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Abstract. We analyse historical (1850-2014) atmospheric hydroxyl (OH) and methane lifetime data from Coupled 

Model Intercomparison Project Phase 6 (CMIP6)/Aerosols and Chemistry Model Intercomparison Project 25 

(AerChemMIP) simulations. Tropospheric OH changed little from 1850 up to around 1980, then increased by 

around 9% up to 2014, with an associated reduction in methane lifetime. The model-derived OH trends from 

1980-2005 are broadly consistent with trends estimated by several studies that infer OH from inversions of methyl 

chloroform and associated measurements; most inversion studies indicate decreases in OH since 2005, however 

the model results fall within observational uncertainty ranges. The upward trend in modelled OH since 1980 was 30 

mainly driven by changes in anthropogenic Near-Term Climate Forcer emissions (increases in anthropogenic 

nitrogen oxides and decreases in CO). Increases in halocarbon emissions since 1950 have made a small 

contribution to the increase in OH, whilst increases in aerosol-related emissions have slightly reduced OH. 

Halocarbon emissions have dramatically reduced the stratospheric methane lifetime by about 15-40%; most 

previous studies assumed a fixed stratospheric lifetime. Whilst the main driver of atmospheric methane increases 35 

since 1850 is emissions of methane itself, increased ozone precursor emissions have significantly modulated (in 

general reduced) methane trends. Halocarbon and aerosol emissions are found to have relatively small 

contributions to methane trends. These experiments do not isolate the effects of climate change on OH and 

methane evolution, however we calculate residual terms that are due to the combined effects of climate change 

and non-linear interactions between drivers. These residual terms indicate that non-linear interactions are 40 

important and differ between the two methodologies we use for quantifying OH and methane drivers. All these 

factors need to be considered in order to fully explain OH and methane trends since 1850; these factors will also 

be important for future trends. 
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1. Introduction 

The hydroxyl radical (OH) is a highly reactive, and consequently very short-lived, component of the Earth’s 45 

atmosphere that lies at the heart of atmospheric chemistry. It is often referred to as the cleansing agent of the 

atmosphere, as it is the main oxidant of many important trace gases, including methane (CH4), carbon monoxide 

(CO), and non-methane volatile organic compounds (NMVOCs). Hydroxyl controls the removal rates of these 

species, and hence their atmospheric residence times (e.g., Holmes et al., 2013; Turner et al., 2019). Because of 

this key role in determining the trace gas composition of the atmosphere, it is important to understand what 50 

controls OH’s global distribution, its temporal evolution, and drivers of changes (e.g., Lawrence et al., 2001; 

Murray et al., 2014; Nicely et al., 2019). 

The primary source of OH is from the reaction of excited oxygen atoms (O(1D)) with water vapour; the excited 

oxygen originates from the photolysis of ozone (O3) by ultra-violet (UV; wavelength < 330 nm) radiation: 

 55 

O3 + hν → O2 + O(1D)          (R1) 

O(1D) + H2O → 2OH          (R2) 

 

There is rapid cycling between OH and the hydroperoxyl radical (HO2) and other peroxy radicals (RO2, e.g., 

CH3O2). For example, oxidation of CO and CH4 (and other NMVOCs) consumes OH and generates HO2 and RO2: 60 

 

CO + OH (+O2) → CO2 + HO2         (R3) 

CH4 + OH + O2 + M → CH3O2 + H2O + M        (R4) 

 

Nitrogen oxides (NO and NO2, collectively NOx) tend to push the OH/HO2 ratio in the other direction, through 65 

the reaction: 

 

NO + HO2 → NO2 + OH          (R5) 

 

However, in strongly polluted air, NO2 becomes a dominant sink for OH, through formation of nitric acid (HNO3). 70 

Comprehensive descriptions of hydroxyl radical chemistry are given by, e.g., Derwent (1996), Stone et al. (2012) 

and Lelieveld et al. (2016). 

Levels of OH are thus influenced by ambient levels of these other species – in particular, more CH4, CO, and 

NMVOCs will reduce OH, whilst more NOx and H2O will increase OH through ozone chemical production and 

the subsequent reaction of O(1D) with H2O (R2) to produce OH. Water vapour is a key link between physical 75 

climate and OH, but there are many others (Isaksen et al., 2009). For example, many emissions (including biogenic 

and anthropogenic VOCs, and lightning NOx), and chemical reactions (e.g., R4) depend on temperature and other 

climate variables. Photolysis rates affect OH (e.g., R1) – hence changes in clouds and stratospheric ozone also 

influence OH.  

The global distribution and budget of OH has been estimated by models (e.g., Spivakovsky et al., 1990; Lelieveld 80 

et al, 2016). As part of the Fifth Coupled Model Intercomparison Project (CMIP5), the Atmospheric Chemistry 

and Climate Model Intercomparison Project (ACCMIP) analysed past and future trends in simulated OH (Naik et 

al., 2013; Voulgarakis et al. 2013) and attributed past changes in methane to changes in anthropogenic emissions 
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of NOx, CH4, CO and NMVOCs (Stevenson et al., 2013). However, the relative influences of different processes 

in driving changes in global OH remains incompletely understood (e.g., Wild et al., 2019).  85 

Evaluation of model-simulated OH requires knowledge of real world OH. In particular, the global distribution of 

OH is needed to investigate quantities such as methane lifetime. Direct measurement of OH is difficult (Stone et 

al., 2012), and estimates of global OH can only be inferred indirectly, using measurements of species such as 

methyl chloroform as inputs to inverse models, or through assimilation of measurements of species that constrain 

OH, such as CH4, CO and NO2, into global atmospheric chemistry models. These methods allow trends in global 90 

OH over the last few decades to be estimated, with uncertainties (see Section 2.2).  

This study presents results from multiple transient 1850-2014 simulations performed for CMIP6 (Eyring et al., 

2016) and the associated Aerosol and Chemistry Model Intercomparison Project (AerChemMIP; (Collins et al., 

2017), and is organised as follows. Section 2 describes how CMIP6 models simulated OH, and methods used in 

past studies for inferring OH trends from measurements. In Section 3 we present pre-industrial (PI; here taken as 95 

the 1850s) and present-day (PD) zonal mean fields of modelled OH and related species, together with historical 

time-series of global tropospheric OH, and corresponding CH4 loss rates and lifetimes, including from sensitivity 

experiments that isolate the effects of specific drivers. Section 4 discusses the results, comparing trends in OH 

from measurements and models and estimates the roles of specific drivers in the historical evolution of OH, and 

draws conclusions. 100 

2. Methods 

2.1 AerChemMIP CMIP6 experiments and models 

We used coupled historical transient (1850-2014) model simulations from CMIP6 (Eyring et al., 2016) and various 

atmosphere-only historical model simulations from the associated AerChemMIP (Collins et al., 2017). Results 

from three global state-of-the-art Earth System Models that include detailed tropospheric and stratospheric 105 

chemistry were analysed: Geophysical Fluid Dynamics Laboratory Earth System Model version 4 (GFDL-

ESM4);, Community Earth System Model version 2 Whole Atmosphere Community Climate Model (CESM2-

WACCM);, and the United Kingdom Earth System Model version 1.0, with Low resolution (N96) atmosphere 

and Low resolution (1°) ocean (UKESM1-0-LL) (Table 1). 

Two base historical transient experiments have been analysed: “historical” and “histSST” (Table 2). The 110 

“historical” runs included a fully coupled ocean, and multiple ensemble members. The “histSST” simulations 

were single member atmosphere-only runs, with monthly mean time-evolving sea-surface temperatures (SSTs) 

and sea-ice prescribed from one ensemble member of the historical simulations. Identical historical anthropogenic 

forcings were applied in all base runs by using prescribed long-lived greenhouse gas and halocarbon mole 

fractions (Meinshausen et al., 2017) and anthropogenic and biomass burning emissions of near-term climate 115 

forcers (NTCF; i.e. aerosols and aerosol precursors, and ozone precursors) (van Marle et al., 2017; Hoesly et al., 

2018). Emissions of NOx, CO and NMVOC from 1850-2014 are shown in Figure 1. Natural emissions of these 

species were either prescribed (e.g., soil NOx emissions, oceanic CO emissions) or internally calculated (e.g., 

biogenic isoprene, lightning NOx) by embedded process-based climate-dependent schemes that differ between 

models (e.g., Griffiths et al., 2020; Turnock et al., 2020). Methane mole fractions were prescribed at the surface 120 

based on observations and ice core data (Meinshausen et al., 2017); away from the surface, methane was simulated 
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by the model. However, by prescribing surface mole fractions, methane throughout the model domain was 

effectively prescribed. 

We also analysed several variants of the histSST base case, with either methane mole fractions or emissions of 

NTCFs fixed at pre-industrial levels, or halocarbon mole fractions fixed at 1950 levels. These variants allow us 125 

to estimate the roles of different drivers in changing OH (Table 2). 

For some model variables we separated fields at the tropopause to provide a methane lifetime with respect to loss 

processes in the troposphere and stratosphere as separate values. We used World Meteorological Organisation 

(WMO) defined tropopause pressures (the AerChemMIP variable ptp) from the models to diagnose this masking. 

The exact definition used is not critical, as most oxidation occurs well away from the tropopause in the tropical 130 

lower atmosphere (cf. tropospheric ozone, where the tropopause definition is much more important; Griffiths et 

al., 2020). 

Models diagnosed methane loss rates due to chemical destruction in each grid-box – these are dominated by 

reaction with OH (R4), but also include other reactions, such as the reaction of methane with Cl in the stratosphere. 

We have used these loss rates to calculate grid-box methane lifetimes. Whole atmosphere chemical lifetimes were 135 

calculated by dividing the total methane burden by the total loss flux over the whole model domain, or just the 

troposphere or stratosphere, for tropospheric and stratospheric lifetimes. 

We used the histSST-piNTCF simulations to diagnose the methane-OH feedback factor (Prather, 1996). These 

simulations held NTCF emissions at PI levels, but methane mole fractions evolved following its historical 

trajectory; from 1950 onwards, halocarbon mole fractions also increased. The methane-OH feedback is normally 140 

diagnosed from dedicated experiments that perturb only the methane mole fraction (Holmes, 2018), but such 

experiments are only available for PI conditions within AerChemMIP (e.g., Thornhill et al., 2020a). The methane-

OH feedback factor, f, was calculated as follows: 

 

𝑓 = (1 − (
ln(

𝜏1930−1960
𝜏1850

)

ln(
[𝐶𝐻4]1930−1960

[𝐶𝐻4]1850
)
))

−1

         (1), 145 

 

where τ is the total methane lifetime (additionally including a soil sink; CH4 is taken to have a lifetime with respect 

to soil uptake of 160 yr, based on results for the 2000s from Spahni et al., 2011, Ito et al., 2012, Kirschke et al., 

2013, and Tian et al., 2015, as summarised in Tian et al., 2016; NB here we neglect the tropospheric Cl sink for 

methane (Allan et al., 2007; Hossaini et al., 2016; Sherwen et al., 2016; Wang et al., 2019; Gromov et al., 2018; 150 

Strode et al., 2020)), [CH4] is the global mean methane mole fraction; both for a particular year (or range of years) 

of the histSST-piNTCF simulation. The reference year is 1850, the first year of the simulation. We took average 

values between 1930 and 1960 to give the most reliable estimate of f, as this is after a sufficiently large methane 

perturbation has built up, but before halocarbons interfere with the results in these simulations (see Section 3.3). 

We used each model’s feedback factor to calculate equilibrium PD methane mole fractions ([CH4]eq) for each 155 

sensitivity run, using the diagnosed total methane lifetimes from these experiments. The equilibrium methane 

mole fraction is the methane mole fraction that would have been reached if methane mole fractions had not been 

prescribed in these runs, but rather that methane emissions had been applied, allowing methane mole fractions to  

evolve freely (e.g., Fiore et al., 2009; Stevenson et al., 2013): 
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 160 

[𝐶𝐻4]𝑒𝑞 = [𝐶𝐻4]𝑟𝑒𝑓 (
𝜏𝑃𝐷

𝜏𝑟𝑒𝑓
)

𝑓

        (2) 

 

where [CH4]ref is the prescribed methane mole fraction in the run, and τref is the total methane lifetime in the 

histSST base experiment, either for PD, or, in the case of histSST-piCH4, for PI. We illustrate this with two 

examples: (i) in the histSST-_piNTCF case, the equilibrium value is the PD methane mole fraction that would 165 

have been reached if all NTCF emissions been held at PI levels, whilst CH4 emissions had followed their historical 

evolution; and (ii) in the histSST-_piCH4 case, the equilibrium value is the PD methane mole fraction that would 

have been reached if CH4 emissions had been held at PI levels, but all other emissions followed their historical 

evolution. This allows us to clarify modelled influences on CH4 from specific emissions. 

2.2 Inferred OH from measurements 170 

Tropospheric OH has a chemical lifetime of less than a second or so, reflecting its high reactivity, making direct 

measurement difficult and impractical for constraining global OH distributions (e.g., Stone et al., 2012). Instead, 

tropospheric mean OH and its variability has traditionally been inferred from measurements of trace gases with 

lifetimes longer than the timescale of tropospheric mixing and whose primary loss is via reaction with OH. If 

emissions are well known then observed changes in atmospheric abundance may be related, via inverse methods, 175 

to variations in OH. To date, the favoured proxy for estimating OH has been from measurements of methyl 

chloroform (1,1,1-trichloroethane; CH3CCl3; MCF), a synthetic industrial solvent that was banned in the late 

1980s as a stratospheric-ozone depleting substance (Lovelock, 1977; Singh, 1977; Spivakovsky et al., 1990, 2000; 

Montzka et al., 2000; Prinn et al., 2001). The inversions have typically spatially represented the global atmosphere 

as a few boxes. 180 

The earliest MCF inversions predicted relatively large OH variability, reflecting high sensitivity to the uncertainty 

in residual MCF emissions (Bousquet et al., 2005; Prinn et al., 2005, 2001; Krol and Lelieveld, 2003; Krol et al., 

2003). However, Montzka et al. (2011) demonstrated that by the late 1990s, residual emissions had declined 

sufficiently so as to be a minor source of uncertainty, and that OH varied by at most a few percent in year-to-year 

variability. More recently, multi-box models have been used with Bayesian inverse methods to simultaneously 185 

optimize OH and MCF emissions to match MCF observations from the NOAA and the Advanced Global 

Atmospheric Gases Experiment (AGAGE) networks, as well as multi-species inversions including methane and 

methane isotopologues as additional constraints (Rigby et al., 2017; Turner et al., 2017). Naus et al. (2019) further 

investigated the inversion methods used by Rigby et al. (2017) and Turner et al. (2017), confirming that the 

derivation of OH from MCF and CH4 is quite poorly constrained and found OH trends with a range of different 190 

magnitudes and signs were consistent with the available data. 

Some inversion studies have used models with greater spatial resolution. McNorton et al. (2016) performed 

inverse modelling using a 3-D Chemistry-Transport Model (CTM) constrained by MCF data, and found that OH 

increases contributed significantly to the slowdown in the global CH4 growth rate between 1999 and 2006, and 

that the post-2007 increases in CH4 growth rate were poorly simulated if OH variations were ignored. McNorton 195 

et al. (2018) extended this work with further constraints from Greenhouse Gases Observing Satellite (GOSAT) 
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CH4 and δ13CH4 and found that the post-2007 CH4 growth rate surge was most likely due to a combination of a 

decrease (-1.8 ± 0.4 %) in global OH and increases in CH4 emissions. 

These inversion studies generally find OH to have increased from the late 1980s until the mid-2000s when OH 

then began to decline (Figure 2b). However, most inversion studies also found that solutions exist within the 200 

uncertainty of the system when OH was held constant and only emissions of the reactants were allowed to be 

optimized. In contrast, Nicely et al. (2018) empirically derived a historic global mean OH reconstruction by taking 

a baseline forward OH simulation from the National Aeronautics and Space Administration (NASA) Global 

Modeling Initiative (GMI) CTM driven by assimilated meteorology since 1980, and adjusting it based on box-

model derived relationships of OH responses to changes in observable parameters such as total ozone columns 205 

from satellites. The empirically derived OH reconstruction (also shown in Figure 2b) was found to be relatively 

invariant when compared to other MCF inversions over the past few decades, which the study suggested reflected 

chemical buffering of the many competing factors that can influence OH. 

Several studies have investigated the constraints imposed on OH by species other than MCF and CH4. Gaubert et 

al. (2017) assimilated time-series of global-scale satellite CO measurements from the Measurements of the 210 

Pollution Iin Tthe Troposphere (MOPITT) project into a global model, and found a decrease in global CO burden 

of ~20% over the period 2002-2013. Associated with this decrease in CO was an 8% shortening of the methane 

lifetime, and a 7% increase in OH. Nguyen et al. (2020) also found that decreasing global CO concentrations since 

the 2000s have important influences on CH4 flux inversion results, because of the strong chemical coupling 

between CO, CH4 and OH. Assimilation of satellite CO, NOx and O3 data (e.g., Miyazaki et al. (2015, 2017), 215 

Miyazaki and Bowman, 2017; Gaubert et al., 2017) demonstrates that OH is sensitive to all these species, and that 

data assimilation improves simulation of the hemispheric ratio of OH (Patra et al., 2014). 

Collectively, these earlier studies have shown that OH is influenced by CO, NO2, O3, as well as CH4. To date, 

studies have used subsets of the available observational data (i.e. one or more of MCF, CH4, δ13CH4, CO, NO2, 

and O3) to constrain OH, but not yet all available relevant data. The OH trends derived from several of these 220 

studies, including the uncertainty estimates from Rigby et al. (2017) are summarised in Figure 2b. 

3. Results 

3.1 Pre-industrial to present-day base simulations 

Figure 2a shows time-series (1850-2014) of global annual mean tropospheric OH burden, expressed as a 

percentage anomaly relative to the 1998-2007 mean value for the three models. This shows typical inter-annual 225 

variability in global OH of about ±2-3%, a small decrease (about -3%) in OH from 1850 up to 1910, then a similar 

magnitude increase up to the 1980s. From the 1980s to 2014, the models show a strong increase in OH of about 

+109%. All three models show comparable behaviour. We find very similar results between the fully coupled 

(“historical”) and the atmosphere-only (“histSST”) experiments (not shown). This confirms that it is valid to 

directly compare and analyse together the results from these two experimental set-ups. 230 

Figure 2b shows several estimates of global tropospheric OH trends over the period 1980-2014 inferred from 

observations (as described in Section 2.2), including an uncertainty range from Rigby et al. (2017). The inferred 

trends from different inversion methods show quite a wide range, but are generally upwards from 1980-2005, in 

broad agreement with the AerChemMIP models. However, from 2005 onwards, the inversions generally indicate 



7 

 

downwards trends, whereas the models suggest a continued slight upwards trend. The 1980-2015 model global 235 

OH trends are almost always within the ±1 standard deviation uncertainty range from Rigby et al. (2017), although 

they are close to the lower end of the range in 1980 and just beyond its upper end in 2015. 

Figure 3 shows present-day (PD; 2005-2014 decadal mean) zonal mean OH concentrations for the three models. 

The vertical co-ordinate is pressure, and the zonal mean WMO tropopause is indicated. All models show high OH 

values between 30°S and 30°N in the lower to middle troposphere, with larger values in the Northern Hemisphere 240 

(NH). 

Figure 3 also shows changes in OH from pre-industrial (PI; 1850-1859 decadal mean) to PD, expressed as the 

percentage change relative to PD. This reveals local increases of over 50% in zonal mean tropospheric OH, in 

particular over polluted NH mid-latitudes, but also a local decrease of over 10% in the Southern Hemisphere (SH) 

mid- to upper-troposphere at around 20°S. The PD-PI figures also show both the PD and PI tropopauses, and 245 

indicate insignificant changes in tropopause height over the historical era. 

Figure 4 shows the zonal mean distribution of local methane lifetime, which ranges from about 2.5 years in the 

tropical lower troposphere to >20 years in colder, drier high latitudes and in the vicinity of the tropopause. Short  

lifetimes also occur higher in the stratosphere, but do not contribute significantly to the whole atmosphere 

chemical lifetime due to the low air densities at high altitudes. The multi-model mean whole atmosphere PD 250 

chemical lifetime in histSST is 8.4 ± 0.3 yr, lower than the mean PI lifetime of 9.5 ± 0.5 yr (lifetimes for individual 

models are given in Table 3; the ranges are the standard deviations across the models). These values compare to 

a whole atmosphere methane lifetime for 2010 (mean ± 1 standard deviation) of 9.1 ± 0.9 yr (Prather et al., 2012), 

as used by the Intergovernmental Panel on Climate Change (IPCC; (Myhre et al., 2013). Lifetimes have fallen 

since the PI, mainly reflecting increases in OH. 255 

3.2 Historical sensitivity simulations 

The drivers of these changes in OH and methane lifetime were explored further using results from sensitivity 

experiments based on the histSST simulations. These kept anthropogenic emissions or mole fractions of particular 

species, or groups of species, at their PI or 1950 levels (Table 2). Figure 3 shows how zonal mean OH in the 

models responded to fixing NTCF emissions at PI levels and halocarbon mole fractions at 1950 levels. The panels 260 

in Figure 3 shows percentage changes in OH relative to the PD histSST base case. Figure 4 shows percentage 

changes in methane lifetime.  

We define the annual tropospheric OH burden anomaly in the base histSST simulations at time t (𝛥𝑂𝐻𝐵𝑎𝑠𝑒(𝑡)), 

as the percentage change in OH since PI (1850-1859): 

 265 

𝛥𝑂𝐻𝐵𝑎𝑠𝑒(𝑡) = 100% × (
𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇(𝑡)−𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇(𝑃𝐼)

𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇(𝑃𝐼)
)       (3a), 

 

or, for clarity, dropping the (t) and substituting 𝑂𝐻𝑃𝐼 for 𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇(𝑃𝐼): 

 

𝛥𝑂𝐻𝐵𝑎𝑠𝑒 = 100% × (
𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇−𝑂𝐻𝑃𝐼

𝑂𝐻𝑃𝐼
)        (3b). 270 
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We then use each sensitivity run to isolate the contributions to this overall OH anomaly from changes in CH4 mole 

fraction, NTCF emissions, halocarbon mole fraction, and O3 precursor emissions since 1850: 

 

𝛥𝑂𝐻𝐶𝐻4 = 100% × (
𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇−𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇_𝑝𝑖𝐶𝐻4

𝑂𝐻𝑃𝐼
)       (4), 275 

𝛥𝑂𝐻𝑁𝑇𝐶𝐹 = 100% × (
𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇−𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇__𝑝𝑖𝑁𝑇𝐶𝐹

𝑂𝐻𝑃𝐼
)       (5), 

𝛥𝑂𝐻𝐻𝐶 = 100% × (
𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇−𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇_1950𝐻𝐶

𝑂𝐻𝑃𝐼
)       (6), 

𝛥𝑂𝐻𝑂3 = 100% × (
𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇−𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇_𝑝𝑖𝑂3

𝑂𝐻𝑃𝐼
)       (7). 

 

 280 

 

Since the 𝛥𝑂𝐻𝑁𝑇𝐶𝐹 and  𝛥𝑂𝐻𝑂3 anomalies only differ in that the former includes the effects of aerosols, then 

assuming the impacts of aerosols and O3 precursors on OH do not interact with each other, we can also isolate the 

contribution from changes in aerosols to the overall OH anomaly: 

 285 

𝛥𝑂𝐻𝑎𝑒𝑟𝑜𝑠𝑜𝑙 = 𝛥𝑂𝐻𝑁𝑇𝐶𝐹 − 𝛥𝑂𝐻𝑂3         (8) 

 

In addition, we can calculate a ‘residual’ contribution, i.e. the component of the overall OH anomaly that is left 

after linearly adding all the other components: 

 290 

𝛥𝑂𝐻𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝛥𝑂𝐻𝐵𝑎𝑠𝑒 − 𝛥𝑂𝐻𝐶𝐻4 − 𝛥𝑂𝐻𝑁𝑇𝐶𝐹 − 𝛥𝑂𝐻𝐻𝐶      (9) 

 

This residual component represents the contribution of climate change to the OH anomaly, along with any 

contributions from non-linear interactions between components. Non-linearities may arise, for example, because 

the response of OH to changes in CH4 is likely to differ depending on whether NTCFs, such as NOx, are at PI or 295 

PD levels. Such interactions are not isolated by our methodology, and it is unclear whether the climate change 

signal or the effects of non-linearities dominate this residual term. 

Figure 5 shows time series of how the base OH anomaly (Equation 3) evolves, together with each of the 

components (Equations 4-9) that contribute to the base anomaly. Figure 6 compares the magnitudes of these 

various drivers of OH changes over two time periods: 1850-1980 and 1850-2010. Figure 7 shows the evolution 300 

of whole atmosphere methane lifetime for the base histSST runs and each sensitivity run. Figure 7 also separates 

the methane lifetime into its tropospheric and stratospheric components. 

Figures 5 and 6 shows that the evolution of OH has been mainly controlled by the balance between the growth of 

methane, which has acted to reduce OH by over 20%, and the changes of NTCF emissions (and in UKESM1-0-

LL, the residual term), which have tended to increase OH. Because these opposing drivers have similar 305 

magnitudes, small mismatches between them are key, and the other minor drivers can also be important 

contributors to the overall trend in OH.  

The impact of increases in NTCF emissions since 1850 up to PD was to generally increase tropospheric OH by 

10-50% in the zonal mean (Figure 3) and 13-22% across the whole troposphere (Figures 5 and 6); this mainly 
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reflects the dominant role of NOx increases, whose impact overwhelms the impacts of increasing CO (up to 310 

~1990) and NMVOC emissions, which will have tended to reduce OH. Since about 1990, global CO emissions 

have reduced (Figure 1), also contributing to the increase in OH. The overall impact of changed emissions of 

NTCFs has been to reduce the methane lifetime (Figures 4 and 7, Table 3). This is mainly driven by increases in 

NOx emissions. The structure seen in the zonal mean PD-PI change in OH (Figure 3, column 2) can be largely 

explained by the change in NTCF emissions (Figure 3, column 3), with the effects of methane mole fraction 315 

increases superimposed. Note that increasing methane also increases CO, and both these reduce OH. We are 

unable to isolate the effects of CO in our experiments.  

Emissions of halocarbons since 1950 have led to polar stratospheric ozone depletion, mainly in the SH. This has 

increased stratospheric OH levels, but also increased tropospheric OH, due to increased penetration of ultra-violet 

(UV) radiation, and consequently higher photolysis rates (Figure 3). The overall impact on tropospheric OH and 320 

methane lifetime is comparatively small (Figures 4-7, Table 3), but the impact on methane lifetime in the 

stratosphere has been dramatic, reducing it from ~170 yr to ~140 yr (CESM2-WACCM), from ~140 yr to ~80 yr 

(GFDL-ESM4) and from ~190 yr to 145 yr (UKESM1-0-LL) (Figure 7). These changes are mainly driven through 

changes in stratospheric Cl. These values can be compared to an assumed constant value for the lifetime of 

methane with respect to stratospheric chemical destruction of 120(±20%) yr in the IPCC Fifth Assessment Report 325 

-AR5 (Prather et al. 2012). 

The effects of increased emissions of aerosols and aerosol precursors can be diagnosed by differencing the piO3 

and piNTCF simulations (Equation 8). Aerosols have slightly reduced OH (Figures 5 and 6) and lengthened the 

methane lifetime (Figure 7), but the effect is small in magnitude compared to most other effects. 

For the two models able to diagnose the residual term, they both suggest a positive impact on OH, although by 330 

variable amounts (6-13%), with a larger residual term in UKESM1-0-LL. We suggest this term may reflect 

increases in humidity associated with climate change and an increase in the primary OH production flux (Equation 

R2). However, exactly what the residual terms represent remains uncertain. 

3.3 Contribution of OH drivers to PI-PD changes in methane 

Figure 7 shows values for the methane-OH feedback factor (from a modified version Equation 1, using values for 335 

individual years, rather than 1930-1960) calculated for every year in the histSST-piNTCF simulations. In the first 

few decades, the methane changes are small and the variability of the methane lifetime yields large fluctuations 

in f. Beyond about 1960, changes in halocarbon mole fractions mean that the values of f are unreliable. We 

therefore use the average value over the time period 1930-1960 as our best estimate of the feedback factor. This 

yields a value of 1.25 for CESM2-WACCM and 1.23 for GFDL-ESM4. Thornhill et al. (2020a) find values of f 340 

from the piClim simulations of 1.30 for GFDL-ESM4 and 1.32 for UKESM1-0-LL. The values derived using 

equation (1) are probably slightly smaller because the histSST-_piNTCF runs also include increases in 

temperature and humidity. These values are similar to the range of values found in previous studies: 1.23-1.35 

(Stevenson et al., 2013; six models); 1.19-1.28 (Voulgarakis et al., 2013; two models, year 2000 conditions); and 

1.33-1.45 (Prather et al., 2001; seven models).  Using the values of f for 1930-1960 (Figure 7) for CESM2-345 

WACCM and GFDL-ESM4, and the value of 1.32 for UKESM1-0-LL (Thornhill et al., 2020a) and the lifetimes 

presented in Table 3, we calculate equilibrium PD methane mole fractions for all sensitivity experiments (Table 

4). 
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Observed PI and PD methane levels are 808 ppb and 1794 ppb, respectively. Holding NTCFs at PI levels increases 

PD methane by 16-33%. This is more intuitively interpreted in terms of the impact of the increased emissions of 350 

NTCFs: they have tended to reduce PD methane by this amount. Similarly, the impact of halocarbon emissions 

has been to reduce PD methane by 7-15%. 

Taking the average of results from the GFDL-ESM4 and UKESM1-0-LL models (that have values for all 

categories), holding methane emissions at PI levels would have led to PD methane levels of 516 ppbv, 36% (292 

ppbv) lower than PI mole fractions. Hence the net impact of increasing methane emissions has been to increase 355 

methane mole fractions from 516 ppbv to 1794 ppbv, an increase of 1278 ppbv (𝛥[𝐶𝐻4]𝑒𝑞𝐶𝐻4
). This increase is 

30% larger than the simple observed PI to PD increase in methane (986 ppbv, 𝛥[𝐶𝐻4]𝑒𝑞𝑜𝑏𝑠
). The impact of NTCF 

emissions was to reduce PD methane by 480 ppbv (𝛥[𝐶𝐻4]𝑒𝑞𝑁𝑇𝐶𝐹
), whilst increases in halocarbon emissions 

reduced PD methane by 149 ppbv (𝛥[𝐶𝐻4]𝑒𝑞𝐻𝐶
). These diagnosed contributions do not linearly add up to give 

the observed total; there is a residual term, as also found when attributing the OH changes to drivers. Following a 360 

similar format to Equation 9, we can diagnose this residual term: 

 

𝛥[𝐶𝐻4]𝑒𝑞𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
= 𝛥[𝐶𝐻4]𝑒𝑞𝑜𝑏𝑠

− 𝛥[𝐶𝐻4]𝑒𝑞𝐶𝐻4
− 𝛥[𝐶𝐻4]𝑒𝑞𝑁𝑇𝐶𝐹

− 𝛥[𝐶𝐻4]𝑒𝑞𝐻𝐶
 

                               = 986 − 1278 + 480 + 149 = 337 𝑝𝑝𝑏𝑣      (10) 

 365 

We tentatively attributed the OH residual term to climate change impacts, as the residual OH increase could 

physically be linked to water vapour increases. However, the residual change in equilibrium methane is positive, 

whilst it would be expected to be negative in order to match the positive residual OH term. The other attributions 

for OH and equilibrium methane are more well-behaved and consistent. This suggests that non-linear interactions 

between drivers are important, and differ in strength between our attribution methodologies for OH and methane. 370 

This means that perfect quantitative attribution cannot be achieved, and attribution of the residual term to climate 

change effects is rather uncertain. Nevertheless, the magnitudes of these attribution terms are useful qualitative 

indicators of the relative importance of different drivers of changes in OH and methane lifetime. 

4. Discussion and conclusions 

Modelled OH trends presented in this study are from state-of-the-art Earth System Models driven by CMIP6 375 

historical forcings, including observed trends in CH4 and halocarbon mole fractions. The latter drive stratospheric 

ozone depletion in the models, which strongly influences tropospheric UV levels and hence photolysis rates. Apart 

from CH4, all other reactive species that control OH (e.g., CO, O3, NO2 and H2O) freely evolve in the simulations, 

in response to prescribed CMIP6 emissions and simulated climate. These model simulations of OH are very 

important for understanding past trends and projecting future trends in CH4. 380 

The base model simulations all show similar historical trends in global OH, with relative stability from 1850 up 

to 1980, followed by strong (9 %) increases up to the present-day (Figure 2). The earlier stability is in good 

agreement with previous studies (e.g., Naik et al., 2013). The increase from 1980 to 2005 is broadly consistent 

with several studies that use MCF and other species to reconstruct OH trends from observations; however, since 

2005 most of these reconstructions indicate a decrease in OH, whereas our models indicate a continued increase 385 

(Figure 2b). However, these reconstructions show a wide range of trends, and our modelled trends fall just about 
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within the uncertainty range estimated by Rigby et al. (2017). The magnitudes of the model’s recent increases are 

similar to results from Gaubert et al. (2017), who assimilated satellite-derived trends in CO since 2002 into an 

Earth System Model. Several OH inversions have used multiple observational data-sets (Miyazaki et al., 2015; 

McNorton et al., 2018), and as the time-series of observations, particularly satellite data, lengthens, uncertainties 390 

on real-world OH trends will hopefully reduce, providing stronger constraints for models. 

We attempted to quantify the component drivers of the changes in OH using a series of idealised model sensitivity 

experiments. These experiments exhibit relatively consistent OH responses across the models (Figures 5 and 6), 

and show that the evolution of methane and ozone precursor emissions have strongly influenced OH trends. 

Halocarbon and aerosol-related emissions have had relatively small impacts. We also diagnose a residual 395 

component that represents the impact of climate change and non-linear interactions between drivers. Other studies 

have indicated that climate variations and change influence OH (e.g., Naik et al., 2013; Murray et al., 2014; Turner 

et al., 2018). The modelled increase in OH since 1980 is because the influence of NTCF emissions, together with 

this residual term, outweighs the effects of increasing CH4 (Figure 6). These experiments did not separate the 

effects of different ozone precursors, but these have been explored in previous studies (Stevenson et al., 2013; 400 

Holmes et al., 2013), where increases in anthropogenic NOx emissions have been found to be the main NTCF 

driver of OH increases. Recent reductions in anthropogenic CO emissions (Figure 1) are clearly also important 

(Gaubert et al., 2017), but our experiments are unable to separate the relative impacts of these two species. 

The trends in OH are associated with trends in methane lifetime (Figure 7), and we have used these to estimate 

the influence of individual drivers on methane mole fraction, by calculating equilibrium methane levels from the 405 

changes in lifetime (Table 4). Drivers that increase OH lead to reductions in methane lifetime and equilibrium 

methane.  The residual component for OH is positive, and may mainly physically represent the rise of water 

vapour associated with climate warming. This finding is broadly consistent with results presented by Thornhill et 

al., 2020b) of the negative impacts on methane lifetime found in 4xCO2 experiments (see their Table 15). 

However, the residual component we diagnosed from changes in equilibrium methane is also positive, which 410 

suggests that non-linear interactions show different impacts in our two methodologies that diagnose residual 

effects, and that the residual term may not be a good indicator of climate change effects alone. These results 

indicate that methodologies to isolate drivers of OH and methane changes need careful interpretation, as non-

linearities (i.e. couplings between drivers) appear to be important.   

Although halocarbon emissions have had quite small effects on the whole atmosphere methane lifetime, they have 415 

had dramatic impacts on methane’s stratospheric chemistry, where its lifetime may have reduced by up to about 

40% between 1960 and 1990 (Figure 7). Previous studies have generally assumed a fixed stratospheric lifetime 

for methane (e.g., Prather et al, 2012). 

All these factors need to be included in holistic assessments of OH and methane change. The 

CMIP6/AerChemMIP model simulations contain many useful diagnostics that will allow us to better understand 420 

the drivers of atmospheric OH and methane trends. This study represents a very preliminary initial analysis of this 

rich multi-model, multi-experiment dataset. 
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Code and data availability 

This work uses simulations from multiple models participating in the AerChemMIP project, as part of the Coupled 425 

Model Intercomparison Project (Phase 6; https://www.wcrp-climate.org/wgcm-cmip); model-specific 

information can be found through references listed in Table 1. Model outputs are available on the Earth System 
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processed using netCDF Operator (NCO) and Climate Data Operator (CDO). The analysis was carried out using 

Bash and Python programming languages. 430 
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 700 

 701 

Figure 1. Time evolution (1850-2014) of global total emissions for: (a) NOx (Tg(NO2) yr-1); (b) CO (Tg(CO) yr-1); and (c) NMVOC (Tg(VOC) yr-1). Orange for biomass burning, beige 702 
for anthropogenic emissions (Hoesly et al., 2018). The coloured lines in the NOx and CO panels (red for CESM2-WACCM, blue for GFDL-ESM4, and green for UKESM1-0-LL) are 703 
the total emissions for each model, including natural sources. For historical biogenic VOC emissions, see Griffiths et al. (2020, Figure 1). 704 

  705 
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 706 

 707 

Figure 2. (a) Time evolution of global annual mean tropospheric OH (1850-2014), expressed as a percentage anomaly 708 
relative to the 1998-2007 mean (and ensemble spreads, where available) for GFDL-ESM4 (blue), UKESM1-0-LL 709 
(green), and CESM2-WACCM (red), and the multi-model mean (black). (b) Observation-based inversions of global 710 
annual mean tropospheric OH for 1980-2015 from Montzka et al. (2011), Rigby et al., 2017, Turner et al., 2017, and 711 
Nicely et al. (2018), including ±1 standard deviation uncertainties for the results from Rigby et al. (2017), with model 712 
results from panel (a) overlain.  713 
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 714 

Figure 3. First column: zonal mean (latitude-pressure (hPa)) cross sections for OH concentration (105 molecules cm-3) averaged over the period 2005-2014 (PD) for the histSST 715 
simulations. Rows show results for CESM2-WACCM, GFDL-ESM4 and UKESM1-0-LL. Solid lines indicate the tropopause (PD in black; other in green). Other panels show differences 716 
(%) between experiments. Second column: histSST PD minus PI (1850-1859 mean). Third column: histSST minus histSST-piNTCF for PD. Fourth column: histSST minus histSST-717 
1950HC for PD.  718 
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 719 

Figure 4 The same layout as Figure 3, but for CH4 lifetime (yr).  720 
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 721 

Figure 5. The histSST (Base, in black) tropospheric OH anomaly (% change relative to PI) for each year (see Equation 722 
3), for the three models (a) CESM2-WACCM; (b) GFDL-ESM4; and (c) UKESM1-0-LL. The coloured lines represent 723 
the contributions to this OH anomaly due to changes since 1850 in CH4 mole fraction, NTCF emissions, halocarbon 724 
mole fraction, O3 precursor emissions, and aerosols (see Equations 4-8; NB only NTCF and HC experiments from 725 
CESM2-WACCM). The residual curve (see Equation 9) is the extra contribution required after linearly adding the 726 
curves for CH4, NTCF and HC that is needed to reproduce the Base anomaly.727 
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 728 

Figure 6. Summary of drivers of OH changes (%), relative to 1850, for the three models and their multi-model mean over: (a) 1850-1980; and (b) 1850-2010. (NB we have used decadal 729 
means: 1850 refers to (1850-1859); 1980 is (1975-1984); and 2010 is (2005-2014). The shaded areas show the split of the NTCF signal (green) into ozone precursors (blue) and aerosols 730 
(brown), where models have performed both the histSST-piNTCF and histSST-piO3 experiments. The residual values (pale blue) are the differences between the total change (black, 731 
from the histSST simulations) and the sum of the changes from CH4 (red), NTCF, and halocarbons (purple). We interpret the residual terms as being due to climate change, in addition 732 
to any non-linear interactions between forcings. 733 
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 734 

Figure 7. Time evolution (1850-2014) of CH4 lifetime (years) for (a-c) CESM2-WACCM; (d-f) GFDL-ESM4; and (g-i) UKESM-0-LL, averaged over the whole atmosphere (a, d, g), the 735 
troposphere (b, e, h), and the stratosphere (c, f, i). Colours refer to different model experiments, as indicated in panel (f). NB for UKESM-0-LL, we used historical-piNTCF as histSST-736 
piNTCF was not available. 737 



27 

 

 738 

 739 

Figure 8. Calculated values for the methane-OH feedback factor (f) from the histSST-_piNTCF experiments for CESM2-WACCM and GFDL-ESM4. Mean and Standard Deviation 740 
values for 1930-1960 (shaded time period) are shown. 741 

742 
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Table 1: Basic details of the AerChemMIP models analysed in this study. For more details see the model references. 

Model Resolution Chemistry 

scheme 

Interactive 

emissions 

Interactive 

deposition 

Reference 

CESM2 

(WACCM6) 

0.9° lat 

1.25° long 

72 levels 

Detailed 

troposphere/ 

stratosphere 

(228 species) 

BVOC using 

MEGAN2.1 

Lightning 

NOx 

Yes Gettelman et 

al. (2019); 

Emmons et al. 

(2020) 

UKESM1 1.875° long  

1.25° lat 

85 levels 

Detailed 

stratosphere; 

8 VOCs; 

5 aerosols 

BVOC 

Lightning 

NOx 

Yes Sellar et al., 

2019; 

Archibald et 

al., 2020; 

Mulcahy et 

al., 2019 

GFDL C96 (cubed 

sphere); 

nominally 1° 

49 levels 

ATMCHEM4.1 

Interactive 

tropospheric/ 

stratospheric 

gas-phase/ 

aerosol 

chemistry. 

BVOC 

Lightning 

NOx 

No Horowitz et 

al., 2020; 

Dunne et al., 

2020; 

Krasting et al. 

(2018) 

  745 
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Table 2: Number of ensemble members analysed from CMIP6 experiments in this study. All were transient 1850-2014 

simulations, with evolving trace species emissions/GHG mole fractions/land-surface. Baseline ‘Historical’ runs had 

freely evolving oceans, whilst ‘histSST’ runs were atmosphere only with prescribed (observed) SSTs and sea-ice. 

Sensitivity runs are based on histSST. The ‘-piNTCF’ simulation held emissions of all NTCFs (aerosols and their 750 
precursors, and tropospheric ozone precursors) at PI levels. ‘-1950HC’ held halocarbon mole fractions at 1950 levels 

(essentially PI levels). ‘-piCH4’ held methane mole fractions at PI levels. ‘-piO3’ held anthropogenic tropospheric ozone 

precursor emissions at PI levels. 

 

 Baseline runs Sensitivity runs (based on histSST*) 

 historical histSST -piNTCF -1950HC -piCH4 -piO3 

CESM2-WACCM 3 1 1 1 NA NA 

UKESM1-0-LL 3 1 1* 1 1 1 

GFDL-ESM4 1 1 1 1 1 1 

 755 

*UKESM1-0-LL sensitivity run for piNTCF is based on the historical (not histSST) run.  
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Table 3: Whole atmosphere methane chemical (not including soil sink) lifetimes (years). PI refers to 1850-1859 mean; 

PD refers to 2005-2014 mean. Uncertainties are ±1 Standard Deviation, based on the range of annual values. 

 

 Historical HistSST piNTCF 1950HC piCH4 piO3 

 PI PD PI PD PD PD PD PD 

CESM2-

WACCM 

9.49 

±0.06 

8.19 

±0.06 

9.59 

±0.07 

8.40 

±0.07 

9.53 

±0.07 

9.46 

±0.07 

NA NA 

UKESM1-

0-LL 

8.95 

±0.07 

8.08 

±0.06 

8.96 

±0.07 

8.13 

±0.05 

9.40* 

±0.08 

8.57 

±0.08 

6.17 

±0.06 

9.57 

±0.06 

GFDL-

ESM4 

9.86 

±0.07 

8.60 

±0.07 

10.03 

±0.09 

8.63 

±0.05 

11.01 

±0.11 

9.35 

±0.07 

6.97 

±0.06 

11.31 

±0.09 

 760 

*UKESM1-0-LL methane lifetime for piNTCF is based on the historical (not histSST) run. 
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Table 4: Equilibrium PD global mean methane mole fractions (ppbv), inferred from PD methane lifetimes from the 

sensitivity experiments. Also shown are percentage changes compared to the observed PD value (1794 ppbv), or for the 765 
piCH4 case, the observed PI value (808 ppbv). 

 

  piNTCF 1950HC piCH4 piO3 

CESM2-WACCM 2083 

(+16%)  

2065 

(+15%)  

NA   NA 

UKESM1-0-LL 2168 

(+21%)  

1917 

(+7%)  

505 

(-38%) 

 2200 

(+23%) 

GFDL-ESM4 2379 

(+33%)  

1969 

(+10%)  

528 

(-35%)  

2454 

(+37%)  

 

 


