1 Supplementary material

2 Trends in global tropospheric hydroxyl radical and methane

- 3 lifetime since 1850 from AerChemMIP
- 4
- 5 David S. Stevenson¹, Alcide Zhao¹, Vaishali Naik², Fiona M. O'Connor³, Simone Tilmes⁴, Guang Zeng⁵,
- 6 Lee T. Murray⁶, William J. Collins⁷, Paul Griffiths^{8,9}, Sungbo Shim¹⁰, Larry W. Horowitz², Lori Sentman²,
- 7 Louisa Emmons⁴
- 8 ¹School of GeoSciences, The University of Edinburgh, United Kingdom
- 9 ²Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration (NOAA),
- 10 Princeton, NJ08540, USA
- 11 ³Met Office Hadley Centre, Exeter, United Kingdom
- 12 ⁴Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric
- 13 Research, Boulder, CO, USA
- 14 ⁵National Institute of Water and Atmospheric Research, Wellington, New Zealand
- 15 ⁶Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY USA
- 16 ⁷Department of Meteorology, University of Reading, United Kingdom
- 17 ⁸National Centre for Atmospheric Science, University of Cambridge, United Kingdom
- 18 ⁹Department of Chemistry, University of Cambridge, United Kingdom
- 19 ¹⁰ National Institute of Meteorological Sciences, Seogwipo-si, Jeju-do, Korea

Figure S1 The same as Figure 3, but for CH₄ mixing ratio (ppm) and the relative changes.

Figure S2 The same as Figure 2, but comparing the historical runs (solid) with corresponding histSST runs (dashed). Red for CESM2-WACCM, green for
UKESM-0-LL and blue for GFDL-ESM4.

Figure S3 The same as Figure 3, but for CH₄ loss rate (kg cm⁻³ yr⁻¹) and the relative changes. See Figure S7 for changes in absolute values.

Figure S4 The same format as Figure 5, but for CH₄ loss rate (Tg yr⁻¹), integrated in the troposphere

31 (left) and the whole atmosphere (right).

Figure S5 Percentage changes in OH, CH₄, CH₄ loss rate and CH₄ lifetime, calculated relative to PD in
histSST run, derived from GFDL-ESM4. Left for PD-piCH4 and right for PD-piO3.

Figure S6 As Figure 2 (OH), but with changes reported as absolute changes.

Figure S7 As Figure S3 (CH₄ loss rate), but with changes reported as absolute changes.

Figure S8 As Figure 4 (CH₄ lifetime), but with changes reported as absolute changes.