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important source so that BrC was certainly a significant contributor (Fuzzi et al., 2015) as also 
suggested by αBB = 1.83 in the biomass burning factor.” 

 

REFEREE #2 

Paper accepted as is. 

 



1 
 

Exploiting multi-wavelength aerosol absorption coefficients in a 1 

multi-time resolution source apportionment study to retrieve 2 

source-dependent absorption parameters 3 

Alice C. Forello1, Vera Bernardoni1, Giulia Calzolai2, Franco Lucarelli2, Dario Massabò3, Silvia 4 

Nava2, Rosaria E. Pileci1,a, Paolo Prati3, Sara Valentini1, Gianluigi Valli1, Roberta Vecchi1,* 5 

1Department of Physics, Università degli Studi di Milano and National Institute of Nuclear Physics INFN-Milan, via 6 

Celoria 16, Milan, 20133, Italy 7 

2Department of Physics and Astronomy, Università di Firenze and National Institute of Nuclear Physics INFN-Florence, 8 

via G. Sansone 1, Sesto Fiorentino, 50019, Italy 9 

3Department of Physics, Università degli Studi di Genova and National Institute of Nuclear Physics INFN- Genoa, via 10 

Dodecaneso 33, Genoa, 16146, Italy 11 

anow at: Laboratory of Atmospheric Chemistry (LAC), Paul Scherrer Institut (PSI), Forschungsstrasse 111, Villigen, 12 

5232, Switzerland 13 

 14 

*Correspondence to: Roberta Vecchi (roberta.vecchi@unimi.it) 15 

 16 

Abstract. In this paper, a new methodology coupling aerosol optical and chemical parameters in the same source 17 

apportionment study is reported. In addition to results on sources assessmentcontribution, this approach gives 18 

relevantprovides information such as estimates for the atmospheric Absorption Ångström Exponent (α) of the sources 19 

and Mass Absorption Cross section (MAC) for fossil fuel emissions at different wavelengths.  20 

A multi-time resolution source apportionment study using Multilinear Engine ME-2 was performed on a PM10 dataset 21 

with different time resolutions (24 hours, 12 hours, and 1 hour) collected during two different seasons in Milan (Italy) in 22 

2016. Samples were optically analysed by a home-made polar photometer to retrieve the aerosol absorption coefficient 23 

bap (in Mm-1) at four wavelengths (λ=405 nm, 532 nm, 635 nm and 780 nm) and were chemically characterised for 24 

elements, ions, levoglucosan, and carbonaceous components. The dataset joining chemically speciated and optical data 25 

was the input for Time-resolved chemically speciated data were joined to bap multi-wavelength measurements and used 26 

as input data in the multi-time resolution receptor model; this approach was proven to strengthen the identification of 27 

sources thus being particularly useful when important chemical markers (e.g. levoglucosan, elemental carbon, …) are not 28 
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available. The final solution consisted in 8 factors (nitrate, sulphate, resuspended dust, biomass burning, construction 29 

works, traffic, industry, aged sea salt); the implemented constraints led to a better physical description of factors and the 30 

bootstrap analysis supported the goodness of the solution. As for bap apportionment, consistently to what expected, the 31 

two factors assigned to biomass burning and traffic were the main contributors to aerosol absorption in the atmosphere. 32 

A relevant feature of the approach proposed in this work is the possibility of retrieving many other information about 33 

optical parameters; for example, opposite to the more traditional approach used by optical source apportionment models, 34 

here we obtained the source-dependent atmospheric α value Absorption Ångström Exponent (α) of the sources (α biomass 35 

burning = 1.83 and α fossil fuels = 0.80), without any a priori assumption (α biomass burning = 1.83 and α fossil fuels = 36 

0.80). In addition, an estimate for the MAC estimated Mass Absorption Cross section (MAC) for fossil fuel emissions at 37 

four wavelengths was obtained and found to be consistent with literature rangesvalues. 38 

It is worth noting that the approach here presented approach can be also applied using widespread more common receptor 39 

models (e.g. EPA PMF instead of multi-time resolution ME-2) if the dataset comprises variables with the same time 40 

resolution as well as optical data retrieved by commercial widespread instrumentation (e.g. an Aethalometer instead of 41 

home-made instrumentation). 42 

 43 

1. Introduction 44 

Atmospheric aerosol impacts both on local and global scale causing adverse health effects (Pope and Dockery, 2006), 45 

decreasing visibility (Watson, 2002), and influencing the climate (IPCC, 2013). To face these issues an accurate 46 

knowledge of aerosol emission sources is mandatory. 47 

At the state of the artCurrently, multivariate receptor models are considered a robust approach (Belis et al., 2015) to 48 

perform source apportionment studies and the Positive Matrix Factorization (PMF) (Paatero and Tapper, 1994) has 49 

become one of the most widely used receptor models (Hopke, 2016) in the aerosol community. In the late 1990s, the 50 

Multilinear Engine (ME-2) was developed and provend to be a very flexible algorithm to solve multilinear and quasi-51 

multilinear problems (Paatero, 1999). The scripting feature of this algorithm allows the implementation of advanced 52 

receptor modelling approaches; one example is the multi-time resolution model (, developed for the first time by Zhou et 53 

al., (2004), which uses each experimental data in its original time schedule as model input. Source apportionment studies 54 

carried out by multi-time resolution model are still scarce in the literature (Zhou et al., 2004; Ogulei et al., 2005; Kuo et 55 

al., 2014; Liao et al., 2015; Crespi et al., 2016; Sofowote et al., 2018) although this methodology is very useful in 56 

measurement campaigns when instrumentation instruments with different time resolutions (minutes, hours or days) is are 57 

available as high time resolution data can be exploited without averaging them over the longest sampling interval.  58 
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It is noteworthy that the combination of time-resolved chemically speciated data with the information obtained from 59 

instrumentation measuring aerosol optical properties at different wavelengths (e.g. the absorption coefficient bap) is 60 

suggested as one of the future investigations of receptor modelling (Hopke, 2016); however, to the best of our knowledge, 61 

very few attempts in this direction have been done (e.g. Peré-Trepat et al., 2007; Xie et al., 2019). Wang et al. (2011, 62 

2012) introduced in a source apportionment study used the Delta-C (Delta-C = BC@370 nm – BC@880 nm from 63 

Aethalometer measurements) as an additional input variable and found that Delta-C was very useful in separating traffic 64 

from biomass burning source contributions.  65 

The wavelength dependence of bap the aerosol absorption coefficient (bap) can be empirically considered to be proportional 66 

to 𝜆ିఈ, where 𝛼 is the Absorption Ångström Exponent; 𝛼 depends on particles composition and size, and it is a useful 67 

parameter to gain information about particles type in atmosphere (see e.g. Yang et al., 2009). Among PM aerosol 68 

components, black carbon (BC) is the main responsible for light absorption in atmosphere; in fact, it is considered the 69 

main PM aerosol contributor to global warming and the second most important anthropogenic contributor after CO2 (Bond 70 

et al., 2013). Black carbon refers to a fraction of the carbonaceous aerosol that shares characterised by peculiar features 71 

about as for microstructure, morphology, thermal stability, solubility, and light absorption (Petzold et al., 2013); in 72 

particular, it is characterised by a wavelength-independent imaginary part of the refractive index over visible and near-73 

visible regions. In the last decade, experimental studies evidenced also the role of aAnother aerosol absorbing component 74 

i.e.is brown carbon (BrC), referred to as light-absorbing organic matter of various origins with increasing absorption 75 

towards lower wavelengths, especially in the UV region (Andreae and Gelencsér, 2006). BrC is an aerosol component 76 

that also affects the elemental vs. organic carbon correct separation when using thermal-optical methods as recently 77 

outlined by Massabò et al. (2016). 78 

Source apportionment optical models based only on multi-wavelength measurements of bap data are available in the 79 

literature, i.e. the widespread Aethalometer model (Sandradewi et al., 2008a) and the more recent Multi-Wavelength 80 

Absorption Analyzer (MWAA) model (Massabò et al., 2015; Bernardoni et al., 2017b). Briefly, these models allow to 81 

estimate the source contribution of sources to aerosol absorption in atmosphere exploiting their different dependence on 82 

𝜆 (i.e. different 𝛼). As a step forward, MWAA provides the bap apportionment in relation to both the sources (i.e. fossil 83 

fuel combustion and biomass burning) and the components (i.e. BC and BrC) and gives also provides an estimate for 𝛼 84 

of BrC. Indeed,  Ssource apportionment optical models based on optical measurementsdata usually assume two 85 

contributors to bap, namely fossil fuels combustion and biomass burning (only few exceptions are present in the literature, 86 

e.g. Fialho et al., 2005). In most cases this assumption is well founded, except in presence ofwhen episodic events that 87 

givegiving a not negligible contribution to aerosol absorption in the atmosphere occur, such as in presence of the transport 88 

of mineral dust from the Saharan desert (Fuzzi et al., 2015). Moreover, the above-mentioned models need a priori 89 
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assumptions abouton the 𝛼 values of the sources and wide ranges for 𝛼 are reported in the literature (e.g. Sandradewi et 90 

al., 2008a); this is the most critical step, since 𝛼 depends on the kind of fuel, burning conditions and aging processes in 91 

the atmosphere and wide ranges for 𝛼 are reported in the literature (e.g. Sandradewi et al., 2008a). Without accurate 92 

determination of source-specific atmospheric 𝛼 (for example exploiting the information derived from source 93 

apportionment using 14C measurements), the applicability of models based on optical measurements data is questionable 94 

(Bernardoni et al., 2017b; Massabò et al., 2015; Zotter et al., 2017). Moreover, the generally accepted assumption of 𝛼=1 95 

for fossil fuels and BC, that is derivedarising from the theory of absorption of by spherical particles in the Rayleigh regime 96 

(Seinfeld and Pandis, 2006), might not always be valid in the atmosphere due to aerosol aging processesfor aged 97 

atmospheric aerosol (Liu et al., 2018). 98 

In the framework of a source apportionment study based on multi-time resolution receptor modelling, in this work optical 99 

and chemical datasets were joined to explore the possibility of retrieving retrieve a multi- apportionment of bap with no 100 

need of a-priori assumptions on the contributing sources. Opposite, with this approach source-dependent 𝛼 values were 101 

provided as outputInstead of using 𝛼 as an a priori input, this approach even allows to retrieve it asdirectly provided a 102 

source-dependent 𝛼 values. Moreover, the multi- apportionment of bap in each source allowed to estimate MAC values 103 

at different wavelengths, exploiting the well-known relation EBC=bap()/MAC() (Bond and Bergstrom, 2006) and 104 

considering the apportioned concentrations ofwhere elemental carbon (EC) apportioned by the model was considered as 105 

a proxy for BC. The evaluation of atmospheric MAC values is also not trivial due to the possible presence of absorbing 106 

components different from BC (e.g. contribution from BrC, especially at lower wavelengths). 107 

The original approach proposed in this work shows that coupling the chemical and optical information in a receptor 108 

modelling process is particularly advantageous because: (1) strengthens the source identification, that is particularly 109 

useful when relevant chemical tracers (e.g. levoglucosan, EC, …) are not available; (2) gives estimates for source-specific 110 

atmospheric α Absorption Ångström Exponent (α) which are typically assumed a-priori in optical source apportionment 111 

models based on optical measurementsdata; (3) assesses provides MAC values at different wavelengths for specific 112 

sources. 113 

In this work, optical data were retrievedmeasured by a home-made multi-wavelength polar photometer and input data 114 

(chemical+optical) in the receptor model comprised variables acquired with different time resolutions. Anyway, it is 115 

worth noting that the here presented approach is of general interest as the same methodology could be applied to (1) 116 

datasets combining aerosol chemical and optical measurementsdata obtained by widespread instrumentation (e.g. 117 

Aethalometers for optical data); (2) variables with the same time resolution. 118 
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It is also worth noting that the approach here presented is of general interest as (1) in this work optical data were retrieved 119 

by a home-made multi-wavelength polar photometer but the same methodology could be applied to datasets combining 120 

aerosol chemical and optical data obtained by widespread instrumentation (e.g. Aethalometers for optical data); (2) input 121 

data to the receptor model not necessarily should comprise variables acquired with different time resolution as we did 122 

here. 123 

 124 

2. Material and methods 125 

2.1 Site description and aerosol sampling 126 

Two measurement campaigns were performed during summertime (June-July) and wintertime (November-December) 127 

2016 in Milan (Italy). Milan is the largest city (more than 1 million inhabitants, doubled by commuters everyday) of the 128 

Po Valley, a very well-known hot-spot pollution area in Europe due to both large emissions from a variety of sources (i.e. 129 

traffic, industry, domestic heating, energy production plants, and agriculture) and low atmospheric dispersion conditions 130 

(e.g. Vecchi et al., 2007 and 2019; Perrone et al., 2012; Bigi and Ghermandi, 2014; Perrino et al., 2014). 131 

The sampling site is representative of the urban background and it is situated at about 10 meters above the ground, on the 132 

roof of the Physics Department of the University of Milan, less than 4 km far from the city centre (Vecchi et al., 2009). 133 

It is important to note that during the sampling campaigns, a large building site was in activity active next to the monitoring 134 

station. 135 

Aerosol sampling was carried out using instrumentation with different time -resolutions. Low time resolution PM10 data, 136 

with a sampling duration of 24 and 12 hours during summertime (20 June-22 July 2016) and wintertime (21 November-137 

22 December 2016), respectively, were collected in parallel on PTFE (Whatman, 47 mm diameter) and pre-fired (700 °C, 138 

1 hour) quartz-fibre (Pall, 2500QAO-UP, 47 mm diameter) filters. Low volume samplers with EPA PM10 inlet operating 139 

at 1 m3 h-1 were used. High time resolution data were collected during shorter periods (11 July-18 July and 21 November-140 

28 November 2016) by a streaker sampler (D’Alessandro et al., 2003). Shortly, the streaker sampler collects the fine and 141 

coarse PM fractions (particles with aerodynamic diameter dae < 2.5 µm, and 2.5 < dae < 10 µm, respectively) with hourly 142 

resolution. Particles with dae > 10 µm impact on the first stage and are discarded; the coarse fraction deposits on the second 143 

stage, consisting of a Kapton foil; finally, the fine fraction is collected on a polycarbonate filter. The two collecting 144 

supports are kept in rotation with an angular speed of about 1.8° h-1 to produce a circular continuous deposit on both 145 

stages. 146 

Meteorological data were available at a monitoring station belonging to the regional environmental agency (ARPA 147 

Lombardia) which is less than 1 km far away.  148 

 149 
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2.2 PM mass concentration and chemical characterisation 150 

In this Section, chemical analyses performed on samples are summarised. As measured concentration detected in each 151 

sample was characterised by its own uncertainty, only ranges for experimental uncertainties and minimum detection limits 152 

(MDLs) for every set of variables are reported.  153 

PM10 mass concentration was determined on PTFE filters by gravimetric technique. Weighing was performed by an 154 

analytical balance (Mettler, model UMT5, 1 µg sensitivity) after a 24 hours conditioning period in an air-controlled room 155 

as for temperature (20 ± 1 °C) and relative humidity (50 ± 3 %) (Vecchi et al., 2004). 156 

These filters were then analysed by Energy Dispersive X-Ray Fluorescence (ED-XRF) analysis to obtain the elemental 157 

composition (details on the procedure can be found in Vecchi et al., 2004). For most elements and samples, concentrations 158 

were characterised by relative uncertainties in the range 7-20 % (higher uncertainties for elements with concentrations 159 

next to MDLs) and minimum detection limits of 0.9-30 ng m-3 with the above mentioned sampling conditions.  160 

For each quartz-fibre filter, one punch (1.5 cm2) was extracted by sonication (1 h) using 5 ml ultrapure Milli-Q water and 161 

; this extract was analysed to measure both levoglucosan and inorganic anions concentrations were quantified. 162 

Levoglucosan concentration was determined by High-Performance Anion Exchange Chromatography coupled with 163 

Pulsed Amperometric Detection (HPAEC-PAD) (Piazzalunga et al., 2010) only in winter samples. Indeed, as already 164 

pointed out by other studies at the same sampling site (Bernardoni et al., 2011) and as routinely measured assessed at 165 

monitoring stations in Milan by the Regional Environmental Agency (private communication), levoglucosan 166 

concentrations during summertime are lower than the MDLs of the technique (i.e. about 6 ng m-3), due to both lower 167 

emissions (no influence of residential heating and negligible impact from other sources) and higher OH levels in the 168 

atmosphere depleting molecular markers concentrations (Robinson et al., 2006; Hennigan et al., 2010). Uncertainties on 169 

levoglucosan concentration were about 11 %. The measurement quantification of main water-soluble inorganic anions 170 

(SO4
2- and NO3

-) was performed by Ion Chromatography (IC); these data had MDLs were  of 25 and 50 ng m-3 with 171 

summertime and wintertime sampling conditions, respectively, and uncertainties of were about 10 %. Unfortunately, due 172 

to technical problems no data on ammonium were available. Details on the analytical procedure for IC analysis are 173 

reported in Piazzalunga et al. (2013).  174 

Another punch (1.0 cm2) of each quartz-fibre filter was analysed by Thermal Optical Trasmittance analysis (TOT, Sunset 175 

Inc., NIOSH-870 protocol) (Piazzalunga et al., 2011) in order to assess organic and elemental carbon (OC and EC) 176 

concentrations. MDLs were was 75 and 150 ng m-3 with summertime and wintertime sampling conditions, respectively, 177 

and uncertainties were in the range 10-15 %. 178 

Hourly elemental composition was assessed by Particle Induced X-ray Emission (PIXE) technique, using a properly 179 

collimated proton beam and scanning the deposits in steps corresponding to 1-hour aerosol deposit (details in Calzolai et 180 
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al., 2015). As low time resolution PM10 samples were also availableIn this work, fine and coarse elemental concentrations 181 

determined by PIXE analysis were added up to obtain PM10 concentrations with hourly resolution as low time resolution 182 

PM10 samples were also available. PM10 hourly concentrations of for most elements and samples were characterised by 183 

relative uncertainties in the range 10-30 % (higher uncertainties for elements near MDLs) and MDLs ranged from a 184 

minimum of 0.1 to a maximum of 15 ng m-3 (higher MDLs typically detected for Z<20 elements). 185 

 186 

2.3 Aerosol light-absorption coefficient measurements 187 

The aerosol absorption coefficient (bap) at the 4 wavelengths 𝜆 = 405, 532, 635 and 780 nm was measured on both low 188 

and high time resolution samples with the home-made polar photometer PP_UniMI (Vecchi et al., 2014; Bernardoni et 189 

al., 2017c). Results on bap obtained by this custom photometer resulted in very good agreement against multi-angle 190 

absorption photometer (MAAP) data at 635 nm (Vecchi et al., 2014; Bernardoni et al., 2017c). More recently, in the frame 191 

of a collaboration with the Jülich Forschungszentrum (Germany), the Absorption Ångström Exponents retrieved by 192 

extinction minus scattering measurements were compared at two wavelengths (630 nm and 450 nm) with the one obtained 193 

by PP_UniMI data for laboratory-generated aerosols. The agreement with Cabot soot was in general very good as for 194 

both bap at two wavelengths and Absorption Ångström Exponent estimates, i.e. comparability within one standard 195 

deviation (data not yet published, preliminary results reported in Valentini et al., 2019). 196 

Low time resolution optical measurements taken into account were those performed on PTFE filters since their physical 197 

characteristics can be considered more similar to polycarbonate filters used by the streaker sampler. Moreover, previous 198 

works reported a bias on bap measured by instrumentation using fibre filters (e.g. Cappa et al., 2008: Lack et al., 2008; 199 

Davies et al., 2019; and references therein); ). Vecchi et al. (2014) found that bap at 635 nm was 40% higher when 200 

measured on quartz-fibre filter compared to parallel samples collected on PTFE. quantified in about 40 % the effect 201 

caused in bap values (assessed at 635 nm) by sampling This effect was ascribed to sampling artefacts due to organics in 202 

aerosol samples collected in Milan when comparing aerosol samples collected in parallel quartz-fibre and PTFE filters.  203 

As fFor high time resolution samples, bap was measured only in the fine fraction collected on polycarbonate filters, since 204 

absorption from of the Kapton foil on which the coarse fraction was collected did not allow bap assessment. Anyway, bap 205 

values in PM2.5 and PM10 were expected to be fairly comparable, as most of the contribution to aerosol absorption in 206 

atmosphere is typically given bymostly due to particles in the fine fraction at heavily polluted urban sites like Milan. To 207 

verify this assumption, high time resolution bap data in PM2.5 were averaged on over the time scale of low time resolution 208 

bap in PM10 and compared; the agreement was good, for comparison. They turned out to be in good agreement, between 209 

11 % and 13 % depending on the 𝜆, except for bap at 𝜆=405 nm that showed a higher difference (27 %) but with most data 210 

(83 %) within experimental uncertainties. To take into account for this difference, bap data at 𝜆=405 nm were homogenised 211 
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before their insertion intousing them in the model, following the criterion used for chemical species (for further detail 212 

about homogenisation procedure, see Sect. 2.4 and Sect. 2.5).  213 

Uncertainties on bap were estimated asquantified in 15 % and MDL was in the range 1-10 Mm-1 depending on sampling 214 

duration and wavelength as already reported in our previous works (Vecchi et al. (, 2014) and ; Bernardoni et al., . (2017c). 215 

Experimental uncertainties and MDL of optical absorption data were used as a starting point to estimate the uncertainties 216 

introduced in the model. Pre-treatment procedure for experimental uncertainties and MDLsthese data was the same used 217 

for chemical variables in order to create suitable input matrices required by the multi-time resolution model (see also Sect. 218 

2.5). Optical system stability was checked during the measurement session, evaluating the reproducibility of the 219 

measurement on a blank test filter. Laser stability was also checked at least twice a day and the recorded intensities were 220 

used to normalise blank and sampled filters analysis.  221 

 222 

2.4 Model description 223 

Multivariate receptor models (Henry, 1997) are among the most widespread and robust approaches used to carry out 224 

source apportionment studies for atmospheric aerosol (Belis et al., 2014 and 2015). In particular, the Positive Matrix 225 

Factorization PMF2 (Paatero and Tapper, 1994; Paatero, 1997) had been extensively used in the literature and, afterwards, 226 

the Multilinear Engine ME-2 (Paatero, 1999 and 2000) introduced the possibility of solving all kinds of multilinear and 227 

quasi-multilinear problems. The fundamental principle of these modelling approaches is the mass conservation between 228 

the emission source and the receptor site; using the information carried by aerosol chemical composition assessed on a 229 

number of in samples collected at the receptor site, a mass balance analysis can be performed to identify the factors 230 

influencing aerosol mass concentrations (Hopke, 2016). Factors can be subsequently interpreted as the main sources 231 

impacting the site, exploiting through the knowledge about the most relevantmajor sources in the investigated area and 232 

the adoption exploitation of chemical fingerprints available from previous literature works (Belis et al., 2014). Referring 233 

to the input data as matrix X (matrix elements xij), the chemical profile of the factors as matrix F (matrix elements fkj), 234 

and the time contribution of the factors as matrix G (matrix elements gik), the main equation of a bilinear problem can be 235 

written as follows: 236 

𝑥 ൌ  𝑔𝑓  𝑒



ୀଵ

                           ሺ1ሻ 237 

where the indices i, j, and k indicate the sample, the species, and the factor, respectively; P is the number of factors and 238 

the matrix E (matrix elements eij) is composed by the residuals, i.e. the difference between measured and modelled values. 239 

In this way, a system of NxM equations is established, where N is the number of samples and M is the number of species. 240 

The solution of the problem is computed minimising the object function Q defined as: 241 
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𝑄 ൌ   ቆ
𝑒

𝜎
ቇ

ଶெ

ୀଵ

ே

ୀଵ

                                                                ሺ2ሻ 242 

where 𝜎 are the uncertainties related to the input data. 243 

The multi-time resolution receptor model was developed in order to use each data value in its original time schedule, 244 

without averaging the high time resolution data or interpolating the low time resolution data (Zhou et al., 2004; Ogulei et 245 

al., 2005). The main Eq. (1) is consequently modified as below: 246 

𝑥௦ ൌ
ଵ

௧ೞమି௧ೞభାଵ
∑ 𝑓 ∑ 𝑔𝜂

௧ೞమ
ୀ௧ೞభ

 𝑒௦

ୀଵ                                (3) 247 

where the indices s, j, and k indicate the sample, the species and the factor respectively; P is the number of factors; ts1 and 248 

ts2 are the starting and ending time for the s-th sample in time units (i.e. the shortest sampling interval, that is 1 hour for 249 

the dataset used here) and i represents one of the time units of the s-th sample. 𝜂 are adjustment factors for chemical 250 

species replicated with different time resolution and measured with different analytical methods (represented by the 251 

subscript m). 252 

If 𝜂 is close to unity, species concentration measured by different analytical approaches can be considered in good 253 

agreement; non-replicated species have adjustment factors set to unity by default. In this work, the adjustment factors 254 

were always set to unity in the model; to take into account the use of differenttwo types of aerosol samplers (i.e. low 255 

volume sampler with EPA inlet and streaker sampler) and different analytical techniques to obtain the elemental 256 

composition (i.e. ED-XRF and PIXE), concentrations of replicated species with differentmultiple time resolutiontime 257 

resolutions were homogenised before inserting them into the input matrix X, as will be explained in Sect. 2.5. Applying 258 

tThis data treatment procedure, it is possible to avoid toavoids the consistency check betweenif the 𝜂 values calculated 259 

by the model are consistent withand differences in experimental data characterised by high and low time resolution. 260 

Otherwise, this step should always be performed after running the model. 261 

In the multi-time resolution model a the following regularisation equation is introduced to take into account that, since 262 

some sources could contain few or no species measured with high time resolution: 263 

𝑔ሺାଵሻ  െ 𝑔 ൌ 0  𝜀              (4) 264 

where 𝜀 represent the residuals. 265 

As already pointed out by Ogulei et al. (2005), a weighing parameter for low resolution species might be necessary; in 266 

this study, it was implemented in the equations and set at 0.5 for strong species (not applied to weaker species such as 267 

Na, Mg, and Cr, see Sect. 2.5) in 24-h or 12-h samples. 268 
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Equations (3) and (4) are solved using the Multilinear Engine (ME) program (Paatero, 1999). In Eq. (2), the object 269 

function Q takes into account residuals from the main Eq. (3) and from the auxiliary equations (regularisation Eq. (4), 270 

normalisation equation, pulling equations, and constraints). 271 

In this work, the multi-time resolution model implemented by Crespi et al. (2016) was used; therefore, constraints were 272 

inserted in the model and the bootstrap analysis was also performed to evaluate the robustness of the final solution. 273 

 274 

2.5 Input data 275 

As already mentioned in Sect. 2.4, instead of using adjustment factors in the model (all set equal to one), concentrations 276 

of replicated species with different time resolutiontime resolutions were pre-homogenised and then inserted into the input 277 

matrix X. Concentration data with longer sampling interval (24 and 12 hours in this work) were considered as benchmark, 278 

since analytical techniques usually show a better accuracy on concentration values far from MDLs (i.e. samples collected 279 

on longer time intervals) (Zhou et al., 2004; Ogulei et al., 2005). 280 

Variables were then classified as weak and strong according to the signal-to-noise ratio (S/N) criterion (Paatero, 2015). 281 

For hourly data only strong variables (S/N ≥ 1.2) were considered; for low time resolution data also weaker variables 282 

such as Na, Mg and Cr (with S/N equal to about 0.8), that resulted strong variables in hourly samples, were also included 283 

although under-weighed (i.e. with associated uncertainties comparable to concentration values) in order to avoid the 284 

exclusion of too many data. Indeed, excluding these low time resolution variables from the analysis gave rise to artificial 285 

high values in the time contribution matrix for sources traced by these species (in this case it was particularly importantan 286 

issue for aged sea salt traced by Na and Mg, see Sect. 3.2); this oddity was already reported by Zhou et al. (2004).  287 

Every measured variable in each sample is characterised by its own uncertainty; ranges of experimental uncertainties and 288 

MDLs are reported in Sect. 2.2 and 2.3 for chemical and optical analyses, respectively. Variables with more than 20 % 289 

of the concentration data below MDL values were omitted from the analysis (Ogulei et al., 2005). Uncertainties, missing 290 

values and data below minimum detection limits were pre-treated according toThe procedure described in Polissar et al. 291 

(1998) was followed to treat uncertainties and below MDL data, starting from experimental uncertainties and MDLs. In 292 

general, missing concentration values were estimated by linear interpolation of the measured data and their uncertainties 293 

were assumed as three times this estimated value (Zhou et al., 2004; Ogulei et al., 2005). As for summertime levoglucosan 294 

data (not availablealways below MDLs), the approach was to include them as below MDL data and not as missing data 295 

following Zhou et al. (2004), who underlined that the multi-time resolution model is more sensitive to missing values 296 

than the original PMF model. In order to avoid double counting, in this study S was chosen as input variable instead of 297 

SO4
2- as it was determined on both low time and high time resolution samples (by XRF and PIXE analysis, respectively, 298 

see Calzolai et al., 2008). However, elemental SO4
2- and S concentrations showed a high correlation (correlation 299 
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coefficient R=0.98) and the Deming regression gave a slope of 2.69 ± 0.13 (sulphate vs. sulphur) with an intercept of -300 

198 ± 82 ng m-3, i.e. compatible with zero within 3 standard deviations. The slight difference (of the order of 10%) 301 

between the estimated slope and the SO4
2--to-S stoichiometric coefficient (i.e. 3) can be ascribed to either a small fraction 302 

of insoluble sulphate or to the use of different analytical techniques. 303 

PM10 mass concentrations were included in the model with uncertainties set at four times their values (Kim et al., 2003). 304 

In the end, 22 low time resolution variables (PM10 mass, Na, Mg, Al, Si, S, K, Ca, Cr, Mn, Fe, Cu, Zn, Pb, EC, OC, 305 

levoglucosan, NO3
-, bap 405nm, bap 532nm, bap 635nm, bap 780nm) and 17 hourly variables (Na, Mg, Al, Si, S, K, Ca, Cr, 306 

Mn, Fe, Cu, Zn, Pb, bap 405nm, bap 532nm, bap 635nm, bap 780nm) were considered. 307 

The input matrix X consisted in 386 samples and the total number of time units was 1117. The analysis was performed 308 

in the robust mode; lower limit for G contribution was set to -0.2 (Brown et al., 2015) and the error model em=-14 was 309 

used for the main equation with C1= input error, C2= 0.0, and C3=0.1 (Paatero, 2012) for both chemical and optical 310 

absorption data. 311 

Sensitivity tests on the uncertainty of absorption data were performed starting from a minimum uncertainty of 10 %. 312 

Lower uncertainties were considered not physically meaningful from an experimental point of view. ME-2 analyses 313 

performed with 10 % uncertainty on absorption data gave very similar results to the base case solution presented in the 314 

Supplement (Figure S1 and Table S3), with no differences in mass apportionment and a maximum variation in the 315 

concentrations of chemical and optical profiles (matrix F) of 7 % when considering significant variables in each profile 316 

(i.e. EVF higher or near 0.30).  OppositeIn contrary, considering an uncertainty of 20 % on absorption data, the solution 317 

significantly differed from the base case one presentedthe one reported in the Supplement and showed less physical 318 

meaning (e.g. a couple of factors got mixed, an additional unique factor appeared giving a null mass contribution). Indeed, 319 

the factors assigned to resuspended dust and construction works got mixed, and a new unique factor (traced almost 320 

exclusively by Pb) appeared, with mass contribution equal to zero. Thus, the estimated relative uncertainty of 15 % was 321 

here considered appropriate for optical variables. 322 

It is also noteworthy that ME-2/PMF analysis is not a-priori harmed by the use of joint matrices containing different units 323 

(see e.g. Paatero, 2018). Indeed, if different units are present in different columns of matrix X, the output data in the factor 324 

matrix G are pure numbers and elements in a column of the factor matrix F carry the same dimension and unit as the 325 

original data in matrix X. In addition, as we did in this work, the average total contribution to the mass of a specific source 326 

due to species in a certain factor in matrix F must be retrieved a-posteriori summing up only mass contributions by 327 

chemical components (i.e. excluding optical components in matrix F). 328 

To the authors’ knowledge, this is was the first time that the absorption coefficients at different wavelengths wasere was 329 

introduced in the multi-time resolution model jointly with chemical variables and used to more robustly identify the 330 
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sources; moreover, this approach led to the assessment of source-dependent the optical information was also exploited to 331 

retrieve additional information such as the 𝛼 values Absorption Ångström Exponent (𝛼) of the sources and MAC values 332 

in an original way. 333 

 334 

3. Results and discussion 335 

3.1 Concentration values 336 

In Table S1 (Supplement) basic statistics on mass and chemical species concentrations at different time resolutions are 337 

given.  338 

Most variables showed higher mean and median concentrations during the winter campaign, when atmospheric stability 339 

conditions influenced the monitoring site; exceptions were Al, Si and Ca which had lower median concentrations (as 340 

detected in low time resolution samples). This was not unexpected as they are typical tracers of soil dust resuspension 341 

(Viana et al., 2008) that can be more relevant during summertime due to drier soil conditions and higher stronger 342 

atmospheric turbulence. Moreover, the good correlation between these elements (Al vs Si: R2=0.94 and Ca vs Si: R2=0.78) 343 

suggested their common origin. 344 

Potassium showed the clearest seasonal behaviour in concentration values was the element showing the most different 345 

median concentrations in the two seasons; its median concentration in low time resolution samples wasgoing from 284 346 

ng m-3 (10th-90th percentile: 151-344 ng m-3) and to 660 ng m-3 (10th-90th percentile: 349-982 ng m-3) in summer and 347 

winter, respectively, in low time resolution samples. K is an ambiguous tracer, since it is emitted by a variety of sources 348 

such asamong which there are crustal resuspension and biomass burning. In our dataset, wintertime K values showed a 349 

good correlation with levoglucosan concentrations (R2=0.71) suggesting an the impact of biomass burning as 350 

levoglucosan is a well-known tracer for biomass burning emissions in winter samples (Simoneit al., 1999). Also looking 351 

at K-to-Si ratio (the latterwhere Si was taken as soil dust marker) significant seasonal differences came out; it was 0.35 ± 352 

0.15 in high time resolution summer samples and 2.0 ± 2.2 in winter ones, to be compared with the much more stable Al-353 

to-Si ratio for Al/Si (i.e. 0.26 ± 0.04 and 0.28 ± 0.09 in summer and winter, respectively) indicating a soil-related origin. 354 

Among the elements typically associated to anthropogenic sources, Fe and Cu showed a good correlation (e.g. R2=0.72 355 

on hourly resolution samples) as well as Cu and EC (Cu vs EC: R2=0.84, on low time resolution data). ); iIn addition, the 356 

diurnal pattern of Fe and Cu showed traffic rush-hours peaks (7-9 a.m. and around 19 p.m. as shown in Fig.1). These 357 

results were suggestive of a common source. ;Indeed, in the literature these aerosol chemical components are reported in 358 

the literature as tracers for vehicular emissions (e.g. Viana et al., 2008; Thorpe and Harrison, 2008).  359 

  360 
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 361 

362 

Figure 1: Diurnal profile of Fe and Cu concentrations (in ng m-3). 363 

 364 

In Table S2 (Supplement) also basic statistics on bap values referred to low resolution samples collected on PTFE are 365 

reported. Diurnal mean temporal patterns for bap at different wavelengths (retrieved from hourly resolved data) are 366 

displayed in Fig. 2. 367 

 368 

 369 

Figure 2: Diurnal profile of aerosol absorption coefficient (Mm-1) measured at different wavelengths. 370 
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3.2 Source apportionment with the multi-time resolution model 372 

Different solutions (from 5 to 10 factors) number of factors (5-10) were explored; after 30 convergent runs, the 8-factor 373 

base-case solution corresponding to the lowest Q value (2086.88) was firstly selected (see Fig. S1 in the Supplement). It 374 

is important to noticenote that the model was run using all variables (chemical + optical) as explained in Sect. 2.5. A 375 

lower or higher number of factors caused ambiguous chemical profiles and the physical interpretation singled 376 

outsuggested clearly mixed sources for a lower number of factors or unique factors in case of more factors (i.e. Pb for 9 377 

factors); moreover, inconsistent mass closure was detected increasing the number of factors (e.g. the sum of species 378 

contribution was up to 25 % higher than the mass for the 10-factor solution). In the 8-factor base case solution, the mass 379 

was well reconstructed by the model (R2=0.98), with a slope of 0.98 ± 0.02 and negligible intercept (=0.51 ± 0.89 𝜇g m-380 

3.). 381 

The factor-to-source assignment process was based on both the Explained Variation for F matrix (EVF) values - which 382 

are typically higher for chemical tracers (Lee et al., 1999; Paatero, 2010) - and the physical consistence of factor chemical 383 

profiles. In the chosen solution, the not explained variation was lower than 0.25 for all variables. The uncertainty-scaled 384 

residuals (Norris et al., 2014) showed a random distribution of negative and positive values in the ± 3 range, with a 385 

Gaussian shape for most of the variables (Fig. S2 in the Supplement). 386 

Using EVF and chemical profiles reported in Fig. S1(a), the 8 factors were tentatively assigned to specific atmospheric 387 

aerosol sources: nitrate, sulphate, resuspended dust, biomass burning, construction works, traffic, industry, and aged sea 388 

salt. In Table S3 (in the Supplement) absolute and relative average source contributions to PM10 mass are reported. 389 

Although the above mentioned base-case solution was a satisfactory representation of the main sources active in the area 390 

(as reported in previous works, see e.g. Marcazzan et al., 2003; Vecchi et al., 2009 and 2018; Bernardoni et al., 2011 and 391 

2017a; Amato et al., 2016), the chemical profiles of some factors were improved exploring rotated solutions. The most 392 

relevant case was represented by aged sea-salt where typical diagnostic ratios such as Mg/Na and Ca/Na (in bulk sea 393 

water equal to 0.12 and 0.04, respectively, as reported e.g. in Seinfeld and Pandis, 2006) were not well reproduced in the 394 

base-case solution (in bulk sea water equal to 0.12 and 0.04, respectively, as reported e.g. in Seinfeld and Pandis, 2006) 395 

and the chemical profile itself was too much impacted by the presence of Fe compared to bulk sea water composition. 396 

Therefore, the above-mentioned diagnostic ratios were here used as constraints and Fe was maximally pulled down in the 397 

chemical profile. The effective increase in Q was of about 61 units (Q=2147), with a percentage increase of about 3 %; 398 

as a rule of thumb, an increase in the Q value of a few tens is generally considered acceptable (Paatero and Hopke, 2009). 399 

It is noteworthy that the constrained solution led to an improvement in the chemical profile of the aged sea salt profiles 400 

was achieved andwith negligible differences in all other relevant features of the solution (i.e. EVF, residuals, mass 401 

reconstruction, source apportionment) were found compared to the base-case solution as for all other relevant features of 402 
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the solution (i.e. EVF, residuals, mass reconstruction, source apportionment). Therefore, the 8-factor constrained solution 403 

was considered the most physically reliable; results are presented in Table 1 and Fig. 3 and discussed in detail in the 404 

following.  405 
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Figure 3: (a) Chemical profiles of the 8-factor constrained solution ; (b) bap apportionment of the 8-factor constrained 407 

solution. The blue bars represent the chemical profile (output of the matrix F normalised on mass), the green bars the 408 

output values of the matrix F for the optical variables, and the black dots the EVF. 409 

 410 

Factors Summer [𝝁g m-3] Winter [𝝁g m-3] Total [𝝁g m-3] 
Nitrate 3.6 (15 %) 21.1 (44 %) 10.2 (31 %) 

Sulphate 6.3 (26 %) 8.1 (17 %) 7.0 (21 %) 
Resuspended dust 4.6 (19 %) 1.7 (4 %) 3.5 (11 %) 
Biomass burning 0.32 (1 %) 8.3 (17 %) 3.3 (10 %) 

Construction works 5.9 (24 %) 3.4 (7 %) 4.9 (15 %) 
Traffic 1.4 (6 %) 2.2 (5 %) 1.7 (5 %) 

Industry 0.86 (4 %) 1.2 (3 %) 1.0 (3 %) 
Aged sea salt 1.4 (6 %) 1.8 (4 %) 1.6 (5 %) 

Table 1: Absolute and relative average source contributions to PM10 mass in the 8-factor constrained solution. 411 

 412 

The factor interpreted as nitrate fully accounted for the explained variation of NO3
-. This factor contained a significant 413 

fraction of nitrate in the chemical profile (39 %) and all nitrate was present only in this factor. This source was by large 414 

the most significant one at the investigated site, explaining about 31 % of the PM10 mass over the whole campaign (a 415 

similar estimate – 26 % - was reported by Amato et al. (2016) during the AIRUSE campaign in Milan in 2013) raising up 416 

to 44 % during wintertime (comparable to 37 % reported by Vecchi et al. (2018)). Indeed, the Po valley is well-known 417 

for experiencing very high nitrate concentrations during wintertime (Vecchi et al., 2018; and references therein) because 418 

of large emissions of gaseous precursors related to urban and industrial activities, biomass burning used for residential 419 

heating, high ammonia levels due to agricultural fields manure and – last but not the least – poor atmospheric dispersion 420 

conditions. 421 

The factor associated to sulphate shows showed EVF=0.47 for S and much lower EVF for all the other variables in the 422 

factor. Considering the sulphur contribution of S in the chemical profile in terms of sulphate and ammonium sulphate, 423 

the relative contribution of sulphur components in the profile increases increased from 11 % (S) up to 45 % (ammonium 424 

sulphate). The latter is the main sulphur compound detected in the Po valley as reported in previous papers such as e.g. 425 

Marcazzan et al. (2001) and was by far the highest contributor in the chemical profile. The other important contributor 426 

was OC (19 %), whose impact on PM mass increased up to 30 % when reported as organic matter using 1.6 as the organic 427 

carbon-to-organic matter conversion factor for this site (Vecchi et al., 2004). Due to the secondary origin of the aerosol 428 

associated to this factor, it was not surprising to find also a significant OC contribution; indeed, aerosol chemical 429 

composition in Milan is impacted by highly oxygenated components due to aging processes favoured by strong 430 

atmospheric stability (Vecchi et al., 2018 and 2019). In this factor, EC contributed for about 1 %. Considering the total 431 

EC concentration reconstructed by the model, the EC fraction related to the sulphate factor was about 6 %. Opposite to 432 
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sulphates, EC has a primary origin; however, its presence with a very similar percentage (4-5 %) in a sulphate chemical 433 

profile was previously pointed out in Milan, indicating a more complex mixing between primary and secondary sources 434 

(Amato et al., 2016) e..g. with sulphate condensation on primary emitted particles.  The sulphate factor accounted for 21 435 

% of the PM10 mass.  436 

The factor identified as resuspended dust is mainly characterised by high EVFsEVF and contributions coming from Al, 437 

Si and Mg, i.e. crustal elements. The Al/Si ratio is 0.31, very similar to the literature value for average crustal composition 438 

(Mason, 1966); the relatively high OC contribution of OC in the chemical profile (15 %) and together with the presence 439 

of EC (about 2.6 %) is suggestive of, indicate that there is very likely a mixing with road dust (Thorpe and Harrison, 440 

2008). This source accounts for about 11 % of the PM10 mass. 441 

The factor identified as biomass burning was characterised by high EVF for levoglucosan (0.98), a known tracer for this 442 

source as it is generated by cellulose pyrolysis; EVF higher than 0.3 were also found for K, OC, and EC. In the source 443 

chemical profile, OC contributed for 54 %, EC for 10 %, levoglucosan for 7 %, and K for 5 %. The average biomass 444 

burning contribution during this campaign was 10 % (up to 17 % in wintertime). Anticipating the discussion presented in 445 

detail in Sect. 3.3, it is worth noticingnoting that the second largest contribution to the aerosol absorption coefficient after 446 

traffic was detected in this factor. 447 

The factor with high EVF (0.60) for Ca was associated to construction works, following literature works (e.g. Vecchi et 448 

al., 2009; Bernardoni et al., 2011; Dall’Osto, 2013; Crilley et al., 2017; Bernardoni et al., 2017a; and references therein). 449 

Major contributors to the chemical profile were Ca (13 %), OC (26 %), Fe, and Si (5 % each). This factor accounted on 450 

average for 15 % to PM10 mass. As already mentioned, during the campaign a not negligible contribution from this 451 

source was expected, due to the presence of a construction building site nearby the monitoring location. 452 

In the factor here assigned to traffic (primary contribution), EVF larger than 0.3 characterised EC, Cu, Fe, Cr, and Pb. 453 

The highest relative mass contributions in terms of mass in the chemical profile were given by OC (41 %), EC (32 %), 454 

Fe (23 %), and Cu (1 %). The lack of relevant crustal elements such as Ca and Al in the chemical profile, suggested a 455 

negligible impact of road dust in this factor. As reported above, at our sampling site the road dust contribution was very 456 

likely mixed to resuspended dust and further separation of these contributions was not possible. This traffic (primary) 457 

contribution over the whole dataset accounted for 5 % of the PM10 mass with a slightly lower absolute contribution in 458 

summer (see Table 1). This contribution is comparable to the percentage (7 %) reported by Amato et al. (2016) for exhaust 459 

traffic emissions but it is lower than our previous estimates (Bernardoni et al., 2011; Vecchi et al., 2018), i.e. 15 % in 460 

2006 in PM10 and 12 % in PM1 recorded in winter 2012. However, the current estimate seems to be still reasonable when 461 

considering the efforts done in latest years to reduce vehicles exhaust particle emissions and the fraction of secondary 462 

nitrate due to high nitrogen oxides and ammonia emissions in the region (INEMAR ARPA-Lombardia, 2018) which has 463 



19 
 

to be added to account for the overall traffic impact; indeed, a significant traffic contribution due to nitrate should be 464 

accounted for the relevant nitrogen oxides and ammonia emissions from agriculture in the region (INEMAR ARPA-465 

Lombardia, 2018). Unfortunately, the non-linearity of the emission-to-ambient concentration levels relationship and the 466 

high uncertainties in emission inventories still prevent a robust estimate of this secondary contribution to total traffic 467 

exhaust emissions. As shown iIn Sect. 3.3, it will be shown that traffic is the largest contributor to aerosol absorption 468 

coefficient thus strengthening, a result that reinforces the interpretation of this factor as a traffic emission source. 469 

The industry factor showed high EVF for Zn (0.59) and the second highest EVF was related to Mn (0.13). Previous studies 470 

at the same sampling site identified these elements as tracers for industrial emissions (e.g. Vecchi et al., 2018; and 471 

references therein). The chemical profile resulted enriched by heavy metals and, after traffic, it was the profile with the 472 

highest share of Cr, Mn, Fe, Cu, Zn, and Pb (explaining about 8 % of the total PM10 mass in the profile). The industry 473 

contribution was not very high in the urban area of Milan, accounting for 3 % on average. 474 

The factor interpreted as aged sea salt was characterised by high EVF of Na (0.93) and this element was - as a matter of 475 

fact - present only in this factor chemical profile. To check the physical consistency of this assignment and considering 476 

that Milan is about 120 km away from the nearest sea coast, back-trajectories coloured by the aged sea salt concentration 477 

(in ng m-3) were calculated through the NOAA HYSPLIT trajectory model (Draxler and Hess, 1998; Stein et al., 2015; 478 

Rolph et al., 2017) and represented using the R packageOpenair software (Carslaw and Ropkins, 2012; R Core Team, 479 

2019). As an example, results from a very short event (13/07 h.16-18) singled out by the model and representing the 480 

highest sea salt contribution during summer are reported in Fig. S3 (Supplement). Before and during the event, south-481 

western air masses originated from south-west compatible withcoming from the Ligurian sea where observed while soon 482 

after the event, there was a rapid change of wind direction. These hours were characterised by an average hHigh wind 483 

speeds were recorded during the episode ( of 4.8 ± 1.7 m s-1 (with a maximum peak of 9.5 m s-1) compared to 1.9 ± 1.0 484 

m s-1 average wind speed recorded duringcharacterising the summer campaign..  485 

When marine air masses are transported to polluted sites, sea salt particles are characterised byshow a Cl deficit due to 486 

reactions with sulphuric and nitric acid (Seinfeld and Pandis, 2006). ) andIn this case, the factor chemical profile was is 487 

expected to be enriched in sulphate and nitrate. In this work, nitrate was not present in the aged sea salt chemical profile; 488 

a very rough estimate (Lee et al., 1999) gave a maximum expected contribution of 2 % (about 82 ng m-3) of the total 489 

nitrate mass in atmosphere, that can be considered negligible in terms of mass contribution of the sources. 490 

Temporal patterns of Cl concentrations (not inserted in the multi-time resolution analysis as being a weak variable) during 491 

marine aerosol episodes were exploited to further confirm the factor-to-source association. As an example, a very short 492 

event (13/07 h.16-18) singled out by the model and representing the highest sea salt contribution during summer was 493 

analysed in further detail. Before and during the sea salt event, air masses originated from south-west compatible with 494 
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Ligurian sea while soon after the event, there was a rapid change of wind direction (Fig. S3, in the Supplement). These 495 

hours were characterised by an average high wind speed of 4.8 ± 1.7 m s-1 (with a maximum peak of 9.5 m s-1) compared 496 

to 1.9 ± 1.0 m s-1 average wind speed recorded during the summer campaign. In addition, Cl concentration and aged sea 497 

salt pattern showed an evident temporal coincidence in peak occurrence during the short summer event (Fig. 4), thus 498 

supporting the source identification. Moreover, during this episode only the Cl coarse fraction increased (Fig. S4, in the 499 

Supplement) and reached about 90 % of total PM10 Cl concentration; Cl/Na ratio was 0.38 ± 0.05, consistent with an 500 

aging of marine air masses during advection showing the typical Cl depletion. due to the interaction between sea salt 501 

particles and polluted air masses (Seinfeld and Pandis, 2006). 502 

  503 

Figure 4: Temporal patterns of aged sea salt source retrieved from the multi-time resolution model and Cl concentrations 504 

measured in atmospheric aerosol. 505 

 506 

Bootstrap analysis was performed to evaluate the uncertainties associated to source profiles (Crespi et al., 2016). 100 runs 507 

were carried out (see Fig. 5, values expressed in ng m-3 or Mm-1 on a logarithmic scale); factors were well mapped, with 508 

Pearson coefficients always higher than 0.97, and tracers for each source showed small interquartile range, supporting the 509 

goodness of the solution presented in this work. 510 
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 513 

Figure 5: Box plot of the bootstrap analysis on the 8-factor constrained solution. The red dots represent the output values 514 

of the solution of the model; the black lines the medians from the bootstrap analysis; the blue bars the 25th and 75th 515 

percentile; the dotted lines the interval equal to 1.5 the interquartile range and the black dots the outliers from this interval. 516 

 517 

3.3 Improving source apportionment with optical tracers  518 

First of all, the use of the absorption coefficient determined at different wavelengths as input variable in the multi-time 519 

resolution model, strengthened the identification of the sources, suggesting that it can be exploited when specific chemical 520 

tracers are not available (e.g. levoglucosan for biomass burning). To prove that, a separate source apportionment study 521 

was performed with EPA PMF 5.0 (Norris et al., 2014), introducing using only hourly elemental concentrations from 522 

samples collected by the streaker sampler and hourly bap at different 𝜆 measured by PP_UniMI on the same filters as input 523 

variables. Streaker samples typically lack of a complete chemical characterisation; in particular, important chemical 524 

tracers such as levoglucosan and EC are not available. In this analysis, bap assessed at different wavelengths resulted 525 

particularly useful for the identificationeffective in identifying of the biomass burning factor that explained a significant 526 

percentage of the bap itself (from 25 % to 35 % depending on 𝜆) (Fig. S5, in the Supplement); without this additional 527 

informationthe optical variables, the factor-to-source assignment would be otherwise based only on the presence of 528 

elemental potassium although it is well-known that K cannot be considered an unambiguous tracer as it is emitted by a 529 

variety of sources (see for example Pachon et al., 2013; and references therein). Furthermore, results showed that the 530 

absorption coefficient contribution was higher than 45 % in the factor labelled as traffic, highlighting the importance of 531 

exhaust emissions in a factor that would be otherwise differently characterised mainly onby elements related to non-532 

exhaust emissions (Cu, Fe, Cr). 533 

From the multi-time resolution model, the two factors identified as biomass burning and traffic were the main contributors 534 

to aerosol absorption in atmosphere and showed significant EVF values. At 780 and 405 nm, traffic contributions 535 

Contributions to bap were 55 % and 42 % %; biomass burning accounted forfor traffic and 20 % and 36 % for biomass 536 

burning at 780 and 405 nm, respectively. The Explained Variation (EVF) of bap has the maximum value at 405 nm for 537 

biomass burning (0.32) and at 780 nm for traffic (0.49), showing the tendency to decrease and increase with the 538 

wavelength, respectively.  539 

The third contributor to aerosol absorption in atmosphere was the sulphate factor, with a contribution comparable to the 540 

biomass burning one at 780 nm (about 20 % of the total reconstructed bap at this wavelength). The sulphate factor 541 

contained a small fraction of EC, as previously discussed (see Sect. 3.2). This might be explained considering that 542 

non/weakly light-absorbing material can form a coating able to enhance particle absorption (Bond and Bergstrom, 2006; 543 



24 
 

Fuller et al., 1999) within a few days after emission (Bond et al., 2006). Laboratory experiments and simulations from in-544 

situ measurements highlighted absorption amplification for absorbing particles coated with secondary organic aerosol 545 

(Schnaiter et al., 2003; Moffet and Prather, 2009). These processes related to Pparticles aging can become important in is 546 

a significant process in the Po valley due to low atmospheric dispersion conditions and they it might explain the relatively 547 

high contribution of the sulphate factor to the absorption coefficient in respect to the other sources (excluding apart from 548 

traffic and biomass burning). Among the other sources, Rresuspended dust was the main contributor at all wavelengths 549 

(between 3 % and 7 % of the total reconstructed bap, depending on the wavelength), likely due to the role of iron minerals. 550 

The other four sources were less relevant in terms of EVF values and overall contributed for less than 11 %. 551 

It is noteworthy that oppositeIn contrast to the approach used in source apportionment optical models based on optical 552 

measurementsdata, like the widespread Aethalometer model (Sandradewi et al., 2008a) and MWAA model (Massabò et 553 

al., 2015; Bernardoni et al., 2017b), it is noteworthy that no a-priori information about 𝛼 values the Absorption Ångström 554 

Exponent (𝛼) of the fossil fuel and biomass burning sources was introduced in the multi-time resolution model; instead 555 

and, an estimate for theits values was directly retrieved from the model. A furtherAnother literature approach used Delta-556 

C as an input variable together with chemical aerosol components in source apportionment models and was very effective 557 

in separating traffic (especially diesel) emissions from biomass combustion emissions (Wang et al., 2011, 2012).It has to 558 

be mentioned that optical models are typically based on a two-source hypothesis (i.e. biomass burning and fossil fuel 559 

emissions); an exception reported in previous works (Wang et al., 2011) concerned the use of Delta-C used as an input 560 

variable together with chemical aerosol components in source apportionment models and proved to be very effective in 561 

separating traffic (especially diesel) emissions from biomass combustion emissions. 562 

Hereafter, iIn order to compare the multi-time resolution model and optical models based on optical measurementsdata 563 

results, contributions due to traffic and industry (i.e. emissions most likely connected to fossil fuel usage) were added up 564 

and labelled as “fossil fuel emissions”. In accordance with the two-source approach used in the Aethalometer model, the 565 

discussion about optical properties will be hereafter focused on the biomass burning and fossil fuel sources considering 566 

that sulphate and resuspended dust factors were less significant also in terms of EVF for optical variables, ranging from 567 

0.08 to 0.12 and from 0.03 and 0.06, respectively, depending on the wavelength.  568 

In Fig. 6 the wavelength dependence of bap for the biomass burning and the fossil fuel profiles obtained with the multi-569 

time resolution model is shown; as  values can show significant differences when calculated using different pairs of  570 

(Sandradewi et al., 2008b), here we performed a fitting procedure considering bap ∝ 𝜆ିఈ. Results were 𝛼 (𝛼 biomass 571 

burning) = 1.83 and 𝛼ிி (𝛼 fossil fuels) = 0.80; the range of variability of 𝛼 values was estimated with the bootstrap 572 

analysis obtaining 0.78-0.88 for 𝛼ிி and 1.65-1.88 for 𝛼 (as 25th and 75th percentile, respectively).  573 
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 574 

Figure 6: bap dependence on 𝜆 for biomass burning and fossil fuel emissions. 575 

 576 

Zotter et al. (2017) reported a possible combination of 𝛼ிி=0.8 and 𝛼=1.8 when EC concentration from fossil fuel 577 

combustion (estimated with radiocarbon measurements) is between 40 % and 85 % of the total EC concentration; in this 578 

work, the fraction of EC ascribed by the multi-time model to fossil fuel sources was 56 %. The combination 0.9 and 1.68 579 

for 𝛼ிி and 𝛼, respectively, was also suggested when in the study there are no or only limited additional information 580 

(e.g. from 14C measurements). Therefore, fFrom the wide range of possible combinations reported in the literature it is 581 

clear that tthe assessment of BC (assumed to be equal to FF in source apportionment optical models based on optical 582 

measurementsdata) is still an issue and both experimental and simulation studies are in progress to reduce uncertainties 583 

and give a better evaluation of this relevant keyoptical parameter.  584 

The 𝛼 value retrieved by the model was very similar to values reported by Zotter et al. (2017) and also comparable to 585 

1.86 found for biomass burning by Sandradewi et al. (2008a) and 1.8 obtained by Massabò et al. (2015) who used also 586 

independent 14C measurements for checking. The 𝛼ிி value resulted in the range 0.8-1.1 typically reported in optical 587 

source apportionment studies based on optical measurementsdata (e.g. Bernardoni et al., 2017b; Zotter et al., 2017; and 588 

references therein). Indeed, the sampling site was an urban background station in Milan where aerosol aging is a relevant 589 

process and our samples were hardly had been impacted by fresh traffic emissions. Considering this featurethe aged nature 590 

of Milan aerosol, the average FF was included in the wide range ofcomparable to estimates for BC coated particles 591 

reported in the literature works (approx. 0.6-1.3, see e.g. Liu et al., 2018) and obtained by both ambient measurement 592 

(e.g. Fischer and Smith, 2018; and references therein) and numerical simulations (e.g. Gyawali et al., 2009; Liu et al. 593 

2018; and references therein).  594 
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Results here reported allow also to study the relationship between the absorption coefficient and the mass of black carbon 595 

(BC), i.e. the so called Mass Absorption Cross section (MAC) at different wavelengths. The MAC() =bap()/BC 596 

relationship assumes that black carbon (BC) is the only light-absorbing species present; however, this assumption is not 597 

always valid, since the transport of mineral dust from desert areas and brown carbon (BrC) can significantly contribute 598 

to aerosol absorption. During our monitoring campaign, no significant contribution from Saharan mineral dust was 599 

observed; opposite, biomass burning was proved proven to be a relevantan important source so that BrC was certainly a 600 

significant contributor (Fuzzi et al., 2015) as also suggested by αBB = 1.83 in the biomass burning factor. The possible 601 

overestimation of BC when total bap is ascribed to BC only is usually minimised choosing a wavelength higher than 600 602 

nm, exploiting the spectral dependence of absorption from different aerosol compounds (Petzold et al., 2013).  603 

EC concentration retrieved from the chemical profiles (see Fig. 3) was used as a proxy for BC to estimate source-604 

dependent bap()-to-BC ratio. Results are represented in Fig. 7. It is noteworthy that here this ratio is intentionally not 605 

indicated as MAC, since overestimation of the BC absorption especially at lower 𝜆 might occur (see previous discussion). 606 

BrC is expected to give a small contribution in the fossil fuel source; therefore, the best approximation for MAC(𝜆) values 607 

are likely the bap()-to-BC ratios observed in the fossil fuel source at our monitoring site. They resulted to be 13.7 m2 g-1  608 

atfor 𝜆 = 405 nm; , 10.2 m2 g-1 forat 𝜆 = 532 nm,; 8.8 m2 g-1 at for 𝜆 = 635 nm,; 8.6 m2 g-1 at for 𝜆 = 780 nm. ForAt 𝜆 = 609 

550 nm Bond and Bergstrom (2006) reported a MAC value of= 7.5 ± 1.2 m2 g-1 for uncoated fresh emitted particles and 610 

MAC values in polluted regions ranging from 9 to 12 m2 g-1, attributable to absorption enhancement due to particles 611 

coating. The MAC estimate obtained in this work from multi-time resolution model forat 532 nm is comparable to 612 

literature values above reported thus confirmingand it confirms the importance of aging processes in atmosphere on the 613 

optical properties of particles. 614 

 615 
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Figure 7: bap-to-EC ratio dependence on 𝜆 for biomass burning and fossil fuel emissions. Error bars represent the 25th and 616 

75th percentile retrieved from the bootstrap analysis. 617 

 618 

Ratios  represented in Fig. 7 are less comparable at 𝜆=405 nm (see also Table S4, in the Supplement) due to the significant 619 

contribution of BrC to bap at this wavelength in the biomass burning factor. 620 

No seasonal differences in the atmospheric ratios were observed but at 𝜆 = 405 nm (see Table S4, in the Supplement), for 621 

which winter values are were higher than summer ones (17.8 ± 0.4 and 14.2 ± 0.5, respectively); this result can be 622 

explained consideringdue to the influence of biomass burning emissions on BrC concentration in atmosphere during the 623 

winter cold season.  624 

From the outputs of the modelling approach here proposed, the apportionment of the biomass burning and fossil fuel 625 

contributions to bap at different wavelengths was also obtained. As expected, the relative contribution to the total 626 

reconstructed bap ascribed to the biomass burning factor decreases decreased with increasing 𝜆, opposite to the 627 

contribution from fossil fuel combustion which gives gave the highest contribution at 780 nm (Table 2); in addition, the 628 

latter contribution prevails prevailed at all wavelengths at the investigated site.  629 

 

 𝝀 = 405 nm 𝝀 = 532 nm 𝝀 = 635 nm 𝝀 = 780 nm 

Biomass burning 36 % (31 %-36 %) 29 % (25 %-30 %) 26 % (23 %-27 %) 20 % (16 %-22 %) 

Fossil fuels 45 % (41 %-46 %) 43 % (39 %-44 %) 45 % (41 %-47 %) 55 % (48 %-55 %) 

Table 2: Average contribution to total reconstructed bap for the biomass burning and fossil fuel factors; in parenthesis 25th

and 75th percentile are reported. 

 

 630 

4. Conclusions 631 

The multi-time resolution model implemented through the Multilinear Engine (ME-2) script allowed the analysis of 632 

experimental data collected at different time scales, coupling the detailed chemical speciation at low time resolution and 633 

the temporal information given by high time resolution samples. The effect of the introduction of the aerosol absorption 634 

coefficient (bap) measured at different wavelengths in the modelling process was investigated and gave promising results. 635 

First of all, a more robust identification of sources was provided; secondly, it paved the way to the retrieval of optical 636 

apportionment and optical characterisation of the sources (e.g. estimate of source-specific Absorption Ångström Exponent 637 

- 𝛼 - and Mass Absorption Cross section – MAC - at different wavelengths). It is worthy to note that – at the state of the 638 

art –currently in source apportionment optical models based on optical measurementsdata (e.g. Aethalometer model) 639 
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values for 𝛼 related to fossil fuel emissions and biomass burning are fixed by the modeller thus carrying a large part of 640 

the uncertainties in the model results. Considering that the estimates for the Absorption Ångström Exponent were here 641 

obtained as a result of a quite complex modelling approach (i.e. using multi-time resolution datasets collected on limited 642 

periodsjoining chemical and optical variables) and without any a-priori assumption, the results obtained – although 643 

obviously affected by a certain degree of uncertainty due to both experimental data and modelling process (here estimated 644 

while typically not taken into consideration for fixed  values used in the literature) – were fairly comparable to literature 645 

results and gave a further tool aimed at assessingto assess more robust source-related  values. Obviously these estimates 646 

are affected by a certain degree of uncertainty due to both experimental data and modelling process (while uncertainties 647 

are typically not taken into consideration for fixed  values used in the literature). In perspective, joining together different 648 

approaches such as the receptor modelling here proposed and e.g. 14C measurementsdata and artefact-free bap 649 

measurements will lead to better estimates of the Absorption Ångström Exponent; work is in progress at our laboratories 650 

to achieve this goal.. 651 

The original approach described in this work can be applied to any source apportionment study studies using any suitable 652 

dataset (not necessarily with multi-time resolution). Besides the traditional source apportionment, the impact of different 653 

sources on the aerosol absorption coefficient was estimated; this piece of information can be very useful to formulate 654 

strategies of pollutants abatement, in order to improve air quality and to face climate challenges. In particular, at the 655 

investigated site secondary compounds constituted the highest contribution in terms of PM10 mass (52 % on average), 656 

while the two factors identified as biomass burning and traffic were found to be the most significant contributors to aerosol 657 

light absorption in atmosphere, in agreement with available literature works. 658 
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Figure 1: Diurnal profile of  Fe and Cu concentrations (in ng m-3). 949 

Figure 2: Diurnal profile of aerosol absorption coefficient (in Mm-1) measured at different wavelengths.  950 

Diurnal profile of the aerosol absorption coefficient measured at different wavelengths in Mm-1). 951 

Figure 3: (a) Chemical profiles of the 8-factor constrained solution ; (b) bap apportionment of the 8-factor constrained 952 

solution. The blue bars represent the chemical profile (output of the matrix F normalised on mass), the green bars the 953 

output values of the matrix F for the optical variables, and the black dots the EVF. 954 

Figure 3: (a) Chemical profiles of the 8-factor constrained solution (b) bap apportionment of the 8-factor constrained 955 

solution. .The blue bars represent the chemical profile (output of the matrix F normalised on mass), the green bars the 956 

output values of the matrix F, and the black dots the EVF. 957 

Figure 4: Temporal patterns of aged sea salt source retrieved from the multi-time resolution model and Cl concentrations 958 

measured in atmospheric aerosol. 959 

Figure 5: Box plot of the bootstrap analysis on the 8-factor constrained solution. The red dots represent the output values 960 

of the solution of the model; the black lines the medians from the bootstrap analysis; the blue bars the 25th and 75th 961 

percentile; the dotted lines the interval equal to 1.5 the interquartile range and the black dots the outliers from this interval. 962 

Figure 6: bap dependence on 𝜆 for biomass burning and fossil fuel emissions. 963 

Figure 7: bap-to-EC ratio dependence on 𝜆 for biomass burning and fossil fuel emissions. Error bars represent the 25th and 964 

75th percentile retrieved from the bootstrap analysis. 965 
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Table 1: Absolute and relative average source contributions to PM10 mass in the 8-factor constrained solution. 967 

Table 2: Average contribution to total reconstructed bap for the biomass burning and fossil fuel factors; in parenthesis 25th 968 

and 75th percentile are reported. 969 
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