## SUPPLEMENTAL MATERIAL

| Exploiting multi-wavelength aerosol absorption coefficients in a | multi-time source apportionme | nt study |
|------------------------------------------------------------------|-------------------------------|----------|
| to retrieve source-dependent absorption parameters               |                               |          |

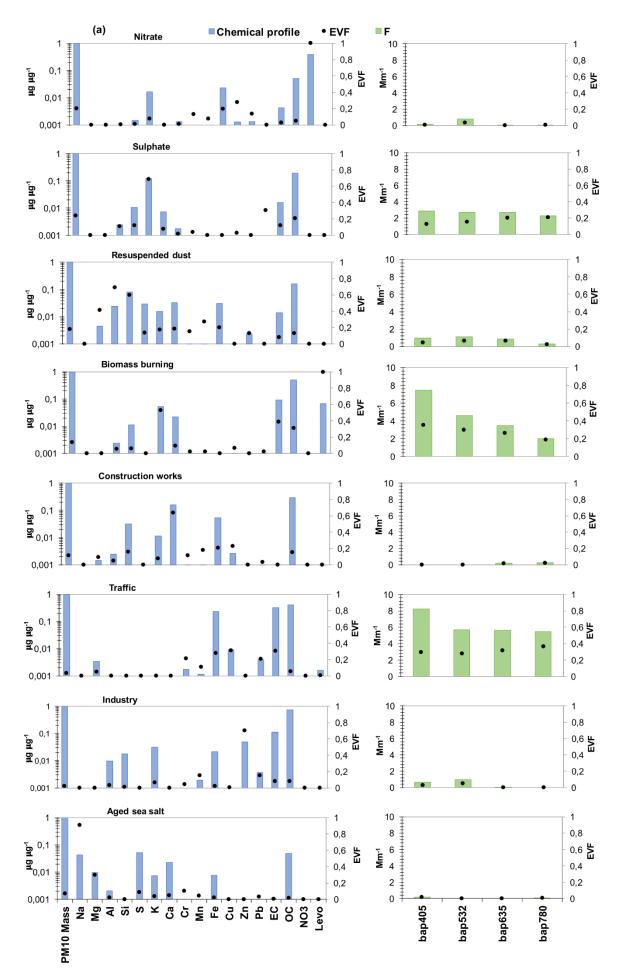



Figure S1: (a) Chemical profiles of the 8-factor base case solution (b) bap apportionment of the 8-factor base case solution.

| Factors            | Total [μg m <sup>-3</sup> ] |
|--------------------|-----------------------------|
| Nitrate            | 10.4 (31 %)                 |
| Sulphate           | 6.2 (19 %)                  |
| Resuspended dust   | 5.5 (16 %)                  |
| Biomass burning    | 3.5 (11 %)                  |
| Construction works | 3.6 (11 %)                  |
| Traffic            | 1.7 (5 %)                   |
| Industry           | 1.1 (3 %)                   |
| Aged sea salt      | 1.3 (4 %)                   |

Table S1: Absolute and relative average source contributions to PM10 mass in the 8-factor base case solution.

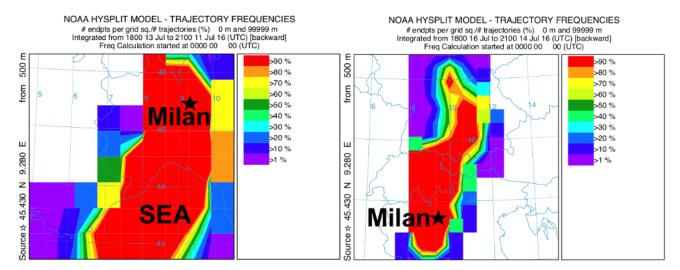



Figure S2: On the left, frequencies before and during the sea salt transport event; on the right, frequencies after the sea salt transport event.

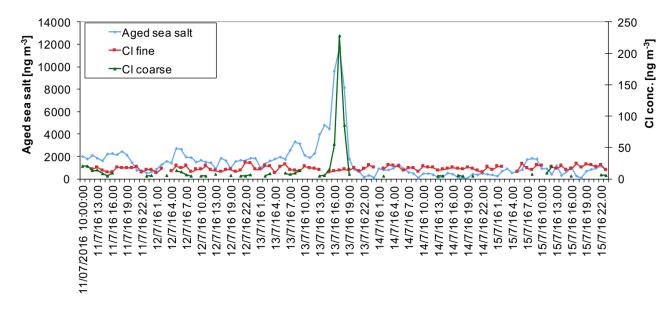



Figure S3: Temporal patterns of aged sea salt source retrieved from the multi-time model and Cl concentrations measured in atmosphere in the fine and coarse fractions.

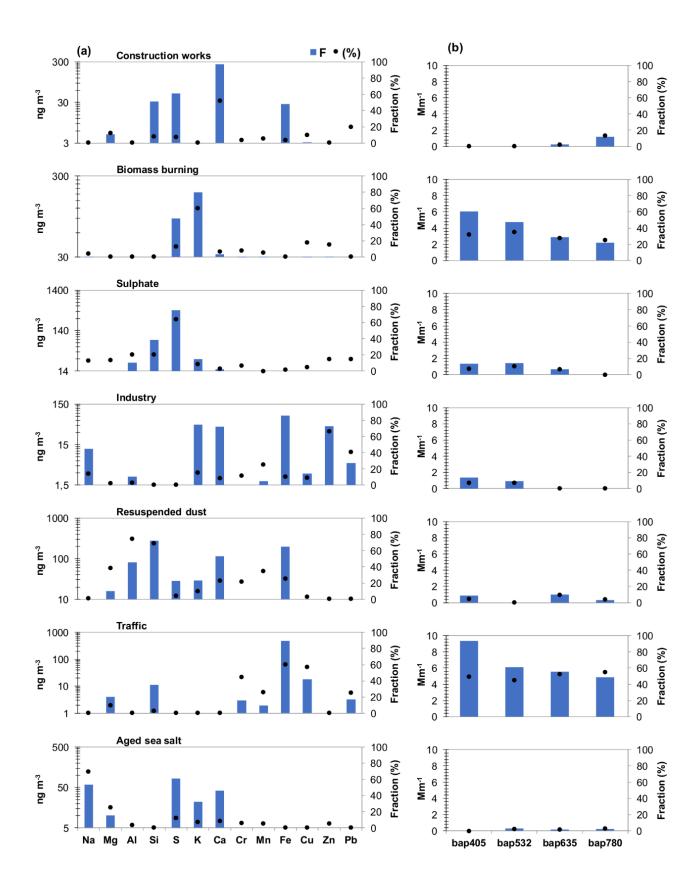



Figure S4: Source apportionment study performed with EPA PMF 5.0 on elemental concentrations and absorption coefficients at four wavelengths, both measured on high-time resolution samples collected by streaker sampler.

|             | λ =                 | $\lambda = 405 \text{ nm}$         |       |                     | $\lambda = 532 \text{ nm}$         |        |                                    | $\lambda = 635 \text{ nm}$ |       |                                    | $\lambda = 780 \text{ nm}$ |       |  |
|-------------|---------------------|------------------------------------|-------|---------------------|------------------------------------|--------|------------------------------------|----------------------------|-------|------------------------------------|----------------------------|-------|--|
| Measured in |                     |                                    |       |                     |                                    |        |                                    |                            |       |                                    |                            |       |  |
| atmosphere  | b <sub>ap</sub> /EC | σ                                  | $R^2$ | b <sub>ap</sub> /EC | σ                                  | $R^2$  | b <sub>ap</sub> /EC                | σ                          | $R^2$ | b <sub>ap</sub> /EC                | σ                          | $R^2$ |  |
| Summer      | 14.2                | ± 0.5                              | 0.61  | 12.9                | ±                                  | 0.61   | 11.1                               | ± 0.4                      | 0.64  | 9.8                                | ± 0.4                      | 0.67  |  |
|             |                     |                                    |       |                     | 0.5                                |        |                                    |                            |       |                                    |                            |       |  |
| Winter      | 17.8                | $\pm~0.4$                          | 0.89  | 12.8                | ±                                  | 0.90   | 11.2                               | ± 0.3                      | 0.87  | 8.9                                | $\pm 0.3$                  | 0.79  |  |
|             |                     |                                    |       |                     | 0.3                                |        |                                    |                            |       |                                    |                            |       |  |
| All data    | 17.3                | $\pm 0.3$                          | 0.94  | 12.8                | ±                                  | 0.94   | 11.2                               | ± 0.2                      | 0.93  | 9.0                                | ± 0.2                      | 0.87  |  |
|             |                     |                                    |       |                     | 0.2                                |        |                                    |                            |       |                                    |                            |       |  |
| Multi-time  |                     | 25 <sup>th</sup> -75 <sup>th</sup> |       |                     | 25 <sup>th</sup> -75 <sup>th</sup> |        | 25 <sup>th</sup> -75 <sup>th</sup> |                            |       | 25 <sup>th</sup> -75 <sup>th</sup> |                            |       |  |
| model       | b <sub>ap</sub> /EC | percentile                         |       | b <sub>ap</sub> /EC | perc                               | entile | bap/EC                             | percentile                 |       | b <sub>ap</sub> /EC                | percentile                 |       |  |
| Biomass     | 23.1                | 21.1 - 24.8                        |       | 14.3                | 13.2                               | - 16.0 | 10.6                               | 9.9 – 11.7                 |       | 6.4                                | 6.0 - 7.3                  |       |  |
| burning     |                     |                                    |       |                     |                                    |        |                                    |                            |       |                                    |                            |       |  |
| Fossil fuel | 13.7                | 12.7 – 14.2                        |       | 10.2                | 9.6                                | - 10.4 | 8.8                                | 8.2-9.1                    |       | 8.6                                | 7.6-8.9                    |       |  |

Table S2  $b_{ap}$ -to-EC ratios for biomass burning and fossil fuel emission sources as measured in atmosphere and assessed by the multitime model. Values measured in atmosphere ( $b_{ap}$ /EC,  $\sigma$  and  $R^2$ ) result from a linear regression between experimental  $b_{ap}$  and EC concentrations. Results from multi-time model are retrieved considering the  $b_{ap}$  and EC apportioned in each source; the 25<sup>th</sup> and 75<sup>th</sup> percentile is estimated by the bootstrap analysis.