Historical and future changes in air pollutants from CMIP6 models

Steven T. Turnock1, Robert J. Allen2, Martin Andrews1, Susanne E. Bauer3,4, Louisa Emmons5, Peter Good1, Larry Horowitz6, Martine Michou7, Pierre Nabat7, Vaishali Naik6, David Neubauer8, Fiona M. O’Connor1, Dirk Olivie9, Michael Schulz9, Alistair Sellar1, Toshihiko Takemura10, Simone Tilmes5, Kostas Tsigaridis3,4, Tongwen Wu11, Jie Zhang11

1Met Office Hadley Centre, Exeter, UK
2Department of Earth and Planetary Sciences, University of California Riverside, Riverside, California, USA
3Center for Climate Systems Research, Columbia University, New York, NY, USA
4NASA Goddard Institute for Space Studies, New York, NY, USA
5Atmospheric Chemistry Observations and Modelling Lab, National Center for Atmospheric Research, Boulder, CO, USA
6DOC/NOAA/OAR/Geophysical Fluid Dynamics Laboratory. Biogeochemistry, Atmospheric Chemistry, and Ecology Division, Princeton, USA
7Centre National de Recherches Météorologiques (CNRM), Université de Toulouse, Météo-France, CNRS, Toulouse, France
8Institute of Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
9Division for Climate Modelling and Air Pollution, Norwegian Meteorological Institute, Oslo, Norway
10Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan
11Beijing Climate Center, China Meteorological Administration, Beijing, China

Correspondence to: Steven Turnock (steven.turnock@metoffice.gov.uk)

Supplementary Material

Contents

Figure S1 – Definition of Regions
Figures S2-S6 – Seasonal mean surface \(O_3\) concentrations from individual CMIP6 models compared to observations
Figures S7-S11 – Annual mean PM\textsubscript{2.5} component concentrations in 2005-2014 across the individual CMIP6 models
Figure S12 – Annual and seasonal mean PM\textsubscript{2.5} NO\textsubscript{3} component concentrations in 2005-2014 across the individual CMIP6 models that made the data available
Figure S13 – Regional surface temperature response across CMIP6 models for Tier 1 future scenarios
Figure S14 – Global plots of surface \(O_3\) response in ssp370 from 4 CMIP6 models
Figure S15 – Emissions of biogenic Volatile organic compounds across three CMIP6 models
Figure S16-S20 - Annual mean response of PM\textsubscript{2.5} component concentrations in ssp370 across four individual CMIP6 models

1
Figure S1 – Definition of regions used in the study, based on those used in Phase 2 of the Hemispheric Transport of Air Pollutants (HTAP2)

Figure S2 – Seasonal mean surface O_3 concentrations from UKESM1 in a) December January, February (DJF) and c) June, July, August (JJA) over the 2005-2014 period. Difference between the UKESM1 mean and TOAR observations for b) DJF and d) JJA.
Figure S3 – Seasonal mean surface O_3 concentrations from BCC-ESM1 in a) December January, February (DJF) and c) June, July, August (JJA) over the 2005-2014 period. Difference between the BCC-ESM1 mean and TOAR observations for b) DJF and d) JJA.

Figure S4 – Seasonal mean surface O_3 concentrations from CESM2 in a) December January, February (DJF) and c) June, July, August (JJA) over the 2005-2014 period. Difference between the CESM2 mean and TOAR observations for b) DJF and d) JJA.
Figure S5 – Seasonal mean surface O\textsubscript{3} concentrations from GFDL-ESM4 in a) December January, February (DJF) and c) June, July, August (JJA) over the 2005-2014 period. Difference between the GFDL-ESM4 mean and TOAR observations for b) DJF and d) JJA.

Figure S6 – Seasonal mean surface O\textsubscript{3} concentrations from GISS-E2-1-H in a) December January, February (DJF) and c) June, July, August (JJA) over the 2005-2014 period. Difference between the GISS-E2-1-H mean and TOAR observations for b) DJF and d) JJA.
Figure S7 – Annual mean PM$_{2.5}$ dust component calculated for each individual CMIP6 model over the period 2005-2014

Figure S8 – Annual mean PM$_{2.5}$ SO$_4$ component calculated for each individual CMIP6 model over the period 2005-2014
Figure S9 – Annual mean PM$_{2.5}$ BC component calculated for each individual CMIP6 model over the period 2005-2014.

Figure S10 – Annual mean PM$_{2.5}$ OA component calculated for each individual CMIP6 model over the period 2005-2014.
Figure S11 – Annual mean PM$_{2.5}$ SS component calculated for each individual CMIP6 model over the period 2005-2014

Figure S12 – Annual and seasonal mean PM$_{2.5}$ NO$_3$ (nitrate) component calculated for each individual CMIP6 model that made the data available over the period 2005-2014
Figure S13 – Regional surface air temperature response across 5 CMIP6 models (CESM2-WACCM, CNRM-ESM2-1, GFDL-ESM4, MIROC-ES2L and UKESM1) for the Tier 1 future scenarios. Each line represents a multi-model mean across the region with shading representing the +/- 1 standard deviation in the mean. The multi-model regional mean value (+/- 1 standard deviation) for the year 2005-2014 is shown in the top left corner of each panel.
Figure S14 – Annual mean surface O$_3$ concentrations and future response in ssp370 across four different CMIP6 models. Top row shows the 2005-2014 annual mean surface O$_3$ concentrations in each model from the historical simulations. Middle row shows the surface O$_3$ response in 2050, relative to 2005-2014 mean, in each model for ssp370. Bottom row shows the same as the middle but for 2100. No data is presented in 2100 for BCC-ESM1 as data for ssp370 only extended out to 2055.
Figure S15 – Annual mean emissions of total biogenic volatile organic compounds across CMIP6 models. Top row shows the 2005-2014 annual mean emissions in each model from the historical simulations. Middle row shows 2050 change in emissions, relative to 2005-2014 mean, in each model for ssp370. Bottom row shows the same as the middle but for 2100.
Figure S16 – Annual mean surface PM$_{2.5}$ black carbon concentrations and future response in ssp370 across four different CMIP6 models. Top row shows the 2005-2014 annual mean surface PM$_{2.5}$ black carbon concentrations in each model from the historical simulations. Middle row shows the decadal mean surface PM$_{2.5}$ black carbon response in 2050 (2045-2055), relative to 2005-2014 mean, in each model for ssp370. Bottom row shows the same as the middle but for 2095 (2090-2100).
Figure S17 – same as Fig S16 but for PM$_{2.5}$ sulphate

Figure S18 – same as Fig S16 but for PM$_{2.5}$ organic aerosol
Figure S19 – same as Fig S16 but for PM$_{2.5}$ dust

Figure S20 – same as Fig S16 but for PM$_{2.5}$ sea salt