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Abstract. 

Poor air quality is currently responsible for large impacts on human health across the world. In addition, the air pollutants, 20 

ozone (O3) and particulate matter less than 2.5 microns in diameter (PM2.5), are also radiatively active in the atmosphere and 

can influence Earth’s climate. It is important to understand the effect of air quality and climate mitigation measures over the 

historical period and in different future scenarios to ascertain any impacts from air pollutants on both climate and human 

health. The 6th Coupled Model Intercomparison Project (CMIP6) presents an opportunity to analyse the change in air pollutants 

simulated by the current generation of climate and Earth system models that include a representation of chemistry and aerosols 25 

(particulate matter). The shared socio-economic pathways (SSPs) used within CMIP6 encompass a wide range of trajectories 

in precursor emissions and climate change, allowing for an improved analysis of future changes to air pollutants. Firstly, we 

conduct an evaluation of the available CMIP6 models against surface observations of O3 and PM2.5. CMIP6 models show a 

consistent overestimation of observed surface O3 concentrations across most regions and in most seasons, with a large diversity 

in simulated values over northern hemisphere continental regions. Conversely, observed surface PM2.5 concentrations are 30 

consistently underestimated by CMIP6 models, particularly for the northern hemisphere winter months, with the largest model 

diversity near natural emission source regions. Over the historical period (1850-2014) large increases in both surface O3 and 

PM2.5 are simulated by the CMIP6 models across all regions, particularly over the mid to late 20th Century when anthropogenic 

emissions increase markedly. Large regional historical changes are simulated for both pollutants, across East and South Asia, 

with an increase of up to 40 ppb for O3 and 12 µg m-3 for PM2.5. In future scenarios containing strong air quality and climate 35 

mitigation measures (ssp126), air pollutants are substantially reduced across all regions by up to 15 ppb for O3 and 12 µg m-3 

for PM2.5. However, for scenarios that encompass weak action on mitigating climate and reducing air pollutant emissions 

(ssp370), increases of both surface O3 (up 10 ppb) and PM2.5 (up to 8 µg m-3) are simulated across most regions. Although, for 

regions like North America and Europe small reductions in PM2.5 are simulated in this scenario. A comparison of simulated 

regional changes in both surface O3 and PM2.5 from individual CMIP6 models highlights important differences due to the 40 

interaction of aerosols, chemistry, climate and natural emission sources within models. The prediction of regional air pollutant 

concentrations from the latest climate and Earth system models used within CMIP6 shows that the particular future trajectory 

of climate and air quality mitigation measures could have important consequences for regional air quality, human health and 

near-term climate. Differences between individual models emphasises the importance of understanding how future Earth 

system feedbacks influence natural emission sources.      45 
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1 Introduction 

Air pollutants are important atmospheric constituents as they have large impacts on human health (Lelieveld et al., 2015), 

damage ecosystems (Fowler et al., 2009) and can also influence climate through changes in the Earth’s radiative balance 

(Boucher et al., 2013; Myhre et al., 2013). Two major components of air pollution at the surface are ozone (O3) and particulate 

matter less than 2.5 microns in diameter (PM2.5). Exposure to present day ambient concentrations of these two air pollutants 50 

was estimated as causing up to 4 million premature deaths per year (Apte et al., 2015; Malley et al., 2017). Over recent decades, 

the impact on human health from exposure to air pollutants has been increasing (Butt et al., 2017; Cohen et al., 2017). 

Additionally, elevated levels of air pollutants over recent decades have also been responsible for ecosystem damage to crops 

and vegetation, although there have been recent improvements in environmental health (de Wit et al., 2015). 

In terms of climate impact, tropospheric O3 has a positive radiative forcing on climate over the industrial period and is the 55 

third most important greenhouse gas in terms of radiative forcing (Myhre et al., 2013). However, depletion of O3 in the 

stratosphere has resulted in a net negative top of atmosphere radiative forcing over recent decades (Checa‐Garcia et al., 2018). 

Particulate matter (PM), also referred to as aerosols, has an overall negative radiative forcing on climate, both directly and 

indirectly through the modification of cloud properties (Boucher et al., 2013). Both O3 and PM are relatively short lived in the 

troposphere, with a typical lifetime of less than 2 weeks in the lower atmosphere, and are commonly referred to as Near Term 60 

Climate Forcers (NTCFs). Future air pollutant concentrations and distributions are driven by changes to both precursor 

emissions and climate. Emission control measures on a national and international level can both influence future changes to 

air pollutants, with global increases in CH4 abundance potentially offsetting benefits to surface O3 from local emission 

reductions (Wild et al., 2012). For PM2.5, changes in concentrations are dependent on both emission rates and levels of 

atmospheric oxidants, although changes in specific aerosol components can be more directly related to emissions, e.g. black 65 

carbon. In a warming world, background O3 concentrations over remote locations are likely to decrease (Isaksen et al., 2009; 

Fiore et al., 2012; Doherty et al., 2013), whereas over anthropogenic source regions, which have higher baseline surface O3 

concentrations, an increase is anticipated (Rasmussen et al., 2013; Colette et al., 2015). The climate impact on PM2.5 is much 

more uncertain and variable across regions, with both increases and decreases predicted due to the uncertainty of future 

meteorological effects (Jacob and Winner, 2009; Allen et al., 2016; Shen et al., 2017). However, any such climate change 70 

impacts on PM2.5 are considered to be smaller than the effect from implementing emission mitigation measures (Westervelt et 

al., 2016).  

Experiments conducted as part of the 5th Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012) and the 

Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, Lamarque et al., 2013) contributed to a multi-

model assessment of future trends in air pollutants. Global annual mean surface O3 concentrations were predicted to increase 75 

by up to 5 ppb in 2100 using RCP8.5 (Representative Concentration Pathway with an anthropogenic radiative forcing of 8.5 

W m-2 in 2100); the RCP with largest increases in methane (CH4) abundances and the largest climate change signal used in 

CMIP5 (Kirtman et al., 2013). The other RCPs used in CMIP5 had a lower climate forcing and smaller changes in CH4 

abundance with models predicting global annual mean surface O3 concentrations that showed little change in the short term 

(up to 2050) but decreased by around 5 ppb in 2100. The scenario differences in the global mean response for surface O3 were 80 

generally reflected across other regions, although with a larger magnitude of change over the northern hemisphere continental 

regions. The predicted range of future surface O3 concentrations was previously found to be dominated by changes in precursor 

emissions (Fiore et al., 2012). However, in regions remote from pollution sources (low-NOx) future climate change was shown 

to result in a small reduction in surface O3 concentrations. For PM2.5, results from CMIP5 and ACCMIP models showed annual 

mean concentrations declining in most regions and across all scenarios due to the reduction in aerosol emissions. Globally, 85 

PM2.5 concentrations reduced by ~1 µg m-3 by 2100, whereas larger regional reductions of up to 6 µg m-3 were predicted by 

2100. Exceptions to this occurred over South and East Asia where PM2.5 concentrations increased by up to 3 µg m-3 in the 

near-term (up to 2050), after which concentrations reduced by 2100. The largest difference in the response of PM2.5 across the 
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scenarios was also shown across East and South Asia due to differences in the carbonaceous and sulphur dioxide (SO2) 

emission trajectories (Fiore et al., 2012). Future PM2.5 concentrations over Africa and the Middle East were shown to be quite 90 

noisy due to the large meteorological variability that influences dust emissions over these regions.        

The current set of experiments conducted for the 6th Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016) 

represent an opportunity to update the assessment of current and future levels of air pollutants using the latest generation of 

Earth system and climate models. A new set of future scenarios have been generated for CMIP6, the Shared Socio-economic 

Pathways (SSPs), which combine different trends in social, economic and environmental developments (O’Neill et al., 2014). 95 

Varying amounts of emission mitigation to NTCFs are applied on top of the baseline social and economic developments to 

meet predefined climate and air quality targets in the future, allowing for a wider range of future air pollutant trajectories to 

be assessed than occurred in CMIP5 (Rao et al., 2017; Riahi et al., 2017). Initial assessments have been made of future changes 

to air pollutants in the SSPs using simplified models. The sustainability pathway (SSP1) leads to improvements in both air 

quality and climate, whereas SSP3 (regional rivalry) is not compatible with achieving air quality and climate goals, and the 100 

conventional fuels (SSP5) pathway improves air quality at the expenses of climate (Reis et al., 2018). Strong climate and air 

pollutant mitigation measures in SSP1 were shown to reduce global annual mean surface O3 concentrations by more than 3.5 

ppb, whereas for SSP3 O3 concentrations over Asia were predicted to increase by 6 ppb (Turnock et al., 2019). These studies 

highlighted the potential large regional variability in the response of air pollutants to the different assumptions in the future 

pathways and also the need for a full model assessment using the current generation of Earth System Models (ESMs) that take 105 

into account both changes in emissions and climate.         

In this study, we use results from experiments conducted as part of CMIP6 to make a first assessment of historical and future 

changes in air pollutants. First, we assess the performance of CMIP6 models in simulating present day air pollutants by 

conducting an evaluation against observations of O3 and PM2.5. Regional changes in surface O3 and PM2.5 are computed over 

the historical period (1850-2014) to provide context with future changes. We are then able to show future projections of air 110 

pollutants over different world regions under different Shared Socio-economic Pathways (SSPs) used in the CMIP6 

experiments. Finally, a comparison is made of individual CMIP6 models for a single future scenario to identify potential 

reasons for model discrepancies.  

2 Methods 

2.1 Air Pollutant Emissions 115 

A new set of historical and future anthropogenic air pollutant emissions has been developed and used as part of CMIP6. The 

historical anthropogenic emissions are from the Community Emissions Data System (CEDS) and a new dataset was developed 

for biomass burning emissions, both of which provides information on emissions from 1750 to 2014 (van Marle et al., 2017; 

Hoesly et al., 2018). The SSPs used in future CMIP6 experiments represent an update from the RCPs used in CMIP5, as they 

combine pathways of socio-economic development with targets to achieve a certain level of climate mitigation (O’Neill et al., 120 

2014; van Vuuren et al., 2014; Riahi et al., 2017). The SSPs are divided into the following 5 different pathways depending on 

their social, economic and environmental development: SSP1 – sustainability, SSP2 - middle-of-the-road, SSP3 – regional 

rivalry, SSP4 - inequality, SSP5 – fossil fuel development. An assumption about the degree of air pollution control (strong, 

medium or weak) is included on top of the baseline pathway, with stricter air pollution controls assumed to be tied to economic 

development (Rao et al., 2016). Weak air pollution controls occur in SSP3 and SSP4, with medium controls in SSP2 and strong 125 

air pollution controls in SSP1 and SSP5 (Gidden et al., 2019). A particular climate mitigation target, in terms of an 

anthropogenic radiative forcing by 2100, is included on top of each SSP and is achieved using a range of emissions mitigation 

measures appropriate to each SSP. Climate mitigation targets vary from a weak mitigation scenario with an anthropogenic 

radiative forcing of 8.5 W m-2 by 2100, comparable with a 5 °C temperature change (Riahi et al., 2017), to a strong mitigation 
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scenario with a radiative forcing of 1.9 W m-2 by 2100, in accordance with the Paris agreement for keeping temperatures below 130 

2 °C (United Nations, 2016). Some climate mitigation targets are comparable with those of the RCPs used in CMIP5 (2.6, 4.5 

and 6.0), whilst others are new, e.g. ssp534 is included as a delayed mitigation scenario. A scenario specific to the Aerosol and 

Chemistry Model Intercomparison Project (AerChemMIP), ssp370-lowNTCF, is also included to study the impact of 

mitigation measures to specifically control NTCFs on top of ssp370. Future biomass burning emissions vary in each scenario, 

depending on the particular land-use assumptions (Rao et al., 2017). Whilst future anthropogenic and biomass burning 135 

emissions are prescribed in each CMIP6 model from the same dataset, other natural emissions, e.g. dust, biogenic volatile 

organic compounds (BVOCs) etc., will be different and depend on the individual model configuration. 

Figure 1 shows the future changes in global total (anthropogenic and biomass) emissions of the major air pollutant precursors 

across all of the CMIP6 scenarios, provided as input to the CMIP6 models. The overlying feature is that global air pollutant 

emissions are predicted to reduce across the majority of scenarios by 2100. The exception to this is that global and regional 140 

emissions increase or remain at present day levels for ssp370 (Fig. 1 and Fig. 2). Some air pollutant emissions increase in the 

near-term in other scenarios e.g. nitrogen oxides (NOx) in ssp585, but by 2100 these have been reduced. Future CH4 

abundances show the largest diversity amongst the SSPs. Large increases in global CH4 abundances of more than 50% are 

predicted for the fossil fuel dominated pathways of ssp370 and ssp585, whereas large reductions are predicted to occur in the 

strong mitigation scenarios of SSP1.  145 

 

Figure 1: Changes in annual total (anthropogenic and biomass) global air pollutant emissions (relative to 2015) of sulphur dioxide 
(SO2), organic carbon (OC), black carbon (BC), non-methane volatile organic compounds (NMVOCs), nitrogen oxides (NOx), 
carbon monoxide (CO) and global methane (CH4) abundances in the future CMIP6 scenarios used as input to CMIP6 models. The 
dashed black line represents the 2015 value.  150 

For SO2, large reductions of more than 50% are shown for most scenarios and across most regions (Figure 2), apart from Africa 

and Asia in ssp370. Near-term (2050) increases in SO2 occur over South Asia and other developing regions, which are then 
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reduced in the latter half of the 21st Century. Over Europe and North America consistent decreases are predicted across all 

scenarios. The other major aerosol emissions, OC and BC, show similar reductions to SO2 across all scenarios and regions. 

For all aerosol and aerosol precursors, a reduction of 80-100% (relative to 2015) in regional emissions is predicted by 2100 in 155 

the strong mitigation scenarios. Changes in the emissions of the O3 precursors, NOx, CO and NMVOCs, show a similar 

increase across most regions for ssp370 but a general decrease in other scenarios. The change in these emissions are particular 

diverse across all the scenarios in South Asia with large relative increases in ssp370, contrary to the large decreases in ssp126. 

Across East Asia there is an increase in NOx emissions for ssp370 in 2050 but a long term reduction across all scenarios.  

 160 

Figure 2: Percent change in 2050 (stars) and 2100 (triangles), relative to 2015, for annual mean total (anthropogenic and biomass) 
air pollutant emissions of SO2, OC, BC, NMVOCs, NOx and CO across different world regions in the 4 Tier 1 future CMIP6 
scenarios. Regions are defined in Figure S1. 

2.2 CMIP6 Simulations 

Surface concentrations of O3 and PM2.5 have been obtained from all the CMIP6 models that made appropriate data available 165 

on the Earth System Grid Federation (ESGF) at the time of writing. To study changes in surface air pollutants over the industrial 

period data has been obtained from the coupled historical simulations (Eyring et al., 2016) over the period 1850 to 2014 from 

all of the available ensemble members of each available CMIP6 model. For each model, a mean is taken using all available 

ensemble members prior to the calculation of multi-model mean. For model evaluation purposes, 10 years of data from 

historical simulations has been used over the period that is relevant to the particular observational dataset (2000-2010 for 170 

ground-based PM2.5, 2004-2014 for PM2.5 reanalysis product and 2005-2014 for ground-based O3). To investigate future 

changes in air pollutants, all available data has been obtained over the period 2015 to 2100 for each of the different future 

coupled atmosphere-ocean model experiments, conducted as part of ScenarioMIP (O’Neill et al., 2016). CMIP6 model data 
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has also been obtained for the AerChemMIP specific ssp370-lowNTCF scenario, which was only required to be conducted 

over the period 2015-2055 (Collins et al., 2017). 175 

Concentrations of both pollutants at the surface have been obtained by extracting the lowest vertical level of the full 3D field 

output on the native horizontal and vertical grid of each model (the “AERmon” CMIP6 table ID). For O3, this is supplied as a 

separate diagnostic which can be used directly. However, models contributing to CMIP6 will not all directly output PM2.5 and 

the calculation of PM2.5 will not be consistent across individual models due to the different treatment of aerosols and their 

components. For example only a few CMIP6 models include the simulation of ammonium nitrate in their aerosol scheme 180 

(currently, only GISS-E2-1-H and GFDL-ESM4 have provided nitrate mass mixing ratios on the ESGF database). Therefore 

it has been necessary to use a definition of PM2.5, which is consistent across all models and is calculated offline. In this study 

surface PM2.5 is defined as the sum of the individual dry aerosol mass mixing ratios of black carbon (BC), total organic aerosol 

(OA – both primary and secondary sources), sulphate (SO4), sea salt (SS) and dust (DU) from the lowest model level extract 

of the full 3D model fields. All BC, OA and SO4 aerosol mass is assumed to be present in the fine size fraction (< 2.5 µm), 185 

whereas a factor of 0.25 for SS and 0.1 for DU has been used to calculate the approximate contribution from these components 

to the fine aerosol size fraction (Eq. 1).  

 

𝑃𝑀ଶ.ହ = 𝐵𝐶 + 𝑂𝐴 + 𝑆𝑂ସ + (0.25 × 𝑆𝑆) + (0.1 × 𝐷𝑈)     (1) 

 190 

The factors used to calculate the contribution of SS and DU concentrations to the PM2.5 size fraction are likely to depend on 

the individual aerosol scheme and the simulated aerosol size distribution within a particular model. The calculation of an 

approximate PM2.5 concentration using Eq. (1) is therefore likely to introduce some errors but it does provide an estimate that 

is consistent across models and also with that previously used in CMIP5 and ACCMIP (Fiore et al., 2012; Silva et al., 2013, 

2017). For the CNRM-ESM2-1 model, anomalously large concentrations were obtained from the sea salt mass mixing ratios. 195 

Sensitivity tests with this model suggested that a much smaller factor of 0.01 was more appropriate to use for SS, which takes 

into account the non-dry nature of the sea salt aerosols and the large possible size range, up to 20 µm in diameter, of sea salt 

particles within the CNRM-ESM2-1 model (P Nabat 2019, personal communication, 27th November).  

Details of the data used in this study from different CMIP6 models, in both the historical and future scenarios, is presented 

below in Table 1. For the historical period, data was available from 5 different CMIP6 models for O3 and 10 models for PM2.5. 200 

The future scenario with the most data available was ssp370, with 4 models suppling data for O3 and 7 models for PM2.5. For 

the other Tier 1 CMIP6 scenarios (ssp126, ssp245 and ssp585), data was only available for 2 models for O3 and 4 for PM2.5 

(all components). It was decided to focus the analysis on ssp370 and other Tier 1 scenarios due to the limited availability of 

model data for Tier 2 scenarios (ssp119, ssp434, ssp460 and ssp534). The results from an O3 parameterisation (Turnock et al., 

2018, 2019) has also been included in the analysis of surface O3 from CMIP6 models for both the historical and future scenarios 205 

and is referred to in this study as HTAP_param. The O3 parameterisation does not take into account the effects of climate 

change on surface O3 concentrations and therefore provides an estimate of the emission-only driven changes to surface O3 with 

which to compare to the climate and Earth System models.  
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Table 1 –Number of ensemble members used for the historical and future scenarios experiments from each model in the analysis of 210 
surface O3 and PM2.5 in this study 

Model Pollutant historical ssp126 ssp245 ssp370 
ssp370-
lowNTCF ssp585 Model Refs Data Citation 

BCC-ESM1 O3, PM2.5 3   3 3  
(Wu et al., 
2019a, 2019b) 

(Zhang et al., 2018, 
2019) 

CESM2-
WACCM 

O3, PM2.5 3   1 1  

(Emmons et al., 
2019; 
Gettelman et al., 
2019; Tilmes et 
al., 2019) 

(Danabasoglu, 
2019a, 2019b, 
2019c) 

CNRM-
ESM2-1 

PM2.5 3   3 3  
(Séférian et al., 
2019) 

(Seferian, 2018, 
2019; Voldoire, 
2019) 

GFDL-
ESM4 

O3, PM2.5 1 1 1 1 1 1 
(Dunne, 2019; 
Horowitz, 2019) 

(Horowitz et al., 
2018; John et al., 
2018; Krasting et 
al., 2018) 

HadGEM3-
GC31-LL 

PM2.5 4 1 1   1 
(Kuhlbrodt et 
al., 2018) 

(Ridley et al., 2018; 
Good, 2019) 

MIROC6 -
ES2L 

PM2.5 3 1 1 1  1 
(Takemura, 
2012; Hajima et 
al., 2019) 

(Hajima and 
Kawamiya, 2019; 
Tachiiri and 
Kawamiya, 2019) 

MPI-
ESM1.2-
HAM 

PM2.5 1   1 1  
(Tegen et al., 
2019) 

(Neubauer et al., 
2019) 

GISS-E2-1-
H 

O3,  
PM2.5 

5 
2 

     
(Bauer and 
Tsigaridis, 
2019) 

(NASA Goddard 
Institute For Space 
Studies 
(NASA/GISS), 
2018) 

NorESM2-
LM 

PM2.5 1      
(Karset et al., 
2018; Kirkevåg 
et al., 2018) 

(Norwegian 
Climate Center 
(NCC), 2018) 

UKESM1-0-
LL 

O3, PM2.5 5 5 5 5  5 
(Sellar et al., 
2019) 

(Good et al., 2019; 
Tang et al., 2019) 

Total 
Number of 
models 

O3 5 2 2 4 3 2   

PM2.5 10 4 4 7 4 4  
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2.3 Surface Observations 

Present day surface O3 and PM2.5 simulated by all of the CMIP6 models is evaluated against surface observations to ascertain 215 

model biases and inter-model discrepancies. Surface O3 observations are obtained from the database of the Tropospheric Ozone 

Assessment Report (TOAR) (Schultz et al., 2017). The TOAR database provides a gridded product of surface O3 observations 

over the period 1970 to 2015. The majority of measurement sites are located in North America and Europe, with a smaller 

number of other sites in East Asia, Australia, New Zealand, South America, Southern Africa, Antarctica and remote ocean 

locations. Here we compile a monthly mean climatology of all available O3 observations over the period 2005-2014 from 220 

measurement locations that are classified as rural in the TOAR database (Schultz et al., 2017). The rural locations were selected 

to be representative of background (i.e. non-urban) O3 concentrations and are considered to be more appropriate in evaluating 

the simulated values obtained at the relatively coarse horizontal resolution of the global ESMs. Simulated surface O3 

concentrations from the CMIP6 models are re-gridded onto the same resolution of the observational product (2° x 2°) for 

evaluation purposes. 225 

Surface PM2.5 observations have been obtained from all of the locations compiled in the database of the Global Aerosol 

Synthesis and Science Project (GASSP: http://gassp.org.uk/data/, Reddington et al., 2017) to evaluate CMIP6 models. 

Background, non-urban, PM2.5 data is compiled in the GASSP database from three major networks: the Interagency Monitoring 

of Protected Visual Environments (IMPROVE) network in North America, the European Monitoring and Evaluation 

Programme (EMEP) and Asia-Pacific Aerosol Database (A-PAD). Again, like for O3, the networks/observations for PM2.5 230 

were selected to be representative of non-urban environments, which are more appropriate for the evaluation of global ESMs. 

With the exception of the IMPROVE network, most measurements of PM2.5 began after the year 2000. Like for O3, we compile 

a monthly mean climatology of PM2.5 but now over the period of 2000 to 2010, selected as the GASSP database contained the 

most observations within this period. Simulated surface PM2.5 was computed from CMIP6 models over the same time period 

as the observations and linearly interpolated to each measurement location. Whilst the surface observations measure total PM2.5 235 

mass, the computed PM2.5 from CMIP6 models use Eq. 1 and does not include all observable PM2.5 aerosol components (e.g. 

nitrate aerosol). Therefore it is anticipated that the CMIP6 models will underrepresent the PM2.5 observations in this 

comparison. 

To address the anticipated disparity between the observed ground based PM2.5 and the approximate PM2.5 from CMIP6 models, 

a further comparison has been made between the CMIP6 models and the Modern-Era Retrospective Analysis for Research and 240 

Applications, version 2 (MERRA-2), aerosol reanalysis product (Buchard et al., 2017; Randles et al., 2017). The MERRA-2 

aerosol product assimilates observations of Aerosol Optical Depth (AOD) from ground based and satellite remote sensing 

platforms into model simulations that use the GEOS-5 atmospheric model coupled to the GOCART aerosol module. The data 

assimilation used in MERRA-2 generally improves comparisons of PM2.5 with observations but there are still overestimations 

due to dust and sea salt and underestimations over East Asia (Buchard et al., 2017; Provençal et al., 2017). Separate mass 245 

mixing ratios for BC, OA, SO4, SS and DU aerosol components are provided from MERRA-2, which are then combined using 
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the formula in Eq. 1 to make an approximate PM2.5. Monthly mean approximate PM2.5 concentrations are then computed over 

the period 2005-2014 from the MERRA-2 reanalysis product to provide a more direct comparison and enhanced spatial 

coverage against the approximate PM2.5 concentrations calculated from the CMIP6 models calculated over the same time 

period.  250 

3 Present-day Model Evaluation of Air Pollutants 

3.1 Surface Ozone 

The 5 CMIP6 models with data available for the historical experiments are evaluated against surface O3 observations from the 

TOAR database over the period 2005-2014. A long-term evaluation of surface O3 concentrations from CMIP6 models using 

observations compiled over the 20th Century is presented separately in Griffiths et al., (2019). Figure 3 shows the seasonal 255 

multi-model mean in surface O3 over the period 2005-2014 and the standard deviation across the 5 CMIP6 models. The 

seasonal mean surface O3 concentrations and evaluation against observations for individual CMIP6 models are shown in 

Figures S2–S6. Higher surface O3 concentrations are simulated in the northern hemisphere summer (June, July, August- JJA) 

when O3 formation is enhanced by increased photolytic activity and levels of oxidants, as well as larger biogenic emissions. 

The hemispheric difference in surface O3 is smaller in December, January and February (DJF) when O3 production is less in 260 

the northern hemisphere but higher in the southern hemisphere. However, model diversity is larger in DJF (Fig. 3b) due to 

individual models simulating different seasonal cycles of O3, particularly UKESM1 which has the most pronounced seasonal 

cycle of all 5 models (Fig. S2).  

The multi-model mean of CMIP6 models overestimates surface O3 concentrations in both seasons when compared to 

observations from the TOAR database, although they do capture the broad hemispheric gradient in O3 concentrations (Fig. 3c 265 

and 3f). These results are consistent with the previous evaluation of ACCMIP models (Young et al., 2018). The overestimation 

in the CMIP6 models analysed here could be due to the coarse resolution of the ESMs, an excess of O3 chemical production 

(potentially due to an overabundance of NOx and/or VOCs) and weak O3 deposition. Smaller model biases exist in DJF (<5 

ppb) than in JJA (5-15 ppb), mostly attributed to the strong seasonal cycle simulated by UKESM1. In contrast to other models 

(Fig. S2 – S6), UKESM1 underpredicts surface O3 in DJF over most continental northern hemisphere locations, potentially 270 

indicating there is excessive NOx titration of O3 in this model.    
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Figure 3 – Multi-model (5 CMIP6 models) seasonal mean surface O3 concentrations in a) December January, February (DJF) and 
d) June, July, August (JJA) over the 2005-2014 period. The standard deviation in the multi-model mean in b) DJF and e) JJA. The 
difference between the multi-model mean and TOAR observations in c) DJF and f) JJA. 275 

The observed annual cycle in surface O3 averaged across measurement locations within different regions is compared to that 

simulated by CMIP6 models (Figure 4). Across most regions, the mean annual cycle from CMIP6 models compares relatively 

well to that observed. The overprediction of surface O3 values in JJA is evident across most regions, as is the strong seasonal 

cycle in UKESM1 for northern hemisphere continental regions. Additionally, the timing of peak O3 over continental northern 

hemisphere locations occurs earlier in the observations (springtime) than in the CMIP6 models (spring and summer), which is 280 

consistent with that from ACCMIP models (Young et al., 2018). At oceanic observation locations there is also a consistent 

overestimate of surface O3 by CMIP6 models across all seasons, indicating that O3 deposition rate could be underestimated 

here. There is also a large overestimation (~20 ppb) in all models at the one observation location in South East Asia, potentially 

due to difficulty in simulating O3 in the maritime continental boundary layer using lower resolution global ESMs. In contrast 

to this, CMIP6 models tend to underpredict the observed surface O3 concentrations at locations in the South Pole region in JJA 285 

by ~5 ppb. This could be due to lack of long range transport of O3 to these sites, inaccuracies in southern hemisphere precursor 

emissions, or because of the difficulty in simulating O3 concentrations at the appropriate elevation of measurement sites located 

on the Antarctic ice sheet.   
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 290 

Figure 4 – Individual and multi-model (5 CMIP6 models and HTAP_param) monthly mean surface O3 concentrations across 
different world regions compared with the regional monthly values from all the TOAR observations within the region for the period 
2005-2014. The number of observations within a region is shown in parenthesis. The shading shows variability in observations across 
all sites within the region. 

3.2 Surface PM2.5 295 

3.2.1 Ground Based Observations 

A similar comparison is made for seasonal mean surface PM2.5 concentrations from CMIP6 models against ground based 

surface observations (Figure 5). The seasonal multi-model mean from CMIP6 models shows that elevated PM2.5 concentrations 

(>50 µg m-3) occur close to the large dust emission source regions of the Sahara and Middle East in both DJF and JJA over 

2000-2010. These natural source regions are also one of the largest areas of diversity in PM2.5 concentrations (up to 20 µg m-300 

3) between the different CMIP6 models (Fig. 5b, 5e and S7). High concentrations of PM2.5 (>40 µg m-3) are also simulated 

over the large anthropogenic source regions of South and East Asia, particularly in DJF when there is enhanced variability 
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across CMIP6 models due to the different contribution from anthropogenic PM2.5 components (Fig. S8-S10). Lower PM2.5 

concentrations (<10 µg m-3) are predicted across both North America and Europe, with more agreement between CMIP6 

models. Across the biomass burning regions of South America and Southern Africa, PM2.5 are elevated in JJA with larger 305 

diversity in the CMIP6 models due to the differing contributions of the BC and OA components (Fig. S9 and S10). Relatively 

consistent PM2.5 concentrations of <10 µg m-3, with small model diversity (<5 µg m-3), are shown across oceanic regions, 

mainly from emissions of sea salt (Fig. S11). Apart from the natural sources of aerosol, which are subject to meteorological 

variability, the CMIP6 models are relatively consistent when simulating PM2.5 concentrations across most regions.  

Compared to the ground based observations from the GASSP database, the CMIP6 multi-model mean underpredicts the 310 

observed PM2.5 values in both seasons, with a slightly larger underestimation in DJF than JJA. As discussed in section 2.3, an 

underestimation was anticipated from comparing approximate PM2.5 concentrations, derived from CMIP6 models, to observed 

values. Nevertheless, the evaluation highlights that fine particulate matter (PM2.5) is generally underrepresented in the CMIP6 

models across North America, Europe and parts of Asia for which observations are available; a similar result to other global 

and regional models (Glotfelty et al., 2017; Solazzo et al., 2017). This could be potentially due to uncertainties in emissions 315 

(e.g. local dust sources) or deposition (dry or wet), the coarse resolution of global models and absence/underrepresentation of 

aerosol formation processes (e.g. nitrate aerosols or secondary organic aerosols).  

 

Figure 5 – Multi-model (10 CMIP6 models) seasonal mean surface PM2.5 concentrations in a) December January, February (DJF) 
and d) June, July, August (JJA) over the 2000-2010 period. The standard deviation in the multi-model mean in b) DJF and e) JJA. 320 
The difference between the multi-model mean and PM2.5 observations in c) DJF and f) JJA. 
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The simulated regional mean annual cycle in surface PM2.5 from different CMIP6 models against observations is shown in 

Figure 6. The low model bias in PM2.5 concentrations is highlighted across all regions, except for the ocean. Across North 

America, the region with most observations, the annual cycle is simulated relatively well with a peak in concentrations in JJA 

and a lower model bias, although a larger model bias (factor of ~1.5 to 2) occurs in winter and spring. Across Europe, there is 325 

a larger underestimation of observed PM2.5 concentrations by CMIP6 models in DJF (factor > 2) than JJA. Nitrate aerosols are 

observed and modelled (Fig. S12) to contribute between 1 and 5 µg m-3 of the total aerosol mass over Europe (Fagerli and 

Aas, 2008; Pozzer et al., 2012), explaining  part, but not all, of the model observational discrepancy here. Additionally, on Fig. 

6 the CMIP6 models also underestimate the MERRA-2 reanalysis product (which does not include nitrate aerosols), indicating 

that other aerosol sources/processes are underrepresented across Europe and other regions in the models. The limited number 330 

of observations across other regions makes it difficult to infer particular model/observational biases. However, over Asia 

CMIP6 PM2.5 concentrations tend to be within a factor of 2 of the observations and represent the seasonal cycle relatively well 

at these locations. Across South Asia, concentrations are relatively well simulated in JJA but a larger discrepancy exists in 

DJF between the model and observations.          

 335 
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Figure 6 – Individual and multi-model (10 CMIP6 models) monthly mean surface PM2.5 concentrations across different world 
regions compared with the regional monthly values from all the PM2.5 observations (◊) and the MERRA-2 reanalysis product (x) 
within the region for the period 2000-2010. The number of observations within the region is shown in parenthesis. The shading and 
errors bars show variability in observations and the reanalysis product across all sites within the region. 340 

3.2.2 MERRA Reanalysis Product 

An additional comparison of surface PM2.5 concentrations from the MERRA-2 aerosol reanalysis product is made with that 

simulated by the CMIP6 models to improve the spatial coverage and provide a more consistent evaluation of the approximate 

PM2.5 concentrations. Figure 7 shows the same comparison as in Fig. 5 but now using the approximate PM2.5 obtained from 

the MERRA-2 reanalysis product over the period 2005-2014. In comparison to MERRA-2, the CMIP6 models are shown to 345 

underpredict PM2.5 concentrations across North America, Europe and Eurasia. A similar seasonal cycle comparison is shown 

for Europe and North America (regions with most ground based observations) in both Fig. 6 and 8, providing confidence that 

the underestimation of PM2.5 by CMIP6 models is robust over these regions. Across all other regions, the MERRA-2 reanalysis 
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product provides much greater spatial coverage for each region and therefore the features shown in the site-level comparison 

(Fig. 6) will not necessarily apply here. A large overestimation of the MERRA-2 reanalysis product by the CMIP6 multi-model 350 

mean is shown across East and South Asia. Figure 8 shows that on a regional mean basis most CMIP6 models are within the 

spread of the MERRA-2 concentrations for East Asia, although MERRA-2 was previously shown to underestimate PM2.5 

concentrations across East Asia (Buchard et al., 2017; Provençal et al., 2017) and also on Fig. 6. CESM2-WACCM is the 

exception to this with distinctly higher PM2.5 concentrations over East Asia, potentially due to larger OA concentrations and 

more dust aerosols within the western side of this region (Fig. S7 and S10). Across the South Asian region, CMIP6 models 355 

show a more consistent overestimation of MERRA-2, with UKESM1 and CESM2-WACCM showing particularly high PM2.5 

concentrations, again due to dust and OA. Across North Africa there is a lot of inter-regional variability with CMIP6 models 

both under and over-estimating the MERRA-2 PM2.5 concentrations, although this results in a relatively good regional mean 

representation (Fig. 7 and 8). The annual mean cycle in MERRA-2 PM2.5 concentrations across South America is well 

represented by the CMIP6 models, although the peak in the biomass burning season is underestimated in some models. A more 360 

pronounced annual cycle is exhibited by UKESM1 across Southern Africa, potentially due to the larger contributions from the 

OA fraction (Fig. S10) that result from enhanced biogenic emissions leading to secondary OA formation (SOA). Across 

oceanic locations all of the CMIP6 models underestimate the MERRA-2 PM2.5 concentrations, although MERRA-2 was 

previously shown to overestimate sea-salt concentrations (Buchard et al., 2017; Provençal et al., 2017), accounting for some 

of this discrepancy. Overall, comparisons of CMIP6 models with the MERRA-2 reanalysis product show biases across Europe 365 

and North America that are consistent with the comparison to ground-based observations. Additionally, similar comparisons 

are shown in annual mean cycles across other regions, for which appropriate ground based data is lacking.         
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Figure 7 – Multi-model (10 CMIP6 models) seasonal mean surface PM2.5 concentrations in a) December January, February (DJF) 
and d) June, July, August (JJA) over the 2005-2014 period. The standard deviation in the multi-model mean in b) DJF and e) JJA. 370 
The difference between the multi-model mean and MERRA-2 reanalysis for c) DJF and f) JJA. 
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Figure 8 – Individual and multi-model (10 CMIP6 models) monthly mean surface PM2.5 concentrations across different world 
regions compared with the regional monthly values from the PM2.5 MERRA-2 reanalysis within the region for the period 2005-2014. 
The number of reanalysis points within the region is shown in parenthesis. The shading shows variability in the values of the 375 
MERRA-2 reanalysis products across the region. 

4 Air Pollutants from Pre-Industrial to Present-day 

4.1 Surface Ozone 

The simulated changes in surface O3 across 5 CMIP6 models and the HTAP_param are shown in Figure 9 over the historical 

period of 1850 to 2014. The CMIP6 multi-model mean shows that global annual mean surface O3 has increased by 11.5 +/- 380 

2.2 ppb since 1850 (+/- 1 standard deviation), although the change could be as large as 14 ppb (from BCC-ESM1) or as little 

as 7 ppb (from UKESM1). The 1850 to 2000 multi-model mean change in surface O3 from the CMIP6 models of 10.6 ppb is 

in good agreement with the 10 +/- 1.6 ppb simulated by the CMIP5 models used in ACCMIP (Young et al., 2013). An 
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evaluation of the long-term changes in surface O3 over the historical period simulated by the CMIP6 models at specific 

measurement locations is presented separately in Griffiths et al., (2019), which shows that the CMIP6 models are able to 385 

represent long term changes in surface ozone since the 1960s.  

A large diversity in the simulated historical changes is shown across the different regions analysed here, with UKESM1 tending 

to simulate the lowest historical change and GISS-E2-1-H or BCC-ESM1 the highest. Even, though the surface response is 

small in UKESM1, it is shown to have larger tropospheric changes in O3 over the historical compared to other CMIP6 models 

(Griffiths et al., 2019). South Asia is the region with the largest diversity in simulated historical changes in surface O3 of 390 

between 16 and 40 ppb. Surface O3 is simulated to have increased by between 10 to 30 ppb over the major northern 

anthropogenic source regions since 1850, driven mainly by the large increases in anthropogenic precursor emissions of CH4, 

NOx, CO, and NMVOCs over this period. A qualitative estimate of the influence of non-emission driven processes (chemistry 

and climate change) can be ascertained by comparing results from the HTAP_param, an emission-only driven model, to those 

of the CMIP6-models. Simulated historical changes in surface O3 from UKESM1 are similar to those from the HTAP_param, 395 

indicating that changes simulated by UKESM1 are strongly determined by precursor emissions. However, the global annual 

mean surface O3 response of 7.6 +/- 0.7 ppb from HTAP_param over the historical period is 3.9 ppb lower than the CMIP6 

multi-model mean, indicating globally that non-emission driven processes have contributed to approximately 30% of the 

change in surface O3, although this contribution varies regionally. The different magnitude of response across models could 

be due to non-emission driven process, e.g. from different chemistry schemes and climate change signals within models.   400 
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Figure 9 – Changes in the regional and global annual mean surface O3 concentrations, relative to a 2005-2014 mean value, across 5 
CMIP6 models and the HTAP_param. The multi-model annual mean year 2005-2014 surface O3 concentrations (+/- 1 standard 
deviation) are shown in the top left of each panel. Regions are defined in Figure S1. 

4.2 Surface PM2.5 405 

The simulated change in annual mean surface PM2.5 across 10 CMIP6 models is shown in Figure 10 across the historical period 

of 1850 to 2014. Since 1850, CMIP6 models simulated an increase in global annual mean surface PM2.5 concentrations of <2 

µg m-3 (15-20%). Larger increases of surface annual mean PM2.5 of up to 12 µg m-3 are simulated across South and East Asia. 

The historical increase in surface PM2.5 is primarily driven by the large increase in anthropogenic aerosol and aerosol precursor 

emissions over the 1850-2014 period (Hoesly et al., 2018). The largest model diversity is also exhibited over the Asian regions 410 

with variations in the response between models of up to 50%, potentially due to differences in dust emissions and simulation 

of organic aerosols. The largest interannual variability in surface PM2.5 concentrations occurs over the North African and 

Middle East regions as they are located near large sources of dust, whose emissions are highly dependent on meteorological 
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fluctuations (wind speed). Over Europe, and to a lesser extent Russia, Belarus, Ukraine and North America, the increase in 

surface PM2.5 concentrations since 1850 peaked in the 1980s at 4 µg m-3 above the 2005-2014 mean value before decreasing 415 

over the last 30 years. This change is consistent with both observations and simulated changes in aerosols over this period in 

response to emission reductions from the implementation of air quality legislation (Leibensperger et al., 2012; Tørseth et al., 

2012; Daskalakis et al., 2016; Turnock et al., 2016; Archibald et al., 2017).         

 

Figure 10 – Changes in the regional and global annual mean surface PM2.5 concentrations, relative to a 2005-2014 mean value, across 420 
10 CMIP6 models. Changes for each region are computed as 10 year running means over the historical period. The multi-model 
mean 2005-2014 surface PM2.5 concentrations (+/- 1 standard deviation) are shown in the top left of each panel. Regions are defined 
in Figure S1. 
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5 Air Pollutants from Present-day to 2100 

An analysis is now made of the future projections of air pollutants in the CMIP6 Tier 1 scenarios, including ssp370-lowNTCF. 425 

A comparison is made of the projected future changes by 2050 and 2100 in four CMIP6 models which had the most data 

available for the ssp370 scenario.   

5.1 Surface Ozone 

Global annual mean surface O3 is reduced by more than 4 +/- 0.5 ppb (+/- 1 standard deviation value of the multi-model mean) 

in the near-term (2050) and by 8 +/- 1.0 ppb in 2100 in the strong air pollutant and climate mitigation scenario ssp126 (Figure 430 

11). Smaller reductions in global annual mean surface O3 are predicted for the middle of the road pathway (ssp245) of 3 +/- 

0.1 ppb by 2100. Whereas for the weak climate and air pollutant mitigation scenario ssp370, a global annual mean increase in 

surface O3 of 1.8 +/- 0.8 ppb in 2050 and 1.0 +/- 0.9 ppb is predicted by 2100. However, implementing strong emission controls 

for NTCFs on top of a weak climate mitigation scenario (ssp370-lowNTCF) shows that previous increases in global annual 

mean surface O3 can be substantially reduced to values that are 2 +/- 0.4 ppb below the 2005-2014 mean value in 2050, with 435 

benefits to air quality and climate (Allen et al., 2019). For ssp585, which has weak climate mitigation measures but strong air 

pollution controls, a near-term increase in global annual mean surface O3 of 2 +/- 0.7 ppb is predicted in 2050 but by 2100 

surface O3 reduces by 4 +/- 0.8 ppb, relative to 2005-2014, due to the implementation of air pollutant controls in the latter half 

of the 21st Century.     

The global response in annual mean surface O3 concentrations to the different scenarios is also repeated across the different 440 

world regions, albeit with differing magnitudes. In ssp370 increases in annual mean surface O3 are predicted to occur across 

North America (+1.9 ppb), Europe (+4.8 ppb) and East Asia (+7.5 ppb), with the largest increase predicted in South Asia of 

9.7 +/- 3.7 ppb by 2100. Surface O3 increases across most world regions in this scenario can be attributed to the large increase 

in global CH4 abundances (80%) and the large predicted increase in surface temperatures (Figure S13), despite the reductions 

in O3 precursor emissions across North America, Europe and East Asia (Fig. 2). South Asia shows the largest increase in 445 

surface O3 as precursor emissions are anticipated to increase across this region on top of the large climate change signal and 

growth in CH4 abundance. Additionally, the largest diversity in predictions between the CMIP6 models is shown over South 

Asia, indicating that there is some disagreement between the models as to the magnitude and extent of changes over this region. 

Surface O3 across oceanic regions (background) are predicted to remain at or near current values in ssp370 due to the increases 

in water vapour in a warming world leading to more O3 destruction (Doherty et al., 2013). The impact of more aggressive 450 

near-term reductions to emissions of NTCFs (but not CH4) on top of the ssp370 pathway is shown by the changes in the ssp370-

lowNTCF. In this pathway surface O3 concentrations are reduced globally and across most regions to be at or near 2005-2014 

values, a substantial benefit to surface O3 air quality compared to ssp370. Surface O3 concentrations are predicted to have 

almost halved by 2050 across South Asia in ssp370-lowNTCF. However, across East Asia the additional precursor emission 

https://doi.org/10.5194/acp-2019-1211
Preprint. Discussion started: 21 January 2020
c© Author(s) 2020. CC BY 4.0 License.



22 
 

reductions in ssp370-lowNTCF have made little difference to surface O3 concentrations predicted by the CMIP6 models, 455 

indicating that other factors are more important over this region (chemistry or climate change).  

Surface O3 concentrations predicted across northern hemisphere regions in ssp585 are similar to ssp370 due to comparable 

changes in air pollutant emissions and climate change. However, a notable exception is a reduction in surface O3 across regions 

towards the latter half of the 21st Century (post 2080) when there are additional reductions in precursor emissions and global 

CH4 abundances by 2100. Surface O3 is predicted to stay at or near 2005-2014 values until 2040 over South Asia in ssp585. 460 

This is despite increases in precursor emissions and changes in climate, indicating that there are potentially some changes in 

chemical O3 formation across this region in this scenario that constrain any increases in surface O3.  

The future scenario ssp245 (middle-of-the-road) predicts annual mean surface O3 concentrations that tend to remain at or near 

the 2005-2014 mean values by 2100 across the major anthropogenic source regions of the Northern Hemisphere, whereas for 

other tropical and southern hemisphere regions surface O3 concentrations are reduced by up to 4 ppb. The changes in ssp245 465 

are driven by larger precursor emission controls, a smaller climate change signal and controlling CH4 so that global abundances 

are just below 2015 values by 2100 (Fig. 1g). In ssp245 a near-term (up to 2040) increase in surface O3 is shown across Europe, 

East Asia and South Asia, which could be attributed to the peaking of global CH4 abundances at this point prior to then 

reducing. 

The Tier1 future scenario with the strongest climate and air pollutant mitigation measures, ssp126, shows substantial decreases 470 

in surface O3 concentrations across most regions due to the large reduction in precursor emissions, global CH4 abundances, 

and small climate change signal. Reductions in surface O3 of more than 8 ppb are predicted across anthropogenic emission 

source regions of the northern hemisphere, with smaller reductions across southern hemisphere regions. 

Predictions from the CMIP6 models show that to achieve global benefits for regional surface O3 it is important to control O3 

precursor emissions (including CH4) in addition to limiting future climate change. However, scenarios with large increases in 475 

global CH4 abundances, a large climate change signal and limited control of precursor emissions fail to restrict regional 

increases in surface O3, leading to poor future air quality and potential human health impacts (Silva et al., 2017).     
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Figure 11 – Future global and regional changes in annual mean surface O3, relative to 2005-2014 mean, for the different SSPs used 
in CMIP6. Each line represents a multi-model mean across the region with shading representing the +/- 1 standard deviation in the 480 
mean. See Table 1 for details of models contributing to each scenario. The multi-model regional mean value (+/- 1 standard deviation) 
for the year 2005-2014 is shown in the top left corner of each panel.  

A more detailed comparison of future surface O3 predictions between CMIP6 models has been undertaken for ssp370, as it is 

the scenario with the largest number of available models (Table 1). The regional change in decadal mean surface O3, relative 

to 2005-2014, in 2050 (2045 - 2055 mean) and 2095 (2090 – 2100 mean) for ssp370 from four CMIP6 models and the 485 

HTAP_param is shown in Figure 12. Discrepancies in the simulated response of background O3 across the ocean region (also 

South Pole and Pacific, Australia and New Zealand) are noticeable between individual models, with UKESM1 predicting a 

decrease in surface O3 compared to the small increase from the HTAP_param and other models in both 2050 and 2095 (Figure 

S14). UKESM1 is a model with high equilibrium climate sensitivity (ECS, 5.4 K) compared to other CMIP6 models (Forster 

et al., 2019; Sellar et al., 2019), and therefore will exhibit a larger climate response (surface temperature and water vapour) 490 

leading to enhanced background O3 destruction via water vapour and the hydroxyl radical (OH). Over the North Pole region 
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all models show surface O3 increases that are larger than the HTAP_param, indicating that the large temperature response or 

changes to long-range transport could be an important driver over this region with comparatively low local emissions.  

Differences in the predicted surface O3 between models exist across South Asia where CESM2-WACCM (and BCC-ESM1 in 

2050) predict a response that is twice as large as UKESM1 and GFDL-ESM4. The large increase in NOx emissions in this 495 

scenario over South Asia (~80%) has resulted in areas of NOx titration near the Indo-Gangetic plain in both UKESM1 and 

GFDL-ESM4, reducing surface O3 concentrations (Fig. S14). This feature of NOx titration of O3 is absent in both CESM2-

WACCM and BCC-ESM1, resulting in larger O3 production over South Asia. The comparison in Fig. 12 shows how the O3 

chemistry within models responds differently in a future scenario with a large climate change signal and over a region with 

large increases in local precursor emissions.    500 

Over South America and Southern Africa, particularly the tropical areas (Fig. S14), larger future changes in surface O3 are 

predicted by GFDL-ESM4/UKESM1 than CESM2-WACCM. Over this region, biogenic emissions (particularly isoprene) are 

an important source of O3 formation. Discrepancies in the magnitude of change in these emissions due to climate and land-use 

change could lead to the inter-model differences in surface O3. Total emissions of BVOCs (isoprene and monoterpenes) and 

their future change in ssp370 obtained from three models (Figure S15) show that CESM2-WACCM has larger emissions over 505 

the period 2005-2014 which increase in the future ssp370 scenario. Whereas, GFDL-ESM4 and UKESM1 have smaller 

increases in BVOC emissions with some emissions reducing over parts of Africa in UKESM1. The BVOC emission changes 

appear to have affected the future O3 formation differently in the individual models over these regions and represents an 

important process to understand further.  

Whilst there is disagreements between models over some regions, there is substantial consistency in the predicted increase to 510 

surface O3 in ssp370 over North America, Europe and East Asia, which is larger than that from HTAP_param. However, BCC-

ESM1 tends to predict a larger increase than the other three models, potentially due to the coarser resolution of this ESM. As 

most anthropogenic precursor emissions are decreasing in this scenario across all these regions, changes in climate and global 

CH4 abundances seem to be the major driver of surface O3 increases. 

The differences between the individual CMIP6 models highlight the importance of further understanding how future O3 515 

chemistry is affected by changes to precursor emissions and climate. The predicted differences in models can be quite 

pronounced over regions like South Asia where changes in one model can be double that of another model, which could have 

important consequences for future regional air quality.   
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Figure 12 – Future global and regional changes in the decadal annual mean surface O3, relative to the 2005-2014 mean, for the 520 
ssp370 pathway used in CMIP6. Each black circle represents the decadal mean response for an individual model in a) 2045-2055 
and b) 2090-2100, with the coloured bars showing the standard deviation across the decadal mean. The multi-model regional mean 
over the period 2005- 2014 is given towards the left of each panel. The response from the HTAP_param in each time period is shown 
by the separate gold circle. 

5.2 Surface PM2.5 525 

Relatively small global changes in annual mean surface PM2.5 are predicted for all CMIP6 models across all scenarios, with 

an increase in ssp370 and a reduction in the others. Small reductions in PM2.5 are predicted for all scenarios across Europe (0.3 

to 3 µg m-3) and North America (0.1 to 1.3 µg m-3) due to the reduction in aerosol and aerosol precursor emissions. Differences 

in PM2.5 between scenarios are highlighted across a number of regions.  

For the weak climate and air pollutant mitigation scenario ssp370, increases in annual mean surface PM2.5 are predicted across 530 

South Asia (7.4 +/- 3.4 µg m-3 by 2050 and 4.3 +/- 3.0 µg m-3 by 2100), South East Asia (3.0 +/- 5.3 µg m-3 by 2100), Southern 

Africa (1.9 +/- 4.5 µg m-3 by 2100), Central (3.3 +/- 3.5 µg m-3 by 2100) and South America (3.1 +/- 3.6 µg m-3 by 2100). The 
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increases in PM2.5 are driven mainly by the increase in aerosol and aerosol precursor emissions in this scenario (Fig. 2). 

However, there is a degree of uncertainty associated with all of these future predictions indicated by the large diversity across 

the CMIP6 models. Some of the largest predicted increases in surface PM2.5 occur across South Asia in ssp370, a region already 535 

with high present day PM2.5 concentrations. The increase in PM2.5 peak in 2050 across this region, which coincides with the 

increase of SO2, BC and OC emissions, before declining to 2100 when emissions reduce. Over East Asia, annual mean PM2.5 

concentrations are simulated to remain at or near 2005-2014 values until the latter half of the 21st Century when the decrease 

in emissions reduce PM2.5 concentrations by 2.8 +/- 2.6 µg m-3. The impact of reductions in NTCFs on top of the ssp370 

scenario act to constrain any increases of PM2.5 concentrations to near present day values across most regions. However, 540 

substantial reductions in PM2.5 concentrations of 5.6 +/- 2.1 µg m-3 and 5.9 +/- 1.4 µg m-3 below 2005-2014 values are achieved 

across East and South Asia respectively, by implementing these measures. Due to the short lifetime of aerosols in the 

atmosphere PM2.5 concentrations respond rapidly to the large cuts in emissions that occur in ssp370-lowNTCF and show the 

benefits to targeting these emissions, although there could be a potential climate impact (Allen et al., 2019). 

Reductions in annual mean surface PM2.5 are simulated across all regions for ssp126, ssp245 and ssp585. Differences exist in 545 

the magnitude and timing of PM2.5 reductions across regions linked to the changes in emissions. The largest reductions in 

PM2.5 occur over South Asia in 2100 and range from 12.1 +/- 1.9 µg m-3 in ssp126 to 9.1 +/- 1.9 µg m-3 in ssp585, a substantial 

benefit to regional air quality. Similar benefits to PM2.5 are achieved over East Asia by 2100 although the more rapid 

improvements occur over this region in the first part of the 21st Century.  

The response of PM2.5 concentrations is more variable, with a larger diversity across CMIP6 models within regions that are 550 

close to natural aerosol emission sources. This is particularly noticeable over North Africa where the variability across CMIP6 

models in dust emissions from the Saharan source region (Fig. S7) results in an uncertain PM2.5 response across this region. A 

similar response is also exhibited across the Middle East and Central Asia. The potential influence of BVOCs on SOA 

formation (Fig. S15 and S18) could also be contributing to the diversity in the CMIP6 model responses across the South 

America and Southern Africa regions.  555 

The CMIP6 models show that future reductions in aerosols and aerosol precursors will lead to a decrease in surface PM2.5 

concentrations across most world regions and a benefit to regional air quality (and human health), consistent with that from 

CMIP5. However if emissions are not controlled over economically developing regions such as South America, Asia and 

Africa then surface PM2.5 is anticipated to increase and worsen future regional air quality. Targeting emission reductions of 

NTCFs in the short-term shows the potential for rapid improvements in surface PM2.5 and air quality.    560 
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Figure 13 – Future global and regional changes in annual mean surface PM2.5, relative to 2005-2014 mean, for the different SSPs 
used in CMIP6. Each line represents a multi-model mean across the region with shading representing the +/- 1 standard deviation 
in the mean. See Table 1 for details of models contributing to each scenario. The multi-model regional mean value (+/- 1 standard 
deviation) for the year 2005-2014 is shown in the top left corner of each panel.  565 

In a similar analysis to surface O3, a more detailed comparison has been undertaken of four CMIP6 models predicting changes 

in surface PM2.5 in 2050 and 2095 under ssp370 (Figure 14). Small reductions in surface PM2.5 concentrations (<2 µg m-3) are 

simulated consistently by all CMIP6 models across North America and Europe in ssp370, mainly attributed to decreases in the 

BC and SO4 components. South Asia, the region with the largest simulated future change in surface PM2.5 of up to 12 µg m-3, 

shows fairly good agreement between three CMIP6 models (UKESM1, GFDL-ESM4 and CESM2-WACCM) as predictions 570 

in 2050 and 2095 are all within the range of each of the individual models. The MIROC-ES2L model predicts smaller future 

increases in surface PM2.5 than the other models across South Asia of up to 5 µg m-3 in both 2050 and 2095. This is a result of 

smaller changes in the BC, OA and sulphate aerosol components in the MIROC-ES2L model despite increases in aerosols and 

aerosol precursor emissions across South Asia in ssp370 (Figure S16-S18).  
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Disagreements in both the sign and magnitude of simulated future surface PM2.5 changes between CMIP6 models are also 575 

exhibited across East Asia. Small regional mean increases are predicted in 2050 for all models apart from GFDL-ESM4, 

attributed to a larger reduction in SO4 than other models across this region (Fig S17). In 2095 most models, apart from CESM2-

WACCM, simulate a reduction in PM2.5 concentrations across East Asia. All models simulate continual reductions out to 2100 

for SO4 across this region, whereas BC increases in the near-term before decreasing out to 2100. For OA, CESM2-WACCM 

shows larger increases over East Asia in both 2050 and 2095 compared to the other models, which show a smaller increase in 580 

2050 and a reduction by 2095 (Fig. S18). CESM2-WACCM includes a more complex treatment of SOA formation, showing 

a strong response to climate and historical trends in OA (Tilmes et al., 2019), which could explain the multi-model differences 

across East Asia. The discrepancies in CMIP6 models are not as obvious over South Asia as the effect of the increase in OA 

over South Asia in CESM2-WACCM is masked by coincident increases in other components across other models. CESM2-

WACCM also shows larger simulated increases in PM2.5 over South America, Central America, Southern Africa and South 585 

East Asia than other models, which can be attributed to the larger increase in the OA fraction in this model. However, over 

Southern Africa UKESM1 shows a reduction in future PM2.5, in contrast to the other models. This can again be attributed to a 

reduction in the OA fraction in UKESM1 (Fig. S18), related to potential changes in land use and a reduction in biogenic 

emissions (monoterpenes) across Southern Africa in ssp370 (Fig. S15), the main precursor to SOA formation in this model 

(Mulcahy et al., 2019). 590 

The decadal mean PM2.5 response is variable across individual CMIP6 models over regions close to natural sources of 

particulate matter (North Africa, Central Asia and Pacific, Australia and New Zealand). Over these regions there is a large 

range in both the sign and magnitude of the PM2.5 response, which can be mainly attributed to the dust fraction (Fig. S19) and 

the fact that this aerosol source has a large inter-annual variability in its emission strength. Interestingly, the CMIP6 models 

do not agree in the sign and magnitude of future changes to dust concentrations in ssp370 (Fig. S19).  595 

Across the ocean and North Pole regions all the CMIP6 models tend to simulate a small increase in PM2.5 concentrations, 

which can be attributed to increases in sea salt concentrations (Fig. S20). A strong increase in all models is simulated across 

the Southern Ocean (and other oceans), potentially driven by changes to meteorological conditions which increase wind speed 

and sea salt emissions. As ssp370 is a scenario with a large climate change signal, the increases in PM2.5 across the North Pole 

can be attributed to the melting of sea ice increasing sea salt emissions. However, the magnitude of this response is different 600 

in the CMIP6 models due to the underlying ECS and the response of Arctic surface temperatures within the individual model.  

The differences in the simulated future PM2.5 changes across the CMIP6 models in ssp370 highlight that it is important to 

consider how natural sources of aerosol respond in a future climate in addition to that from changes in anthropogenic emissions. 

Particular differences between models have been shown for dust, sea salt and also organic (secondary) aerosols, which should 

be explored further. In addition, the different representations of aerosols within individual models e.g. organic aerosols, are an 605 

important consideration as they can make a large difference to any future regional prediction of PM2.5.   
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Figure 14 – Future global and regional changes in the decadal annual mean surface PM2.5, relative to the 2005-2014 mean, for the 
ssp370 pathway used in CMIP6. Each black circle represents the decadal mean response for an individual model in a) 2045-2055 610 
and b) 2090-2100, with the coloured bars showing the standard deviation across the decadal mean. The multi-model regional mean 
over the period 2005- 2014 is given towards the left of each panel.  

6 Conclusions 

In this study we have provided an initial analysis of the historical and future changes in air pollutants (O3 and PM2.5) from the 

latest generation of Earth system and climate models that have submitted results from experiments conducted as part of CMIP6. 615 

Data was available from the historical experiments of 5 CMIP6 models for surface O3 and 10 models for surface PM2.5. 

Historical changes in regional concentrations of O3 and PM2.5 are presented over the period 1850 to 2014 using data from all 

models. A present day model evaluation of the CMIP6 models was conducted against surface observations of O3 and PM2.5 

obtained from the TOAR and GASSP databases respectively. An additional comparison was performed for simulated PM2.5 

concentrations against the MERRA-2 aerosol reanalysis product. An assessment is then made of the changes in surface O3 and 620 

PM2.5 simulated by the CMIP6 models across different future scenarios, ranging from weak to strong air pollutant and climate 

mitigation.  
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The 5 CMIP6 models simulate present day (2005-2014) surface O3 concentrations that are elevated in the Northern Hemisphere 

summer, with lower values throughout the year across the Southern Hemisphere. However, a large model diversity is shown 

across the continental Northern Hemisphere due to the large simulated seasonal cycles in certain models. Compared to surface 625 

O3 measurements, CMIP6 models consistently overpredict observed values in both summer and winter across most regions. 

An exception to this is at observation locations across Antarctica where CMIP6 models tend to underpredict observed values.     

Large surface PM2.5 concentrations are simulated in CMIP6 models near dust and anthropogenic emission source regions. 

Model diversity across the CMIP6 models is largest near the dust source regions due to their sensitivity to meteorological 

variability, whereas across other regions the CMIP6 models are relatively similar in their simulation of PM2.5 concentrations. 630 

Evaluating the approximate PM2.5 calculated from CMIP6 models (excluding nitrate aerosols) against ground based PM2.5 

observations shows a consistent underprediction across most regions. The underestimation of observations by models is larger 

in the northern hemisphere winter than summer, in part due to the absence of nitrate aerosols within most CMIP6 models and 

also due to underrepresentation of other aerosol processes within the global models. To improve the spatial coverage and 

consistency of the PM2.5 evaluation with CMIP6 models an additional comparison was made to the MERRA-2 aerosol 635 

reanalysis product. A similar underestimation of PM2.5 concentrations over Europe and North America was found in the 

comparison of CMIP6 models and MERRA-2, providing confidence in this result from the ground-based comparison. CMIP6 

models overestimated the PM2.5 concentrations in MERRA-2 over South and East Asia, contrary to the evaluation using ground 

based observations. Annual mean cycles simulated by CMIP6 models and MERRA-2 tend to agree across other regions for 

which there are no suitable ground-based observations. 640 

Across the historical period (1850-2014), the CMIP6 models simulated a global annual increase in surface O3 of between 7 

and 14 ppb. A global multi-model mean increase of 11.5 +/- 2.2 ppb was simulated by the CMIP6 models which agrees well 

with the change previously simulated by CMIP5 models. A large diversity in the historical change of surface O3 was simulated 

by CMIP6 models across South Asia and other Northern Hemisphere regions. CMIP6 models predicted larger historical 

changes in surface O3 than those from an emission-only driven parameterisation, indicating a potential climate change impact 645 

(Bloomer et al., 2009; Rasmussen et al., 2013; Colette et al., 2015) on surface O3 over the historical period. Small global 

increases in surface PM2.5 are simulated over the historical period by CMIP6 models, with larger regional changes of up to 12 

µg m-3 across East and South Asia. The largest diversity in the response of CMIP6 models occurs over Asian regions, with 

large interannual variabilities near dust source regions. CMIP6 models simulate the peak in PM2.5 concentrations in the 1980s 

across Europe and North America, prior to the decline in concentrations to present day resulting from air pollutant emission 650 

controls over these regions. 

The CMIP6 models predict surface O3 to increase across most regions in the weak mitigation scenarios (ssp370 and ssp585), 

particularly over South and East Asia (up to 10 ppb by 2100) due to a combination of increases in air pollutant emissions, 

increases in global CH4 abundances and climate change. Discrepancies exist in the regional surface O3 response in ssp370 

between individual CMIP6 models due to differences in the future response of chemistry, climate and biogenic precursor 655 
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emissions. Benefits to regional air quality from large reductions in surface O3 are possible across all regions for scenarios that 

contain strong climate and air pollutant mitigation measures, including those targeting CH4.  

CMIP6 models predict surface PM2.5 concentrations to decreases across all regions in both the middle-of-the-road (ssp245) 

and strong mitigation scenarios (ssp126) by up to 12 µg m-3 due to the reduction in anthropogenic aerosols and aerosol 

precursor emissions, yielding a benefit to regional air quality. Whereas for the weak climate and air pollutant mitigation 660 

scenario (ssp370), annual mean surface PM2.5 is simulated to increase across a number of regions. Implementing mitigation 

measures specifically targeting NTCFs on top of the ssp370 scenario shows immediate improvements in PM2.5 concentrations, 

restricting any changes to below present day values. The largest change in regional mean PM2.5 concentrations, and also largest 

diversity across CMIP6 models, is predicted in ssp370 across South Asia, an area with already poor air quality. Disagreements 

in the prediction of future changes to regional surface PM2.5 concentrations between individual CMIP6 models can mainly be 665 

attributed to differences in the aerosol schemes implemented within models, in particular the formation mechanisms of organic 

aerosols. Additionally, the strength of the climate change signal within models and how this can have important impacts on 

natural aerosol emissions leading to discrepancies between models.  

The results from CMIP6 provide an opportunity to assess the simulation of historical and future changes in air pollutants within 

the latest generation of Earth system and climate models using up to date scenarios of future socio-economic development. 670 

Large changes in air pollutants were simulated over the historical period, primarily in response to changes in anthropogenic 

emissions. Future regional concentrations of air pollutants depend on the particular trajectory of climate and air pollutant 

mitigation that the world follows, with important consequences for regional air quality and human health. Substantial benefits 

can be achieved across most world regions by implementing measures to mitigate the extent of climate change, as well as from 

large reductions in air pollutants emissions, including CH4 which is particularly important for controlling O3. In future 675 

scenarios which do not mitigate climate change and air pollutant emissions, the regional concentrations of air pollutants are 

anticipated to increase. Important differences between individual CMIP6 models have been identified in terms of how they 

treat the interaction of chemistry, climate and natural precursor emissions in the future. Further research and understanding is 

necessary of these processes to improve the robustness of regional predictions of air pollutants on climate change timescales 

(decadal to centennial).    680 

Data Availability 

CMIP6 data is archived at the Earth System Grid Federation and is freely available to download. A list of the model datasets 

used in this study are provided in Table 1.  
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