
Comments and responses on “Trends in global tropospheric hydroxyl radical and methane lifetime since 1 

1850 from AerChemMIP” by David Stevenson et al. 2 

 3 

We would like to thank the two anonymous referees for their useful and supportive comments. Their comments 4 

are repeated below with our responses in red. 5 

Anonymous Referee #1 6 

This paper analyses the OH trend and methane budget in the period 1850-2014. An important conclusion is that 7 

global OH was stable in 1850-1980, after which all three models show an increase of roughly 10%. The analysis 8 

convincingly shows that emission changes in Near-Term Climate Forcers (NOx & CO) are responsible for this 9 

behaviour. 10 

The manuscript is relatively well prepared, but some improvements are needed, e.g. to the figures, referencing, 11 

and discussion. 12 

Throughout the manuscript authors use “concentration”, while I think in practical calculations, tables, and plots 13 

mole fractions are shown. Better to replace concentration by mole fraction. 14 

 15 

We have replaced concentration with mole fraction in all instances except for references to OH, which are 16 

concentrations (molecules cm-3). 17 

 18 

Concerning the sensitivity simulations: they are sometimes difficult to understand, but I like the calculated impact 19 

on the methane mixing ratios. 20 

All in all, the paper is concise and to the point, and clearly demonstrates that from a modelling point of view, OH 21 

should be increasing. I miss, however, a thorough discussion on the role of climate change on OH (temperature, 22 

natural emissions, lighting NOx.) This is certainly something that needs some more attention, also in light of 23 

earlier studies. 24 

 25 

We have now added some more information about climate change. We don’t have experiments that specifically 26 

isolate climate change impacts on OH. However, the difference between the histSST simulations and the sum of 27 

(histSST-piCH4, histSST-piNTCF and histSST-1950HC) leaves a residual signal that represents the effects of 28 

climate change, together with any non-linear interactions between these drivers (see the new Figure 5 below). 29 

Assuming these non-linear interactions are negligible, we find that climate change has increased OH, with a 30 

similar magnitude to the emissions drivers, and mainly attribute this to increases in water vapour, although other 31 

climate change effects may also be important. However, there is evidence that the non-linear interactions are also 32 

important, so ascribing the residual term purely to climate change is not possible. 33 



 34 

Figure 5. The histSST (Base, in black) tropospheric OH anomaly (% change relative to PI) for each year (see Equation 35 
3), for the three models (a) CESM2-WACCM; (b) GFDL-ESM4; and (c) UKESM1-0-LL. The coloured lines represent 36 
the contributions to this OH anomaly due to changes since 1850 in CH4 mole fraction, NTCF emissions, halocarbon 37 
mole fraction, O3 precursor emissions, and aerosols (see Equations 4-8; NB only NTCF and HC experiments from 38 
CESM2-WACCM). The residual curve (see Equation 9) is the extra contribution required after linearly adding the 39 
curves for CH4, NTCF and HC that is needed to reproduce the Base anomaly.40 



What also clearly misses is some validation of the model results. I understand that the individual models are (or 41 

will be) published, but to gain some confidence in the results, it would be nice to see how e.g. trends in CO are 42 

reproduced. 43 

 44 

We have referred to some of the other AerChemMIP studies and other relevant papers. 45 

 46 

Minor comments: 47 

R4: wrong. H2O instead of HO2. 48 

 49 

Thank you for pointing out this error. We fixed it. 50 

 51 

Line 62: a sink –> a dominant sink 52 

 53 

Fixed. 54 

 55 

Line 67: Wrongly suggests that ozone reacts directly with H2O 56 

 57 

Adjusted text to clarify it is O(1D) that reacts with H2O. 58 

 59 

Line 94: GFDL-ESM4 is later called GFDL-AM4, please be consistent. 60 

 61 

We apologise for inconsistencies in naming in the submitted paper. We have revised to consistently use the model 62 

names: CESM2-WACCM; GFDL-ESM4; and UKESM1-0-LL, based on the Earth System Grid Federation 63 

(ESGF) file names. 64 

 65 

Line 187: Referencing: I miss references to some recent satellite assimilation work which is relevant, e.g. 66 

https://www.atmos-chem-phys.net/15/8315/2015/acp-15-8315-2015.pdf 67 

 68 

Thank-you for this and the other Miyazaki et al. papers. We have included discussion of these papers (see below). 69 

 70 

Figure 1: I It would be nice to show also the modelled natural NMVOC emissions and how they changed due to 71 

climate change and variability in the different models. 72 

 73 

Griffiths et al. (2020) Figure 1 has BVOC emissions. We refer readers to this study, also in the AerChemMIP 74 

Special Issue. 75 

 76 

Figure 2: inset: why is the GFDL-ESM4 simulation not included? 77 

 78 

This was a mistake. It is now included. 79 

 80 

https://www.atmos-chem-phys.net/15/8315/2015/acp-15-8315-2015.pdf


Figure 3: The use of the vertical coordinate “model level” is not acceptable. 81 

 82 

We have converted Figures 3 and 4 to now use pressure as the vertical co-ordinate. 83 

 84 

Line 214: It would be nice to compare and discuss these new estimates to existing estimates. Methane is forced 85 

to observations, so the lifetime may be biased due to model biases. 86 

 87 

We now compare CH4 lifetime estimates to existing estimates – values from our models fall within the 88 

IPCC(2013) range: 89 

“The multi-model mean whole atmosphere PD chemical lifetime in histSST is 8.4 ± 0.3 yr, lower than the mean 90 

PI lifetime of 9.5 ± 0.5 yr (lifetimes for individual models are given in Table 3; the ranges are the standard 91 

deviations across the models). These values compare to a whole atmosphere methane lifetime for 2010 (mean ± 92 

1 standard deviation) of 9.1 ± 0.9 yr (Prather et al., 2012), as used by IPCC (Myhre et al., 2013).” 93 

We do not believe that the AerChemMIP experimental set-up, where methane is forced to evolve following 94 

observations, introduces any significant model biases. 95 

 96 

Line 251: I do not see why the values of f are unreliable due to changes in halocarbon mole fractions. 97 

 98 

Our method for calculating the methane-OH feedback factor, f, differs from the ‘standard’ method, which would 99 

normally use dedicated sensitivity experiments, with a simple +20% perturbation to prescribed methane mole 100 

fractions (e.g., Prather et al., 1996, 2001). We use the histSST_piNTCF simulations, which hold NTCFs at pre-101 

industrial levels, but allow methane to increase. These simulations are not ideal, as they also have climate (i.e., 102 

temperature, water vapour, clouds, etc.) changing. From the 1950s onwards, these simulations also allow 103 

halocarbons to increase. Elsewhere in the paper, we show that increasing halocarbon levels, and in particular the 104 

associated stratospheric ozone depletion, has an impact on OH. For the diagnosis of f we need runs that only 105 

perturb methane. Hence we think that when halocarbons also change, the values of f should be considered 106 

unreliable. Figure 7 suggests that the effect on f is probably quite small; nevertheless we think it is sensible to just 107 

use values of f for the time period 1930-1960 to exclude the later time period when halocarbons (and climate) 108 

show larger changes.   109 

 110 

Line 300: Read papers of Miyazaki et al. 111 

 112 

In the revised version we now refer to: 113 

 114 

Miyazaki, K., Eskes, H. J., and Sudo, K.: A tropospheric chemistry reanalysis for the years 2005–2012 based on 115 

an assimilation of OMI, MLS, TES, and MOPITT satellite data, Atmos. Chem. Phys., 15, 8315–8348, 116 

https://doi.org/10.5194/acp-15-8315-2015, 2015 117 

Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., and Kanaya, Y.: Decadal changes in global 118 

surface NOx emissions from multi-constituent satellite data assimilation, Atmos. Chem. Phys., 17, 807–837, 119 

https://doi.org/10.5194/acp-17-807-2017, 2017. 120 



Miyazaki, K. and Bowman, K.: Evaluation of ACCMIP ozone simulations and ozonesonde sampling biases using 121 

a satellite-based multi-constituent chemical reanalysis, Atmos. Chem. Phys., 17, 8285–8312, 122 

https://doi.org/10.5194/acp-17-8285-2017, 2017. 123 

 124 

Miyazaki et al. (2015, 2017) and Miyazaki and Bowman (2017) showed that assimilation of O3, CO and NO2 125 

satellite data into a 3-D Chemistry-Transport Model (CTM) improved the simulated NH/SH ratio of OH from 126 

1.26 to 1.18 (cf. an observed ratio of 0.97 ± 0.12, Patra et al., 2014). These studies clearly show that global OH is 127 

sensitive to assimilation of O3, CO and NO2 data, due to the strong coupling between the atmospheric chemistry 128 

of these species. 129 

Anonymous Referee #2 130 

1 Overview: 131 

Review of “Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP” 132 

by Stevenson et al. 133 

I apologize for the delay in my review. Stevenson et al. present an analysis of changes in OH abundance and 134 

methane lifetime from 1850 to present using simulations from a model intercomparison (CMIP6/AerChemMIP). 135 

Specifically, they use output from 3 models: GFDL-ESM4, CESM2-WACCM, and UKESM1. The three models 136 

simulate stable OH concentrations prior to 1980 and an increase post 1980. The work then uses a set of sensitivity 137 

simulations to diagnose the processes that control the time evolution of OH. Overall, I think the work is both 138 

useful and interesting. My main comments relate to the presentation of the interpretation. Specifically, the 139 

discussion regarding conflicts with observational MCF constraints and the brevity of the final discussion (there’s 140 

only half a page of discussion after laying a solid groundwork in the methods). I feel like this could be expanded 141 

to make the work more useful to others. I would suggest minor revisions for the work. 142 

2 Comments: 143 

2.1 Discussion of MCF constraints 144 

The authors seem to be arguing that these model-derived forward simulations of OH are more reliable than 145 

reconstructions.  146 

 147 

It was not our intention to present the results this way, and we don’t think the model results are more reliable than 148 

the reconstructions. We attempted to present the model results and give the OH reconstructions as context, in 149 

order to facilitate comparison. We now include uncertainties in the reconstructions from Rigby et al. (2017), which 150 

help clarify this comparison. 151 

 152 

I’d be wary of framing it this way as this paper has ZERO observational constraints.  153 

 154 



This is not quite true – global mean surface methane concentrations are prescribed to evolve following observed 155 

levels. Hence the calculated OH values in our paper are consistent with the evolution of observed global mean 156 

methane. 157 

  158 

On their face, the results differ from observationally constrained OH estimates and this is the interpretation from 159 

the authors (Line 3 in the abstract); however, I’m not convinced they really differ. If the authors were to include 160 

the uncertainty estimates from the Rigby et al. (2017) paper, for example, they would likely find that it bounds 161 

their results (the uncertainties are included in the supplemental data from the Rigby paper). So I think some of the 162 

“disagreement” they see is within the uncertainties.  163 

 164 

We broadly agree with this (see details below). 165 

 166 

Additionally, the OH changes here do seem to agree quite well with the results from Turner et al. (2017) up until 167 

2005. One could argue there is a divergence post-2005, but the authors don’t really seem to discuss this at all. 168 

The authors seem to argue that the entire post-1980 rise differs from the MCF-derived estimates. This is curious 169 

to me. 170 

I feel that line 3 of the abstract (“The model-derived OH trend since 1980 differs from trends found in several 171 

studies that infer OH from inversions of methyl chloroform measurements; however, these inversions are poorly 172 

constrained and contain large uncertainties that do not rule out the possibility of recent positive OH trends.”) and 173 

some of the main text discussion of the MCF reconstructions needs to be rephrased. 174 

 175 

See below – we now have included the uncertainty estimates from Rigby et al. (2017) into a revised Figure 2 and 176 

will adjust the text accordingly. We agree with the reviewer that the AerChemMIP modelled OH trends are (just 177 

about) within the uncertainty range derived by Rigby et al. (2017). 178 

 179 

The authors seem to have missed two important papers from Joe McNorton as well: 180 

McNorton et al. (2016; https://doi.org/10.5194/acp-16-7943-2016) and McNorton et al. (2018; 181 

https://doi.org/10.5194/acp-18-18149-2018). 182 

There are two other recent papers that should also be referenced and briefly discussed: 183 

He et al. (2020; https://doi.org/10.5194/acp-20-805-2020) and Nguyen et al. (2020; 184 

https://doi.org/10.1029/2019GL085706). He et al. (2020) also used the GFDL model to simulate methane from 185 

1980 to present and find a similar time evolution of OH. 186 

Nguyen et al. (2020) look at the impact of chemical cycling on methane and OH. 187 

 188 

These papers are all very relevant and we have incorporated discussion of them into the revised text. McNorton 189 

et al. (2016) performed inverse modelling using a 3-D Chemistry-Transport Model (CTM) constrained by MCF 190 

data, and found that OH increases contributed significantly to the slowdown in the CH4 growth rate between 1999 191 

and 2006, and that the post-2007 increases in CH4 growth rate were poorly simulated if OH variations were 192 

ignored. McNorton et al. (2018) extended this work with further constraints from GOSAT CH4 and δ13CH4 and 193 

found that the post-2007 CH4 growth rate surge was most likely due to a combination of a decrease (-1.8 ± 0.4 %) 194 



in global OH and increases in CH4 emissions, although an alternative inversion that assumed fixed OH indicated 195 

slightly larger increases in CH4 emissions. He et al. (2020) used the GFDL-AM4 model, which is the atmospheric 196 

component of the GFDL-ESM4 used in this study, and found an upward trend in global OH since 1980 similar in 197 

magnitude to our results. Like Gaubert et al. (2017), Nguyen et al. (2020) found that decreasing global CO 198 

concentrations since the 2000s have important influences on CH4 flux inversion results, because of the strong 199 

chemical coupling between CO, CH4 and OH. 200 

Collectively, all these earlier studies that have attempted to interpret the observed trends in methane and related 201 

species find that OH is sensitive to CO, NO2, O3, as well as CH4. These studies have spanned box models to 202 

sophisticated 3-D CTMs, and all appear to be under-constrained in deriving trends in OH. To date, studies have 203 

used subsets of the available observational data (e.g., one or more of MCF, CH4, δ13CH4, CO, 14CO, NO2, and 204 

O3), but not yet all available relevant data. The OH trends presented in this study are from state-of-the-art Earth 205 

System Models driven by up-to-date emissions estimates from CMIP6, and are consistent with observed trends in 206 

CH4, however other species (e.g., CO, O3 and NO2) are allowed to freely evolve. It is unclear if the OH trends 207 

simulated by these CMIP6 models are realistic, however, it is clear that the way these models simulate OH is very 208 

important for projecting future trends (and understanding past trends) in CH4. 209 

 210 

2.2 Processes controlling the OH changes 211 

It would be nice if the authors had one additional schematic type figure that summarizes their findings. There are 212 

quite a few acronyms and competing effects that make it confusing at times. Naik et al. (2013) paper had some 213 

nice bar charts showing the relative contribution of different factors to the PI-PD OH changes. This really helped 214 

follow the argument and understand what the different scenarios are doing. It seems like this would be particularly 215 

helpful to the casual reader. 216 

As it stands, Figures 5 and 6 are the ones that diagnose the processes controlling the long-term OH changes in the 217 

model. But I can imagine many readers having a difficult time figuring out what they are supposed to take away 218 

from those figures. As it stands, they are an acronym soup. 219 

Personally, I feel that the manuscript would greatly benefit from a final synthesis figure that summarizes the 220 

changes described in the abstract and a few additional paragraphs in the discussion section describing this. 221 

 222 

  223 



We have constructed a new figure (Figure 6) that summarizes the drivers of OH changes – this also includes a 224 

residual term, reflects a combination of climate change effects and non-linear interactions between drivers: 225 

 226 

 227 

Figure 6. Summary of drivers of OH changes (%), relative to 1850, for the three models and their multi-model mean 228 
over: (a) 1850-1980; and (b) 1850-2010. (NB we have used decadal means: 1850 refers to (1850-1859); 1980 is (1975-229 
1984); and 2010 is (2005-2014). The shaded areas show the split of the NTCF signal (green) into ozone precursors (blue) 230 
and aerosols (brown), where models have performed both the histSST-piNTCF and histSST-piO3 experiments. The 231 
residual values (pale blue) are the differences between the total change (black, from the histSST simulations) and the 232 
sum of the changes from CH4 (red), NTCF, and halocarbons (purple). We interpret the residual terms as being due to 233 
climate change, in addition to any non-linear interactions between forcings. 234 

 235 

3 Specific comments: 236 

Lines 180–185 (Inserted the relevant lines from the discussion paper here) 237 

“Naus et al. (2019) further investigated the inversion methods used by Rigby et al. (2017) and Turner et al. (2017), 238 

confirming that the derivation of OH from MCF and CH4 is a strongly under-constrained problem, and found that 239 

estimated OH trends with a range of different magnitudes and signs are equally valid solutions from the available 240 

data.” 241 

 and 280–283 242 

“Naus et al. (2019) found that the uncertainties inherent in inversion of MCF and other proxy measures of OH are 243 

sufficiently large that OH trends derived from them are less constrained than previously thought, and that positive 244 

recent OH trends are compatible with the MCF measurements.” 245 

 246 



: I’m confused here, I thought the Rigby et al. (2017) and Turner et al. (2017) paper showed that the problem was 247 

under-constrained. If I recall, the Turner paper showed they could fit the data without changing OH and that there 248 

were a number of valid solutions. It’s not clear what the Naus et al. (2019) paper added? 249 

 250 

The Naus et al. (2019) study nicely illustrates the uncertainties discussed and presented in Rigby et al. (2017). We 251 

retain discussion of Naus et al. (2019) in the revised paper, whilst acknowledging that Rigby et al. (2017) 252 

quantified uncertainties earlier. 253 

 254 

Lines 198–200  255 

“The published inferred trends from different inversion methods show a range of different trends, but there is little 256 

resemblance to the upwards trends simulated by the models over this time period.” 257 

and 277–280 258 

“The strong recent increase is at odds with several studies that use MCF and other proxies to reconstruct OH 259 

trends (e.g., Figure 2 inset); however, these show a wide range of trends.” 260 

 261 

This is the discussion that I would disagree with. The model results don’t seem that different from the model 262 

results (especially if you include error bars from Rigby). You might be able to argue differences post-2005, but 263 

1980-2005 seem be in pretty good agreement. The He et al. (2020) paper also look at this. 264 

 265 

We have revised this discussion, based on a new version of Figure 2 (below), incorporating uncertainties from 266 

Rigby et al (2017). 267 

 268 

The new Figure 2 shows that the AerChemMIP modelled trends are (just about) within the uncertainties of the 269 

observation-based estimates of OH. So as the reviewer notes, they are consistent. The model trends do however 270 

go from being at the lower end of the uncertainty range in 1980 to the upper edge of the range in 2014. We have 271 

adjusted the text and discussion accordingly.  272 

 273 



 274 

Figure 2. (a) Time evolution of global annual mean tropospheric OH (1850-2014), expressed as a percentage anomaly 275 
relative to the 1998-2007 mean (and ensemble spreads, where available) for GFDL-ESM4 (blue), UKESM1-0-LL 276 
(green), and CESM2-WACCM (red), and the multi-model mean (black). (b) Observation-based inversions of global 277 
annual mean tropospheric OH for 1980-2015 from Montzka et al. (2011), Rigby et al., 2017, Turner et al., 2017, and 278 
Nicely et al. (2018), including ±1 standard deviation uncertainties for the results from Rigby et al. (2017), with model 279 
results from panel (a) overlain.280 
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Below is a copy of the revised text, highlighting all changes compared to the originally submitted version. 
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Correspondence to: David.S.Stevenson (David.S.Stevenson@ed.ac.uk) 

Abstract. We analyse historical (1850-2014) atmospheric hydroxyl (OH) and methane lifetime data from 305 

CMIP6/AerChemMIP simulations. GlobalTropospheric OH changed little from 1850 up to around 1980, then 

increased by around 10%,9% up to 2014, with an associated reduction in methane lifetime. The model-derived 

OH trend since 1980 differs from trends found infrom 1980-2005 are broadly consistent with trends estimated by 

several studies that infer OH from inversions of methyl chloroform and associated measurements; most inversion 

studies indicate decreases in OH since 2005, however, these inversions are poorly constrained and contain large 310 

uncertainties that do not rule out the possibility of recent positive OH trends. The recent increases in OH that we 

find are consistent with one previous study that assimilated global satellite-derived carbon monoxide (CO) over 

the period 2002-2013model results fall within observational uncertainty ranges. The upward trend in modelled 

OH since 1980 was mainly driven by changes in anthropogenic Near-Term Climate Forcer emissions (increases 

in anthropogenic nitrogen oxides and decreases in CO). Increases in halocarbon emissions since 1950 have made 315 

a small contribution to the increase in OH, whilst increases in aerosol-related emissions have slightly reduced OH. 

Halocarbon emissions have dramatically reduced the stratospheric methane lifetime, by about 15-40%, which has 

been assumed to not change in%; most previous studies. We find that whilst assumed a fixed stratospheric lifetime. 

Whilst the main driver of atmospheric methane increases since 1850 is emissions of methane itself, increased 

ozone precursor emissions have significantly modulated (in general reduced) methane trends. Halocarbon and 320 

aerosol emissions are found to have relatively small contributions to methane trends. All these factors, together 

with changes and variations of climate and climate-driven natural emissions, need to be includedThese 

experiments do not isolate the effects of climate change on OH and methane evolution, however we calculate 

residual terms that are due to the combined effects of climate change and non-linear interactions between drivers. 

These residual terms indicate that non-linear interactions are important and differ between the two methodologies 325 



 

13 

 

we use for quantifying OH and methane drivers. All these factors need to be considered in order to fully explain 

OH and methane trends since 1850; these factors will also be important for future trends. 

1. Introduction 

The hydroxyl radical (OH) is a highly reactive, and consequently very short-lived, component of the Earth’s 

atmosphere that lies at the heart of atmospheric chemistry. It is often referred to as the cleansing agent of the 330 

atmosphere, as it is the main oxidant of many important trace gases, including methane (CH4), carbon monoxide 

(CO), and non-methane volatile organic compounds (NMVOCs). Hydroxyl controls the removal rates of these 

species, and hence their atmospheric residence times (e.g., Holmes et al., 2013; Turner et al., 2019). Because of 

this key role in determining the trace gas composition of the atmosphere, it is important to understand what 

controls OH’s global distribution, its temporal evolution, and drivers of changes (e.g., Lawrence et al., 2001; 335 

Murray et al., 2014; Nicely et al., 2019). 

The primary source of OH is from the reaction of excited oxygen atoms (O(1D)) with water vapour; the excited 

oxygen originates from the photolysis of ozone (O3) by ultra-violet (UV; wavelength < 330 nm) radiation: 

 

O3 + hν → O2 + O(1D)          (R1) 340 

O(1D) + H2O → 2OH          (R2) 

 

There is rapid cycling between OH and the hydroperoxyl radical (HO2).) and other peroxy radicals (RO2, e.g., 

CH3O2). For example, oxidation of CO and CH4 (and other NMVOCs) consumes OH and generates HO2 and RO2: 

 345 

CO + OH (+O2) → CO2 + HO2         (R3) 

CH4 + OH (++ O2) + M → CH3O2 + HO2 H2O + M      

  (R4) 

 

Nitrogen oxides (NO and NO2, collectively NOx) tend to push the OH/HO2 ratio in the other direction, through 350 

the reaction: 

 

NO + HO2 → NO2 + OH          (R5) 

 

However, in strongly polluted air, NO2 becomes a dominant sink for OH, through formation of nitric acid (HNO3). 355 

Comprehensive descriptions of hydroxyl radical chemistry are given by, e.g., Derwent (1996), Stone et al. (2012) 

and Lelieveld et al. (2016). 

Levels of OH are thus influenced by ambient levels of these other species – in particular, higher concentrations 

ofmore CH4, CO, and NMVOCs will reduce OH, whilst higher concentrations ofmore NOx and H2O will increase 

OH through ozone chemical production and the subsequent reaction of O(1D) with H2O (R2) to produce OH, 360 

although the relative influence of different species. Water vapour is incompletely understood (e.g., Wilda key link 

between physical climate and OH, but there are many others (Isaksen et al., 20192009). For example, many 

emissions (including biogenic and anthropogenic VOCs, and lightning NOx), and chemical reactions (e.g., R4) 
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depend on temperature and other climate variables. Photolysis rates affect OH (e.g., R1) – hence changes in clouds 

and stratospheric ozone also influence OH.  365 

The global distribution and budget of OH has been estimated by models (e.g., Spivakovsky et al., 1990; Lelieveld 

et al, 2016). As part of the Fifth Coupled Model Intercomparison Project (CMIP5), the Atmospheric Chemistry 

and Climate Model Intercomparison Project (ACCMIP) analysed past and future trends in simulated OH (Naik et 

al., 2013; Voulgarakis et al. 2013) and attributed past changes in methane to changes in anthropogenic emissions 

of NOx, CH4, CO and NMVOCs (Stevenson et al., 2013). However, the relative influences of different processes 370 

in driving changes in global OH remains incompletely understood (e.g., Wild et al., 2019).  

Evaluation of model-simulated OH requires knowledge of real world OH. In particular, the global distribution of 

OH is needed to investigate quantities such as methane lifetime. Direct measurement of OH is difficult (Stone et 

al., 2012). Trends), and distributionsestimates of global OH have been derived fromcan only be inferred indirectly, 

using measurements of species such as methyl chloroform (Krol and Lelieveld, 2003; Prinn et al., 2005; Montzka 375 

et al., 2011; Patra et al., 2014; Rigby et al., 2017), CO (Gaubert et al., 2017) and cosmogenic 14CO (Krol et al., 

2008). However, observationally derived global OH levels are uncertain and often show poor agreement with as 

inputs to inverse models. Discrepancies between, or through assimilation of measurements andof species that 

constrain OH, such as CH4, CO and NO2, into global atmospheric chemistry models are not well understood, 

although new analyses of . These methods allow trends in global OH over the last few decades to be estimated, 380 

with uncertainties (Naus et al., 2019) and new techniques, including Machine Learning (Nicely et al., 2019), are 

now being applied to the problem.see Section 2.2).  

This study presents results from multiple transient 1850-2014 simulations performed for CMIP6 (Eyring et al., 

2016) and the associated Aerosol and Chemistry Model Intercomparison Project (AerChemMIP; Collins et al., 

2017), and is organised as follows. Section 2 describes how CMIP6 models simulated OH, and methods used in 385 

past studies for inferring OH trends from measurements. In Section 3 we present pre-industrial (PI; here taken as 

the 1850s) and present-day (PD) zonal mean fields of modelled OH and related species, together with historical 

time-series of global tropospheric OH, and corresponding CH4 loss rates and lifetimes, including from sensitivity 

experiments that isolate the effects of specific emissionsdrivers. Section 4 discusses the results, comparing trends 

in OH from measurements and models and estimates the roles of specific drivers in the historical evolution of OH. 390 

We draw, and draws conclusions in Section 5. . 

2. Methods 

2.1 AerChemMIP CMIP6 experiments and models 

We used coupled historical transient (1850-2014) model simulations from CMIP6 (Eyring et al., 2016) and various 

atmosphere-only historical model simulations from the associated AerChemMIP (Collins et al., 2017). Results 395 

from three global state-of-the-art Earth System Models that include detailed tropospheric and stratospheric 

chemistry were analysed: GFDL-ESM4, CESM2-WACCM, and UKESM1-0-LL (Table 1). 

Two base historical transient experiments have been analysed: “historical” and “histSST” (Table 2). The 

“historical” runs included a fully coupled ocean, and multiple ensemble members. The “histSST” simulations 

were single member atmosphere-only runs, with monthly mean time-evolving sea-surface temperatures (SSTs) 400 

and sea-ice prescribed from one ensemble member of the historical simulations. Identical historical anthropogenic 
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forcings were applied in all base runs by using prescribed long-lived greenhouse gas and halocarbon 

concentrationsmole fractions (Meinshausen et al., 2017) and anthropogenic and biomass burning emissions of 

near-term climate forcers (NTCF; i.e. aerosols and aerosol precursors, and ozone precursors) (van Marle et al., 

2017; Hoesly et al., 2018). Emissions of NOx, CO and NMVOC from 1850-2014 are shown in Figure 1. Natural 405 

emissions of these species were either prescribed (e.g., soil NOx emissions, oceanic CO emissions) or internally 

calculated (e.g., biogenic isoprene, lightning NOx) by embedded process-based climate-dependent schemes that 

differ between models (e.g., ArchibaldGriffiths et al., 2019).2020; Turnock et al., 2020). Methane 

concentrationsmole fractions were prescribed at the surface based on observations and ice core data (Meinshausen 

et al., 2017); away from the surface, methane was simulated by the model. However, by prescribing surface 410 

concentrationsmole fractions, methane throughout the model domain was effectively prescribed (Figure S1).. 

We also analysed several variants of the histSST base case, with either methane concentrationsmole fractions or 

emissions of NTCFs fixed at pre-industrial levels, or halocarbon concentrationsmole fractions fixed at 1950 levels. 

These variants allow us to estimate the roles of different drivers onin changing OH (Table 2). 

For some model variables we separated fields at the tropopause (e.g., to provide a methane lifetime with respect 415 

to loss processes in the troposphere and stratosphere as separate values).. We used World Meteorological 

Organisation (WMO) defined tropopause pressures (the AerChemMIP variable ptp) from the models to diagnose 

this masking. The exact definition used is not critical, as most oxidation occurs well away from the tropopause in 

the tropical lower atmosphere (cf. tropospheric ozone, where the tropopause definition is much more important; 

Griffiths et al., submitted2020). 420 

Models diagnosed methane loss rates due to chemical destruction in each grid-box – these are dominated by 

reaction with OH (R4), but also include other reactions, such as the reaction of methane with Cl in the stratosphere. 

We have used these loss rates to calculate grid-box methane lifetimes. Whole atmosphere chemical lifetimes were 

calculated by dividing the total methane burden by the total loss flux over the whole model domain (, or just the 

troposphere or stratosphere, for tropospheric and stratospheric lifetimes).  . 425 

We used the histSST-piNTCF simulations to diagnose the methane-OH feedback factor (Prather, 1996). These 

simulations held NTCF emissions at PI levels, but methane concentrationsmole fractions evolved following its 

historical trajectory; from 1950 onwards, halocarbon concentrationsmole fractions also increased. The methane-

OH feedback is normally diagnosed from dedicated experiments that perturb only the methane concentration,mole 

fraction (Holmes, 2018), but such experiments are only available for PI conditions within AerChemMIP (e.g., 430 

Thornhill et al., submitted2020a). The methane-OH feedback factor, f, was calculated as follows: 

 

f = 1/(1-(ln(τ1930-1960/τ1850)/ln([CH4]1930-1960/[CH4]1850)))      (1) 

 

𝑓 = (1 − (
ln(

𝜏1930−1960
𝜏1850

)

ln(
[𝐶𝐻4]1930−1960

[𝐶𝐻4]1850
)
))

−1

         (1), 435 

 

where τ is the total methane lifetime (additionally including a soil sink; CH4 is taken to have a lifetime with respect 

to soil uptake of 150160 yr (Prather, based on results for the 2000s from Spahni et al., 2011, Ito et al., 2012, 

Kirschke et al., 2013, and Tian et al., 2015, as summarised in Tian et al., 2016; NB here we neglect the tropospheric 

Cl sink for methane (Allan et al., 2007; Hossaini et al., 2016; Sherwen et al., 2016; Wang et al., 2019; Gromov et 440 



 

16 

 

al., 2018; Strode et al., 2020)), [CH4] is the global mean methane concentrationmole fraction; both for a particular 

year(s (or range of years) of the histSST-piNTCF simulation. The reference year is 1850, the first year of the 

simulation. We took average values between 1930 and 1960 to give the most reliable estimate of f, as this is after 

a sufficiently large methane perturbation has built up, but before halocarbons interfere with the results in these 

simulations (see Section 3.3). 445 

We used each model’s feedback factor to calculate equilibrium PD methane concentrationsmole fractions 

([CH4]eq) for each sensitivity run, using the diagnosed total methane lifetimes from these experiments. The 

equilibrium methane concentrationmole fraction is the methane concentrationmole fraction that would have been 

reached if methane concentrationsmole fractions had not been prescribed in these runs, but rather that methane 

emissions had been applied, allowing methane concentrations to mole fractions to evolve freely (e.g., Stevenson 450 

et al., 2013): 

evolve freely (e.g.,  

[CH4]eq = [CH4]ref (τPD/τref)f Fiore et al., 2009; Stevenson et al., 2013): 

 

[𝐶𝐻4]𝑒𝑞 = [𝐶𝐻4]𝑟𝑒𝑓 (
𝜏𝑃𝐷

𝜏𝑟𝑒𝑓
)

𝑓

        (2) 455 

 

where [CH4]ref is the prescribed methane concentrationmole fraction in the run, and τref is the total methane lifetime 

in the histSST base experiment, either for PD, or, in the case of histSST-piCH4, for PI. We illustrate this with two 

examples: (i) in the histSST_piNTCF case, the equilibrium value is the PD methane concentrationmole fraction 

that would have been reached if all NTCF emissions been held at PI levels, whilst CH4 emissions had followed 460 

their historical evolution; and (ii) in the histSST_piCH4 case, the equilibrium value is the PD methane 

concentrationmole fraction that would have been reached is if CH4 emissions had been held at PI levels, but all 

other emissions followed their historical evolution. This allows us to clarify modelled influences on CH4 and OH 

from specific emissions. 

2.2 Inferred OH from measurements 465 

Tropospheric OH has a chemical lifetime of less than a second or so, reflecting its high reactivity, making direct 

measurement difficult and impractical for constraining global OH distributions (e.g., Stone et al., 2012). Instead, 

tropospheric mean OH and its variability has traditionally been inferred from measurements of trace gases with 

lifetimes longer than the timescale of tropospheric mixing and whose primary loss is via reaction with OH. If 

emissions are well known then observed changes in atmospheric abundance may be related, via inverse methods, 470 

to variations in OH. To date, the favoured proxy for estimating OH has been from measurements of methyl 

chloroform (1,1,1-trichloroethane; CH3CCl3; MCF), a synthetic industrial solvent that was banned in the late 

1980s as a stratospheric-ozone depleting substance (Lovelock, 1977; Singh, 1977; Spivakovsky et al., 1990, 2000; 

Montzka et al., 2000; Prinn et al., 2001). The inversions have typically spatially represented the global atmosphere 

as a few boxes. 475 

The earliest MCF inversions predicted relatively large OH variability, reflecting high sensitivity to the uncertainty 

in residual MCF emissions (Bousquet et al., 2005; Prinn et al., 2005, 2001; Krol and Lelieveld, 2003; Krol et al., 

2003). However, Montzka et al. (2011) demonstrated that by the late 1990s, residual emissions had declined 
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sufficiently so as to be a minor source of uncertainty, and that OH varied by at most a few percent in year-to-year 

variability. More recently, multi-box models have been used with Bayesian inverse methods to simultaneously 480 

optimize OH and MCF emissions to match MCF observations from the NOAA and the Advanced Global 

Atmospheric Gases Experiment (AGAGE) networks, as well as multi-species inversions including methane and 

methane isotopologues as additional constraints (Rigby et al., 2017; Turner et al., 2017). Naus et al. (2019) further 

investigated the inversion methods used by Rigby et al. (2017) and Turner et al. (2017), confirming that the 

derivation of OH from MCF and CH4 is quite poorly constrained and found OH trends with a range of different 485 

magnitudes and signs were consistent with the available data. 

The MCF inversionsSome inversion studies have used models with greater spatial resolution. McNorton et al. 

(2016) performed inverse modelling using a 3-D Chemistry-Transport Model (CTM) constrained by MCF data, 

and found that OH increases contributed significantly to the slowdown in the global CH4 growth rate between 

1999 and 2006, and that the post-2007 increases in CH4 growth rate were poorly simulated if OH variations were 490 

ignored. McNorton et al. (2018) extended this work with further constraints from GOSAT CH4 and δ13CH4 and 

found that the post-2007 CH4 growth rate surge was most likely due to a combination of a decrease (-1.8 ± 0.4 %) 

in global OH and increases in CH4 emissions. 

These inversion studies generally find OH to have increased from the late 1980s until the mid-2000s when OH 

then began to decline (top left inset of Figure 22b). However, both these recentmost inversion studies also found 495 

that optimal solutions exist within the uncertainty of the system when OH was held constant and only emissions 

of the reactants were allowed to be optimized. In contrast, Nicely et al. (2018) empirically derived a historic global 

mean OH reconstruction by taking a baseline forward OH simulation from the NASA Global Modeling Initiative 

(GMI) chemical-transport modelCTM driven by assimilated meteorology since 1980, and adjusting it based on 

box-model derived relationships of OH responses to changes in observable parameters such as total ozone 500 

columns from satellites (also shown in Figure 2).. The empirically derived OH reconstruction (also shown in 

Figure 2b) was found to be relatively invariant when compared to theother MCF inversions over the past few 

decades, which the study suggested reflected chemical buffering of the many competing factors that can influence 

OH. 

Several studies have investigated the constraints imposed on OH by species other than MCF and CH4. Naus et al. 505 

(2019) further investigated the inversion methods used by Rigby et al. (2017) and Turner et al. (2017), confirming 

that the derivation of OH from MCF and CH4 is a strongly under-constrained problem, and found that estimated 

OH trends with a range of different magnitudes and signs are equally valid solutions from the available data. 

Gaubert et al. (2017) assimilated time-series of global-scale satellite CO measurements from the Measurement of 

the Pollution in the Troposphere (MOPITT) project into a global model, and found a decrease in global CO burden 510 

of ~20% over the period 2002-2013. Associated with this decrease in CO was an ~8% shortening of the methane 

lifetime, and a corresponding increase in OH.8% shortening of the methane lifetime, and a 7% increase in OH. 

Nguyen et al. (2020) also found that decreasing global CO concentrations since the 2000s have important 

influences on CH4 flux inversion results, because of the strong chemical coupling between CO, CH4 and OH. 

Assimilation of satellite CO, NOx and O3 data (e.g., Miyazaki et al. (2015, 2017), Miyazaki and Bowman, 2017; 515 

Gaubert et al., 2017) demonstrates that OH is sensitive to all these species, and that data assimilation improves 

simulation of the hemispheric ratio of OH (Patra et al., 2014). 
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Collectively, these earlier studies have shown that OH is influenced by CO, NO2, O3, as well as CH4. To date, 

studies have used subsets of the available observational data (i.e. one or more of MCF, CH4, δ13CH4, CO, NO2, 

and O3) to constrain OH, but not yet all available relevant data. The OH trends derived from several of these 520 

studies, including the uncertainty estimates from Rigby et al. (2017) are summarised in Figure 2b. 

3. Results 

3.1 Pre-industrial to present-day base simulations 

Figure 22a shows time-series (1850-2014) of global annual mean tropospheric OH burden, expressed as a 

percentage anomaly relative to the 1998-2007 mean value for the three models. This shows typical inter-annual 525 

variability in global OH of about ±2-3%, a small decrease (about -3%) in OH from 1850 up to 1910, then a similar 

magnitude increase up to the 1980s. From the 1980s to 2014, the models show a strong increase in OH of about 

+10%. All three models show comparable behaviour. Figure S2 compares results between the historical and 

histSST runs for all models, and findsWe find very similar results between the fully coupled (“historical”) and the 

atmosphere-only (“histSST”) experiments. (not shown). This confirms that it is valid to directly compare and 530 

analyse together the results from these two experimental set-ups. 

Figure 2 also2b shows several estimates of global tropospheric OH trends over the period 1980-2014 inferred 

from observations (as described in Section 2.2). The published inferred trends from different inversion methods 

show a range of different trends, but there is little resemblance to the upwards trends simulated by the models 

over this time period), including an uncertainty range from Rigby et al. (2017). The inferred trends from different 535 

inversion methods show quite a wide range, but are generally upwards from 1980-2005, in broad agreement with 

the AerChemMIP models. However, from 2005 onwards, the inversions generally indicate downwards trends, 

whereas the models suggest a continued slight upwards trend. The 1980-2015 model global OH trends are almost 

always within the ±1 standard deviation uncertainty range from Rigby et al. (2017), although they are close to the 

lower end of the range in 1980 and just beyond its upper end in 2015. 540 

Figure 3 shows present-day (PD; 2005-2014 decadal mean) zonal mean OH concentrations for the CESM2-

WACCM and GFDL-AM4three models. The vertical co-ordinate is model levelpressure, and the zonal mean 

WMO tropopause is indicated. BothAll models show high OH values between 30°S and 30°N in the lower to 

middle troposphere, with larger values in the Northern Hemisphere (NH). Peak OH concentrations occur in the 

stratosphere, but it is the tropospheric OH that mainly determines the magnitude and distribution of the methane 545 

oxidation flux (Figure S3). 

Figure 3 also shows changes in OH from pre-industrial (PI; 1850-1859 decadal mean) to PD, expressed as the 

percentage change relative to PD. This reveals local increases of up to 30over 50% in zonal mean tropospheric 

OH, in particular over polluted regions of the NH mid-latitudes, but also a local decrease of up to 15over 10% in 

the Southern Hemisphere (SH) mid- to upper -troposphere at around 20°S. The PD-PI figures also show both the 550 

PD and PI tropopauses, and indicate insignificant changes in tropopause height over the historical era. 

Figure 4 shows the zonal mean distribution of local methane lifetime, which ranges from about 2.5 years in the 

tropical lower troposphere to >20 years in colder, drier high latitudes and in the vicinity of the tropopause. Short 

lifetimes also occur in the stratosphere, but do not contribute significantly to the whole atmosphere lifetime due 

to the low air densities at high altitudes. Whole atmosphere PD (PI) lifetimes in histSST are 8.4 (9.6) yr (CESM2-555 
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WACCM), 8.3 (9.1) yr (UKESM1) and 8.6 (10.0) yr (GFDL-ESM4) (Table 3). Lifetimes have fallen since the PI, 

reflecting increases in OH.Short  

lifetimes also occur higher in the stratosphere, but do not contribute significantly to the whole atmosphere 

chemical lifetime due to the low air densities at high altitudes. The multi-model mean whole atmosphere PD 

chemical lifetime in histSST is 8.4 ± 0.3 yr, lower than the mean PI lifetime of 9.5 ± 0.5 yr (lifetimes for individual 560 

models are given in Table 3; the ranges are the standard deviations across the models). These values compare to 

a whole atmosphere methane lifetime for 2010 (mean ± 1 standard deviation) of 9.1 ± 0.9 yr (Prather et al., 2012), 

as used by IPCC (Myhre et al., 2013). Lifetimes have fallen since the PI, mainly reflecting increases in OH. 

3.2 Historical sensitivity simulations 

The drivers of these changes in OH and methane lifetime were explored further using a range ofresults from 565 

sensitivity experiments based on the histSST simulations. These kept anthropogenic emissions or 

concentrationsmole fractions of particular species, or groups of species, at their PI or 1950 levels (Table 2). Figure 

3 shows how zonal mean OH in the models responded to fixing NTCF emissions at PI levels and halocarbon 

concentrationsmole fractions at 1950 levels; Figure S5 shows additional results from the GFDL-AM4 model from 

the piCH4 and piO3 simulations.. The panels in FiguresFigure 3 and S5 shows percentage changes in OH relative 570 

to the PD histSST base case (corresponding absolute changes in OH are shown in Figure S6).. Figure 4 shows 

percentage changes in methane lifetime (corresponding absolute changes are shown in Figure S8). Figure 5 shows 

time series of how the annual tropospheric OH burden anomaly evolves in each sensitivity run, whilst Figure 6 

shows the equivalent evolution of whole atmosphere methane lifetime. Figure 6 also deconvolves the methane 

lifetime into its tropospheric and stratospheric components.  575 

We define the annual tropospheric OH burden anomaly in the base histSST simulations at time t (𝛥𝑂𝐻𝐵𝑎𝑠𝑒(𝑡)), 

as the percentage change in OH since PI (1850-1859): 

 

𝛥𝑂𝐻𝐵𝑎𝑠𝑒(𝑡) = 100% × (
𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇(𝑡)−𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇(𝑃𝐼)

𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇(𝑃𝐼)
)       (3a), 

 580 

or, for clarity, dropping the (t) and substituting 𝑂𝐻𝑃𝐼  for 𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇(𝑃𝐼): 

 

𝛥𝑂𝐻𝐵𝑎𝑠𝑒 = 100% × (
𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇−𝑂𝐻𝑃𝐼

𝑂𝐻𝑃𝐼
)        (3b). 

 

We The impact of increasingthen use each sensitivity run to isolate the contributions to this overall OH anomaly 585 

from changes in CH4 mole fraction, NTCF emissions, halocarbon mole fraction, and O3 precursor emissions since 

1850: 

 

𝛥𝑂𝐻𝐶𝐻4 = 100% × (
𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇−𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇_𝑝𝑖𝐶𝐻4

𝑂𝐻𝑃𝐼
)       (4), 

𝛥𝑂𝐻𝑁𝑇𝐶𝐹 = 100% × (
𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇−𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇__𝑝𝑖𝑁𝑇𝐶𝐹

𝑂𝐻𝑃𝐼
)       (5), 590 

𝛥𝑂𝐻𝐻𝐶 = 100% × (
𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇−𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇_1950𝐻𝐶

𝑂𝐻𝑃𝐼
)       (6), 

𝛥𝑂𝐻𝑂3 = 100% × (
𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇−𝑂𝐻ℎ𝑖𝑠𝑡𝑆𝑆𝑇_𝑝𝑖𝑂3

𝑂𝐻𝑃𝐼
)       (7). 
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Since the 𝛥𝑂𝐻𝑁𝑇𝐶𝐹  and  𝛥𝑂𝐻𝑂3 anomalies only differ in that the former includes the effects of aerosols, then 

assuming the impacts of aerosols and O3 precursors on OH do not interact with each other, we can also isolate the 

contribution from changes in aerosols to the overall OH anomaly: 

 

𝛥𝑂𝐻𝑎𝑒𝑟𝑜𝑠𝑜𝑙 = 𝛥𝑂𝐻𝑁𝑇𝐶𝐹 − 𝛥𝑂𝐻𝑂3         (8) 600 

 

In addition, we can calculate a ‘residual’ contribution, i.e. the component of the overall OH anomaly that is left 

after linearly adding all the other components: 

 

𝛥𝑂𝐻𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝛥𝑂𝐻𝐵𝑎𝑠𝑒 − 𝛥𝑂𝐻𝐶𝐻4 − 𝛥𝑂𝐻𝑁𝑇𝐶𝐹 − 𝛥𝑂𝐻𝐻𝐶       (9) 605 

 

This residual component represents the contribution of climate change to the OH anomaly, along with any 

contributions from non-linear interactions between components. Non-linearities may arise, for example, because 

the response of OH to changes in CH4 is likely to differ depending on whether NTCFs, such as NOx, are at PI or 

PD levels. Such interactions are not isolated by our methodology, and it is unclear whether the climate change 610 

signal or the effects of non-linearities dominate this residual term. 

Figure 5 shows time series of how the base OH anomaly (Equation 3) evolves, together with each of the 

components (Equations 4-9) that contribute to the base anomaly. Figure 6 compares the magnitudes of these 

various drivers of OH changes over two time periods: 1850-1980 and 1850-2010. Figure 7 shows the evolution 

of whole atmosphere methane lifetime for the base histSST runs and each sensitivity run. Figure 7 also separates 615 

the methane lifetime into its tropospheric and stratospheric components. 

Figures 5 and 6 shows that the evolution of OH has been mainly controlled by the balance between the growth of 

methane, which has acted to reduce OH by over 20%, and the changes of NTCF emissions (and in UKESM1-0-

LL, the residual term), which have tended to increase OH. Because these opposing drivers have similar 

magnitudes, small mismatches between them are key, and the other minor drivers can also be important 620 

contributors to the overall trend in OH.  

The impact of increases in NTCF emissions since 1850 up to PD was to generally increase tropospheric OH by 

20-30% (Figures 3 and 510-50% in the zonal mean (Figure 3) and 13-22% across the whole troposphere (Figures 

5 and 6); this mainly reflects the dominant role of NOx increases, whose impact overwhelms the impacts of 

increasing CO (up to ~1990) and NMVOC emissions, which will have tended to reduce OH. Since about 1990, 625 

global CO emissions have reduced, (Figure 1), also contributing to the increase in OH. The overall impact of 

increasedchanged emissions of NTCFs has been to reduce the methane lifetime (Figures 4 and 67, Table 3). This 

is mainly driven by increases in NOx emissions. The structure seen in the zonal mean PD-PI change in OH (Figure 

3, column 2) can be largely explained by the change in NTCF emissions (Figure 3, column 3), with the effects of 

methane mole fraction increases superimposed. Note that increasing methane also increases CO, and both these 630 

reduce OH. We are unable to isolate the effects of CO in our experiments.  
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Emissions of halocarbons since 1950 have led to polar stratospheric ozone depletion, mainly in the SH. This has 

increased stratospheric OH levels, but also increased tropospheric OH, due to increased penetration of ultra-violet 

(UV) radiation, and consequently higher photolysis rates (Figure 3). The overall impact on tropospheric OH and 

methane lifetime is comparatively small (Figures 5 and 64-7, Table 3), but the impact on methane lifetime in the 635 

stratosphere has been dramatic, reducing it from ~170 yr to ~140 yr in (CESM2-WACCM, and), from ~140 yr to 

~80 yr in (GFDL-AM4ESM4) and from ~190 yr to 145 yr (UKESM1-0-LL) (Figure 67). These changes are 

mainly driven through changes in stratospheric Cl. These values can be compared to an assumed constant value 

for the lifetime of methane with respect to stratospheric chemical destruction of 120(±20%) yr in IPCC-AR5 

(Prather et al. 2012). 640 

Increases of methane since the PI have reduced OH (Figures 5 and S5), and lengthened the methane lifetime 

(Figure 6, Table 3). The effects of increased emissions of aerosols and aerosol precursors can be diagnosed by 

comparingdifferencing the piO3 (Figure S5 and 5) and piNTCF simulations. These indicate that aerosols 

(Equation 8). Aerosols have slightly reduced OH (Figures 5 and 6) and lengthened the methane lifetime, (Figure 

7), but the effect is small in magnitude compared to most other effects (Figure . 645 

For the two models able to diagnose the residual term, they both suggest a positive impact on OH, although by 

variable amounts (6).-13%), with a larger residual term in UKESM1-0-LL. We suggest this term may reflect 

increases in humidity associated with climate change and an increase in the primary OH production flux (Equation 

R2). However, exactly what the residual terms represent remains uncertain. 

3.3 Contribution of OH drivers to PI-PD changes in methane 650 

Figure 7 shows values for the methane-OH feedback factor (from a modified version Equation 1, using values for 

individual years, rather than 1930-1960) calculated for every year in the histSST-piNTCF simulations. In the first 

few decades, the methane changes are small and the variability of the methane lifetime yields large fluctuations 

in f. Beyond about 1960, changes in halocarbon concentrationsmole fractions mean that the values of f are 

unreliable. We therefore use the average value over the time period 1930-1960 as our best estimate of the feedback 655 

factor. This yields a value of 1.25 for CESM2-WACCM and 1.23 for GFDL-AM4. CollinsESM4. Thornhill et al. 

(submitted2020a) find values of f from the piClim simulations of 1.3430 for GFDL-AM4ESM4 and 1.3532 for 

UKESM1-0-LL. The values derived using equation (1) are probably slightly smaller because the histSST_piNTCF 

runs also include increases in temperature and humidity. These values are similar to the range of values found in 

previous studies: 1.23-1.35 (Stevenson et al., 2013; six models); 1.19-1.28 (Voulgarakis et al., 2013; two models, 660 

year 2000 conditions); and 1.33-1.45 (Prather et al., 2001; seven models).  Using the values of f for 1930-1960 

(Figure 7) for CESM2-WACCM and GFDL-ESM4, and the value of 1.32 for UKESM1-0-LL (Thornhill et al., 

2020a) and the lifetimes presented in Table 3, we calculate equilibrium PD methane concentrationsmole fractions 

for all sensitivity experiments (Table 4). 

Observed PI and PD methane levels are 808 ppb and 1794 ppb, respectively. Holding NTCFs at PI levels increases 665 

PD methane by 16-3233%. This is more intuitively interpreted in terms of the impact of the increased emissions 

of NTCFs: they have tended to reduce PD methane by this amount. Similarly, the impact of halocarbon emissions 

has been to reduce PD methane by 107-15%.  

Taking the average of results from the GFDL model alone,-ESM4 and UKESM1-0-LL models (that have values 

for all categories), holding methane emissions at PI levels would have led to PD methane levels of 529516 ppbv, 670 
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35% (27936% (292 ppbv) lower than PI concentrations.mole fractions. Hence the net impact of increasing 

methane emissions has been to increase methane concentrationsmole fractions from 529516 ppbv to 1794 ppbv, 

an increase of 12651278 ppbv. (𝛥[𝐶𝐻4]𝑒𝑞𝐶𝐻4
). This increase is 2830% larger than the simple observed PI to PD 

increase in methane (986 ppbv)., 𝛥[𝐶𝐻4]𝑒𝑞𝑜𝑏𝑠
). The net impact of ozone precursor (NOx + CO + NMVOC)NTCF 

emissions was to reduce PD methane by 657480 ppbv. Increases (𝛥[𝐶𝐻4]𝑒𝑞𝑁𝑇𝐶𝐹
), whilst increases in halocarbon 675 

emissions reduced PD methane by 174149 ppbv. Increases in aerosol-related emissions increased PD methane by 

74 ppbv. (𝛥[𝐶𝐻4]𝑒𝑞𝐻𝐶
). These diagnosed contributions do not linearly add up to give the observed total, because 

a ; there is a residual term, as also found when attributing the OH changes to drivers. Following a similar format 

to Equation 9, we can diagnose this residual term: 

 680 

𝛥[𝐶𝐻4]𝑒𝑞𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
= 𝛥[𝐶𝐻4]𝑒𝑞𝑜𝑏𝑠

− 𝛥[𝐶𝐻4]𝑒𝑞𝐶𝐻4
− 𝛥[𝐶𝐻4]𝑒𝑞𝑁𝑇𝐶𝐹

− 𝛥[𝐶𝐻4]𝑒𝑞𝐻𝐶
 

                               = 986 − 1278 + 480 + 149 = 337 𝑝𝑝𝑏𝑣      (10) 

 

We tentatively attributed the OH residual term to climate change impacts, as the residual OH increase could 

physically be linked to water vapour increases. However, the residual change in equilibrium methane is positive, 685 

whilst it would be expected to be negative in order to match the positive residual OH term. The other attributions 

for OH and equilibrium methane are more well-behaved and consistent set of experiments (i.e. where all the terms 

are added one-by-one to a base case) has not been performed, and there are significant . This suggests that non-

linearities in the system behaviour (i.e., the response to changes linear interactions between drivers are important, 

and differ in NTCFs depends on the background levels of CH4, etc.).strength between our attribution 690 

methodologies for OH and methane. This means that perfect quantitative attribution cannot be achieved., and 

attribution of the residual term to climate change effects is rather uncertain. Nevertheless, the magnitudes of these 

attribution terms are a useful qualitative indicatorindicators of theirthe relative importance of different drivers of 

changes in OH and methane lifetime. 

4. Discussion and conclusions 695 

Modelled OH trends presented in this study are from state-of-the-art Earth System Models driven by CMIP6 

historical forcings, including observed trends in CH4 and halocarbon mole fractions. The latter drive stratospheric 

ozone depletion in the models, which strongly influences tropospheric UV levels and hence photolysis rates. Apart 

from CH4, all other reactive species that control OH (e.g., CO, O3, NO2 and H2O) freely evolve in the simulations, 

in response to prescribed CMIP6 emissions and simulated climate. These model simulations of OH are very 700 

important for understanding past trends and projecting future trends in CH4. 

The base model simulations presented here all show similar, consistent historical trends in global OH. They 

suggest , with relative stability of OH from the PI1850 up to ~1980, followed by a strong (~10%) increase (9 %) 

increases up to the present-day (FiguresFigure 2 and S2). The earlier stability is in good agreement with previous 

studies (e.g., Naik et al., 2013). The strong recent increase from 1980 to 2005 is at oddsbroadly consistent with 705 

several studies that use MCF and other proxiesspecies to reconstruct OH trends (e.g., Figure 2 inset);from 

observations; however, since 2005 most of these reconstructions indicate a decrease in OH, whereas our models 

indicate a continued increase (Figure 2b). However, these reconstructions show a wide range of trends. Naus, and 
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our modelled trends fall just about within the uncertainty range estimated by Rigby et al. (2019) found that the 

uncertainties inherent in inversion of MCF and other proxy measures of OH are sufficiently large that OH trends 710 

derived from them are less constrained than previously thought, and that positive recent OH trends(2017). The 

magnitudes of the model’s recent increases are compatible with the MCF measurements. The magnitude of the 

recent increase concurs withsimilar to results from Gaubert et al. (2017), who assimilated satellite-derived trends 

in CO since 2002 into an Earth System Model. Several OH inversions have used multiple observational data-sets 

(Miyazaki et al., 2015; McNorton et al., 2018), and as the time-series of observations, particularly satellite data, 715 

lengthens, uncertainties on real-world OH trends will hopefully reduce, providing stronger constraints for models. 

HistoricalWe attempted to quantify the component drivers of the changes in OH using a series of idealised model 

sensitivity experiments. These experiments showexhibit relatively consistent OH responses across the models 

(FigureFigures 5 and 6), and show that the evolution of methane and ozone precursor emissions have strongly 

influenced OH trends. Halocarbon and aerosol emissions have had relatively small impacts.-related emissions 720 

have had relatively small impacts. We also diagnose a residual component that represents the impact of climate 

change and non-linear interactions between drivers. Other studies have indicated that climate variations and 

change influence OH (e.g., Naik et al., 2013; Murray et al., 2014; Turner et al., 2018). The modelled increase in 

OH since 1980 is because the influence of NTCF emissions, together with this residual term, outweighs the effects 

of increasing CH4 (Figure 6). These experiments did not separate the effects of different ozone precursors, but 725 

these have been explored in previous studies (Stevenson et al., 2013; Holmes et al., 2013), where increases in 

anthropogenic NOx emissions have been found to be the main NTCF driver of OH increases. Recent reductions 

in anthropogenic CO emissions (Figure 1) are clearly also important (Gaubert et al., 2017; Griffiths et al., 

submitted).2017), but our experiments are unable to separate the relative impacts of these two species. 

The trends in OH are associated with trends in methane lifetime (Figure 7), and we have used these to estimate 730 

the influence of individual drivers on methane mole fraction, by calculating equilibrium methane levels from the 

changes in lifetime (Table 4). Drivers that increase OH lead to reductions in methane lifetime and equilibrium 

methane.  The residual component for OH is positive, and may mainly physically represent the rise of water 

vapour associated with climate warming. This finding is broadly consistent with results presented by Thornhill et 

al., 2020b) of the negative impacts on methane lifetime found in 4xCO2 experiments (see their Table 15). 735 

However, the residual component we diagnosed from changes in equilibrium methane is also positive, which 

suggests that non-linear interactions show different impacts in our two methodologies that diagnose residual 

effects, and that the residual term may not be a good indicator of climate change effects alone. These results 

indicate that methodologies to isolate drivers of OH and methane changes need careful interpretation, as non-

linearities (i.e. couplings between drivers) appear to be important.   740 

Although halocarbon emissions have had quite small effects on the whole atmosphere methane lifetime, they have 

had dramatic impacts on methane’s stratospheric chemistry, where its lifetime may have reduced by up to about 

40% between 1960 and 1990 (Figure 67). Previous studies have generally assumeassumed a fixed stratospheric 

sinklifetime for methane (e.g., Prather et al, 2012). 

These findings have implications for future trends in OH and methane (e.g., Holmes et al., 2013), and for how we 745 

interpret recent trends (Turner et al., 2019). The relative roles of changing emissions of methane, CO and NOx all 

have important competing consequences. Data assimilation of CO trends (Gaubert et al. 2017) has illustrated that 

this is a major driver of recent OH trends. Our results indicate that similar studies, for example assimilation of 
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NO2 data, may also uncover important extra information. Other studies have indicated that climate variations and 

change also influence OH (e.g., Murray et al., 2014; Turner et al., 2018). All these factors need to be included in 750 

holistic assessments of OH and methane change. 

5. Conclusions 

The CMIP6/AerChemMIP results indicate that global atmospheric OH changed little from 1850 up to around 

1980, but subsequently has increased by around 10%. The model-derived trend since 1980 differs from trends 

found in several studies that infer OH from inversions of MCF measurements; however, these are poorly 755 

constrained and contain large uncertainties that do not rule out recent positive OH trends. The recent increases in 

OH that we find are consistent with one study that assimilated global satellite-derived CO over the period 2002-

2013. Further research is required to better reconcile and quantify model and measurement derived OH trends and 

their implications.All these factors need to be included in holistic assessments of OH and methane change.  

We find that the major drivers of the recent upward trend in OH seen in the model simulations are increases in 760 

anthropogenic NOx emissions and decreases in anthropogenic CO emissions. Increases in halocarbon emissions 

have made a small contribution to the increase in OH, whilst increases in aerosol-related emissions have tended 

to slightly reduce OH. Halocarbon emissions have dramatically reduced the stratospheric methane lifetime, by 

about 15-40%, and this impact should be accounted for in future studies. 

The CMIP6/AerChemMIP model simulations contain many useful diagnostics that will allow us to better 765 

understand the drivers of atmospheric OH and methane trends. This study represents a very preliminary initial 

analysis of this rich multi-model, multi-experiment dataset. 

 

Code and data availability 

This work uses simulations from multiple models participating in the AerChemMIP project, as part of the Coupled 770 

Model Intercomparison Project (Phase 6; https://www.wcrp-climate.org/wgcm-cmip); model-specific 

information can be found through references listed in Table 1. Model outputs are available on the Earth System 

Grid Federation website (https://esgf-data.dkrz.de/search/cmip6-dkrz/). The model outputs were pre-processed 

using netCDF Operator (NCO) and Climate Data Operator (CDO). The analysis was carried out using Bash and 

Python programming languages. 775 
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 1049 

Figure 1. Time evolution (1850-2014) of global total emissionemissions for: (a) NOx (Tg(NO2) yr-1),); (b) CO (Tg(CO) yr-1)); and (c) NMVOC (Tg(VOC) yr-1). GreyOrange for biomass 1050 
burning, purplebeige for anthropogenic emissions. (Hoesly et al., 2018). The coloured lines in the NOx and CO panels (red for CESM2-WACCM, blue for GFDL-ESM4, and green for 1051 
UKESM1-0-LL) are the total emission used inemissions for each model with, including natural emissions included.sources. For historical biogenic VOC emissions, see Griffiths et al. 1052 
(2020, Figure 1). 1053 
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Figure 2. (a) Time evolution (1850-2014) of global annual mean tropospheric OH, (1850-2014), expressed as a percentage anomaly relative to the 1998-2007 mean value(and ensemble 1059 
spreads, where available) for UKESM1-0LL (green), GFDL-ESM4 (blue), UKESM1-0-LL (green), and CESM2-WACCM (red). Other data in ), and the zoomed box (1980-2015) are 1060 
observationmulti-model mean (black). (b) Observation-based inversions. of global annual mean tropospheric OH for 1980-2015 from Montzka et al. (2011), Rigby et al., 2017, Turner 1061 
et al., 2017, and Nicely et al. (2018), including ±1 standard deviation uncertainties for the results from Rigby et al. (2017), with model results from panel (a) overlain.  1062 
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 1065 

Figure 3 Zonal. First column: zonal mean (latitude/model vertical level)-pressure (hPa)) cross sections for (first column) OH concentration (105 molecules cm-3) averaged over the 1066 
period 2005-2014 (PD), and, in the) for the histSST simulations. Rows show results for CESM2-WACCM, GFDL-ESM4 and UKESM1-0-LL. Solid lines indicate the tropopause (PD 1067 
in black; other in green). Other panels, show differences (%) between experiments expressed as percentage changes. They are, (second. Second column):: histSST PD (2005-2014 mean) 1068 
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minus PI (1850-1859 mean); (third). Third column) PD (2005-2014 mean) : histSST minus histSST-piNTCF (2005-2014 mean); and (fourthfor PD. Fourth column) PD (2005-2014 1069 
mean): histSST minus histSST-1950HC (2005-2014 mean). Top for CESM2-WACCM and bottom for GFDL-ESM4. See Figure S6 for changes in absolute valuesfor PD.  1070 
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 1072 

Figure 4 The same layout as Figure 3, but for CH4 lifetime (yr) and the relative).  1073 
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 1074 

Figure 5. The histSST (Base, in black) tropospheric OH anomaly (% change relative to PI) for each year (see Equation 1075 
3), for the three models (a) CESM2-WACCM; (b) GFDL-ESM4; and (c) UKESM1-0-LL. The coloured lines represent 1076 
the contributions to this OH anomaly due to changes since 1850 in CH4 mole fraction, NTCF emissions, halocarbon 1077 
mole fraction, O3 precursor emissions, and aerosols (see Equations 4-8; NB only NTCF and HC experiments from 1078 
CESM2-WACCM). The residual curve (see Equation 9) is the extra contribution required after linearly adding the 1079 
curves for CH4, NTCF and HC that is needed to reproduce the Base anomaly.1080 
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 1081 

Figure 6. Summary of drivers of OH changes (%), relative to 1850, for the three models and their multi-model mean over: (a) 1850-1980; and (b) 1850-2010. (NB we have used decadal 1082 
means: 1850 refers to (1850-1859); 1980 is (1975-1984); and 2010 is (2005-2014). The shaded areas show the split of the NTCF signal (green) into ozone precursors (blue) and aerosols 1083 
(brown), where models have performed both the histSST-piNTCF and histSST-piO3 experiments. The residual values (pale blue) are the differences between the total change (black, 1084 
from the histSST simulations) and the sum of the changes. See Figure S8 for changes in absolute values from CH4 (red), NTCF, and halocarbons (purple). We interpret the residual 1085 
terms as being due to climate change, in addition to any non-linear interactions between forcings. 1086 
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 1089 

Figure 5 Tropospheric OH anomaly (%) for sensitivity experiments from (a) CESM2-WACCM, (b) GFDL-ESM4 and 1090 
(c) UKESM1. Note the values are expressed as a percentage anomaly relative to the 1850-1859 mean value in the 1091 
histSST run in each model.  1092 
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Figure 6 The same format as Figure 5, but for1096 

 1097 

Figure 7. Time evolution (1850-2014) of CH4 lifetime (years) infor (a-c) CESM2-WACCM; (d-f) GFDL-ESM4; and (g-i) UKESM-0-LL, averaged over the whole atmosphere (lefta, d, 1098 
g), the troposphere (middle)b, e, h), and the stratosphere (right).c, f, i). Colours refer to different model experiments, as indicated in panel (f). NB for UKESM-0-LL, we used historical-1099 
piNTCF as histSST-piNTCF was not available. 1100 
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 1105 

Figure 78. Calculated values for the methane-OH feedback factor (f) from the histSST_piNTCF experiments for two models.CESM2-WACCM and GFDL-ESM4. Mean and Standard 1106 
Deviation values for 1930-1960 (shaded time period) are shown. Calculation at other times is less reliable. See text for details.1107 
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Table 1: Basic details of the AerChemMIP models analysed in this study. For more details see the model references. 

Model Resolution Chemistry 

scheme 

Interactive 

emissions 

Interactive 

deposition 

Reference 

CESM2 

(WACCM6) 

0.9° lat 

1.25° long 

72 levels 

Detailed 

troposphere/ 

stratosphere 

(228 species) 

BVOC using 

MEGAN2.1 

Lightning 

NOx 

Yes Gettelman et 

al. (2019); 

Emmons et al. 

(20192020) 

UKESM1 1.875° long  

1.25° lat 

85 levels 

Detailed 

stratosphere; 

8 VOCs; 

5 aerosols 

BVOC 

Lightning 

NOx 

Yes Sellar et al., 

2019; 

Archibald et 

al., 20192020; 

Mulcahy et al., 

2019 

GFDL C96 (cubed 

sphere); 

nominally 1° 

49 levels 

ATMCHEM4.1 

Interactive 

tropospheric/ 

stratospheric 

gas-phase/ 

aerosol 

chemistry. 

BVOC 

Lightning 

NOx 

No Horowitz et al. 

submitted., 

2020; 

Dunne et al., 

submitted2020; 

Krasting et al. 

(2018) 
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 1115 

 

 

Table 2: Number of ensemble members analysed from CMIP6 experiments in this study. All were transient 1850-2014 

simulations, with evolving trace species emissions/GHG concentrationsmole fractions/land-surface. Baseline 

‘Historical’ runs had freely evolving oceans, whilst ‘histSST’ runs were atmosphere only with prescribed (observed) 1120 
SSTs and sea-ice. Sensitivity runs are based on histSST. The ‘-piNTCF’ simulation held emissions of all NTCFs 

(aerosols and their precursors, and tropospheric ozone precursors) at PI levels. ‘-1950HC’ held halocarbon 

concentrationsmole fractions at 1950 levels (essentially PI levels). ‘-piCH4’ held methane concentrationsmole fractions 

at PI levels. ‘-piO3’ held anthropogenic tropospheric ozone precursor emissions at PI levels. 

 1125 

 Baseline runs Sensitivity runs (based on histSST)*) 

 historical histSST -piNTCF -1950HC -piCH4 -piO3 

CESM2 

(WACCM6)-

WACCM 

3 1 1 1 NA NA 

UKESM1-0-LL 3 1 NA1* 1 1 1 

GFDL-ESM4 1 1 1 1 1 1 
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*UKESM1-0-LL sensitivity run for piNTCF is based on the historical (not histSST) run.  
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Table 3: Whole atmosphere methane chemical (not including soil sink) lifetimes (years). PI refers to 1850-1859 mean; 

PD refers to 2005-2014 mean. Uncertainties are ±1 Standard Deviation, based on the range of annual values. 

 

 Historical HistSST piNTCF 1950HC piCH4 piO3 

 PI PD PI PD PD PD PD PD 

CESM2 

(WACCM

6)-

WACCM 

9.49 

±0.06 

8.19 

±0.06 

9.59 

±0.07 

8.40 

±0.07 

9.53 

±0.07 

9.46 

±0.07 

NA NA 

UKESM1-

0-LL 

8.95 

±0.07 

8.08 

±0.06 

9.10 

8.96 

±0.0807 

8.2613 

±0.05 

NA9.40* 

±0.08 

8.8557 

±0.0708 

6.4817 

±0.06 

10.31 

9.57 

±0.0706 

GFDL-

ESM4 

9.86 

±0.07 

8.60 

±0.07 

10.03 

±0.09 

8.63 

±0.05 

11.01 

±0.11 

9.35 

±0.07 

6.97 

±0.06 

11.31 

±0.09 

 1135 
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*UKESM1-0-LL methane lifetime for piNTCF is based on the historical (not histSST) run. 1140 
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Table 4: Equilibrium PD global mean methane concentrationsmole fractions (ppbv), inferred from PD methane 

lifetimes from the sensitivity experiments. Also shown are percentage changes compared to the observed PD value 

(1794 ppbv), or for the piCH4 case, the observed PI value (808 ppbv). 1145 

 

  piNTCF 1950HC piCH4 piO3 

CESM2 

(WACCM6)-

WACCM 

2082 

2083 

(+16%)  

2064 

2065 

(+15%)  

NA   NA 

UKESM1-0-LL 2168 

(+21%)  

1917 

(+7%)  

505 

(-38%) 

 2200 

(+23%) 

GFDL-ESM4 2377 

(+322379 

(+33%)  

1969 

(+10%)  

529 

528 

(-35%)  

2451 

2454 

(+37%)  

 

 


