume of TROWARA is about 170 m. The view

direction is constant, so that short-term temporal variations of the brightness temperature, IWV and ILW are well monitored25

with a time resolution of 6 seconds. TROWARA’s IWV measurement has nearly all-weather capability during day and night-

time. The ILW measurement cannot be carried out in presence of rain droplets. Thus, the ILW measurement is restricted to

cloud droplets (ILW < 0.4 mm). Details of the TROWARA instrument and the retrieval technique are provided by Cossu et al.

(2015) and Mätzler and Morland (2009).

In the following, we briefly explain the measurement principle and the retrieval. The microwave channel of TROWARA at30

21.4 GHz has a bandwidth of 100 MHz, and the microwave channel at 31.5 GHz has a bandwidth of 200 MHz. The frequency

channel at 31.5 GHz is more sensitive to microwaves from atmospheric liquid water, while the frequency channel at 21.4 GHz
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is more sensitive to microwaves from water vapour since there is a rotational transition line of water vapour centered at 22.235

GHz.

The radiative transfer equation of a non-scattering atmosphere is

TB,i = Tce
−τi +Tmean,i(1− e−τi), (1)

where τi is the opacity of the i-th frequency channel (e.g., 21 GHz) along the line of sight of the radiometer. TB,i is the5

observed brightness temperature, and Tc is the brightness temperature of the cosmic microwave background. Tmean,i denotes

the effective mean temperature of the troposphere (Ingold et al., 1998; Mätzler and Morland, 2009).

The equation 1 can be solved for the opacities

τi =−ln
(
TB,i−Tmean,i
Tc−Tmean,i

)
(2)

where the TROWARA observations yield the radiances TB,i.10

In a plane-parallel atmosphere, the opacity is linearly related to IWV and ILW

τi = a′′i + b′′i IWV + c′′i ILW, (3)

where the coefficients a′′ and b′′ partly depend on air pressure. Mätzler and Morland (2009) showed that the coefficients

can be statistically derived by means of coincident measurements of radiosondes and fine-tuned at times of periods with a

clear atmosphere. The coefficient c” indicates the mass absorption coefficient of cloud water. c” depends on temperature15

(and frequency), but not on pressure. It is derived from the physical expression of Rayleigh absorption by clouds (Mätzler

and Morland, 2009). After determination of the coefficients, the opacity measurements at 21 and 31 GHz yield the desired

parameters IWV and ILW in equation 3.

TROWARA provides a time series of IWV since 1994 with a time resolution of 11 seconds until end of 2009 and 6 seconds

afterwards. The IWV time series have been used for trend analysis (Morland et al., 2009; Hocke et al., 2011). Hocke et al.20

(2017) analysed diurnal cycles in IWV, ILW and cloud fraction by using all informations of TROWARA which also has an

infrared radiometer channel at 9.5 -11.5 µm. The present study only uses the IWV measurements of the year 2010 when the

performance of TROWARA was very good.

2.2 Weather station

The weather station is located on the roof of the building Exakte Wissenschaften of the University of Bern. The coordinates25

of the weather station are 46.95◦N, 7.44◦E, 575 m a.s.l. It is a Vaisala Milos 500 station, and the observed parameters are

temperature, relative humidity, precipitation, pressure, wind speed, and wind direction. The temporal resolution of the weather

data is 10 min., and the data have been stored since 1997. In 2017, a new weather station of the model Vaisala WXT 536 began

the operation.
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3 Data analysis

The amplitude spectra of the temporal IWV fluctuations are computed by three different methods. Firstly, the fast Fourier

Transform (FFT) spectrum of the summer 2010 is calculated. The arithmetic mean is removed from the time series of IWV.

Then, the FFT spectrum is obtained by folding the IWV time series of summer 2010 with a Hamming window and by applying

zero padding at the beginning and end of the time series. The FFT spectrum does not take into account the intermittency of the5

short wave trains of the IWV fluctuations.

A better method is the band pass filtering of the IWV time series with a digital non-recursive, finite impulse response (FIR)

band pass filter performing zero-phase filtering by processing the time series in forward and reverse directions. The number of

filter coefficients corresponds to a time window of three times the central period, and a Hamming window has been selected

for the filter. Thus, the band pass filter has a fast response time to temporal changes in the data series. The variable choice of10

the filter order permits the analysis of wave trains with a resolution that matches their scale. The bandpass cutoff frequencies

are at fc = fp± 10%fp, where fp is the central frequency. More details about the bandpass filtering are given by Studer et al.

(2012).

The third method for the estimation of the strength of the IWV fluctuations is a moving standard deviation where the time

window length is subsequently changed from 0.5 min to 90 min.15

4 Results and discussion

The main effect investigated in the present study is that short-term IWV fluctuations occur at daytime in summer (June -

August) while they disappear at night. Figure 1a shows a convective cloud system which appears near to Bern in the afternoon

of 28 June 2010. We assume that water vapour convection, turbulence and convection cells induce the short-term fluctuations of

IWV. Figure 1b shows the IWV time series for six days in summer 2010 observed by the TROWARA radiometer. It is obvious20

that the short-term IWV fluctuations are enhanced during daytime. This main effect can be better shown if the IWV series is

band pass filtered at a period of 15 min. Figure 1c depicts the mean amplitude of the IWV fluctuations in the period range from

10 to 20 min. The amplitude of the 15 min-IWV fluctuations is four times greater during daytime than at night.

Figure 2 shows the amplitude spectra derived by FFT analysis (blue) and by the band pass filtering method (black) of the

IWV series during summer 2010. It is obvious that the FFT method underestimates the amplitude of the IWV fluctuations by25

1-2 magnitudes. Further, the exponent of the power law is -2 for the FFT spectrum and -1 for the band pass filter method. Since

the FFT method does not take into account the intermittency of the IWV wave trains, the results of the band pass filter method

are better than those of the FFT method.

Figure 3 depicts the seasonal variations of the amplitude spectra of the IWV fluctuations in 2010. As expected the summer

spectrum (June - August, black line) is the strongest one. The spectra of spring and fall (red and blue) are close together while30

the winter spectrum (green) is below the other spectra at periods greater than 2 min. At periods > 7 min the four power spectra

fulfill the power law P ∼ f−1 which is indicated by the magenta line.
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Another method to characterize the IWV fluctuations is the moving standard deviation with a variable time window length.

The time window length is a bit similar to the period. The four seasonal spectra of the standard deviation SD are shown as

function of the time window length in Fig. 4. Using the SD method, we find a similar power law P ∼ f−1 as indicated by the

magenta line. The SD values in Fig. 4 are about two times larger than the amplitude values in Fig. 3. In the following, we only

present results derived by the SD method. The SD values in Fig. 4 are in a good agreement with those of Fig. 8 in Steinke et al.5

(2015).

Figure 5 shows the diurnal variation of SD for a time window length of 10 min and for the different seasons in 2010. It is

obvious that the IWV fluctuations are strongest during summer and weakest during winter. During spring, summer and fall

there is a maximum of SD during the afternoon hours (around 14:00 -15:00 CET). During winter (green), there is no clear

maximum or minimum of SD.10

The weather station at University of Bern is used to investigate if the diurnal variation of SD of IWV is related to the diurnal

cycle of the short-term fluctuations of specific kinetic energy ek. Such a relationship is likely since the heating of the Earth’s

surface during daytime in summer, leads to increased turbulence, convection, and upward water vapour flux during daytime.

The increased water vapour flux is possibly associated with short-term IWV fluctuations observed by TROWARA.

We derive ek by assuming ek(t)∼ 0.5(u(t)2+v(t)2) where we neglect the small vertical wind component since the weather15

station measures the horizontal wind speed. The moving standard deviation of ek is computed with a time window of 20 min.

Figure 6 shows the results. It is obvious that the curves have their daily maxima in the afternoon hours around 14:00 CET. In

so far, the short-term fluctuations of specific kinetic energy ek might be the cause for the diurnal cycle of the IWV fluctuations.

It is obvious that the spring curve (red) is larger than the summer curve (black) in Fig. 6. This effect can be due to stronger

advection in spring than in summer. We can show that the specific kinetic energy is larger during the spring months than during20

the summer months. Figure 7 shows the climatologies of ek and SD of ek which are maximal during the spring months. This

is in agreement with the order of curves in Fig. 6. However, since the annual maximum of IWV is in the summer months, the

maximal water vapour convection occurs during summer and not during spring. The daily cycle of the short-term fluctuations

of ek explains the daily cycle of the short-term IWV fluctuations.

5 Conclusions25

During summer, we often see that IWV has temporal fluctuations during daytime while the night-time data are without fluc-

tuations. We derive the spectrum of the IWV fluctuations in the period range from about 1 to 100 min. The FFT spectrum

with a window size of 3 months leads to a serious underestimation of the spectral amplitudes of the fluctuations. Thus, we

apply a band pass filtering method to derive the amplitudes as a function of period Tp. The amplitudes are proportional to T 0.5
p

corresponding to a power law P ∼ f−1 where f is the frequency. Another method is the computation of the moving standard30

deviation (SD) with time window lengths from about 1 to 100 min. Here, we get similar results as for the band pass filtering

method. At all periods, the IWV fluctuations are strongest during summer while they are smallest during winter. However,

the mean SD value is smaller than 0.5 mm for time window lengths less than 90 min. We derive the diurnal variation of the
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short-term IWV fluctuations by applying a moving standard deviation with a window length of 10 min. The daily cycle is

strongest during the summer season with standard deviations up to 0.22 mm at about 14:00 CET. The diurnal cycle disappears

during winter time. Using the meteorological weather station at Bern, we derive the diurnal cycle of the short-term fluctuations

of the specific kinetic energy ek. Since these data have a temporal resolution of 10 min, we apply a 20 min-moving standard

deviation. The derived short-term ek fluctuations can be regarded as a proxy of turbulent kinetic energy (TKE). During summer,5

the 20 min-moving standard deviation of ek increases during daytime and has a similar diurnal cycle like the short-term IWV

fluctuations. Thus, we conclude that the diurnal cycle of the short-term IWV fluctuations is caused by turbulence associated

with large convective heating during daytime in summer. The observed behaviour of the short-term IWV fluctuations is useful

for modeling studies on water vapour convection in the atmospheric boundary layer.
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a)	

b)	

c)	

Figure 1. a) The convection cell built up within 45 minutes in the south of Bern on June, 28 2010 (picture was taken at 16:36 UT). b)

Integrated water vapour (IWV) as function of time (month/day) observed by the Tropospheric Water Radiometer (TROWARA) at Bern.

IWV fluctuations regularly occurred between 10 and 18 UT. The high-frequency fluctuations are likely associated to the onset of thermal

convective activity. c) Mean amplitudes of the bandpass-filtered IWV fluctuations (period range 10 to 20 min) show a strong diurnal variation.

Day ticks are at 0:00 UT.
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Figure 2. Amplitude spectra of IWV fluctuations observed at Bern in summer 2010. The solid black line is obtained by a band pass filtering

method. The green line shows the inclination for A∼ T 0.5
p where Tp is the period. The corresponding power law is given by P ∼ f−1 where

f is the frequency. The blue line is obtained by a Fast Fourier Transform of the complete summer 2010 time interval. The red line shows

the inclination for A∼ T 1
p (or power P ∼ f−2). The FFT method underestimates the amplitudes and overestimates the steepness of the

inclination.
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Figure 3. Amplitude spectra of IWV fluctuations observed at Bern for the four seasons of the year 2010. The green, red, blue and black line

is obtained by a band pass filtering method for winter, spring, autumn and summer respectively. The magenta line shows the inclination for

A∼ T 0.5
p (or power P ∼ f−1) where f is the frequency and Tp is the period.
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Figure 4. Spectra of IWV fluctuations observed at Bern for the four seasons of the year 2010. The green, red, black and blue line is obtained

by a moving standard deviation (SD) with a variable time window length for winter, spring, summer and autumn respectively. The magenta

line shows the inclination for A∼ T 0.5
p (or power P ∼ f−1) where f is the frequency and Tp is the period.
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Figure 5. Diurnal cycle of IWV fluctuations observed at Bern for the four seasons of the year 2010 (moving standard deviation SD with time

window length of 10 min). The green, red, blue and black line is for winter, spring, autumn and summer respectively. CET stands for Central

European Time (Universal Time +1 hour).

13

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-129
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 15 April 2019
c© Author(s) 2019. CC BY 4.0 License.



Figure 6. Diurnal cycle of short-term fluctuations of specific kinetic energy ek for different seasons. The moving standard deviation (SD)

of ek was computed with a time window of 20 min. ek was estimated by using the horizontal wind speed measurements with a temporal

resolution of 10 min from the weather station on the roof of the university building at Bern.
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Figure 7. Mean annual cycle of specific kinetic energy ek (lower panel) and standard deviation of ek (upper panel) at the weather station of

University of Bern. The standard deviation (SD) of ek was computed with a moving time window of 20 min. Both curves are averaged by a

30 day-moving average. Data of the time interval from 1997 to 2018 were taken for the climatology.
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