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We would like to thank both of the reviewers for their helpful and constructive comments. Below we 
have responded to each comment in turn and made alterations to the manuscript where appropriate 
(shown enclosed in “speech marks and italic font” and any deletions from the manuscript shown with 

a strikethrough “example”). The referee comments are shown first in grey shading and the author’s 
response is shown below in normal font. 
 
We would like to note that all analyses have been updated based on current model availability to aid 

in the response to the reviewers comments below. Minor changes to the text and figures have been 

made to reflect this. This includes the addition of both surface O3 and PM2.5 data from a new CMIP6 

model, MRI-ESM2-0. Furthermore, the use of data from the GISS-E2-1-H model has been replaced by 

that from GISS-E2-1-G, as data is available from both future and historical scenarios with this 

configuration of the GISS model. A different ocean is coupled to the same atmosphere in the two 

versions of the GISS-E2-1 model, which does not make any significant changes to the regional 

simulation of air pollutants. Additional data has also now been included for more future scenarios 

from CMIP6 models already included within the manuscript. The overall results and conclusions of the 

paper remain unchanged. 

Response to Referee 1 

This comprehensive manuscript interrogates past and future changes to surface ozone and PM2.5 air 

pollution in state-of-the-science multi-model simulations from AerChemMIP/CMIP6 using updated 

historical and future emissions datasets. The manuscript is thorough and extremely clear and 

represents a very large simulation and analyses workload involving multiple international institutes. It 

is important to document the validation of the state of the science global Earth system models and 

assess the surface air quality responses to past and future global change for new updated emission 

scenarios. The methodology is sound and the Figures are clear. It may be possible to slightly reduce 

the number of Figures in the main manuscript further. The multi-model evaluation of surface ozone 

and PM2.5 is highly valuable to the entire chemistry-climate scientific community. The manuscript 

discusses changes to both emissions climate, but these are mostly qualitative, and even intuitive, 

rather than quantitative because none of the applied simulation protocols formally separate out 

climate change versus emissions change impacts. The authors have done an excellent job with the 

available datasets and from this perspective the paper is appropriate for publication. However, the 

results raise some challenging questions about the usage of these global models for surface air quality 

research. For instance, human health effects calculations depend explicitly on absolute concentrations 

for exposure. There are some more detailed comments/questions to consider below. 

1. The systematic model overestimate of surface ozone across all models is striking (e.g. Fig. 3(c) 

and (f)). From Fig. 4 for the NAM and EU where there is by far the most data, all models are unable 

to reproduce the seasonal dynamics (maximum in NH spring and gradually decreasing through 

the summer months). The authors offer some possible explanations: “The overestimation in the 

CMIP6 models analysed here could be due to the coarse resolution of the ESMs, an excess of O3 

chemical production (potentially due to an overabundance of NOx and/or VOCs) and weak O3 

deposition.”. If possible, it would be good to have a more robust and clear explanation and 



understanding of the systematic overestimate and poor seasonal dynamics? Is the coarse 

resolution problem related to directly injecting the NOx emissions across the large spatial extent 

~2degx2deg (~200km) grid cells? Where the ozone production regime will be highly NOx-limited 

at this scale? What is needed from the community to improve/address the systematic positive 

bias in surface ozone simulations in global models? 

I would like to thank the reviewer for their comment on the discrepancies between models and 

observations, which is an ongoing topic of research within the global chemistry climate modelling 

community. The simulated overestimation of surface O3 concentrations by CMIP6 models presented 

in this manuscript is consistent with those from previous work in the comparison of 15 ACCMIP models 

against TOAR observations by Young et al., (2018). Young et al., (2018) (and references therein to 

other previous model evaluation studies) also found that ACCMIP models overestimated observed 

surface O3 concentrations, as well as simulated peak surface O3 concentrations later in the year than 

observations, which is consistent with the seasonality simulated by the CMIP6 models (Fig. 4). The 

overestimation of observed surface O3 concentrations in the northern hemisphere is common across 

global models and is a persistent feature in model evaluations across numerous different generations 

of models. Therefore, it is most likely that the overestimation is due to an issue that is commonplace 

across all models, such as uncertainties in emission inventories or processes that are represented in a 

similar way in models e.g. deposition. Performing additional sensitivity experiments using a range of 

emission inventories or deposition schemes would aid in the understanding if these were key issues 

in contributing to the model biases. 

One such way to identify drivers of uncertainties in models is to conduct a sensitivity analysis on global 

chemistry-climate models by analysing the sensitivity of O3 to variations in different model parameters 

(Wild et al., 2020). Tropospheric O3 was found in the study of Wild et al. (2020) to show a large 

sensitivity to atmospheric water vapour, precursor emissions and dry deposition processes in three 

global chemistry-climate models. A more detailed global sensitivity study applied specifically to 

surface O3 formation, would have the potential to highlight where key areas of research are needed 

to improve model simulations. Additionally if the sensitivity study were to be combined with 

observational constraint, as done in other studies for aerosols (Johnson et al., 2019), then this work 

has the potential to further identify the reasons for model uncertainties and highlight where 

improvements are needed in the simulation of ozone formation.  

When considering the impact that horizontal resolution could have, model evaluation studies using 

regional composition models (with finer horizontal resolution than global models) across Europe, 

North America and East Asia have reported improvements in the simulation of surface O3 when 

compared to observations, but also that certain models overestimate surface O3 (Gao et al., 2018; Im 

et al., 2018). Analysing the impacts of model resolution on tropospheric O3 production shows 

improvements in the simulation of O3 going from ~600 km to 120 km horizontal resolution (reduced 

O3 production over polluted regions), but also finds that this resolution is still too coarse to sufficiently 

resolve regional O3 production (Wild and Prather, 2006). In addition, a comparison of the simulation 

of air pollutants using different model resolutions in Neal et al., (2017), highlighted benefits in using 

higher resolution modelling in the simulation of primary pollutants from improved emissions, but only 

modest improvements for secondary pollutants like O3 and PM2.5. Enhancing the relatively coarse 

resolution of global models, and the benefits of higher resolution emissions and other processes, 

might improve the simulation of surface O3 but would not necessarily account for all of the model-

observational discrepancies. 

Whilst the aim of the current study was to highlight discrepancies in surface O3 between the latest 

generation of CMIP6 models and observations, it was not intended to provide a detailed explanation 



of the causes of this discrepancy within individual models. Further work is required to explore the 

reasons for the differences between individual CMIP6 models and observations, which would need to 

be the subject of future research, potentially using global sensitivity analysis, process studies and 

simulations at finer resolution.  

However, a couple of changes to the manuscript have been included below to improve the description 

of the evaluation work. 

The sentences on Page 9 line 266-268 have been amended to the following: 

“The model observational comparison of CMIP6 models to the TOAR observations are consistent across 

all models and with the previous evaluation of ACCMIP models (Young et al., 2018) . This indicates a 

common source of error within models, for example uncertainties in emission inventories, deposition 

processes or vertical mixing (Wild et al., 2020). In addition, the coarse resolution of the ESMs could 

lead to an overproduction of O3 across polluted regions, with finer resolutions exhibiting improvements 

in the simulation of surface O3 (Wild and Prather, 2006; Neal et al., 2017).” 

A new sentence has been included on page 30 line 640: 

“The comparison of surface O3 and PM2.5 simulated by CMIP6 models to observations shows similar 

biases to previous generations of global composition-climate models. Further studies are required (e.g. 

global sensitivity or process studies) to explore the uncertainties in models and the differences with 

observations.” 

2. The systematic underestimate in monthly PM2.5 in NAM, EU and EAS (Fig. 6) is troubling. Can it 

really be explained only by the missing nitrate component? Are there other fundamental missing 

or misrepresented processes? Output from these models is more frequently being used to assess 

health impacts, for example, premature mortality due to outdoor air pollution exposure (PM2.5 

and ozone) but such application would not be justified based on the model/measurement 

comparison here. It could be argued from the model/measurement evaluation that the models 

cannot be applied as tools to study the surface air quality? 

 

The reviewer is correct in that the underestimation of observed PM2.5 by the CMIP6 models cannot be 

solely attributed to the exclusion of nitrate aerosol mass but is potentially due to a number of issues, 

which are also found in other model evaluation studies. Figure S12 (now S13) shows that the surface 

mass concentrations of nitrate aerosols from two CMIP6 models could make a small contribution to 

the total PM2.5 concentrations, particularly in northern hemisphere winter months (Bauer et al., 2016). 

On page 13 lines 326 to 328 we mention that including the nitrate aerosol mass fraction could account 

for some, but not all of the discrepancy in PM2.5 between models and observations. In addition, the 

MERRA-2 reanalysis product has been constructed in the same way as PM2.5 has been computed from 

the CMIP6 models, by not including the mass from nitrate aerosols. Page 13 lines 328 to 330 makes 

the point that the CMIP6 models still show an underestimation of the MERRA-2 product, and that 

differences are due to errors in other aerosol sources and processes.  

 

Other studies performing single and multi-model evaluation of global and regional models against 

observations across North America, Europe and Asia found that simulated concentrations of fine mode 

aerosols tended to be underestimated due to a number of possible reasons including: errors in 

emissions, simulated meteorology and aerosol formation mechanisms for both inorganic and 

secondary organic aerosols (Tsigaridis et al., 2014; Pan et al., 2015; Glotfelty et al., 2017; Solazzo et 

al., 2017; Im et al., 2018). On page 12 lines 313 to 317 of the manuscript we highlighted the potential 



reasons for some of the model-observational discrepancy and the similarity to other studies. This text 

has now been slightly modified to the following: 

 

“Nevertheless, the evaluation highlights that fine particulate matter (PM2.5) is generally 

underrepresented in the CMIP6 models across North America, Europe and parts of Asia for which 

observations are available; a similar result to other studies evaluating global and regional models 

(Tsigaridis et al., 2014; Pan et al., 2015; Glotfelty et al., 2017; Solazzo et al., 2017; Im et al., 2018 ).  

Numerous reasons potentially exist for the model observation discrepancy shown here and in other 

studies including uncertainties in emissions inventories (e.g. local dust sources), errors in wet/dry 

deposition, the absence/underrepresentation of aerosol formation processes (e.g. organic aerosols) 

and the coarse resolution of global models leading to errors in emissions and simulated meteorology. 

Understanding the causes of model observational discrepancies is an area of active research and 

should be explored in further research, for example in a global multi-model sensitivity study that 

explores model uncertainties.” 

 

The reviewer points out that the underestimation of PM2.5 by CMIP6 models might preclude their use 

for studying the health impacts of air quality. Air pollutant concentrations from coarser resolution 

models have previously been shown to produce lower health impacts than those from models with a 

finer horizontal resolution (Punger and West, 2013; Li et al., 2016; Silva et al., 2016a). However, air 

pollutant concentrations from global model simulations (including those of CMIP5 models) have been 

successfully utilised in health impact studies by using the change in concentrations between the future 

and present day (as they are able to reproduce the relationship between concentrations and 

emissions/climate, see response to point 3 below) or applying correction factors to account for the 

anticipated underestimations in concentrations in the present day, particularly across urban areas 

(Silva et al., 2016b; Butt et al., 2017; Chowdhury et al., 2018; Bauer et al., 2019). It should also be 

noted that there are large uncertainties in the exposure response functions used in health impact 

studies that relate exposure of air pollutants to human health impacts (Jerrett et al., 2009; Burnett et 

al., 2014). Health impact studies, including those used within the global burden of disease assessment, 

have used a combination of global modelling, satellite remote sensing products and ground based 

observations to generate PM2.5 concentrations with greater precision, reducing some of the simulated 

biases from global composition models (van Donkelaar et al., 2010; Brauer et al., 2016; Jerrett et al., 

2017). We would therefore recommend that any studies wanting to use output from CMIP6 models 

to study the future health impacts from changes in air quality consider the different techniques and 

methods outlined in some of the above studies. 

  

3. How reliable are the model simulations of past and future changes when the monthly mean 

surface air quality concentrations cannot be reproduced by the models and there are clear 

systematic biases? 

Whilst there are model observational biases in the absolute magnitude of the present day simulations 

of both surface O3 and PM2.5 in the CMIP6 models, there is some confidence in the ability of models 

to simulate temporal changes when compared to long-term historical observations. 

Long term changes in surface O3 concentrations from CMIP6 models have been evaluated in the 

tropospheric O3 CMIP6 companion paper of Griffiths et al., (2019) at four remote locations with the 

longest observational record over the second half of the twentieth century. Figure 4 of Griffiths et al., 

(2019) shows that the CMIP6 models are able to reproduce the observed multi-decadal changes in 

surface O3, providing some confidence in the ability of CMIP6 models to simulate future changes. 

Young et al., (2018) presented a summary of the ability of the previous generation of global chemistry 



climate models to simulate long term changes in surface O3 based on the comparisons in Parrish et 

al., (2014). This showed that selected CMIP5 models had areas of agreement and disagreement with 

long-term measurements of O3 concentrations at northern midlatitudes. However, the models were 

reported to underestimate the observed long-term changes in surface O3 by ~50%. The evaluation 

highlighted a number of limitations in long-term comparisons from uncertainties in emission changes, 

observational records, sampling biases and low frequency variability influencing observed O3 

concentrations that is not simulated by models. Therefore, any future predictions of changes in 

surface O3 by CMIP6 models could be similarly uncertain and represent a conservative estimate of 

change. The long-term comparison of models and observations is an area of active research and is 

currently being undertaken in other studies using output from CMIP6 models, with any results from 

this providing information on the ability of CMIP6 models to simulate changes in surface O3.  

The absence of long historical records of fine particulate matter concentrations at the surface have 

limited the ability to evaluate any changes simulated by models over a multi-decadal period. The 

longest records of such data exist over Europe and North America and this is where long-term 

evaluations have tended to be focussed. Studies evaluating global composition models over these 

regions and at other locations have tended to show that models are able to reproduce the multi-

decadal trends in aerosol components, particularly sulphate, and aerosol optical depth (AOD) 

(Lamarque et al., 2010; Pozzoli et al., 2011; Leibensperger et al., 2012; Chin et al., 2014; Turnock et 

al., 2015; Aas et al., 2019). CMIP5 models were previously shown to have a reasonable reproduction 

of satellite trends in AOD since the 1980s (Shindell et al., 2013). Simulated aerosol trends in AOD, 

sulphate and particulate matter from global composition models, including a number of CMIP6 

models, have been shown to be able to reproduce observed changes over the last two decades 

(Mortier et al., 2020). These studies all provide confidence in the simulation of past and future 

changes in fine particulate matter within global composition models, even though the magnitude of 

present day concentrations is underestimated.  

There is some confidence in the ability of global models to reproduce long term observed changes in 

air pollutants from previous studies, although this will require further research using the latest 

generation of models contributing to CMIP6 to understand the reasons for any discrepancies. 

Nevertheless, multi-decadal changes in air pollutants simulated by CMIP6 models in different future 

scenarios provide a useful indication of future changes in air pollutants under different pathways of 

emissions and climate change, even if there are potential uncertainties associated with the 

projections. 

The ability of CMIP6 models to reproduce long term changes in surface O3 was mentioned on p18, 

lines 384-386. We have amended this sentence to that below for additional clarity. 

“An evaluation of the long-term changes in surface O3 over the historical period simulated by the 

CMIP6 models at specific measurement locations is presented separately in the tropospheric O3 CMIP6 

companion paper of Griffiths et al., (2019). This shows that the CMIP6 models can reasonably 

represent long term changes in surface ozone since the 1960s, providing a degree of confidence in the 

future projection of changes in the CMIP6 scenarios. However, long term changes in simulated surface 

O3 from the previous generation of global composition climate models (CMIP5) were found to 

underestimate the observed trend at northern hemisphere monitoring locations (Parrish et al., 2014). 

Further comparisons of long-term historical observations of surface O3 with that simulated by CMIP6 

models is outside the scope of the current work but will be the subject of future research.”  

The sentence on page 20 lines 416-418 has been replaced with the following: 



“There is limited long-term multi-decadal observational data available to assess changes in aerosols 

simulated by global models. Previous studies using long-term data since the 1980s, mainly over Europe 

and North America, have found that global models are able to reproduce the observed multi-decadal 

changes in aerosols relatively well (Pozzoli et al., 2011; Leibensperger et al., 2012; Tørseth et al., 2012; 

Chin et al., 2014; Turnock et al., 2015; Aas et al., 2019). More recently, global composition models, 

including some CMIP6 models, were shown to be able to reproduce the observed changes in AOD, 

sulphate and particulate matter over the last two decades (Mortier et al., 2020). The ability of global 

composition models to reproduce historical changes in aerosols provides a degree of confidence in the 

future projections under the CMIP6 scenarios. Further model observational comparisons of multi-

decadal changes in aerosols will need to be undertaken to improve the understanding of changing 

aerosol properties and processes.” 

4. Fig. 9. I find this Figure also striking in the diversity of model results for historical surface ozone 

evolution. Why does the GISS model have such large changes/sensitivities to the PI-PD? Esp. for 

Europe, S. Asia and E. Asia (but not SE Asia + less polluted SH regions)? Does the GISS model gas-

phase chemistry have a larger sensitivity to NOx changes than other models and why? The GISS 

model is also an outlier in Fig. 10 for evolution of PM2.5 over S. Asia region specifically? What is 

the value of the multimodel mean in e.g. Fig. 13 when there is such large diversity of sensitivities 

shown in Figs. 9&10? 

As the reviewer points out, Figure 9 shows that there is a large diversity in the regional surface O3 

response over the historical period across the CMIP6 models. In the revised manuscript the regional 

surface O3 response from an additional model (MRI-ESM2-0) has been included on Figure 9, which 

doesn’t change the overall result but adds to the multi-model mean.  

Further investigation has been undertaken into the different historical changes in surface O3 

concentrations from CMIP6 models with the regional annual mean absolute concentrations over the 

historical period shown in a new Figure S15 below and the spatial annual mean concentrations in 

2005-2014, 1980-1989 and 1850-159 shown in a new Figure S14 below. Figure S14 and S15 show that 

there is a range of surface O3 concentrations simulated by CMIP6 models over different regions 

particularly in 1850, with more agreement between models towards the present day.  However, there 

is a noticeable difference in the regional change of simulated surface O3 concentrations over the 

historical period in different models (Fig. S15). Out of all the CMIP6 models, UKESM1 tends to simulate 

some of the smallest changes in regional annual mean surface O3 concentrations over the historical 

period due to having larger concentrations in the 1850s and some of the smallest concentrations in 

recent decades. Whilst the opposite response is true for simulated regional annual mean surface O3 

concentrations in the GISS-E2-1-G model (smallest 1850 and largest 2015 concentrations), resulting in 

some of the largest regional mean changes in annual mean surface O3 shown on Figure 9.  

Uncertainties in the simulation of pre-industrial O3 concentrations across models is one of the 

contributing factors to the diversity of the response in historical surface O3 across models. Figure S14 

shows that there is significant diversity in the simulated pre-industrial O3 concentrations across CMIP6 

models due to the lack of observation data for validation purposes. Uncertainties arise in the 

simulation of the pre-industrial O3 state due to differences in meteorology and chemical mechanisms, 

in particularly the simulation of NOx and natural emission sources of O3 precursors (isoprene) in this 

period, which can dominate O3 formation.  

In addition, the difference in the historical simulation of surface O3 concentrations across CMIP6 

models could be due to the chemical sensitivity of each model to NOx concentrations in the different 

time periods and the change in concentrations between them. A comparison of the regional annual 



mean surface O3 concentrations and regional annual mean NOx (NO + NO2) concentrations for three 

time periods (new Figure S17 as shown below) highlights the different chemical sensitivities of O3 

formation to NOx across models. Across most regions the higher NOx concentrations in UKESM1 have 

tended to result in higher surface O3 concentrations in the 1850s and lower in the present day. 

Whereas for GISS-E2-1-G the lower NOx concentrations have tended to result in the lower surface O3 

concentrations in the 1850s and higher concentrations in the present day period, indicating a shift in 

chemical environments over time. The large sensitivity of O3 formation to surface NOx concentrations 

in the GISS model was also shown in the global sensitivity study of Wild et al., (2020). The sensitivity 

of surface O3 formation to different historical NOx concentrations is particularly noticeable in most 

models over South Asia (due to the large regional changes in NOx) but especially evident in GISS-E2-

1-G, which results in its large surface O3 response over this region. Additionally, the large increase in 

PM2.5 over the historical period in South Asia (Fig. S18 below) could also influence the heterogeneous 

loss of radicals to aerosols and therefore also changes to O3. 

 

Figure S14 - Annual mean surface O3 concentrations across 6 CMIP6 models over the period 2005-2014 (top 
row), 1980-1989 (middle row) and 1850-1859 (bottom row). 



 

Figure S15 - Regional and global annual mean surface O3 concentrations across 6 CMIP6 models and the 
HTAP_param. The multi-model annual mean year 2005-2014 surface O3 concentrations (+/- 1 standard 
deviation) are shown in the top left of each panel. Regions are defined in Figure S1. 



 

Figure S17 – Annual mean regional surface O3 concentrations compared to regional annual mean surface NOx 
(NO + NO2) concentrations across 6 CMIP6 models over three ten-year periods of 1850-1859 (circles), 1980-1989 
(diamonds) and 2005-2014 (triangle).  

As the reviewer points out the change in historical surface PM2.5 from GISS-E2-1-G on Figure 10 is also 

shown to be smaller than other CMIP6 models over South Asia. Like for surface O3, a revised Figure 10 

has now been produced to include the additional model results from MRI-ESM2-0, which hasn’t 

altered the overall result. A new Figure S18 below shows the pre-industrial to present day change in 

total annual mean surface PM2.5 and from each individual component. Looking at the historical change 

in each aerosol component highlights that over South Asia, the response in GISS-E2-1-G is the smallest 

from all CMIP6 models for sulphate and one of the smallest for black carbon and organic aerosol. The 

combination of the smaller response in all anthropogenic aerosol components from GISS-E2-1-G over 

South Asia results in the smaller response in historical  total PM2.5 concentrations shown on Figure 10 

and below. 



 

Figure S18 – Pre-industrial (1850-1859 mean) to present day (2005-2014 mean) changes in the regional and 
global annual mean surface total PM2.5 concentrations (PM) and that from each individual component (BC – 
black carbon, DU – dust, SU – sulphate, OA – organic aerosol and SS – sea salt). Individual circles represent each 
annual and seasonal mean changes from the 11 individual CMIP6 models, with the multi-model mean 
represented by the solid bar. The. Regions are defined in Figure S1.  

Showing the diversity in response across CMIP6 models is useful as this identifies where the models 

(with different chemistry and meteorology) agree but also where there is disagreement and 

uncertainties in the simulated surface O3 response.  This could help identify further research priorities 

to understand the differences between models. The multi-model means shown on Figure 11 and 13 

(now Fig. 14) also contain a shaded area which shows the diversity in the simulated response across 

CMIP6 models (+ 1 standard deviation of the multi-model mean). We feel that it is useful to show the 

multi-model mean as it provides a degree of confidence in the future projections and allows the reader 

to identify where there is agreement between models in the simulated future response (such as 

Europe) but also where there is disagreement and uncertainty in the range of potential future model 

responses (e.g. over South Asia in ssp370). Where there is significant model diversity, we feel that 

including a multi-model mean with a degree of uncertainty provides useful information on the 

confidence in future predictions of surface air pollutants across different CMIP6 models.  

We have made the following changes to the manuscript to reflect the above discussion on historical 

changes in surface O3 and PM2.5.  

The sentence on page 17, line 379 has been amended as follow: 

“The simulated changes in surface O3 across 6 CMIP6 models and the HTAP_param are shown in Figure 

9 and Figure S14-S15 over the historical period of 1850 to 2014.” 



A new sentence has been inserted on Page 18, line 388. 

“The large diversity across CMIP6 models in the surface O3 response over the historical period can be 

attributed to the different magnitude of simulated O3 concentrations in the 1850 period (Figure S14) 

and the rate of change in regional mean O3 concentrations (Figure S15), which is related to the different 

chemical sensitivity of O3 formation in each model to changing NOx concentrations over the historical 

period (Figure S17).” 

The sentence on page 18, line 391 has been amended to the following: 

“South Asia is the region with the largest diversity in simulated historical changes in surface O3 of 

between 16 and 40 ppb, with a larger range in DJF (10-40 ppb) than in JJA (19-36 ppb). The large 

diversity in CMIP6 models is attributed to the large differences in simulated NOx concentrations, and 

hence chemical sensitivities of O3 formation, occurring across South Asia (Figure S17). In addition, the 

large historical change in PM2.5 over this region (Fig. S18) could alter the heterogeneous loss rate of 

radicals to aerosols and therefore also affect O3 formation.” 

The sentence on Page 19, line 410-412 has been amended as follows: 

“The largest model diversity is also exhibited over the Asian regions with variations in the response 

between models of up to 50%, potentially simulation  dust emissions and simulation of organic aerosols 

with larger differences between models in DJF than JJA (Figure S16), reflecting the differences shown 

in the present day model evaluation (Fig. 6). The inter-model differences can be attributed to the 

different simulation of historical changes in the anthropogenic components sulphate, black carbon and 

organic aerosols (Figure S18).” 

5. “Surface O3 increases across most world regions in this scenario can be attributed to the large 

increase in global CH4 abundances (80%) and the large predicted increase in surface 

temperatures”. Why do increases in surface temperature increase surface ozone concentrations 

independent of emissions? What is the mechanism? Is it temperature, or co-varying stagnation 

or light/downward SW? How do we know it is temperature with 100% certainty as stated here? 

We thank the reviewer for the comment on this particular sentence, which was an attempt to identify 

the importance of changes in CH4 and climate on regional surface O3 concentrations in the ssp370 

scenario, despite the reductions in precursor emissions over certain regions. Previous work has shown 

that climate change can have an important impact on surface and tropospheric O3 concentrations; the 

ozone climate penalty (Rasmussen et al., 2013; Stevenson et al., 2013; Colette et al., 2015). In addition, 

the importance of future changes in global CH4 abundance for surface O3 concentrations has been 

previously shown (Fiore et al., 2009; Wild et al., 2012; Young et al., 2013; Turnock et al., 2019). 

Therefore, the purpose of the sentence mentioned by the reviewer was to highlight the continued 

importance of these drivers in the SSPs used in CMIP6 models, although we appreciate that the 

sentence needs to be clearer.  

Therefore, the sentence on P21 line 443 has been amended to improve its clarity as follow: 

“Despite the reductions in O3 precursor emissions across North America, Europe and East Asia by 2100 

(Fig. 2) surface O3 concentrations have continued to increase up to the end of this period, indicating 

the importance of future changes in chemistry, global CH4 abundances and climate on the response of 

surface O3 in ssp370 (Wild et al., 2012; Gao et al., 2013; Rasmussen et al., 2013; Young et al., 2013; 

Colette et al., 2015; Fortems-Cheiney et al., 2017; Li et al., 2017; Turnock et al., 2019).” 



In addition, future model experiments utilising a fixed climate signal, as well sensitivity studies 

involving CH4, are currently being undertaken by the Aerosol Chemistry Model Intercomparison 

Project (AerChemMIP). This will enable the quantification of the impact from changes in climate and 

CH4 on future air pollutants, which will inform future studies on the importance of these processes.  

6.  “across East Asia the additional precursor emission reductions in ssp370-lowNTCF have made 

little difference to surface O3 concentrations predicted by the CMIP6 models, indicating that 

other factors are more important over this region (chemistry or climate change).” This result is 

critically important. So, aggressive mitigation of ozone precursors has no impact on the surface 

ozone concentrations in this region relative to a scenario with those precursors? What is the 

reason for surface ozone in East Asia to be independent of ozone precursor emission changes 

under this level of global change? Further explanation is needed. Are there climatic feedbacks 

from the precursors themselves that are offsetting the changes? 

The apparent small change in surface O3 for the ssp370-lowNTCF scenario over East Asia can be initially 

attributed to only having a three model ensemble of results available for this future scenario at the 

time of manuscript submission. One model (BCC-ESM1) shows a larger response of surface O3 in 2050 

in both the ssp370 (original Figure S14, now changed to S19) and ssp370-lowNTCF scenarios than the 

other two models, which had a disproportionate impact on the multi-model mean shown in Figure 11. 

Since submission of the original manuscript, surface O3 concentrations have become available from 

an additional two CMIP6 models for ssp370-lowNTCF (MRI-ESM2-0 and UKESM1-0-LL) which have 

now been included in the analysis to provide additional information for the explanation of the 

different surface O3 response over East Asia in the ssp370 and ssp370-lowNTCF scenarios. 

A revised Figure S14 (shown below and now Figure S19) has been included in the manuscript along 

with a new Figure S20 (shown below) showing the change in surface O3 in the ssp370-lowNTCF 

scenario from CMIP6 models. The surface O3 change in the BCC-ESM1 model is larger in both of the 

scenarios compared to other CMIP6 models. The difference between the 2050 panels in both figures 

(Figure R1) shows that the more aggressive mitigation measures in ssp370-lowNTCF have reduced 

future increases in surface O3 concentrations across most world regions, compared to the response in 

ssp370. The notable exception is across Eastern China, a part of the larger East Asian region defined 

in Figure S1, where surface O3 concentrations increase in ssp370-lowNTCF consistently across all 

models compared to ssp370. The increase in surface O3 in all models for ssp370-lowNTCF over Eastern 

China can be attributed to a small increase in NMVOC emissions (Fig. 2) and a large decrease in NOx 

emissions (from a high initial value), which reduces the NOx titration of O3 over this area. The decrease 

in PM2.5 concentrations over Eastern China (Figure R2) could also reduce the heterogeneous loss of 

radicals (e.g. N2O5, HO2) to aerosols in ssp370-lowNTCF, compared to ssp370, and is another process 

that could be important in explaining the increase in surface O3, but will need further investigation (Li 

et al., 2019). The increase in surface O3 over Eastern China is responsible for the smaller benefits 

simulated in the ssp370-lowNTCF scenario over the larger East Asia region (where the averaging takes 

into account both increases and decreases across the region). Further sensitivity experiments will be 

required to allow for a full quantification of the impacts from changes in chemistry and climate across 

different models in the ssp370 and ssp370-lowNTCF over the East Asia region. 



 

Figure S19 – Annual mean surface O3 concentrations and future response in ssp370 across 6 different CMIP6 
models. Top row shows the 2005-2014 annual mean surface O3 concentrations in each model from the historical 
simulations. Middle row shows the surface O3 response in 2050, relative to 2005-2014 mean, in each model for 
ssp370. Bottom row shows the same as the middle but for 2100. No data is presented in 2100 for BCC-ESM1 as 
data for ssp370 only extended out to 2055. 

 

Figure S20 – Annual mean surface O3 concentrations and future response in ssp370-lowNTCF across 5 different 
CMIP6 models. Top row shows the 2005-2014 annual mean surface O3 concentrations in each model from the 
historical simulations. Bottom row shows the surface O3 response in 2050, relative to 2005-2014 mean, in each 
model for ssp370-lowNTCF. 



 

Figure R1 – Difference in annual mean surface O3 for 5 CMIP6 models between ssp370-lowNTCF and ssp370 in 

2050. 

 

Figure R2 – Same as Fig. S1 but for surface PM2.5. 



An amended version of Figure 11 has now been included in the manuscript (and shown below) using 

the additional available model data. This shows a regional reduction in surface O3 concentrations 

across East Asia in the ssp370-lowNTCF scenario compared to the ssp370, highlighting the benefit, 

albeit small, from the additional mitigation measures to O3 precursors.  

 

The following changes to the manuscript text have been made to reflect the above discussion of the 

reasons behind the changes in surface O3 across East Asia in ssp370-lowNTCF: 

P21, line 454 sentence amended to: 

“However, across East Asia the additional precursor emission reductions in ssp370-lowNTCF have 

resulted in smaller benefits to surface O3 concentrations being simulated by the CMIP6 models than in 

other regions (Figure S20), which is attributed to an increase in surface O3 concentrations over Eastern 

China (a part of the larger East Asian region shown in Fig. S1). This increase in surface O3 results from 

the slight increase in NMVOC emissions (Fig. 2) and a reduction in the NOx titration of O3 due to the 

large decreases in NOx emissions in ssp370-lowNTCF. In addition, a reduction in the heterogeneous 

loss of radicals due to decreases in PM2.5 concentrations in ssp370-lowNTCF could also lead to 

increased surface O3 concentrations (Li et al., 2019).” 

7.  “Discrepancies in the magnitude of change in these emissions due to climate and *land-use 

change*”. Please specify in similar to Table 1 the models for which the natural emissions and 

atmospheric chemistry are actually dynamically coupled with the climate model’s land surface 

scheme and vegetation cover / Plant Functional Types (that are dynamically changing in the 

simulations due to human land use change). Which models have the BVOC emissions actually 

coupled to the climate model’s internal land surface scheme? If uncertainty in the changes to 



natural emissions is an important conclusion of the paper, there needs to be a separate Table 

describing the representation of those emissions in each model. 

We would like to thank the reviewer for this useful comment. As part of the revision we have included 

a new table in the supplementary material (Table S1 shown below) that provides information on the 

chemistry and aerosol configuration within each model used in this study. In addition, a new Figure 

S23 has been included to show the emissions of isoprene from each model (in a similar way to Figure 

S15, revised now to S22). In direct response to the reviewers comment, the CMIP6 models that have 

interactive chemistry and emission of BVOCs coupled to the model’s land surface scheme and a 

dynamic vegetation model are UKESM1-0-LL, GISS-E2-1-G (isoprene only), BCC-ESM1 and CESM2-

WACCM. The number of BVOCs emitted from vegetation and involved in atmospheric chemistry varies 

within each of the CMIP6 models, leading to discrepancies in the total BVOC emissions in Fig S15 (now 

S22). GISS-E2-1-G interactively emits only isoprene, with no inhibition to CO2 concentrations, whereas 

CESM2-WACCM emits isoprene (with inhibition to CO2 concentrations), monoterpenes and many 

other short and long chained hydrocarbons. Emissions of BVOCs in these models will depend on the 

future climate and how the distribution of different vegetation types changes in each CMIP6 model in 

response to the future scenarios. This could lead to important differences in both O3 and secondary 

organic aerosol formation, particularly over regions with large natural sources of BVOC emissions. 

Further discussion of these comparisons are also made in the response to reviewer 2 but some small 

changes to manuscript are shown below.    

Page 24 Lines 501-509 have been amended as follows: 

“Over South America and Southern Africa, particularly the tropical areas (Fig. S194), larger future 

changes in surface O3, particularly by 2100, are predicted by GFDL-ESM4 and UKESM1 than by CESM2-

WACCM. Over this region, biogenic emissions (particularly isoprene) are an important source of O3 

formation. Discrepancies in the future response of these BVOC emissions between models could be 

occurring due to the differing magnitudes of climate and land-use change and how they are coupled 

within individual CMIP6 models (Table S1), which could affect future surface O3. Future changes in the 

total emissions of BVOCs and solely from isoprene obtained from five CMIP6 models (Figure S22 and 

S2315) show that CESM2-WACCM has larger total BVOC emissions over the period 2005-2014 (due to 

the inclusion of more BVOCs), which then increase in the future ssp370 scenario, along with isoprene 

emissions, resulting in a smaller increase (and decreases over some parts of the region) in surface O3. 

Whereas, GFDL-ESM4 and UKESM1-0-LL shows larger increases in O3 and a reduction in BVOCs, mainly 

from isoprene (Fig. S23), over part of South America and tropical Africa.  have smaller increases in 

BVOC emissions with some emissions reducing over parts of Africa in UKESM1.” 

Page 28 Lines 586-590 have been amended as follows: 
 
“Over Southern Africa UKESM1-0-LL shows a reduction in future PM2.5, in contrast to the other models, 

This can again be attributed due to a reduction in the BC, OA and dust aerosol components (Fig. S24, 

S26 and S27). UKESM1-0-LL exhibits particularly strong negative correlations for surface PM2.5 when 

compared with temperature and precipitation. These relationships over Southern Africa are quite 

different to other CMIP6 models, which is also highlighted in the model evaluation over this region (Fig. 

8) and indicates that climate change influences aerosol concentrations differently over this region in 

this model (Figure 16). In addition, there is a slight positive correlation of PM2.5 with BVOC emissions 

in UKESM1-0-LL over Southern Africa. Future biogenic emissions (including monoterpenes) reduce here 

in ssp370 (Fig. S22), potentially due to land-use vegetation change as UKESM1-0-LL has dynamic 

vegetation coupled to BVOC emissions (Table S1). This could also reduce PM2.5 concentrations over this 



region because monoterpene emissions are the main precursor to SOA formation in UKESM1-0-LL 

(Mulcahy et al., 2019).”  



Table S1 – Brief descriptions of the chemistry and aerosol set up within CMIP6 models used in this study 

CMIP6 

Model 

Horiz. Res. Vert 

levels 

(top 

level) 

Aerosol scheme Aerosol Species Natural Sources Treatment of SOA Chemistry 

Scheme 

Chemistry reactions BVOCs  Model Ref 

BCC-ESM1 
2.813° x 
2.813° 
 

L26 
(2.914 
hPa) 

Mass-based 
aerosol scheme. 
Prescribed 
stratospheric 
aerosols.  

SO4, BC 
(hydrophilic and 
hydrophobic), 
OM (hydrophilic 
and hydrophobic, 
sea salt (4 size 
bins), dust (4 size 
bins). No 
nucleation or 
coagulation of 
aerosols 

Prescribed DMS 
seawater 
concentrations with 
emissions dependent 
on wind speed. Online 
emissions of sea-salt 
and dust aerosols.  
NOx calculated from 
lightning. 

Hydrophilic OC 
from 
anthropogenic 
emissions but also 
from natural 
sources calculated 
using a fixed yield, 
assumed to be 
equal to 10% of 
monoterpene 
emissions (from 
land surface 
model) 

CAM-Chem 
(based on 
MOZART). 
Tropospheric 
only chemistry. 

66 gas-phase 
chemical species 
with 33 photolytic 
reactions and 135 
kinetic reactions.  

Online biogenic 
emissions from 
dynamically evolving 
vegetation 
computed in the 
land model BCC-
AVIM2.0 following 
the algorithm of 
MEGANv2.1 which 
has a dependence 
on light and 
temperature but 
also inhibits 
isoprene emissions 
based on CO2. 
 

(Wu et al., 
2020) 

CESM2-
WACCM 

0.9° x 1.25°  
 

L70 
(6x10-6 

hPa) 

MAM4 (modal 
scheme, 
simulating mass 
and number 
concentrations) 
with VBS-SOA 

SO4, BC, OM 
(both primary 
and secondary), 
sea salt, dust 

Prescribed climatology 
of DMS seawater 
concentrations and 
emissions. Online 
emissions of sea-salt 
and dust aerosols.  
NOx calculated from 
lightning.  Soil NOx 
and ocean CO, VOCs 
from POET 

Explicit calculation 
of SOA using 
volatility basis set 
(VBS) where 
aromatic species, 
terpenes and 
isoprene are 
oxidised to 
produce a range of 
gas-phase SOA 
precursors with 
different 
volatilities. 
Formation of SOA 
linked to BVOCs 
emissions from 
interactive land 
surface scheme. 

MOZART-
TSMLT1 
covering 
troposphere, 
stratosphere, 
mesosphere and 
lower 
thermosphere  

231 gas-phase 
species, 150 
photolytic 
reactions, 403 
kinetic reactions 
and 30 
heterogeneous 
reactions involving 
ClOx, BrOx, NOx-
HOx-Ox, CO, CH4 
and NMVOCs.  

Online biogenic 
emissions (isoprene, 
monoterpenes, 
acetone, methanol, 
and other short and 
long-chained 
hydrocarbons) from 
dynamically evolving 
vegetation 
computed in the 
Community Land 
Model (CLM) using 
the MEGAN2.1 
algorithm, which has 
dependence on light 
and temperature 
but also inhibits 
isoprene emissions 
based on CO2. 

(Gettelman 
et al., 2019; 
Tilmes et 
al., 2019; 
Emmons et 
al., 2020) 

CNRM-
ESM2-1 

1.4° x 1.4° 
L91 
(80km) 

TACTIC_v2. 
Tropospheric 
aerosols. Mass 

SO4, BC 
(hydrophilic and 
hydrophobic), 
OM (hydrophilic 

Prescribed DMS 
seawater 
concentrations. Online 

Prescribed SOA 
from monthly 
inventory 

No 
representation 
of lower 
tropospheric 

N/A N/A 

(Michou et 
al., 2019; 
Séférian et 
al., 2019) 



CMIP6 

Model 

Horiz. Res. Vert 

levels 

(top 

level) 

Aerosol scheme Aerosol Species Natural Sources Treatment of SOA Chemistry 

Scheme 

Chemistry reactions BVOCs  Model Ref 

based aerosol 
scheme. 

and 
hydrophobic), 
sea salt (3 size 
bins), dust (3 size 
bins) 

emissions of sea-salt 
and dust aerosols 

chemistry so not 
considered 
here. 

GFDL-
ESM4 

cubed-
sphere (c96) 
grid, with 
~100 km 
native 
resolution, 
regridded to 
1.0° x 1.25° 

L49 
(0.01 
hPa) 

Bulk mass-based 
scheme. 5 size 
bins are used for 
sea salt and 
dust. 

NH4, SO4, NO3, 
NH4, BC, OM, sea 
salt, dust 

 
DMS and sea salt 
emissions calculated 
online as a function of 
wind speed (and a 
prescribed DMS 
seawater climatology). 
Dust emissions 
coupled to interactive 
vegetation. Lightning 
NOx calculated online 
as a function of 
convection. Natural 
emissions of NOx, CO, 
NMVOCs, H2, and NH3 
from POET. NH3 from 
seabird colonies. Two-
way exchange of NH3 
with ocean. 

SOA formed 
simulated using an 
anthropogenic 
source from 
oxidation of C4H10 
tracer and a tracer 
representing BVOC 
emissions from 
vegetation 

Interactive 
stratosphere-
troposphere 

43 photolysis 
reactions, 190 gas-
phase kinetic 
reationcs and 15 
heterogeneous 
recations. NOx-HOx-
Ox- chemical cycles 
and CO, CH4 and 
NMVOC oxidation 
reactions 

Online emissions of 
BVOCs (isoprene 
and monoterpenes) 
calculated from a 
prescribed 
vegetation cover 
using MEGAN2.1 
algorithm, which has 
dependence on light 
and temperature 
but also inhibits 
isoprene emissions 
based on CO2. 

(Horowitz 
et al., 2019; 
Dunne et 
al., 2020) 

GISS-E2-1-
G 

2° x 2.5°  
L40 
(0.1 
hPa) 

OMA (one 
moment aerosol 
scheme – mass 
based) 

SO4, NO3, NH4, 
BC, OM treated 
as externally 
mixed with 
prescribed and 
constant size 
distribution.  Sea 
salt has two size 
classes. Sectional 
scheme for dust 
with 5 size bins 
that can be 
coated with SO4 
and NO3 to 
increase 
solubility. 

Sea salt, DMS, 
isoprene and dust 
emission fluxes are 
calculated 
interactively. Online 
NOx calculated from 
lightning. Soil NOx, 
ocean CO, VOCs from 
GEIA. NH3 from 
oceans. SO2 from 
volcanoes as in 
AeroCom.  

Two-product 
model 
approximation to 
represent SOA 
formation from 
the oxidation of 
biogenic VOCs, 
including NOx 
dependent 
chemistry yields.  

Coupled 
troposphere-
stratosphere 
chemistry 
scheme. 
Modified 
Carbon Bond 
Mechanism 4 
(CBM-4) 
chemical 
mechanism 

inorganic chemistry 
of Ox, NOx, HOx, 
CO, and organic 
chemistry of CH4 
and lumped higher 
hydrocarbons (only 
isoprene and 
terpenes are 
explicitly taken into 
account), along with 
Cl and Br 
stratospheric 
chemistry and 
heterogenous 
reactions on PSCs 
and SO4 aerosols. 

Emissions of 
isoprene from  
dynamically evolving 
vegetation  are 
calculated 
interactively using 
the algorithm of 
Guenther et al., 
(1995), which has 
dependence on light 
and temperature. 

Terpene emissions 
are prescribed. 
 

(Bauer et 
al., 2020) 

HadGEM3-
GC31-LL 

1.25° x 
1.875° 

L85 
(85km) 

GLOMAP-Mode. 
(Modal scheme, 

SO4, BC, OM, sea 
salt in 5 log-

Prescribed 
climatologies of DMS 

Fixed yield of SOA 
of 26% calculated 

Simplified 
sulphur 

Oxidation for SO4 
and simplified 

N/A 
(Mulcahy et 
al., 2020) 



CMIP6 

Model 

Horiz. Res. Vert 

levels 

(top 

level) 

Aerosol scheme Aerosol Species Natural Sources Treatment of SOA Chemistry 

Scheme 

Chemistry reactions BVOCs  Model Ref 

mass and 
number).  Mass 
based bin 
scheme used for 
dust. 

normal modes 
and dust in 6 
bins 

seawater 
concentrations and 
BVOC emissions. No 
marine source of 
primary organics.  
Online emissions of 
sea-salt and dust 
aerosols 

from gas-phase 
oxidation 
reactions involving 
prescribed land-
based 
monoterpene 
sources 

chemistry for 
use with aerosol 
scheme 

oxidation scheme 
(monoterpenes) for 
SOA 

MIROC6-
ES2L 

2.813° x 
2.813° 

L40 
(3.0 
hPa)  

SPRINTAS. 

SO4, BC, OM, sea 
salt and dust in 
log-normal size 
distributions. 
External mixing 
assumed for SO4, 
sea salt and dust 
aerosols. 

Online emissions of 
DMS, sea-salt and dust 
aerosols. Primary 
marine organic aerosol 
emissions coupled to 
ocean 
biogeochemistry. 

Prescribed 
emissions of 
isoprene and 
terpenes from 
GEIA used to 
convert to 
secondary organic 
carbon. 

Simplified 
chemistry for 
use with aerosol 
scheme 

Oxidation for SO4 
and simplified 
oxidation scheme 
(isoprene and 
monoterpenes) for 
SOA 

Prescribed 
emissions of 
isoprene and 
terpenes from GEIA. 

(Takemura, 
2012; 
Hajima et 
al., 2020) 

MPI-
ESM1.2-
HAM 

1.875° x 
1.875°  

L47 
(0.01 
hPa) 

HAM2.3 (Modal 
scheme, mass 
and number) 

SO4, BC, OM, sea 
salt, dust in 7 
log-normal 
modes 

Interactive online 
emissions of DMS 
(using prescribed sea 
water concentrations), 
sea-salt and dust 
aerosols dependent on 
meteorology. 

15% of natural 
terpene emissions 
at the surface 
(prescribed) form 
SOA. SOA have 
identical 
properties to 
primary organic 
aerosols 

Simplified 
sulphur 
chemistry. 
Other fields 
prescribed.  

Reactions involving 
SO2, DMS and SO4, 

including aqueous 
phase.  

N/A 
(Tegen et 
al., 2019) 

MRI-
ESM2-0 

MRI-
AGCM3.5: 
1.125° x 
1.125°, 
MASINGAR 
mk-2r4c: 
1.875° x 
1.875°, MRI-
CCM2.1: 
2.813° x 
2.813° 

L80 
(0.01 
hPa) 

MASINGAR mk-
2r4c 

Mass-based 
scheme with 
externally mixed 
size distributions. 
SO4 (three 
categories), BC 
(hydrophilic and 
hydrophobic), 
OM (hydrophilic 
and 
hydrophobic), 
sea salt (10 size 
bins), dust (10 
size bins). 

Interactive online 
emissions of DMS 
(using prescribed 
Climatological DMS 
sea water 
concentrations), sea-
salt, and dust aerosols 
dependent on 
meteorology. Online 
NOx calculated from 
lightning.   
Climatological soil NOx 
and ocean CO, VOCs 
emissions. 

No explicit 
calculation: 14% of 
prescribed 
monoterpene and 
1.68 % of isoprene 
emissions are 
assumed to form 
SOA. 

 
Chemistry 
Climate Model 
version 2.1 
(MRI-CCM2.1) 
covering 
troposphere, 
stratosphere, 
and mesosphere 

90 chemical species 
and 259 chemical 
reactions (184 gas-
phase reactions, 59 
photolysis 
reactions, and 16 
heterogeneous 
reactions) involving 
HOx-NOx-CH4-CO 
cycles and NMVOC 
oxidation reactions, 
and halogen 
chemistry (Cl and 
Br) 

Climatological 
BVOCs emissions 

(Deushi and 
Shibata, 
2011; 
Yukimoto et 
al., 2019) 

NorESM2-
LM 

1.9° x 2.5°  
L32 
(3.64 
hPa) 

OsloAero6 
SO4, BC, OM, sea 
salt, dust. (log-
normal modes) 

Interactive emissions 
for sea-salt, biogenic 
primary OM (including 

Fixed SOA 
formation yields of 
15% and 5% from 

Simplified 
chemistry for 
use in aerosol 

Oxidation for SO4 
and simplified 
oxidation scheme 

Online biogenic 
emissions from 
dynamically evolving 

(Kirkevåg et 
al., 2018; 



CMIP6 

Model 

Horiz. Res. Vert 

levels 

(top 

level) 

Aerosol scheme Aerosol Species Natural Sources Treatment of SOA Chemistry 

Scheme 

Chemistry reactions BVOCs  Model Ref 

MSA) and DMS over 
oceans, and 
interactive mineral 
dust and BVOC over 
land 

oxidation of 
monoterpenes and 
isoprene 

scheme. Other 
fields 
prescribed.  

(isoprene and 
monoterpenes) for 
SOA 

vegetation 
computed in the 
Community Land 
Model (CLM) using 
the MEGAN2.1 
algorithm, which has 
dependence on light 
and temperature 
but also inhibits 
isoprene emissions 
based on CO2. 

Seland et 
al., 2020) 

UKESM1-
0-LL 

1.25° x 
1.875°  

L85 
(85km) 

GLOMAP-Mode. 
(Modal scheme, 
mass and 
number). Mass 
based bin 
scheme used for 
dust. 

SO4, BC, OM, sea 
salt in 5 log-
normal modes 
and dust in 6 
bins 

Dynamic vegetation 
and interactive ocean 
biogeochemistry used 
for online emissions of 
DMS, sea-salt and dust 
aerosols, as well as 
emissions of primary 
marine organics and 
biogenic organic 
compounds. Online 
NOx calculated from 
lightning, soil NOx and 
ocean CO, VOCs from 
POET 

Fixed SOA yield of 
26% from gas-
phase oxidation 
reactions involving 
interactive land-
based 
monoterpene 
sources. 

UKCA coupled 
stratosphere-
troposphere. 
Interactive 
photolysis 

84 chemical tracers. 
Simulates chemical 
cycles of Ox, HOx 
and NOx, as well as 
oxidation reactions 
of CO, CH4 and 
NMVOCs. In 
addition, 
heterogeneous 
processes, Cl and Br 
chemistry are 
included. 

Dynamic vegetation 
and land surface 
model used to 
calculate interactive 
emissions of 
Isoprene and 
monoterpenes using 
light and 
temperature, but 
isoprene emissions 
are inhibited based 
on CO2. Isoprene 
emissions coupled 
to chemistry and 
affect tropospheric 
O3 and methane 
lifetime. 
Monoterpenes only 
affect SOA. 

(Archibald 
et al., 2020; 
Mulcahy et 
al., 2020) 

 

 



Minor comments 

I find Fig. 2 challenging to look at and wonder about for other readers. I appreciate it is difficult to 

show this Fig. 1 type information across multiple regions. 

I would like to thank the reviewer for the comment on Figure 2., which has been reproduced in a 

different way to try and make it easy to view. The amended figure is shown below and have been 

used to replace the original Figure 2 in the manuscript. 

 

Is it necessary to have both Fig 6 and Fig 8 i.e. for the 2000-2010 and 2005 and 2014 periods? Could 

one of the plots go into SI? 

We thank the author for the comments but whilst it appears that Figure 6 and 8 are showing similar 

results, there are key differences which means it is important to include both within the main text. 

Figure 6 shows a comparison of model vs observations at ground based monitoring locations, which 

are from specific spatial points within each region. The results for MERRA on Figure 6 are also shown 

at only these locations for the same time period (2000-2010) in order to directly compare the MERRA 

product with the ground based observations and CMIP6 models. This provides additional information 

for the evaluation of model biases (see response to comment 2 above). In figure 8 the regional means 

are calculated from MERRA based on all of the grid points within a particular region. The regional 

meaning therefore contains many more data points (see parenthesis on Figure 8) than is possible in 

Figure 6, which allows for improved statistics by using the reanalysis product. The comparison of 

Figure 6 and 8 therefore provides additional inter-comparison between the CMIP6 models, MERRA 

reanalysis product and ground based observations and we feel that it warrants a separate inclusion 

within the main text. 



“Large regional historical changes are simulated for both pollutants, across East and South Asia, with 

an increase of up to 40 ppb for O3 and 12 µg m-3 for PM2.5.” and similar sentences in abstract. Need 

to include the temporal averaging associated with those values in abstract (annual). 

The following sentences have been changed within the abstract to include reference to the temporal 

averaging period: 

“Large regional historical changes are simulated for both pollutants, across East and South Asia, with 

an annual mean increase of up to 40 ppb for O3 and 12 µg m-3 for PM2.5. In future scenarios containing 

strong air quality and climate mitigation measures (ssp126), annual mean concentrations of air 

pollutants are substantially reduced across all regions by up to 15 ppb for O3 and 12 µg m-3 for PM2.5. 

However, for scenarios that encompass weak action on mitigating climate and reducing air pollutant 

emissions (ssp370), annual mean increases of both surface O3 (up 10 ppb) and PM2.5 (up to 8 µg m-3) 

are simulated across most regions.” 

“Near Term Climate Forcers (NTCFs).” IPCC AR6 uses “Short-lived Climate Forcers (SLCFs)”. 

Changed all references to Near Term Climate Forcers in the manuscript to Short-lived Climate Forcers 

(SLFCs) to be consistent with IPCC AR6.  

“Initial assessments have been made of future changes to air pollutants in the SSPs using simplified 

models.” Need to add references here. 

The sentence has been changed to the following to include additional references: 

“Initial assessments have been made of future changes to air pollutants in the SSPs using simplified 

models (Reis et al., 2018; Turnock et al., 2018, 2019)” 

“A particular climate mitigation target, in terms of an anthropogenic radiative forcing by 2100, is 

included on top of each SSP” What does “on top of” mean exactly? 

The sentence has been amended as follows to improve clarity on this point: 

“A particular climate mitigation target, in terms of an anthropogenic radiative forcing by 2100, and 

the range of emission mitigation measures associated with achieving it are included in addition to the 

existing policy measures within each baseline SSP scenario.” 

“However, scenarios with large increases in global CH4 abundances, a large climate change signal and 

limited control of precursor emissions fail to restrict regional increases in surface O3, leading to poor 

future air quality and potential human health impacts (Silva et al., 2017).” Is this statement 

redundant/obvious? Where is the new science? 

Thank you to reviewer for the comment on this sentence. The sentence has been rewritten to make 

it more relevant to differences in the new scenarios that have been used in CMIP6. 

“However, scenarios with large climate signals (ssp370 and ssp585) but different post 2050 controls 

on O3 precursors (most notably CH4 and NOx), show different long-term changes in regional surface 

O3 concentrations, which could have important consequences for impacts on human health.” 

“Whilst there is disagreements” sp. there are 

Corrected mistake.  



Response to Referee 2 

This manuscript conducts an evaluation of surface PM2.5 and ozone with observations for the CMIP6 
chemistry-climate models that participated in AerChemMIP. It also documents the simulated historical 
& future changes in annual mean ozone and PM2.5 in various regions around the globe. It’s clear that 
an enormous amount of effort went in to preparing this manuscript. By detailing the performance of 
each individual model (10 for PM2.5; 5 for ozone) against the available observations, a major 
community service has been performed in the production of this detailed supplemental information.  

The rather long paper documents the current status of O3 and PM2.5 in the latest versions of global 
chemistry-climate models. It does so, however, without much attempt to understand more deeply the 
inter-model differences, or the sources of agreement, beyond discussing qualitative links to the 
emission trajectories or referencing relationships identified in prior work. A stronger paper would be 
more cohesive throughout and communicate better the novelty of the work. Below I suggest ways to 
strengthen the paper in each of these two directions, followed by more detailed comments. I  support 
the points made by the other reviewer and so try to avoid repeating those points here. 
 
First, the model evaluation presented is not tied in a clear way to the past or future projections of the 
models. The evaluation focuses on monthly and seasonal data but then only annual mean 
concentrations are presented for the historical and future trends. It seems far more relevant to 
evaluate regional trends in annual mean concentrations where observations allow this, or to 
demonstrate some relationship between seasonal cycles and future changes across the models (and 
should one exist, this would be an exciting finding as it would open up the possibility of identifying a 
“best” model from the evaluation with observations). The evaluation shown in Figures 5 and 6 of the 
Mortier et al. paper or in Figure 4 of Griffiths et al. in this special issue seems more relevant, although 
the remote sites used in Griffiths et al. are not that relevant for the polluted regions examined in this 
study. One could tackle a similar type of evaluation for North America and Europe where there are at 
least two decades of long-term observations for ozone and PM2.5, and it should be particularly 
straightforward to do so with the gridded MERRA reanalysis product for PM2.5. An alternative angle 
could be to examine if the past or future trends are strongly seasonally dependent. If so, showing 
some of the seasonality in the projections would connect better to the seasonal evaluation included. 
If the authors choose to remove any of the current figures, they should be included in the 
supplemental material, as the general evaluation done here will certainly be of high value to the 
modeling community.  
 
We thank the reviewer for this useful comment on trying to make the manuscript more quantitative 
and also to improve the connections between the model evaluation and historical/future projections. 
As the reviewer mentions an analysis of long-term changes in surface O3 and aerosol properties has 
already been undertaken in other manuscripts within this special issue and was therefore considered 
outside of the scope of the current work (see response to point 3 of reviewer 1 for more details). 
Further work is ongoing to analyse long term surface O3 changes from CMIP6 models at northern 
hemisphere continental observation locations. Therefore, we have made improvements throughout 
the manuscript to better connect the seasonal and annual mean aspects of the present day model 
evaluation with the historical and future simulations. Revised versions of Figures 3, 5 and 7 have been 
produced to include a comparison of the annual mean surface concentrations of O3 and PM2.5 with 
observations, in addition to the seasonal mean comparisons originally present. Figures S2 to S7 in the 
supplementary material showing individual CMIP6 model comparisons have also been updated to 
include annual mean comparisons. Numerous minor text changes to the manuscript have been made 
in section 3 to reflect the inclusion of the annual mean evaluation. An example of the revised Figure 3 
for surface O3 is shown below: 
 



 
Figure 3 – Multi-model (6 CMIP6 models) annual and seasonal mean surface O3 concentrations in a) Annual 
mean, d) December January, February (DJF) and g) June, July, August (JJA) over the 2005-2014 period. The 
standard deviation in the multi-model mean in b) Annual mean, e) DJF and h) JJA. The difference between the 
multi-model mean and TOAR observations in c) Annual mean, f) DJF and i) JJA (colour bar saturates). 

We have included simulated seasonal mean changes in air pollutants over the historical and future 
time periods on Figures in the revised manuscript and supplementary material to connect better with 
the present-day evaluation work. A new Figure S16 (shown below) has been included within the 
supplementary material showing the annual and seasonal mean change in surface O3 and PM2.5 
between 1850 and 2014.  
 
 



 
Figure S16 – Annual and seasonal regional mean changes in surface O3 and PM2.5 from pre-industrial (1850-1859 
mean) to present day (2005-2014 mean) across 11 CMIP6 models. Individual circles represent each annual and 
seasonal mean changes from individual CMIP6 models, with the multi-model mean represented by the solid bar.    

The following changes to the manuscript have been made in Section 4 to include the seasonal 
historical changes. The following new sentence has been included on page 17 line 382: 
 
“Globally and over most regions there has been a larger historical increase in surface O3 in JJA than in 

DJF (Figure S16).” 
 
A new sentence has been included on page 18 line 388 
 
“Larger differences between CMIP6 models are shown in the DJF mean historical changes over 

northern hemisphere regions than occurred in JJA (Figure S16), reflecting the differences shown in the 

model evaluation (Fig. 4) and the strong seasonality of the changes.” 
 
The sentence on page 18, line 390 has been amended to the following: 

“South Asia is the region with the largest diversity in simulated historical changes in surface O3 of 

between 16 and 40 ppb, with a larger range in DJF (10-40 ppb) than in JJA (19-36 ppb).” 
 
The sentence on page 18, line 391 has been amended to the following: 

“Surface O3 is simulated to have increased by between 10 to 30 ppb on an annual mean basis and by 

a larger amount in JJA (12 to 37 ppb) over the major northern anthropogenic source regions since 1850, 

driven mainly by the large increases in anthropogenic precursor emissions of CH4, NOx, CO, and 

NMVOCs over this period.” 



The sentence on page 19 line 408 has been amended to the following: 
 
“Larger regional increases in surface annual mean PM2.5 of up to 12 µg m-3 are simulated across South 

and East Asia, with changes in DJF (up to 21 µg m-3) larger than those in JJA (up to 12 µg m-3) (Fig. S16), 

reflecting the strong seasonality of PM2.5 concentrations in these regions.” 
 
The sentence on Page 19, line 410-412 has been amended as follows: 

“The largest model diversity is also exhibited over the Asian regions with variations in the response 

between models of up to 50%, potentially simulation  dust emissions and simulation of organic aerosols 

with larger differences between models in DJF than JJA (Figure S16), reflecting the differences shown 

in the present day model evaluation (Fig. 6).” 
 
In addition, we have also included simulated seasonal mean changes in air pollutants over the future 
time periods on Figures 12 and 14 (now Fig. 15) in the revised manuscript to try to better link the 
future predictions with the present-day evaluation work. An example of a revised Figure 12 (shown 
below) has been included within the revised manuscript, now showing both the annual and seasonal 
mean change in surface O3 in 2050 and 2095 in the ssp370 future scenario for four CMIP6 models. A 
similar revised Figure has also been included within the manuscript for future surface PM2.5 changes 
in ssp370. 
 

 
Figure 12 – Future global and regional changes in the decadal annual and seasonal mean surface O3, relative to 
the 2005-2014 mean, for the ssp370 pathway used in CMIP6. Each black circle represents the decadal annual 
mean response for an individual model in a) 2045-2055 and b) 2090-2100, with the coloured bars showing the 
standard deviation across the decadal annual mean. The DJF and JJA seasonal mean response averaged over the 
relevant 10 year period is shown by squares and triangles respectively. The multi-model regional mean over the 



period 2005- 2014 is given towards the left of each panel. The response from the HTAP_param in each time 
period is shown by the separate gold circle. 

 
The following changes to the manuscript have been made in Section 5 to include mention to the 
seasonal future changes in air pollutants. 
 
Page 23 lines 491-492 have been amended to the following: 
 
“Over the North Pole region all models show surface O3 increases that are larger than the 

HTAP_param, with a larger increase in DJF than JJA.” 
 
A new Figure S21 showing the future DJF surface O3 changes in ssp370 has been included in the 
supplementary material, as well as a new sentence on Page 24 line 495 and an amended sentence on 
line 496: 
 
“The lower annual mean response in UKESM1-0-LL and GFDL-ESM4 is driven by a reduction in DJF in 

these models (Fig. S21), which results in the DJF change in 2050 being lower than the 2005-2014 annual 

mean value (Fig. 12). The large increase in NOx emissions in ssp370this scenario over South Asia (~80%) 

has resulted in areas of NOx titration, particularly in DJF, near the Indo-Gangetic plain in both UKESM1-

0-LL and GFDL-ESM4, reducing surface O3 concentrations (Fig. S1419 and S1421). This strong feature 

of NOx titration of O3 in DJF is absent in both CESM2-WACCM and BCC-ESM1, resulting in larger O3 

production over South Asia.” 
 
The following new sentence is included on Page 24 line 502: 
 
“These changes over South America are larger in JJA in all models, with small seasonal differences over 

Southern Africa.” 
 
A new sentence is included on Page 24 line 512: 
 
“There are differences in simulated seasonal response across these regions, with all models showing a 

smaller increase in JJA than DJF across North America and Europe, whilst across East Asia there tends 

to a be a larger future surface O3 increase in JJA than DJF.” 
 
The sentence on page 27, lines 566-567 has been amended as follows: 
 
“In a similar analysis to that for surface O3, a more detailed comparison has been undertaken of four 

CMIP6 models predicting changes in annual and seasonal surface PM2.5 in 2050 and 2095 under ssp370 

(Figure 14).” 
 
The sentence on page 27, line 568-569 has been amended to: 
 
“Small reductions in annual mean surface PM2.5 concentrations (<2 µg m-3) are simulated consistently 

by all CMIP6 models across North America and Europe in ssp370, mainly attributed to decreases in the 

BC and SO4 components with larger reductions simulated in DJF than JJA.”   
 
A new sentence has been included on page 27, line 571. 
 
“Across South Asia, all models simulate a larger increase in DJF mean surface PM2.5 concentrations, of 

up to 18 µg m-3 by 2050, than occurs in JJA, and reflects the seasonality shown in the model evaluation.” 
 
The sentence on page 28, line 576-577 has been amended to: 



 
“Small regional annual mean increases are predicted in 2050 due to PM2.5 increases in JJA from all 

models apart from GFDL-ESM4. A larger reduction in the SO4 component is simulated over East Asia by 

GFDL-ESM4 than in other models (Fig S1725), resulting in an overall decrease in PM2.5. In 2095 most 

models simulate a reduction in PM2.5 concentrations in both seasons across East Asia, apart from 

CESM2-WACCM due to the increase in JJA.” 

 

The sentence on page 28, line 591-594 has been amended to: 
 
“The decadal annual and seasonal mean PM2.5 response is variable across individual CMIP6 models 

over regions close to natural sources of particulate matter (North Africa, Central Asia and Pacific, 

Australia and New Zealand). Over these regions there is a large range in both the sign and magnitude 

of the annual and seasonal PM2.5 response, which can be mainly attributed to the dust fraction (Fig. 

S26) and the fact that this aerosol source has a large inter-annual variability in its emission strength.” 
 
The sentence on page 30, line 641-642 has been amended to: 
 
“Across the historical period (1850-2014), the CMIP6 models simulated a global annual increase in 

surface O3 of between 7 and 14 ppb, with a larger increase in JJA than DJF.” 
 
The sentence on page 30, line 646-648 has been amended to: 
 
“Small global increases in surface PM2.5 are simulated over the historical period by CMIP6 models, with 

larger regional changes of up to 12 µg m-3 on annual mean basis and up to 18 µg m-3 in DJF across East 

and South Asia.” 
 
Second, the authors could better demonstrate the new contributions here, perhaps by looking a bit 
more closely at some aspect of the inter-model differences rather than ending with qualitative and in 
some cases speculative statements. For example, are there clear relationships between the inter-
model spread in the global or regional temperature or precipitation changes and the air pollution 
changes projected over time?  
 
Could previously identified general conclusions regarding relationships between global ozone, NOx 
and methane (see Figure 6 of Stevenson et al. 2006, Figure 13 of Young et al., 2013) be extended to 
surface ozone, and regionally? Can any conclusions be made as to whether future changes in 
particulate matter depend most on a particular component? There is a lot of useful information in the 
supplement regarding aerosol components and temperature changes that could be connected more 
closely to the changes reported in the main text. I find Figures 12 and 14 particularly interesting and 
the results presented there would be even more useful if they were connected more directly to 
changes in regional or global temperature, precipitation, humidity, air pollutant emissions, precursor 
surface concentrations, or whichever quantities are available across the set of models. 
 
We thank the reviewer for this useful comment on trying to connect the changes in air pollutants 
better with other variables such as aerosol components, temperature, precipitation and emissions. 
We have conducted additional analysis by comparing regional future changes in air pollutants from 
individual models in ssp370 over the period 2015 to 2100 with selected variables. However, there are 
additional experiments being performed within AerChemMIP that will enable further quantification 
of the emission and climate change effect on air quality. A summary figure for both O3 and PM2.5 
showing the correlation coefficients for these comparisons has now been included as a new Figure 13 
and 16 within the manuscript (and shown below). Changes to the manuscript listed below have been 
made to reflect this new analysis. 



 
Figure 13 - Correlation coefficients calculated when comparing future annual mean surface O3 concentrations 
against individual variables of CH4 concentrations, surface air temperature (TAS), emissions of biogenic volatile 
organic compounds (BVOCs), NOx (NO + NO2) concentrations and anthropogenic emissions of non-methane 
volatile organic compounds (NMVOCs) from individual CMIP6 models over the period 2015 to 2100 in the ssp370 
scenario. 

A new sentence has been included at Page 23 line 486: 
 
“An analysis of the relationships, in terms of correlation coefficients, between future annual mean 

surface O3 concentrations and other variables (CH4 concentrations, surface air temperature, NOx 

concentrations, emissions of BVOCs and anthropogenic emissions of NMVOCs) is undertaken for CMIP6 

models in the ssp370 scenario (Figure 13).” 
 
A new sentence has been included at Page 23 line 489: 
 
“The future surface O3 response in UKESM1-0-LL over the ocean region exhibits a large negative 

correlation with surface temperature changes (Figure 13), indicating the importance of future climate 

change in this model over remote regions.” 
 
Page 24 lines 492-493 have been amended to the following: 
 

“The large future temperature response over the Arctic, as well as changes to NOx concentrations and 

emissions of NMVOCs are particularly important drivers of surface O3 changes across CMIP6 models in 

this region with comparatively low local emissions (Figure 13).” 

 

Page 24 line 498-499 have been amended to the following: 
 



“The comparison in Fig. 12 shows how the O3 chemistry within models responds differently across a 

particular area in a future scenario with a large climate change signal and over a region with large 

increases in local precursor emissions, but that all drivers related to regional O3 change in South Asia 

are similarly important across all models (Figure 13).” 

 

Page 24 line 507-509 have been amended to the following: 
 
“Figure 13 shows that there are differing relationships between future surface O3 concentrations, BVOC 

emissions and NOx concentrations across CMIP6 models over South America and Southern Africa. Over 

Southern Africa, UKESM1-0-LL shows a different relationship between BVOC emissions and surface O3 

concentrations than other CMIP6 models, indicating that this could be leading to the different future 

O3 response in this model over this region. Similarly, Figure 13 shows that over South America, CESM2-

WACCM has a different relationship between surface O3 and the variables considered here than in 

other CMIP6 models, particularly for BVOCs, leading to the different future responses in this model 

over this region. The BVOC emission changes appear to have affected the future O3 formation 

differently in the individual models over these regions Figure 13 shows that there are differences 

between models in the surface O3 response over regions such as South America and Southern Africa, 

and represents an which are potentially linked to the land-surface response and are important process 

to understand more in further future work.” 
 
Page 24 line 513-515 have been changed to the following: 
 
“Figure 13 shows that there is a negative correlation between surface O3 and NOx concentrations, as 

well as between O3 and NMVOCs emissions, for most CMIP6 models across these regions, reflecting 

that as most anthropogenic precursor emissions (including NOx) decrease in this scenario across all 

these regions (Fig. 2) then surface O3 is simulated to increase. An exception to this is across East Asia, 

where the increase in NMVOC emissions in ssp370 (Fig. 2) are positively correlated with surface O3, 

indicating different chemical drivers of future O3 across this region. In addition, there are positive 

correlations between the other variables (temperature, CH4 and BVOCs) for most CMIP6 models 

indicating that changes in climate and global CH4 abundances seem to be the major are also important 

drivers of surface O3 increases over these regions.” 



 
Figure 16 – Correlation coefficients calculated when comparing future annual mean surface PM2.5 
concentrations against individual variables of precipitation, surface air temperature (TAS), emissions of biogenic 
volatile organic compounds (BVOCs) and emissions of SO2, black carbon (BC) and organic carbon (OC) from 
individual CMIP6 models (that had data out to 2100) over the period 2015 to 2100 in the ssp370 scenario.   

Page 26 lines 533 to 534 have been amended as follows: 
 
 “The increases in PM2.5 are driven mainly by the increase in aerosol and aerosol precursor emissions 

in this scenario (Fig. 2), shown by the positive correlations between emissions and surface PM2.5 in 

CMIP6 models across these regions (Figure 16).” 
 
A new sentence has been included at Page 27 line 567: 
 
“In addition, an analysis of the relationships, in terms of correlation coefficients, between future annual 

mean surface PM2.5 and other variables (total surface precipitation, surface air temperature and 

emissions of BVOCs, SO2, BC and organic aerosol) has been undertaken for CMIP6 models in the ssp370 

scenario (Figure 16).” 
 
A new sentence has been added on page 27, line 568-569: 
 
“The reductions in annual mean PM2.5 over Europe and North America are mainly attributed to 

decreases in the BC and SO4 components (Fig. S24 and S25), as indicated by the strong positive 

correlations with BC and SO2 emissions across most CMIP6 models (Figure 16). However, by 2095 a 

small increase (up to 2 µg m-3) is simulated in JJA by UKESM1-0-LL and CESM2-WACCM over North 

America, which could be attributed to changes in climate due to the strong positive correlations in both 

models for temperature, precipitation and BVOCs (Figure 16).” 
 



A new sentence has been added on page 27, line 571: 
 
“The future increases in annual mean surface PM2.5 appear to be strongly driven by emission changes 

as there are strong positive correlations between these variables across South Asia in all models (Figure 

16).” 
 
Page 28 Lines 581-586 have been amended as follows: 
 
“CESM2-WACCM includes a more complex treatment of SOA formation, showing a strong response to 

climate and historical trends in OA (Tilmes et al., 2019). Positive correlations are shown for CESM2-

WACCM between surface PM2.5 and emissions of BVOC and temperature (Fig. 16), which are not 

present in other models and could explain the multi-model differences between this model and others 

across East Asia. The discrepancies in CMIP6 models are not as obvious over South Asia as the effect 

of the increase in OA over South Asia in CESM2-WACCM is masked by coincident increases in other 

components across other models, as indicated by the strong correlations with emissions here. CESM2-

WACCM also shows larger simulated increases in PM2.5 over South America, Central America, Southern 

Africa and South East Asia than other models, which can be attributed to the larger increase in the OA 

fraction (Fig. S26) and the strong correlations in this model with changes in temperature and emissions 

(BVOCs and SO2).” 
 
Page 28 Lines 586-590 have been amended as follows: 
 
“However, oOver Southern Africa UKESM1-0-LL shows a reduction in future PM2.5, in contrast to the 

other models, This can again be attributed due to a reduction in the BC, OA and dust aerosol 

components (Fig. S24, S26 and S27). UKESM1-0-LL exhibits particularly strong negative correlations for 

surface PM2.5 when compared with temperature and precipitation. These relationships over Southern 

Africa are quite different to other CMIP6 models, which is also highlighted in the model evaluation over 

this region (Fig. 8) and indicates that climate change influences aerosol concentrations differently over 

this region in this model (Figure 16). In addition, there is a slight positive correlation of PM2.5 with BVOC 

emissions in UKESM1-0-LL over Southern Africa. Future biogenic emissions (including monoterpenes) 

reduce here in ssp370 (Fig. S22), potentially due to land-use vegetation change as UKESM1-0-LL has 

dynamic vegetation coupled to BVOC emissions (Table S1). This could also reduce PM2.5 concentrations 

over this region because monoterpene emissions are the main precursor to SOA formation in UKESM1-

0-LL (Mulcahy et al., 2019).” 
 
A new sentence has been included on Page 28 Lines 594 
 
“There is also a lack of consistency across CMIP6 models in the correlations of PM2.5 with any individual 

driver, indicating the variability of the aerosol sources in these regions within models.” 
 
Page 28 Lines 597-601 have been amended as follows: 
 
“A strong increase in sea salt concentrations is simulated in all models across the Southern Ocean (and 

other oceans), potentially driven by changes to meteorological conditions (reflected by the positive 

correlations of PM2.5 with the climate variables temperatures and precipitation in Fig. 16), which 

increase wind speed and sea salt emissions. As ssp370 is a scenario with a large climate change signal, 

the increases in PM2.5 across the North Pole, particularly in 2100, can be attributed to the melting of 

sea ice increasing sea salt emissions, which again is reflected in the positive correlations of PM2.5 with 

climate variables over this region.” 
 
Detailed comments 



One of the more interesting aspects of the paper is the comparison with the parameterisation based 
on HTAP models to separately attribute changes to emissions versus the combined emissions and 
climate changes simulated by the AerChemMIP models. However, it would help to have a better 
summary of how the parameterisation was developed and applied. Is it one parameterisation, or an 
ensemble of parameterisations that were developed separately for each model? Is there any overlap 
in the models used in developing the parameterisation and the AerChemMIP models? If so, can that 
subset of models be analyzed to attribute with greater confidence the role of climate change? Would 
this study support future work to extend this parameterisation to include the effects of temperature, 
humidity, or some other changes in climate variables? 
 
The O3 parameterisation is built upon models and emission perturbation experiments contributing to 
phase 1 and 2 of the Hemispheric Transport of Air Pollutants (HTAP) project. The models used to 
construct the O3 parameterisation are independent of those used in CMIP6 and in the analysis 
presented in this manuscript. The parameterisation is based solely on emission perturbation 
experiments and does not account for any changes in O3 due to climate or meteorology. Therefore, 
comparison of the results from the parameterisation with CMIP6 models provides an indication of the 
impact on surface O3 from non-emission driven changes. Further development of the 
parameterisation is planned in the future to include some representation of the impact of climate 
change on surface O3.  
 
Based on the reviewers comment we have included more details on the development and application 
of the O3 parameterisation in the manuscript. The following has been included on Page 6, line 206: 
 
“The HTAP_param was previously developed based upon the source-receptor relationships of O3 

derived from perturbation experiments of regional precursor emissions and global CH4 abundances 

(Wild et al., 2012; Turnock et al., 2018). The HTAP_param applies the fractional change in global CH4 

abundance and regional emission precursors (NOx, CO and NMVOCs) for a particular scenario to the 

ozone response from each individual model used in the parameterisation. The total O3 response is 

obtained by summing up the response from each of the individual models to all precursor changes 

across all source regions. The surface O3 response previously calculated from the HTAP_param in both 

the historical and future CMIP6 scenarios is compared to that from the CMIP6 models (Turnock et al., 

2019).”  
 
The referencing throughout the text seems to focus on more recent work rather than early papers 
that first identified important relationships. For example, the role of increasing water vapor in 
increasing ozone loss was first pointed out by Johnson et al., 1999 (text around line 65, and especially 
450); the role of methane for surface ozone by Fiore et al. 2002 and Shindell et al. 2012 (text around 
line 65); the increase in ozone under climate change scenarios by Wu et al. 2009 and Weaver et al. 
2009 (text around line 645). 
 
Following the recommendations of the reviewer we have updated the text in the manuscript at the 
appropriate places to include reference to these papers. 
 
Try to quantify wherever possible in the text, such as line 29 “consistent overestimate”, line 31 
“consistently underestimated”, by how much? Is there any improvement in biases, or worsening, 
relative to prior studies? Line 40 “important differences”, can anything be said as to which is most 
important or handled most realistically? Line 44-45 should include at least one example to support 
this statement. 
 
We thank the reviewer for the suggestions and tried to make improvements throughout the text to 
provide more quantitative statements. 



 
In response to the specific comments above Page 1, line 29-33 has been amended to: 
 
“CMIP6 models consistently overestimate observed surface O3 concentrations across most regions and 

in most seasons by up to 16 ppb, with a large diversity in simulated values over northern hemisphere 

continental regions. Conversely, observed surface PM2.5 concentrations are consistently 

underestimated in CMIP6 models by up to 10 µg m-3, particularly for the northern hemisphere winter 

months, with the largest model diversity near natural emission source regions. The biases in CMIP6 

models when compared to observations of O3 and PM2.5 are similar to those found in previous studies.” 
 
Page 1 Line 40 has been slightly amended to reflect that differences between models vary on a 
regional basis. 
 
“A comparison of simulated regional changes in both surface O3 and PM2.5 from individual CMIP6 

models highlights important regional differences due to the simulated interaction of aerosols, 

chemistry, climate and natural emission sources within models.”  
 
Line 44 -45  
 
“Differences between individual models emphasises the importance of understanding how future Earth 

system feedbacks influence natural emission sources e.g. response of biogenic emissions under climate 

change.” 
 
Lines 113-114. Why do this for a future scenario rather than the historical period where there might 
be some opportunity to evaluate with observations? 
 
The inter-model comparison of CMIP6 models for ssp370 was undertaken to explore the differences 
in their simulated response of air pollutants to future changes in emissions and climate. The model 
evaluation of simulated surface O3 and PM2.5 against observations in the present day (2004-2014) was 
conducted to benchmark each of the CMIP6 models, as well as identify biases and differences between 
CMIP6 models. The evaluation highlights particular discrepancies between CMIP6 models such as the 
higher present day concentrations of surface O3 simulated by BCC-ESM1 and GISS-E2-1-G and the large 
seasonal cycle in surface O3 simulated by UKESM1. In addition, higher concentrations of surface PM2.5 
are simulated by CESM2-WACCM and UKESM1 over Asia, whereas lower values are simulated by 
MIROC-ES2L over remote regions. We have made amendments to the text in the model evaluation 
section of the manuscript to try and bring out some of the inter-model differences in addition to biases 
against observations.  
 
Figure 2 is difficult to digest. Why does this need to be in the main text? This is an example where 
more could be gleaned from the analysis if these changes in emissions could be shown to be related 
to the projected changes in ozone and/or PM2.5, perhaps through scatterplots. 
 
We included Figure 2 to highlight the regional disparity in emission trajectories of air pollutants 
compared to the global changes presented in Figure 1. In addition, we wanted to highlight the 
importance of different short-term or long-term trajectories in future scenario e.g. increases in NOx 
emissions across East Asia in ssp370 by 2050 but then reductions out to 2100. Figure 2 has been 
revised based on the comments from reviewer 1 to make it easier to understand (see response to 
reviewer 1 above). We have also made comparisons of changes in air pollutants to emissions in the 
future ssp370 scenario (see above) as suggested in the initial comments by reviewer 2. 
 
Line 271. This can be checked and stated more confidently by examining NO2+O3 rather than just O3. 



 
The sensitivity of O3 formation to NOx concentrations in each individual CMIP6 model is discussed 
further in the response to point 4 of reviewer 1, which highlights that UKESM1 has some of the largest 
regional NOx concentrations and lower surface O3 concentrations. Page 9 , line 271 has been amended 
to include reference to the new figure. In addition, comparisons of O3 and NOx concentrations are 
made for each model and presented in response to the initial comments by reviewer 2. 
 
Lines 444-445 is not new as this was a major result from CMIP5 era RCP8.5. Some of that work 
probably deserves a citation, such as Gao et al. 2013. 
 
This section has been amended to include references as per the response to point 5 of reviewer 1 
above.  
 
The biases in Figure 3 are very hard to read. It should be stated if the color bar saturates. 
 
The colour bar on Figure 3 does saturate, which has now been stated in the figure caption. Figure 3 
has also been amended to try and make the biases clearer, along with the inclusion of the annual 
comparisons in response to an earlier point by reviewer 2. 
 
Lines 494-500. These seemingly different responses may occur because of different responses in 
winter versus summer across the models being mixed together in the annual mean. 
 
The reviewer is correct in that this response in amplified on a seasonal mean basis. This section has 
been amended as stated in the initial response to reviewer 2 above. 
 
Lines 503-514. Can these points about sources of inter-model differences be illustrated and based on 
evidence rather than surmised? Same goes for lines 580-590 & 600-602, where it might be worth 
moving some of the supplemental information into the main text to support more strongly these 
points. 
 
Two new figures have been included in the manuscript to show correlations between future changes 
in air pollutants and different variables. The text of the manuscript has been edited as shown in the 
initial response to reviewer 2 to reflect the additional information on the reasons between differences 
in models.  
 
Lines 648-650 should be supported with observations for this conclusion to be made here. 
 
The following amendment to the text has been made to reference other studies that observe the same 
temporal changes in PM2.5 concentrations. 
 
“CMIP6 models simulate the peak in PM2.5 concentrations in the 1980s across Europe and North 
America, prior to the simulating the observed decline in concentrations to present day (Leibensperger 
et al., 2012; Tørseth et al., 2012; Turnock et al., 2015), resulting from attributed to the implementation 
of air pollutant emission controls over these regions.” 
 
Stronger evidence should also be included to support conclusions on lines 665-666 & 677-678. 
 
Further evidence has been provided as to the reasons for the differences between CMIP6 models in 
the initial response to reviewer 2, along with changes to the text of the manuscript. We have slightly 
amended the text in the conclusion to reflect these changes. 
 



Page 31 lines 665-66 have been amended to the following: 
 
“Disagreements in the prediction of future changes to regional surface PM2.5 concentrations between 

individual CMIP6 models can mainly be attributed to differences in the complexity of the aerosol 

schemes implemented within models, in particular the formation mechanisms of organic aerosols and 

emission of BOVCs over certain regions Additionally, along with the strength of the climate change 

signal (temperature and precipitation) within simulated by models and how this can have important 

the impact this has on natural aerosol emissions via Earth system couplings leading to discrepancies 

between models.” 
 
Page 31 lines 677-678 have been amended to the following: 
 
“Important differences between individual CMIP6 models have been identified in terms of how they 

treat the simulate air pollutants from the interaction of chemistry (O3 and NOx), climate (temperature 

and precipitation) and natural precursor emissions (BVOCs) in the future.” 
 
References 

 
Aas, W., Mortier, A., Bowersox, V., Cherian, R., Faluvegi, G., Fagerli, H., Hand, J., Klimont, Z., Galy-Lacaux, C., Lehmann, C. 
M. B., Myhre, C. L., Myhre, G., Olivié, D., Sato, K., Quaas, J., Rao, P. S. P., Schulz, M., Shindell, D., Skeie, R. B., Stein, A., 
Takemura, T., Tsyro, S., Vet, R. and Xu, X.: Global and regional trends of atmospheric sulfur, Sci. Rep., 9(1), 953, 
doi:10.1038/s41598-018-37304-0, 2019. 

Archibald, A., O’Connor, F., Abraham, N. L., Archer-Nicholls, S., Chipperfield, M., Dalvi, M., Folberth, G., Dennison, F., 
Dhomse, S., Griffiths, P., Hardacre, C., Hewitt, A., Hill, R., Johnson, C., Keeble, J., Köhler, M., Morgenstern, O., Mulchay, J., 
Ordóñez, C., Pope, R., Rumbold, S., Russo, M., Savage, N., Sellar, A., Stringer, M., Turnock, S., Wild, O. and Zeng, G.: 
Description and evaluation of the UKCA stratosphere-troposphere chemistry scheme (StratTrop vn 1.0) implemented in 
UKESM1, Geosci. Model Dev., 13, 1223–1266, doi:10.5194/gmd-2019-246, 2020. 

Bauer, S. E., Tsigaridis, K. and Miller, R.: Significant atmospheric aerosol pollution caused by world food cultivation, 
Geophys. Res. Lett., 43(10), 5394–5400, doi:10.1002/2016GL068354, 2016. 

Bauer, S. E., Im, U., Mezuman, K. and Gao, C. Y.: Desert Dust, Industrialization, and Agricultural Fires: Health Impacts of 
Outdoor Air Pollution in Africa, J. Geophys. Res. Atmos., 124(7), 4104–4120, doi:10.1029/2018JD029336, 2019. 

Bauer, S. E., Tsigaridis, K., Faluvegi, G., Kelley, M., Lo, K. K., Miller, R. L., Nazarenko, L., Schmidt, G. A. and Wu, J.: Historical 
(1850-2014) aerosol evolution and role on climate forcing using the GISS ModelE2.1 contribution to CMIP6, J. Adv. Model. 
Earth Syst., doi:10.1029/2019ms001978, 2020. 

Brauer, M., Freedman, G., Frostad, J., van Donkelaar, Aaron Martin, R. V, Dentener, F., Dingenen, R. van, Estep, K., Amini, 
H., Apte, J. S., Balakrishnan, K., Barregard, L., Broday, D., Feigin, V., Ghosh, S., Hopke, P. K., Knibbs, L. D., Kokubo, Y., Liu, Y., 
Ma, S., Morawska, L., Sangrador, J. L. T., Shaddick, G., Anderson, H. R., Vos, T., Forouzanfar, M. H., Burnett, R. T. and Cohen, 
A.: Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013, Environ. Sci. Technol., 50(1), 79–88, 
doi:DOI: 10.1021/acs.est.5b03709, 2016. 

Burnett, R. T., Arden Pope, C., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., Shin, H. H., Singh, G., Hubbell, B., Brauer, M., Ross 
Anderson, H., Smith, K. R., Balmes, J. R., Bruce, N. G., Kan, H., Laden, F., Prüss-Ustün, A., Turner, M. C., Gapstur, S. M., 
Diver, W. R. and Cohen, A.: An integrated risk function for estimating the global burden of disease attributable to ambient 
fine particulate matter exposure, Environ. Health Perspect., 122, 397–403, doi:10.1289/ehp.1307049, 2014. 

Butt, E. W., Turnock, S. T., Rigby, R., Reddington, C. L., Yoshioka, M., Johnson, J. S., Regayre, L. A., Pringle, K. J., Mann, G. W. 
and Spracklen, D. V.: Global and regional trends in particulate air pollution and attributable health burden over the past 50 
years, Environ. Res. Lett., 12(10), doi:10.1088/1748-9326/aa87be, 2017. 

Chin, M., Diehl, T., Tan, Q., Prospero, J. M., Kahn, R. A., Remer, L. A., Yu, H., Sayer, A. M., Bian, H., Geogdzhayev, I. V., 
Holben, B. N., Howell, S. G., Huebert, B. J., Hsu, N. C., Kim, D., Kucsera, T. L., Levy, R. C., Mishchenko, M. I., Pan, X., Quinn, P. 
K., Schuster, G. L., Streets, D. G., Strode, S. A., Torres, O. and Zhao, X.-P.: Multi-decadal aerosol variations from 1980 to 
2009: a perspective from observations and a global model, Atmos. Chem. Phys., 14(7), 3657–3690, doi:10.5194/acp-14-
3657-2014, 2014. 

Chowdhury, S., Dey, S. and Smith, K. R.: Ambient PM2.5 exposure and expected premature mortality to 2100 in India under 



climate change scenarios, Nat. Commun., 9(1), doi:10.1038/s41467-017-02755-y, 2018. 

Colette, A., Andersson, C., Baklanov, A., Bessagnet, B., Brandt, J., Christensen, J. H., Doherty, R., Engardt, M., Geels, C., 
Giannakopoulos, C., Hedegaard, G. B., Katragkou, E., Langner, J., Lei, H., Manders, A., Melas, D., Meleux, F., Rouïl, L., Sofiev, 
M., Soares, J., Stevenson, D. S., Tombrou-Tzella, M., Varotsos, K. V and Young, P.: Is the ozone climate penalty robust in 
Europe?, Environ. Res. Lett., 10(8), 084015, doi:10.1088/1748-9326/10/8/084015, 2015. 

Deushi, M. and Shibata, K.: Development of a Meteorological Research Institute chemistry-climate model version 2 for the 
study of tropospheric and stratospheric chemistry, Pap. Meteorol. Geophys., 62(May), 1–46, doi:10.2467/mripapers.62.1, 
2011. 

van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C. and Villeneuve, P. J.: Global estimates of 
ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application, 
Environ. Health Perspect., 118(6), 847–855, doi:10.1289/ehp.0901623, 2010. 

Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G., Malyshev, S., Naik, V., Paulot, F., Shevliakova, 
E., AStock, C., Zadeh, N., Blanton, C., Dunne, K. A., Dupuis, C., Durachta, J., Dussin, R., G Gauthier, P. P., Griffies, M., Guo, H., 
Hallberg, R. W., Harrison, M., He, J., Hurlin, W., McHugh, C., D Milly, P. C., Nikonov, S., Paynter, D. J., Ploshay, J., 
Radhakrishnan, A., Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf, D. M., Sentman, L. T., Underwood, S., Winton, M., 
Wittenberg, A. T., Wyman, B., Zeng, Y. and Zhao, M.: The GFDL Earth System Model version 4.1 (GFDL-ESM4.1): Model 1 
description and simulation characteristics, J. Adv. Model. Earth Syst., Submitted, 2020. 

Emmons, L. K., Schwantes, R. H., Orlando, J. J., Tyndall, G., Kinnison, D., Lamarque, J., Marsh, D., Mills, M. J., Tilmes, S., 
Bardeen, C., Buchholz, R. R., Conley, A., Gettelman, A., Garcia, R., Simpson, I., Blake, D. R., Meinardi, S. and Pétron, G.: The 
Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2), J. Adv. Model. Earth Syst., 12(4), 1–21, 
doi:10.1029/2019ms001882, 2020. 

Fiore, A. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M. G., Hess, P., Textor, C., Schulz, M., Doherty, R. M., Horowitz, 
L. W., MacKenzie, I. A., Sanderson, M. G., Shindell, D. T., Stevenson, D. S., Szopa, S., Van Dingenen, R., Zeng, G., Atherton, 
C., Bergmann, D., Bey, I., Carmichael, G., Collins, W. J., Duncan, B. N., Faluvegi, G., Folberth, G., Gauss, M., Gong, S., 
Hauglustaine, D., Holloway, T., Isaksen, I. S. A., Jacob, D. J., Jonson, J. E., Kaminski, J. W., Keating, T. J., Lupu, A., Manner, E., 
Montanaro, V., Park, R. J., Pitari, G., Pringle, K. J., Pyle, J. A., Schroeder, S., Vivanco, M. G., Wind, P., Wojcik, G., Wu, S. and 
Zuber, A.: Multimodel estimates of intercontinental source-receptor relationships for ozone pollution, J. Geophys. Res. 
Atmos., 114(4), 1–21, doi:10.1029/2008JD010816, 2009. 

Fortems-Cheiney, A., Foret, G., Siour, G., Vautard, R., Szopa, S., Dufour, G., Colette, A., Lacressonniere, G. and Beekmann, 
M.: A 3 °C global RCP8.5 emission trajectory cancels benefits of European emission reductions on air quality, Nat. 
Commun., 8(89), 1–5, doi:10.1038/s41467-017-00075-9, 2017. 

Gao, M., Han, Z., Liu, Z., Li, M., Xin, J., Tao, Z., Li, J., Kang, J.-E., Huang, K., Dong, X., Zhuang, B., Li, S., Ge, B., Wu, Q., Cheng, 
Y., Wang, Y., Lee, H.-J., Kim, C.-H., Fu, J. S., Wang, T., Chin, M., Woo, J.-H., Zhang, Q., Wang, Z. and Carmichael, G. R.: Air 
quality and climate change, Topic 3 of the Model Inter-Comparison Study for Asia Phase III (MICS-Asia III)-Part 1: Overview 
and model evaluation, Atmos. Chem. Phys, 18, 4859–4884, doi:10.5194/acp-18-4859-2018, 2018. 

Gao, Y., Fu, J. S., Drake, J. B., Lamarque, J.-F. and Liu, Y.: The impact of emission and climate change on ozone in the United 
States under representative concentration pathways (RCPs), Atmos. Chem. Phys., 13(18), 9607–9621, doi:10.5194/acp-13-
9607-2013, 2013. 

Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K., Marsh, D. R., Tilmes, S., Vitt, F., Bardeen, C. G., 
McInerny, J., Liu, H. L., Solomon, S. C., Polvani, L. M., Emmons, L. K., Lamarque, J. F., Richter, J. H., Glanville, A. S., 
Bacmeister, J. T., Phillips, A. S., Neale, R. B., Simpson, I. R., DuVivier, A. K., Hodzic, A. and Randel, W. J.: The Whole 
Atmosphere Community Climate Model Version 6 (WACCM6), J. Geophys. Res. Atmos., 124(23), 12380–12403, 
doi:10.1029/2019JD030943, 2019. 

Glotfelty, T., He, J. and Zhang, Y.: Impact of future climate policy scenarios on air quality and aerosol-cloud interactions 
using an advanced version of CESM/CAM5: Part I. model evaluation for the current decadal simulations, Atmos. Environ., 
152, 222–239, doi:10.1016/J.ATMOSENV.2016.12.035, 2017. 

Griffiths, P., Archibald, A. T., Zeng, G., Zanis, P., Hassler, B., O’Connor, F. M., Turnock, S. T., Naik, V., Young, P., Wild, O., 
Keeble, J., Shin, Y., Ziemke, J. R., Galbally, I., Tarasick, D., Jingxian., L., Omid, M. and Murray, L. T.: Tropospheric Ozone in 
CMIP6 Simulations, Submitted, 2019. 

Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., Mckay, W. A., 
Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J. and Zimmerman, P.: A global model of natural volatile 
organic compound emissions, J. Geophys. Res., 100(D5), 8873, doi:10.1029/94JD02950, 1995. 

Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, 



H., Ito, A., Takata, K., Ogochi, K., Watanabe, S. and Kawamiya, M.: Development of the MIROC-ES2L Earth system model 
and the evaluation of biogeochemical processes and feedbacks, Geosci. Model Dev., 13, 2197–2244, 
doi:https://doi.org/10.5194/gmd-13-2197-2020, 2020. 

Horowitz, L. W., Naik, V., Paulot, F., Ginoux, P. A., Dunne, J. P., Mao, J., Schnell, J., Chen, X., He, J., John, J. G., Lin, M., Lin, P., 
Malyshev, S., Paynter, D., Shevliakova, E. and Zhao, M.: The GFDL Global Atmospheric Chemistry-Climate Model AM4.1: 
Model Description and Simulation Characteristics, J. Adv. Model. Earth Syst., Submitted, 2019. 

Im, U., Christensen, J. H., Geels, C., Hansen, K. M., Brandt, J., Solazzo, E., Alyuz, U., Balzarini, A., Baro, R., Bellasio, R., 
Bianconi, R., Bieser, J., Colette, A., Curci, G., Farrow, A., Flemming, J., Fraser, A., Jimenez-Guerrero, P., Kitwiroon, N., Liu, P., 
Nopmongcol, U., Palacios-Peña, L., Pirovano, G., Pozzoli, L., Prank, M., Rose, R., Sokhi, R., Tuccella, P., Unal, A., Vivanco, M. 
G., Yarwood, G., Hogrefe, C. and Galmarini, S.: Influence of anthropogenic emissions and boundary conditions on multi-
model simulations of major air pollutants over Europe and North America in the framework of AQMEII3, Atmos. Chem. 
Phys., 18(12), 8929–8952, doi:10.5194/acp-18-8929-2018, 2018. 

Jerrett, M., Burnett, R. T., Pope, C. A., Ito, K., Thurston, G., Krewski, D., Shi, Y., Calle, E. and Thun, M.: Long-Term Ozone 
Exposure and Mortality, N. Engl. J. Med., 360(11), 1085–1095, doi:10.1056/NEJMoa0803894, 2009. 

Jerrett, M., Turner, M. C., Beckerman, B. S., Pope, C. A., van Donkelaar, A., Martin, R. V., Serre, M., Crouse, D., Gapstur, S. 
M., Krewski, D., Diver, W. R., Coogan, P. F., Thurston, G. D. and Burnett, R. T.: Comparing the health effects of ambient 
particulate matter estimated using ground-based versus remote sensing exposure estimates, Environ. Health Perspect., 
125(4), 552–559, doi:10.1289/EHP575, 2017. 

Johnson, J., Regayre, L., Yoshioka, M., Pringle, K., Turnock, S., Browse, J., Sexton, D. M., Rostron, J., Schutgens, N. A., 
Partridge, D., Liu, D., Allan, J., Coe, H., Ding, A., Cohen, D., Atanacio, A., Vakkari, V., Asmi, E. and Carslaw, K.: Robust 
observational constraint of uncertain aerosol processes and emissions in a climate model and the effect on aerosol 
radiative forcing, Atmos. Chem. Phys. Discuss., (November), 1–51, doi:10.5194/acp-2019-834, 2019. 

Kirkevåg, A., Grini, A., Olivié, D., Seland, Ø., Alterskjær, K., Hummel, M., Karset, I. H. H., Lewinschal, A., Liu, X., Makkonen, 
R., Bethke, I., Griesfeller, J., Schulz, M. and Iversen, T.: A production-tagged aerosol module for Earth system models, 
OsloAero5.3 – extensions and updates for CAM5.3-Oslo, Geosci. Model Dev., 11(10), 3945–3982, doi:10.5194/gmd-11-
3945-2018, 2018. 

Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil,  a., Klimont, Z., Lee, D., Liousse, C., Mieville,  a., Owen, B., Schultz, 
M. G., Shindell, D. T., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. 
R., Naik, V., Riahi, K. and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions 
of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10(15), 7017–7039, doi:10.5194/acp-10-
7017-2010, 2010. 

Leibensperger, E. M., Mickley, L. J., Jacob, D. J., Chen, W.-T., Seinfeld, J. H., Nenes,  a., Adams, P. J., Streets, D. G., Kumar, N. 
and Rind, D.: Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 1: Aerosol trends and radiative 
forcing, Atmos. Chem. Phys., 12(7), 3333–3348, doi:10.5194/acp-12-3333-2012, 2012. 

Li, J., Wang, X., Chen, J., Zhu, C., Li, W., Li, C., Liu, L., Xu, C., Wen, L., Xue, L., Wang, W., Ding, A. and Herrmann, H.: Chemical 
composition and droplet size distribution of cloud at the summit of Mount Tai, China, Atmos. Chem. Phys., 17(16), 9885–
9896, doi:10.5194/acp-17-9885-2017, 2017. 

Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q. and Bates, K. H.: Anthropogenic drivers of 2013–2017 trends in summer 
surface ozone in China, Proc. Natl. Acad. Sci. U. S. A., 116(2), 422–427, doi:10.1073/pnas.1812168116, 2019. 

Li, Y., Henze, D. K., Jack, D. and Kinney, P. L.: The influence of air quality model resolution on health impact assessment for 
fine particulate matter and its components, Air Qual. Atmos. Heal., 9(1), 51–68, doi:10.1007/s11869-015-0321-z, 2016. 

Michou, M., Nabat, P., Saint-Martin, D., Bock, J., Decharme, B., Mallet, M., Roehrig, R., Séférian, R., Sénési, S. and Voldoire, 
A.: Present-day and historical aerosol and ozone characteristics in CNRM CMIP6 simulations, J. Adv. Model. Earth Syst., 
2019MS001816, doi:10.1029/2019MS001816, 2019. 

Mortier, A., Gliss, J., Schulz, M., Aas, W., Andrews, E., Bian, H., Chin, M., Ginoux, P., Hand, J., Holben, B., Hua, Z., Kipling, Z., 
Kirkevåg, A., Laj, P., Lurton, T., Myhre, G., Neubauer, D., Olivié, D., von Salzen, K., Takemura, T. and Tilmes, S.: Evaluation of 
climate model aerosol trends with ground-based observations over the last two decades &amp;#8211; an AeroCom and 
CMIP6 analysis, Atmos. Chem. Phys., 1–36, doi:10.5194/acp-2019-1203, 2020. 

Mulcahy, J., Johnson, C., Jones, C., Povey, A., Scott, C., Sellar, A., Turnock, S., Woodhouse, M., Andrews, M., Bellouin, N., 
Browse, J., Carslaw, K., Dalvi, M., Folberth, G., Glover, M., Grosvenor, D., Hardacre, C., Hill, R., Johnson, B., Jones, A., 
Kipling, Z., Mann, G., Mollard, J., O’Connor, F., Palmieri, J., Reddington, C., Rumbold, S., Richardson, M., Schutgens, N. A., 
Stier, P., Stringer, M., Tang, Y., Walton, J., Woodward, S. and Yool, A.: Description and evaluation of aerosol in UKESM1 and 
HadGEM3-GC3.1 CMIP6 historical simulations, Geosci. Model Dev. Discuss., (March), 1–59, doi:10.5194/gmd-2019-357, 



2020. 

Mulcahy, J. P., Johnson, C., Jones, C. G., Povey, A. C., Scott, C. E., Sellar, A., Turnock, S. T., Woodhouse, M. T., Abraham, N. 
L., Andrews M., Bellouin, N., Browse, J., Carslaw, K. S., Dalvi, M., Folberth, G., Grosvenor, D., Hardacre, C., Johnson, B., 
Jones, A., Kipling, Z., Mann, G., Mollard, J., Schutgens, N., O’Connor, F., Palmieri, J., Reddington, C., Richardson, M., Stier, 
P., Woodward, S. and Yool, A.: Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical 
simulations, Geosci. Model Dev., submited(March), 2019. 

Neal, L. S., Dalvi, M., Folberth, G., Mcinnes, R. N., Agnew, P., O ’connor, F. M., Savage, N. H. and Tilbee, M.: A description 
and evaluation of an air quality model nested within global and regional composition-climate models using MetUM, Geosci. 
Model Dev, 10, 3941–3962, doi:10.5194/gmd-10-3941-2017, 2017. 

Pan, X., Chin, M., Gautam, R., Bian, H., Kim, D., Colarco, P. R., Diehl, T. L., Takemura, T., Pozzoli, L., Tsigaridis, K., Bauer, S. 
and Bellouin, N.: A multi-model evaluation of aerosols over South Asia: common problems and possible causes, Atmos. 
Chem. Phys., 15(10), 5903–5928, doi:10.5194/acp-15-5903-2015, 2015. 

Parrish, D. D., Lamarque, J. F., Naik, V., Horowitz, L., Shindell, D. T., Staehelin, J., Derwent, R., Cooper, O. R., Tanimoto, H., 
Volz-Thomas, A., Gilge, S., Scheel, H. E., Steinbacher, M. and Fröhlich, M.: Long-term changes in lower tropospheric 
baseline ozone concentrations: Comparing chemistry-climate models and observations at northern midlatitudes, J. 
Geophys. Res., 119(9), 5719–5736, doi:10.1002/2013JD021435, 2014. 

Pozzoli, L., Janssens-Maenhout, G., Diehl, T., Bey, I., Schultz, M. G., Feichter, J., Vignati, E. and Dentener, F.: Re-analysis of 
tropospheric sulfate aerosol and ozone for the period 1980–2005 using the aerosol-chemistry-climate model ECHAM5-
HAMMOZ, Atmos. Chem. Phys., 11(18), 9563–9594, doi:10.5194/acp-11-9563-2011, 2011. 

Punger, E. M. and West, J. J.: The effect of grid resolution on estimates of the burden of ozone and fine particulate matter 
on premature mortality in the USA, Air Qual. Atmos. Heal., 6(3), 563–573, doi:10.1007/s11869-013-0197-8, 2013. 

Rasmussen, D. J., Hu, J., Mahmud, A. and Kleeman, J. M.: The Ozone Climate Penalty: past, present and future, Environ. Sci. 
Technol., 47(24), 14258–14266, doi:10.1109/TMI.2012.2196707.Separate, 2013. 

Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin, J., Decharme, B., Delire, C., Berthet, S., Chevallier, 
M., Sénési, S., Franchisteguy, L., Vial, J., Mallet, M., Joetzjer, E., Geoffroy, O., Guérémy, J., Moine, M., Msadek, R., Ribes, A., 
Rocher, M., Roehrig, R., Salas-y-Mélia, D., Sanchez, E., Terray, L., Valcke, S., Waldman, R., Aumont, O., Bopp, L., Deshayes, 
J., Éthé, C. and Madec, G.: Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System Processes in 
Present-Day and Future Climate, J. Adv. Model. Earth Syst., 2019MS001791, doi:10.1029/2019MS001791, 2019. 

Seland, Ø., Bentsen, M., Seland Graff, L., Olivié, D., Toniazzo, T., Gjermundsen, A., Debernard, J. B., Gupta, A. K., He, Y., 
Kirkevåg, A., Schwinger, J., Tjiputra, J., Schancke Aas, K., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., 
Hafsahl Karset, I. H., Landgren, O., Liakka, J., Onsum Moseid, K., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, 
C., Iverson, T. and Schulz, M.: The Norwegian Earth System Model, NorESM2 - Evaluation of theCMIP6 DECK and historical 
simulations, Geosci. Model Dev. Discuss., (February), 1–68, doi:10.5194/gmd-2019-378, 2020. 

Shindell, D. T., Lamarque, J.-F., Schulz, M., Flanner, M., Jiao, C., Chin, M., Young, P. J., Lee, Y. H., Rotstayn, D., Mahowald, 
N., Milly, G., Faluvegi, G., Collins, W. J., Conley, A. J., Dalsoren, S., Easter, R., Ghan, S., Horowitz, L., Liu, X., Myhre, G., 
Nagashima, T., Naik, V., Rumbold, S. T., Skeie, R., Sudo, K., Szopa, S., Takemura, T., Voulgarakis, A., Yoon, J.-H. and Lo, F.: 
Radiative forcing in the ACCMIP historical and future climate simulations, Atmos. Chem. Phys., 13, 2939–2974, 
doi:10.5194/acp-13-2939-2013, 2013. 

Silva, R. A., Adelman, Z., Fry, M. M. and West, J. J.: Impact of emissions sectors on global mortality, , 1776(11), 1776–1784 
[online] Available from: https://ehp.niehs.nih.gov/wp-content/uploads/124/11/EHP177.alt.pdf, 2016a. 

Silva, R. A., West, J. J., Lamarque, J. F., Shindell, D. T., Collins, W. J., Dalsoren, S., Faluvegi, G., Folberth, G., Horowitz, L. W., 
Nagashima, T., Naik, V., Rumbold, S. T., Sudo, K., Takemura, T., Bergmann, D., Cameron-Smith, P., Cionni, I., Doherty, R. M., 
Eyring, V., Josse, B., MacKenzie, I. A., Plummer, D., Righi, M., Stevenson, D. S., Strode, S., Szopa, S. and Zengast, G.: The 
effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model 
ensemble, Atmos. Chem. Phys., 16(15), 9847–9862, doi:10.5194/acp-16-9847-2016, 2016b. 

Solazzo, E., Bianconi, R., Hogrefe, C., Curci, G., Tuccella, P., Alyuz, U., Balzarini, A., Baró, R., Bellasio, R., Bieser, J., Brandt, J., 
Christensen, J. H., Colette, A., Francis, X., Fraser, A., Vivanco, M. G., Jiménez-Guerrero, P., Im, U., Manders, A., 
Nopmongcol, U., Kitwiroon, N., Pirovano, G., Pozzoli, L., Prank, M., Sokhi, R. S., Unal, A., Yarwood, G. and Galmarini, S.: 
Evaluation and error apportionment of an ensemble of atmospheric chemistry transport modeling systems: multivariable 
temporal and spatial breakdown, Atmos. Chem. Phys., 17(4), 3001–3054, doi:10.5194/acp-17-3001-2017, 2017. 

Stevenson, D. S., Young, P. J., Naik, V., Lamarque, J.-F., Shindell, D. T., Voulgarakis, A., Skeie, R. B., Dalsoren, S. B., Myhre, 
G., Berntsen, T. K., Folberth, G. A., Rumbold, S. T., Collins, W. J., MacKenzie, I. A., Doherty, R. M., Zeng, G., van Noije, T. P. 
C., Strunk, A., Bergmann, D., Cameron-Smith, P., Plummer, D. A., Strode, S. A., Horowitz, L., Lee, Y. H., Szopa, S., Sudo, K., 



Nagashima, T., Josse, B., Cionni, I., Righi, M., Eyring, V., Conley, A., Bowman, K. W., Wild, O. and Archibald, A.: Tropospheric 
ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model 
Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13(6), 3063–3085, doi:10.5194/acp-13-3063-2013, 2013. 

Takemura, T.: Distributions and Climate Effects of Atmospheric Aerosols from the preindustrial era to 2100 along 
Representative Concentration Pathways (RCPs) simulated using the GLobal Aerosol Model SPRINTARS, Atmos. Chem. Phys., 
12, 11555–11572 [online] Available from: http://www.atmos-chem-phys.net/12/11555/2012/acp-12-11555-2012.pdf, 
2012. 

Tegen, I., Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Bey, I., Schutgens, N., Stier, P., Watson-Parris, D., Stanelle, 
T., Schmidt, H., Rast, S., Kokkola, H., Schultz, M., Schroeder, S., Daskalakis, N., Barthel, S., Heinold, B. and Lohmann, U.: The 
global aerosol–climate model ECHAM6.3–HAM2.3 – Part 1: Aerosol evaluation, Geosci. Model Dev., 12(4), 1643–1677, 
doi:10.5194/gmd-12-1643-2019, 2019. 

Tilmes, S., Hodzic, A., Emmons, L. K., Mills, M. J., Gettelman, A., Kinnison, D. E., Park, M., Lamarque, J. -F., Vitt, F., 
Shrivastava, M., Campuzano Jost, P., Jimenez, J. and Liu, X.: Climate forcing and trends of organic aerosols in the 
Community Earth System Model (CESM2), J. Adv. Model. Earth Syst., 2019MS001827, doi:10.1029/2019MS001827, 2019. 

Tørseth, K., Aas, W., Breivik, K., Fjæraa,  a. M., Fiebig, M., Hjellbrekke,  a. G., Lund Myhre, C., Solberg, S. and Yttri, K. E.: 
Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition 
change during 1972–2009, Atmos. Chem. Phys., 12(12), 5447–5481, doi:10.5194/acp-12-5447-2012, 2012. 

Tsigaridis, K., Daskalakis, N., Kanakidou, M., Adams, P. J., Artaxo, P., Bahadur, R., Balkanski, Y., Bauer, S. E., Bellouin, N., 
Benedetti, A., Bergman, T., Berntsen, T. K., Beukes, J. P., Bian, H., Carslaw, K. S., Chin, M., Curci, G., Diehl, T., Easter, R. C., 
Ghan, S. J., Gong, S. L., Hodzic, A., Hoyle, C. R., Iversen, T., Jathar, S., Jimenez, J. L., Kaiser, J. W., Kirkevåg, A., Koch, D., 
Kokkola, H., Lee, Y. H., Lin, G., Liu, X., Luo, G., Ma, X., Mann, G. W., Mihalopoulos, N., Morcrette, J.-J., Müller, J.-F., Myhre, 
G., Myriokefalitakis, S., Ng, N. L., O’Donnell, D., Penner, J. E., Pozzoli, L., Pringle, K. J., Russell, L. M., Schulz, M., Sciare, J., 
Seland, Ø., Shindell, D. T., Sillman, S., Skeie, R. B., Spracklen, D., Stavrakou, T., Steenrod, S. D., Takemura, T., Tiitta, P., 
Tilmes, S., Tost, H., van Noije, T., van Zyl, P. G., von Salzen, K., Yu, F., Wang, Z., Zaveri, R. A., Zhang, H., Zhang, K., Zhang, Q. 
and Zhang, X.: The AeroCom evaluation and intercomparison of organic aerosol in global models, Atmos. Chem. Phys., 
14(19), 10845–10895, doi:10.5194/acp-14-10845-2014, 2014. 

Turnock, S. T., Spracklen, D. V., Carslaw, K. S., Mann, G. W., Woodhouse, M. T., Forster, P. M., Haywood, J., Johnson, C. E., 
Dalvi, M., Bellouin, N. and Sanchez-Lorenzo,  a.: Modelled and observed changes in aerosols and surface solar radiation 
over Europe between 1960 and 2009, Atmos. Chem. Phys., 15, 9477–9500, doi:10.5194/acp-15-9477-2015, 2015. 

Turnock, S. T., Wild, O., Dentener, F. J., Davila, Y., Emmons, L. K., Flemming, J., Folberth, G. A., Henze, D. K., Jonson, J. E., 
Keating, T. J., Kengo, S., Lin, M., Lund, M., Tilmes, S. and O’Connor, F. M.: The impact of future emission policies on 
tropospheric ozone using a parameterised approach, Atmos. Chem. Phys., 18(12), 8953–8978, doi:10.5194/acp-18-8953-
2018, 2018. 

Turnock, S. T., Wild, O., Sellar, A. and O’Connor, F. M.: 300 years of tropospheric ozone changes using CMIP6 scenarios with 
a parameterised approach, Atmos. Environ., 213, 686–698, doi:10.1016/J.ATMOSENV.2019.07.001, 2019. 

Wild, O. and Prather, M. J.: Global tropospheric ozone modeling: Quantifying errors due to grid resolution, J. Geophys. Res. 
Atmos., 111(11), 1–14, doi:10.1029/2005JD006605, 2006. 

Wild, O., Fiore, A. M., Shindell, D. T., Doherty, R. M., Collins, W. J., Dentener, F. J., Schultz, M. G., Gong, S., Mackenzie, I. A., 
Zeng, G., Hess, P., Duncan, B. N., Bergmann, D. J., Szopa, S., Jonson, J. E., Keating, T. J. and Zuber, A.: Modelling future 
changes in surface ozone: A parameterized approach, Atmos. Chem. Phys., 12(4), 2037–2054, doi:10.5194/acp-12-2037-
2012, 2012. 

Wild, O., Voulgarakis, A., O’Connor, F., Lamarque, J. F., Ryan, E. M. and Lee, L.: Global sensitivity analysis of chemistry-
climate model budgets of tropospheric ozone and OH: Exploring model diversity, Atmos. Chem. Phys., 20(7), 4047–4058, 
doi:10.5194/acp-20-4047-2020, 2020. 

Wu, T., Zhang, F., Zhang, J., Jie, W., Zhang, Y., Wu, F., Li, L., Yan, J., Liu, X., Lu, X., Tan, H., Zhang, L., Wang, J. and Hu, A.: 
Beijing Climate Center Earth System Model version 1 (BCC-ESM1): Model description and evaluation of aerosol simulations, 
Geosci. Model Dev., 13(3), 977–1005, doi:10.5194/gmd-13-977-2020, 2020. 

Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V., Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O., 
Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Horowitz, 
L. W., Josse, B., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R. B., Shindell, 
D. T., Strode, S. A., Sudo, K., Szopa, S. and Zeng, G.: Pre-industrial to end 21st century projections of tropospheric ozone 
from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13(4), 2063–
2090, doi:10.5194/acp-13-2063-2013, 2013. 



Young, P. J., Naik, V., Fiore, A. M., Gaudel, A., Guo, J., Lin, M. Y., Neu, J. L., Parrish, D. D., Rieder, H. E., Schnell, J. L., Tilmes, 
S., Wild, O., Zhang, L., Ziemke, J. R., Brandt, J., Delcloo, A., Doherty, R. M., Geels, C., Hegglin, M. I., Hu, L., Im, U., Kumar, R., 
Luhar, A., Murray, L., Plummer, D., Rodriguez, J., Saiz-Lopez, A., Schultz, M. G., Woodhouse, M. T. and Zeng, G.: 
Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone 
distributions, variability, and trends, Elem Sci Anth, 6(1), 10, doi:10.1525/elementa.265, 2018. 

Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., 
Yabu, S., Yoshimura, H., Shindo, E., Mizuta, R., Obata, A., Adachi, Y. and Ishii, M.: The meteorological research institute 
Earth system model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component, J. Meteorol. 
Soc. Japan, 97(5), 931–965, doi:10.2151/jmsj.2019-051, 2019. 

 



1 
 

Historical and future changes in air pollutants from CMIP6 models 

Steven T. Turnock1, Robert J. Allen2, Martin Andrews1, Susanne E. Bauer3,4, Makoto Deushi5, Louisa 
Emmons56, Peter Good1, Larry Horowitz67, Jasmin G. John7, Martine Michou78, Pierre Nabat78, Vaishali 
Naik67, David Neubauer89, Fiona M. O’Connor1, Dirk Olivié910, Naga Oshima5, Michael Schulz910, 
Alistair Sellar1, Sungbo Shim11, Toshihiko Takemura1012, Simone Tilmes56, Kostas Tsigaridis3,4, 5 

Tongwen Wu1113, Jie Zhang1113 
1Met Office Hadley Centre, Exeter, UK 
2Department of Earth and Planetary Sciences, University of California Riverside, Riverside, California, USA 
3Center for Climate Systems Research, Columbia University, New York, NY, USA  
4NASA Goddard Institute for Space Studies, New York, NY, USA 10 
5 Meteorological Research Institute, Tsukuba, Japan 
65Atmospheric Chemistry Observations and Modelling Lab, National Center for Atmospheric Research, Boulder, CO, USA 
76DOC/NOAA/OAR/ Geophysical Fluid Dynamics Laboratory. Biogeochemistry, Atmospheric Chemistry, and Ecology 
Division, Princeton, USA 
87Centre National de Recherches Météorologiques (CNRM), Université de Toulouse, Météo‐France, CNRS, Toulouse, France                15 
98Institute of Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland 
109Division for Climate Modelling and Air Pollution, Norwegian Meteorological Institute, Oslo, Norway 
11 National Institute of Meteorological Sciences, Seogwipo-si, Jeju-do, Korea 

1210Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan 
1311Beijing Climate Center, China Meteorological Administration, Beijing, China 20 

Correspondence to: Steven Turnock (steven.turnock@metoffice.gov.uk) 

Abstract. 

Poor air quality is currently responsible for large impacts on human health across the world. In addition, the air pollutants, 

ozone (O3) and particulate matter less than 2.5 microns in diameter (PM2.5), are also radiatively active in the atmosphere and 

can influence Earth’s climate. It is important to understand the effect of air quality and climate mitigation measures over the 25 

historical period and in different future scenarios to ascertain any impacts from air pollutants on both climate and human 

health. The 6th Coupled Model Intercomparison Project (CMIP6) presents an opportunity to analyse the change in air pollutants 

simulated by the current generation of climate and Earth system models that include a representation of chemistry and aerosols 

(particulate matter). The shared socio-economic pathways (SSPs) used within CMIP6 encompass a wide range of trajectories 

in precursor emissions and climate change, allowing for an improved analysis of future changes to air pollutants. Firstly, we 30 

conduct an evaluation of the available CMIP6 models against surface observations of O3 and PM2.5. CMIP6 models show a 

consistently overestimateion of observed surface O3 concentrations across most regions and in most seasons by up to 16 ppb, 

with a large diversity in simulated values over northern hemisphere continental regions. Conversely, observed surface PM2.5 

concentrations are consistently underestimated inby CMIP6 models by up to 10 µg m-3, particularly for the northern hemisphere 

winter months, with the largest model diversity near natural emission source regions. The biases in CMIP6 models when 35 

compared to observations of O3 and PM2.5 are similar to those found in previous studies. Over the historical period (1850-

2014) large increases in both surface O3 and PM2.5 are simulated by the CMIP6 models across all regions, particularly over the 

mid to late 20th Century when anthropogenic emissions increase markedly. Large regional historical changes are simulated for 

both pollutants, across East and South Asia, with an annual mean increase of up to 40 ppb for O3 and 12 µg m-3 for PM2.5. In 

future scenarios containing strong air quality and climate mitigation measures (ssp126), annual mean concentrations of air 40 

pollutants are substantially reduced across all regions by up to 15 ppb for O3 and 12 µg m-3 for PM2.5. However, for scenarios 

that encompass weak action on mitigating climate and reducing air pollutant emissions (ssp370), annual mean increases of 

both surface O3 (up 10 ppb) and PM2.5 (up to 8 µg m-3) are simulated across most regions,. aAlthough, for regions like North 

America and Europe small reductions in PM2.5 are simulated in this scenario. A comparison of simulated regional changes in 

both surface O3 and PM2.5 from individual CMIP6 models highlights important regional differences due to the simulated 45 

interaction of aerosols, chemistry, climate and natural emission sources within models. The prediction of regional air pollutant 
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concentrations from the latest climate and Earth system models used within CMIP6 shows that the particular future trajectory 

of climate and air quality mitigation measures could have important consequences for regional air quality, human health and 

near-term climate. Differences between individual models emphasises the importance of understanding how future Earth 

system feedbacks influence natural emission sources e.g. response of biogenic emissions under climate change.      50 

1 Introduction 

Air pollutants are important atmospheric constituents as they have large impacts on human health (Lelieveld et al., 2015), 

damage ecosystems (Fowler et al., 2009) and can also influence climate through changes in the Earth’s radiative balance 

(Boucher et al., 2013; Myhre et al., 2013). Two major components of air pollution at the surface are ozone (O3) and particulate 

matter less than 2.5 microns in diameter (PM2.5). Exposure to present day ambient concentrations of these two air pollutants 55 

was estimated as causing up to 4 million premature deaths per year (Apte et al., 2015; Malley et al., 2017). Over recent decades, 

the impact on human health from exposure to air pollutants has been increasing (Butt et al., 2017; Cohen et al., 2017). 

Additionally, elevated levels of air pollutants over recent decades have also been responsible for ecosystem damage to crops 

and vegetation, although there have been recent improvements in environmental health (de Wit et al., 2015). 

In terms of climate impact, tropospheric O3 has a positive radiative forcing on climate over the industrial period and is the 60 

third most important greenhouse gas in terms of radiative forcing (Myhre et al., 2013). However, depletion of O3 in the 

stratosphere has resulted in a net negative top of atmosphere radiative forcing over recent decades (Checa‐Garcia et al., 2018). 

Particulate matter (PM), also referred to as aerosols, has an overall negative radiative forcing on climate, both directly and 

indirectly through the modification of cloud properties (Boucher et al., 2013). Both O3 and PM are relatively short lived in the 

troposphere, with a typical lifetime of less than 2 weeks in the lower atmosphere, and are commonly referred to as Near Term 65 

Short-lived Climate Forcers (NTSLCFs). Future air pollutant concentrations and distributions are driven by changes to both 

precursor emissions and climate. Emission control measures on a national and international level can both influence future 

changes to air pollutants, with global increases in CH4 abundance potentially offsetting benefits to surface O3 from local 

emission reductions (Fiore et al., 2002; Shindell et al., 2012; Wild et al., 2012). For PM2.5, changes in concentrations are 

dependent on both emission rates and levels of atmospheric oxidants, although changes in specific aerosol components can be 70 

more directly related to emissions, e.g. black carbon. In a warming world, background O3 concentrations over remote locations 

are likely to decrease (Johnson et al., 1999; Isaksen et al., 2009; Fiore et al., 2012; Doherty et al., 2013), whereas over 

anthropogenic source regions, which have higher baselineaverage surface O3 concentrations, an increase is anticipated 

(Rasmussen et al., 2013; Colette et al., 2015). The climate impact on PM2.5 is much more uncertain and variable across regions, 

with both increases and decreases predicted due to the uncertainty of future meteorological effects (Jacob and Winner, 2009; 75 

Allen et al., 2016; Shen et al., 2017). However, any such climate change impacts on PM2.5 are considered to be smaller than 

the effect from implementing emission mitigation measures (Westervelt et al., 2016).  

Experiments conducted as part of the 5th Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012) and the 

Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, Lamarque et al., 2013) contributed to a multi-

model assessment of future trends in air pollutants. Global annual mean surface O3 concentrations were predicted to increase 80 

by up to 5 ppb in 2100 using RCP8.5 (Representative Concentration Pathway with an anthropogenic radiative forcing of 8.5 

W m-2 in 2100); the RCP with largest increases in methane (CH4) abundances and the largest climate change signal used in 

CMIP5 (Kirtman et al., 2013). The other RCPs used in CMIP5 had a lower climate forcing and smaller changes in CH4 

abundance with models predicting global annual mean surface O3 concentrations that showed little change in the short term 

(up to 2050) but decreased by around 5 ppb in 2100. The scenario differences in the global mean response for surface O3 were 85 

generally reflected across other regions, although with a larger magnitude of change over the northern hemisphere continental 

regions. The predicted range of future surface O3 concentrations was previously found to be dominated by changes in precursor 
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emissions (Fiore et al., 2012). However, in regions remote from pollution sources (low-NOx) future climate change was shown 

to result in a small reduction in surface O3 concentrations. For PM2.5, results from CMIP5 and ACCMIP models showed annual 

mean concentrations declining in most regions and across all scenarios due to the reduction in aerosol emissions. Globally, 90 

PM2.5 concentrations reduced by ~1 µg m-3 by 2100, whereas larger regional reductions of up to 6 µg m-3 were predicted by 

2100. Exceptions to this occurred over South and East Asia where PM2.5 concentrations increased by up to 3 µg m-3 in the 

near-term (up to 2050), after which concentrations reduced by 2100. The largest difference in the response of PM2.5 across the 

scenarios was also shown across East and South Asia due to differences in the carbonaceous and sulphur dioxide (SO2) 

emission trajectories (Fiore et al., 2012). Future PM2.5 concentrations over Africa and the Middle East were shown to be quite 95 

noisy due to the large meteorological variability that influences dust emissions over these regions.        

The current set of experiments conducted for the 6th Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016) 

represent an opportunity to update the assessment of current and future levels of air pollutants using the latest generation of 

Earth system and climate models. A new set of future scenarios have been generated for CMIP6, the Shared Socio-economic 

Pathways (SSPs), which combine different trends in social, economic and environmental developments (O’Neill et al., 2014). 100 

Varying amounts of emission mitigation to NTSLCFs are applied on top of the baseline social and economic developments to 

meet predefined climate and air quality targets in the future, allowing for a wider range of future air pollutant trajectories to 

be assessed than occurred in CMIP5 (Rao et al., 2017; Riahi et al., 2017). Initial assessments have been made of future changes 

to air pollutants in the SSPs using simplified models (Reis et al., 2018; Turnock et al., 2018, 2019). The sustainability pathway 

(SSP1) leads to improvements in both air quality and climate, whereas SSP3 (regional rivalry) is not compatible with achieving 105 

air quality and climate goals, and the conventional fuels (SSP5) pathway improves air quality at the expenses of climate (Reis 

et al., 2018). Strong climate and air pollutant mitigation measures in SSP1 were shown to reduce global annual mean surface 

O3 concentrations by more than 3.5 ppb, whereas for SSP3 O3 concentrations over Asia were predicted to increase by 6 ppb 

(Turnock et al., 2019). These studies highlighted the potential large regional variability in the response of air pollutants to the 

different assumptions in the future pathways and also the need for a full model assessment using the current generation of 110 

Earth System Models (ESMs) that take into account both changes in emissions and climate.         

In this study, we use results from experiments conducted as part of CMIP6 to make a first assessment of historical and future 

changes in air pollutants. First, we assess the performance of CMIP6 models in simulating present day air pollutants by 

conducting an evaluation against observations of O3 and PM2.5. Regional changes in surface O3 and PM2.5 are computed over 

the historical period (1850-2014) to provide context with future changes. We are then able to show future projections of air 115 

pollutants over different world regions under different Shared Socio-economic Pathways (SSPs) used in the CMIP6 

experiments. Finally, a comparison is made of individual CMIP6 models for a single future scenario (ssp370) to identify 

potential reasons for model discrepancies.  

2 Methods 

2.1 Air Pollutant Emissions 120 

A new set of historical and future anthropogenic air pollutant emissions has been developed and used as part of CMIP6. The 

historical anthropogenic emissions are from the Community Emissions Data System (CEDS) and a new dataset was developed 

for biomass burning emissions, both of which provides information on emissions from 1750 to 2014 (van Marle et al., 2017; 

Hoesly et al., 2018). The SSPs used in future CMIP6 experiments represent an update from the RCPs used in CMIP5, as they 

combine pathways of socio-economic development with targets to achieve a certain level of climate mitigation (O’Neill et al., 125 

2014; van Vuuren et al., 2014; Riahi et al., 2017). The SSPs are divided into the following 5 different pathways depending on 

their social, economic and environmental development: SSP1 – sustainability, SSP2 - middle-of-the-road, SSP3 – regional 

rivalry, SSP4 - inequality, SSP5 – fossil fuel development. An assumption about the degree of air pollution control (strong, 
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medium or weak) is included on top of the baseline pathway, with stricter air pollution controls assumed to be tied to economic 

development (Rao et al., 2016). Weak air pollution controls occur in SSP3 and SSP4, with medium controls in SSP2 and strong 130 

air pollution controls in SSP1 and SSP5 (Gidden et al., 2019). A particular climate mitigation target, in terms of an 

anthropogenic radiative forcing by 2100, and the range of emission mitigation measures associated with achieving it isare 

included on top ofin addition to the existing policy measures within each baseline SSP scenarioand is achieved using a range 

of emissions mitigation measures appropriate to each SSP. Climate mitigation targets vary from a weak mitigation scenario 

with an anthropogenic radiative forcing of 8.5 W m-2 by 2100, comparable with a 5 °C temperature change (Riahi et al., 2017), 135 

to a strong mitigation scenario with a radiative forcing of 1.9 W m-2 by 2100, in accordance with the Paris agreement for 

keeping temperatures below 2 °C (United Nations, 2016). Some climate mitigation targets are comparable with those of the 

RCPs used in CMIP5 (2.6, 4.5 and 6.0), whilst others are new, e.g. ssp534-over is included as a delayed mitigation scenario. 

A scenario specific to the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP), ssp370-lowNTCF, is also 

included to study the impact of mitigation measures to specifically control NTSLCFs on top of ssp370. Future biomass burning 140 

emissions vary in each scenario, depending on the particular land-use assumptions (Rao et al., 2017). Whilst future 

anthropogenic and biomass burning emissions are prescribed in each CMIP6 model from the same dataset, other natural 

emissions, e.g. dust, biogenic volatile organic compounds (BVOCs) etc., will be different and depend on the individual model 

configuration. 

Figure 1 shows the future changes in global total (anthropogenic and biomass) emissions of the major air pollutant precursors 145 

across all of the CMIP6 scenarios, provided as input to the CMIP6 models. The overlying feature is that global air pollutant 

emissions are predicted to reduce across the majority of scenarios by 2100. The exception to this is that global and regional 

emissions increase or remain at present day levels for ssp370 (Figs. 1 and Fig. 2). Some air pollutant emissions increase in the 

near-term in other scenarios e.g. nitrogen oxides (NOx) in ssp585 (by up to 15%), but by 2100 these have been reduced. Future 

CH4 abundances show the largest diversity amongst the SSPs. Large increases in global CH4 abundances of more than 50% 150 

are predicted for the fossil fuel dominated pathways of ssp370 and ssp585, whereas large reductions of ~50% are predicted to 

occur in the strong mitigation scenarios of SSP1.  
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Figure 1: Changes in annual total (anthropogenic and biomass) global air pollutant emissions (relative to 2015) of sulphur dioxide 

(SO2), organic carbon (OC), black carbon (BC), non-methane volatile organic compounds (NMVOCs), nitrogen oxides (NOx), 155 
carbon monoxide (CO) and global methane (CH4) abundances in the future CMIP6 scenarios used as input to CMIP6 models. The 

dashed black line represents the 2015 value. Global CH4 abundances are not reduced in the AerChemMIP ssp370-lowNTCF 

simulations used here.  

For SO2,, large reductions of more than 50% are shown for most scenarios and across most regions (Figure 2), apart from 

Africa and Asia in ssp370. Near-term (2050) increases in SO2 occur over South Asia and other developing regions, which are 160 

then reduced in the latter half of the 21st Century. Over Europe and North America consistent decreases are predicted across 

all scenarios. The other major aerosol emissions, OC and BC, show similar reductions to SO2 across all scenarios and regions. 

For all aerosol and aerosol precursors, a reduction of 80-100% (relative to 2015) in regional emissions is predicted by 2100 in 

the strong mitigation scenarios. Changes in the emissions of the O3 precursors, NOx, CO and non-methane volatile organic 

compounds (NMVOCs), show a similar increase across most regions for ssp370 but a general decrease in other scenarios. The 165 

change in these emissions are particularly diverse across all the scenarios in South Asia with large relative increases in ssp370 

(of up to 50%), in contrastry to the large decreases in ssp126 (up to 40%). Across East Asia there is an 20% increase in NOx 

emissions for ssp370 in 2050 but a long term reduction across all scenarios.  
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 170 

Figure 2: Percent change in 2050 (stars) and 2100 (triangles), relative to 2015, for annual mean total (anthropogenic and biomass) 

air pollutant emissions of SO2, OC, BC, NMVOCs, NOx and CO across different world regions in the 4 Tier 1 future CMIP6 

scenarios. Regions are defined in Figure S1. 
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Figure 2: Percent change in 2050 (circles) and 2100 (squares), relative to 2015, for annual mean total (anthropogenic and biomass) 175 
air pollutant emissions of a) SO2, b) OC,  c) BC,  d) NMVOCs, e) NOx and f) CO across different world regions in the 4 Tier 1 future 

CMIP6 scenarios and the ssp370-lowNTCF scenario (identified as lowNTCF). Regions are defined in Figure S1. 

2.2 CMIP6 Simulations 

Surface concentrations of O3 and PM2.5 have been obtained from all the CMIP6 models that made appropriate data available 

on the Earth System Grid Federation (ESGF) at the time of writing. To study changes in surface air pollutants over the industrial 180 

period data has been obtained from the coupled historical simulations (Eyring et al., 2016) over the period 1850 to 2014 from 

all of the available ensemble members of each available CMIP6 model. For each model, a mean is taken using all available 

ensemble members prior to the calculation of multi-model mean. For model evaluation purposes, 10 years of data from 

historical simulations has been used over the period that is relevant to the particular observational dataset (2000-2010 for 

ground-based PM2.5, 2004-2014 for PM2.5 reanalysis product and 2005-2014 for ground-based O3). To investigate future 185 

changes in air pollutants, all available data has been obtained over the period 2015 to 2100 for each of the different future 

coupled atmosphere-ocean model experiments, conducted as part of ScenarioMIP (O’Neill et al., 2016). CMIP6 model data 

has also been obtained for the AerChemMIP specific ssp370-lowNTCF scenario, which was only required to be conducted 

over the period 2015-2055 (Collins et al., 2017). 

Concentrations of both pollutants at the surface have been obtained by extracting the lowest vertical level of the full 3D field 190 

output on the native horizontal and vertical grid of each model (the “AERmon” CMIP6 table ID). For O3, this is supplied as a 

separate diagnostic which can be used directly. However, models contributing to CMIP6 will not all directly output PM2.5 and 

the calculation of PM2.5 will not be consistent across individual models due to the different treatment of aerosols and their 

components. For example only a few CMIP6 models include the simulation of ammonium nitrate in their aerosol scheme 

(currently, only GISS-E2-1-GH and GFDL-ESM4 have provided nitrate mass mixing ratios on the ESGF database). Therefore 195 

it has been necessary to use a consistent definition of PM2.5, which is consistent across all models, and iswe calculated PM2.5 

offline. In this study surface PM2.5 is defined as the sum of the individual dry aerosol mass mixing ratios of black carbon (BC), 
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total organic aerosol (OA – both primary and secondary sources), sulphate (SO4), sea salt (SS) and dust (DU) from the lowest 

model level extracted of from the full 3D model fields. All BC, OA and SO4 aerosol mass is assumed to be present in the fine 

size fraction (< 2.5 µm), whereas a factor of 0.25 for SS and 0.1 for DU has been used to calculate the approximate contribution 200 

from these components to the fine aerosol size fraction (Eq. 1).  

 

���.� = �� + 
� + �

 + �0.25 × ��� + �0.1 × ���     (1) 

 

The factors used to calculate the contribution of SS and DU concentrations to the PM2.5 size fraction are likely to depend on 205 

the individual aerosol scheme and the simulated aerosol size distribution within a particular model. The calculation of an 

approximate PM2.5 concentration using Eq. (1) is therefore likely to introduce some errors but it does provide an estimate that 

is consistent across models and also with that previously used in CMIP5 and ACCMIP (Fiore et al., 2012; Silva et al., 2013, 

2017). For the CNRM-ESM2-1 model, anomalously large concentrations were obtained from the sea salt mass mixing ratios. 

Sensitivity tests with this model suggested that a much smaller factor of 0.01 was more appropriate to use for SS, which takes 210 

into account the non-dry nature of the sea salt aerosols and the large possible size range, up to 20 µm in diameter, of sea salt 

particles within the CNRM-ESM2-1 model (P Nabat 2019, personal communication, 27th November).  

Details of the data used in this study from different CMIP6 models, in both the historical and future scenarios, is presented 

below in Table 1. For the historical period, data was available from 5 different CMIP6 models for O3 and 10 models for PM2.5. 

The future scenario with the most data available was ssp370, with 4 models suppling data for O3 and 7 models for PM2.5. For 215 

the other Tier 1 CMIP6 scenarios (ssp126, ssp245 and ssp585), data was only available for 2 models for O3 and 4 for PM2.5 

(all components). It was decided to focus the analysis on ssp370 and other Tier 1 scenarios due to the limited availability of 

model data for Tier 2 scenarios (ssp119, ssp434, ssp460 and ssp534-over). The results from an O3 parameterisation (Turnock 

et al., 2018, 2019), referred to in this study as HTAP_param, haves also been included in the analysis of surface O3 from 

CMIP6 models for both the historical and future scenarios and is referred to in this study as HTAP_param. The HTAP_param 220 

was previously developed based upon the source-receptor relationships of O3 derived from perturbation experiments of 

regional precursor emissions and global CH4 abundances (Wild et al., 2012; Turnock et al., 2018). The HTAP_param applies 

the fractional change in global CH4 abundance and regional emission precursors (NOx, CO and NMVOCs) for a particular 

scenario to the ozone response from each individual model used in the parameterisation. The total O3 response is obtained by 

summing up the response from each of the individual models to all precursor changes across all source regions. The surface 225 

O3 response previously calculated from the HTAP_param in both the historical and future CMIP6 scenarios is compared to 

that from the CMIP6 models (Turnock et al., 2019). The O3 parameterisation does not take into account the effects of climate 

change on surface O3 concentrations and therefore provides an estimate of the emission-only driven changes to surface O3 , 

with which towe compare to the climate and Earth System models.  

 230 
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Table 1 –Number of ensemble members used for the historical and future scenarios experiments from each model in the analysis of 

surface O3 and PM2.5 in this study 

Model Pollutant historical ssp126 ssp245 ssp370 

ssp370-

lowNTCF ssp585 Model Refs Data Citation 

BCC-ESM1 O3, PM2.5 3   3 3  
(Wu et al., 
2019, 2020) 

(Zhang et al., 2018, 
2019) 

CESM2-
WACCM 

O3, PM2.5 3   1 1  

(Gettelman et 
al., 2019; 
Tilmes et al., 
2019; Emmons 
et al., 2020) 

(Danabasoglu, 
2019b, 2019c, 
2019a) 

CNRM-
ESM2-1 

PM2.5 3   3 3  
(Michou et al., 
2019; Séférian 
et al., 2019) 

(Seferian, 2018, 
2019; Voldoire, 
2019) 

GFDL-
ESM4 

O3, PM2.5 1 1 1 1 1 1 
(Horowitz et al., 
2019; Dunne et 
al., 2020) 

(Horowitz et al., 
2018; John et al., 
2018; Krasting et 
al., 2018) 

HadGEM3-
GC31-LL 

PM2.5 4 1 1   1 
(Kuhlbrodt et 
al., 2018) 

(Ridley et al., 2018; 
Good, 2019) 

MIROC6 -
ES2L 

PM2.5 3 1 1 1  1 
(Takemura, 
2012; Hajima et 
al., 2019) 

(Hajima and 
Kawamiya, 2019; 
Tachiiri and 
Kawamiya, 2019) 

MPI-
ESM1.2-
HAM 

PM2.5 1   1 1  
(Tegen et al., 
2019) 

(Neubauer et al., 
2019) 

MRI-ESM2-
0 

O3,  
PM2.5 

5 
5 

1 
1 

1 
1 

3 
3 

1 
1 

1 
1 

(Yukimoto et 
al., 2019d; 
Oshima et al., 
2020) 

(Yukimoto et al., 
2019b, 2019c, 
2019a) 

GISS-E2-1-
GH 

O3,  
PM2.5 

5 
42 

1 
1 

5 
5 

1 
1 

 
1 
1 

(Bauer et al., 
2020) 

(NASA Goddard 
Institute For Space 
Studies 
(NASA/GISS), 
2018) 

NorESM2-
LM 

PM2.5 1 3 3 3 3 3 
(Karset et al., 
2018; Kirkevåg 
et al., 2018) 

(Norwegian 
Climate Center 
(NCC), 2018) 

UKESM1-0-
LL 

O3, PM2.5 5 5 5 5 3 5 
(Sellar et al., 
2019) 

(Good et al., 2019; 
Tang et al., 2019) 

Total 
Number of 
models 

O3 65 24 24 46 35 24   

PM2.5 110 47 47 710 48 47  
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2.3 Surface Observations 235 

Present day surface O3 and PM2.5 simulated by all of the CMIP6 models is evaluated against surface observations to ascertain 

model biases and inter-model discrepancies. Surface O3 observations are obtained from the database of the Tropospheric Ozone 

Assessment Report (TOAR) (Schultz et al., 2017). The TOAR database provides a gridded product of surface O3 observations 

over the period 1970 to 2015. The majority of measurement sites are located in North America and Europe, with a smaller 

number of other sites in East Asia, Australia, New Zealand, South America, Southern Africa, Antarctica and remote ocean 240 

locations. Here we compile a monthly mean climatology of all available O3 observations over the period 2005-2014 from 

measurement locations that are classified as rural in the TOAR database (Schultz et al., 2017). The rural locations were selected 

to be representative of background (i.e. non-urban) O3 concentrations and are considered to be more appropriate in evaluating 

the simulated values obtained at the relatively coarse horizontal resolution of the global ESMs. Simulated surface O3 

concentrations from the CMIP6 models are re-gridded onto the same resolution of the observational product (2° x 2°) for 245 

evaluation purposes. 

Surface PM2.5 observations have been obtained from all of the locations compiled in the database of the Global Aerosol 

Synthesis and Science Project (GASSP: http://gassp.org.uk/data/, Reddington et al., 2017) to evaluate CMIP6 models. 

Background, non-urban, PM2.5 data is compiled in the GASSP database from three major networks: the Interagency Monitoring 

of Protected Visual Environments (IMPROVE) network in North America, the European Monitoring and Evaluation 250 

Programme (EMEP) and Asia-Pacific Aerosol Database (A-PAD). Again, like for O3, the networks/observations for PM2.5 

were selected to be representative of non-urban environments, which are more appropriate for the evaluation of global ESMs. 

With the exception of the IMPROVE network, most measurements of PM2.5 began after the year 2000. Like for O3, we compile 

a monthly mean climatology of PM2.5 but now over the period of 2000 to 2010, selected as the GASSP database contained the 

most observations within this period. Simulated surface PM2.5 was computed from CMIP6 models over the same time period 255 

as the observations and linearly interpolated to each measurement location. Whilst the surface observations measure total PM2.5 

mass, the computed PM2.5 from CMIP6 models use Eq. 1 and does not include all observable PM2.5 aerosol components (e.g. 

nitrate aerosol). Therefore it is anticipated that the CMIP6 models will underrepresent the PM2.5 observations in this 

comparison. 

To address the anticipated disparity between the observed ground based PM2.5 and the approximate PM2.5 from CMIP6 models, 260 

a further comparison has been made between the CMIP6 models and the Modern-Era Retrospective Analysis for Research and 

Applications, version 2 (MERRA-2), aerosol reanalysis product (Buchard et al., 2017; Randles et al., 2017). The MERRA-2 

aerosol product assimilates observations of Aerosol Optical Depth (AOD) from ground based and satellite remote sensing 

platforms into model simulations that use the GEOS-5 atmospheric model coupled to the GOCART aerosol module. The data 

assimilation used in MERRA-2 generally improves comparisons of PM2.5 with observations but there are still overestimations 265 

due to dust and sea salt and underestimations over East Asia (Buchard et al., 2017; Provençal et al., 2017). Separate mass 

mixing ratios for BC, OA, SO4, SS and DU aerosol components are provided from MERRA-2, which are then combined using 

the formula in Eq. 1 to make an approximate PM2.5. Monthly mean approximate PM2.5 concentrations are then computed over 

the period 2005-2014 from the MERRA-2 reanalysis product to provide a more direct comparison and enhanced spatial 

coverage against the approximate PM2.5 concentrations calculated from the CMIP6 models calculated over the same time 270 

period.  
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3 Present-day Model Evaluation of Air Pollutants 

3.1 Surface Ozone 

The 56 CMIP6 models with data available for the historical experiments are evaluated against surface O3 observations from 

the TOAR database over the period 2005-2014. A long-term evaluation of surface O3 concentrations from CMIP6 models 275 

using observations compiled over the 20th Century is presented separately in Griffiths et al., (2020). Figure 3 shows the annual 

and seasonal multi-model mean in surface O3 over the period 2005-2014 and the standard deviation across the 65 CMIP6 

models. The annual and seasonal mean surface O3 concentrations and evaluation against observations for individual CMIP6 

models are shown in Figures S2–S67. Higher surface O3 concentrations are simulated in the northern hemisphere summer 

(June, July, August- JJA) when O3 formation is enhanced by increased photolytic activity and levels of oxidants, as well as 280 

larger biogenic emissions. The hemispheric difference in surface O3 is smaller in December, January and February (DJF) when 

O3 production is less in the northern hemisphere but higher in the southern hemisphere. However, model diversity is larger in 

DJF (Fig. 3b) due to individual models simulating different seasonal cycles of O3, particularly UKESM1-0-LL which has the 

most pronounced seasonal cycle of all 65 models (Fig. S2).  

The multi-model mean of CMIP6 models overestimates surface O3 concentrations by up to 16 ppb annually and in both seasons 285 

when compared to observations from the TOAR database, although they do capture the broad hemispheric gradient in O3 

concentrations (Fig. 3c, 3f and 3if). The model observational comparison of CMIP6 models to the TOAR observations These 

results are consistent across all models and with the previous evaluation of ACCMIP models (Young et al., 2018). This 

indicates a common source of error within models for example uncertainties in emission inventories, deposition processes or 

vertical mixing (Wild et al., 2020). In addition, the coarse resolution of the ESMs could lead to an overproduction of O3 across 290 

polluted regions, with finer resolutions exhibiting improvements in the simulation of surface O3 (Wild and Prather, 2006; Neal 

et al., 2017). The overestimation in the CMIP6 models analysed here could be due to the coarse resolution of the ESMs, an 

excess of O3 chemical production (potentially due to an overabundance of NOx and/or VOCs) and weak O3 deposition. Smaller 

model biases exist in DJF (<5 ppb) than in JJA (5-15 ppb), mostly attributed to the strong seasonal cycle simulated by 

UKESM1-0-LL. In contrast to other models (Fig. S2 – S67), UKESM1-0-LL underpredicts surface O3 in DJF over most 295 

continental northern hemisphere locations, potentially indicating there is excessive NOx titration of O3 in this model, which is 

also shown by the large sensitivity of O3 formation to NOx concentrations over the historical period (Fig. S17).    
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Figure 3 – Multi-model (56 CMIP6 models) annual and seasonal mean surface O3 concentrations in a) Annual mean, d) December 300 
January, February (DJF) and dg) June, July, August (JJA) over the 2005-2014 period. The standard deviation in the multi-model 

mean in b) Annual mean, e) DJF and eh) JJA. The difference between the multi-model mean and TOAR observations in c) Annual 

mean, f) DJF and fi) JJA (colour bar saturates). 

The observed annual cycle in surface O3 averaged across measurement locations within different regions is compared to that 

simulated by CMIP6 models (Figure 4). Across most regions, the mean annual cycle from CMIP6 models compares relatively 305 

well to that observed. The overprediction of surface O3 values in JJA is evident across most regions, as is the large 

concentrations in BCC-ESM1 and GISS-E2-1-G and the strong seasonal cycle in UKESM1-0-LL acrossfor northern 

hemisphere continental regions. Additionally, the timing of peak O3 over continental northern hemisphere locations occurs 

earlier in the observations (springtime) than in the CMIP6 models (spring and summer), which is consistent with that from 

ACCMIP models (Young et al., 2018). At oceanic observation locations, there is also a consistent overestimate of surface O3 310 

is overestimated byin CMIP6 models by up to 20 ppb across all seasons, indicating that O3 deposition rate could be 

underestimated here. There is also a large overestimation (~20 ppb) in all models at the one observation location in South East 

Asia, potentially due to difficulty in simulating O3 in the maritime continental boundary layer using lower resolution global 

ESMs. In contrast to this, CMIP6 models, particularly UKESM1-0-LL and GISS-E2-1-G, tend to underpredict the observed 

surface O3 concentrations at locations in the South Pole region in JJA by ~5 ppb. This could be due to lack of long range 315 

transport of O3 to these sites, inaccuracies in southern hemisphere precursor emissions, or because of the difficulty in 

simulating O3 concentrations at the appropriate elevation of measurement sites located on the Antarctic ice sheet.   
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Figure 4 – Individual and multi-model (65 CMIP6 models and HTAP_param) monthly mean surface O3 concentrations across 320 
different world regions compared with the regional monthly values from all the TOAR observations within the region for the period 

2005-2014. The number of observations within a region is shown in parenthesis. The shading shows variability in observations across 

all sites within the region. 

3.2 Surface PM2.5 

3.2.1 Ground Based Observations 325 

A similar comparison is made for annual and seasonal mean surface PM2.5 concentrations from CMIP6 models against ground 

based surface observations (Figure 5). The annual and seasonal multi-model mean from CMIP6 models shows that elevated 

PM2.5 concentrations (>50 µg m-3) occur close to the large dust emission source regions of the Sahara and Middle East in both 

DJF and JJA over 2000-2010. These natural source regions are also one of the largest areas of diversity in PM2.5 concentrations 

(up to 20 µg m-3) between the different CMIP6 models (Fig. 5b, 5e, 5h and S78). High concentrations of PM2.5 (>40 µg m-3) 330 

are also simulated over the large anthropogenic source regions of South and East Asia, particularly in DJF when there is 

enhanced variability across CMIP6 models due to the different contribution from anthropogenic PM2.5 components (Fig. S89-

S110). The diversity in CMIP6 model is particularly evident in the organic aerosol concentrations across Asia, with higher 

present day values simulated by CESM2-WACCM and UKESM1-0-LL and lower values in CNRM-ESM2-1 and MIROC-

ES2L (Fig. S11). Lower PM2.5 concentrations (<10 µg m-3) are predicted across both North America and Europe, with more 335 

agreement between CMIP6 models. Across the biomass burning regions of South America and Southern Africa, PM2.5 

concentrations are elevated in JJA with larger diversity in the CMIP6 models due to the differing contributions of the BC and 

OA components, particularly shown in NorESM2-LM, GISS-E2-1-G and GFDL-ESM4 (Fig. S910 and S110). Relatively 

consistent PM2.5 concentrations of <10 µg m-3, with small model diversity (<5 µg m-3), are shown across oceanic regions, 
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mainly from emissions of sea salt (Fig. S121).  Apart from the natural sources of aerosol, which are subject to meteorological 340 

variability, the CMIP6 models are relatively consistent when simulating PM2.5 concentrations across most regions.  

Compared to the ground based observations from the GASSP database, the CMIP6 multi-model mean underpredicts the 

observed PM2.5 values by up to 10 µg m-3 in both seasons, with a slightly larger underestimation in DJF than JJA. As discussed 

in section 2.3, an underestimation was anticipated from comparing approximate PM2.5 concentrations, derived from CMIP6 

models, to observed values. Nevertheless, the evaluation highlights that fine particulate matter (PM2.5) is generally 345 

underrepresented in the CMIP6 models across North America, Europe and parts of Asia for which observations are available; 

a similar result to other studies evaluating global and regional models (Tsigaridis et al., 2014; Pan et al., 2015; Glotfelty et al., 

2017; Solazzo et al., 2017; Im et al., 2018). Numerous reasons potentially exist for the model observation discrepancy shown 

here and in other studies including This could be potentially due to uncertainties in emissions inventories (e.g. local dust 

sources), orerrors in the wet/dry deposition schemes (dry or wet), the coarse resolution of global models and  the 350 

absence/underrepresentation of aerosol formation processes (e.g. nitrate aerosols or secondary organic aerosols) and the coarse 

resolution of global models leading to errors in emissions and simulated meteorology. Understanding the causes of model 

observational discrepancies is an area of active research and should be explored in further research, for example in a global 

multi-model sensitivity study that examines model uncertainties. 

 355 

Figure 5 – Multi-model (110 CMIP6 models) annual and seasonal mean surface PM2.5 concentrations in a) annual mean, d) December 

January, February (DJF) and dg) June, July, August (JJA) over the 2000-2010 period. The standard deviation in the multi-model 

mean in b) annual mean, e) DJF and eh) JJA. The difference between the multi-model mean and PM2.5 observations in c) annual 

mean, f) DJF and if) JJA (colour bar saturates). 

The simulated regional mean annual cycle in surface PM2.5 from different CMIP6 models against observations is shown in 360 

Figure 6. The low model bias in PM2.5 concentrations is highlighted across all regions, except for the ocean region where there 

is a relatively large diversity in model simulations, particularly MIROC-ES2L and NorESM2-LM, at these observation 
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locations. Across North America, the region with most observations, the annual cycle is simulated relatively well with a peak 

in concentrations in JJA and a lower model bias, although a larger model bias (factor of ~1.5 to 2) occurs in winter and spring. 

Across Europe, there is a larger underestimation of observed PM2.5 concentrations by CMIP6 models in DJF (factor > 2) than 365 

JJA. Nitrate aerosols are observed and modelled (from two CMIP6 models in Fig. S132) to contribute between 1 and 5 µg m-

3 of the total aerosol mass over Europe (Fagerli and Aas, 2008; Pozzer et al., 2012), explaining  part, but not all, of the model 

observational discrepancy here. Additionally, on Fig. 6 the CMIP6 models also underestimate the MERRA-2 reanalysis 

product (which does not include nitrate aerosols), indicating that other aerosol sources/processes are underrepresented across 

Europe and other regions in the models. The limited number of observations across other regions makes it difficult to infer 370 

particular model/observational biases. However, over Asia CMIP6 PM2.5 concentrations tend to be within a factor of 2 of the 

observations and represent the seasonal cycle relatively well at these locations. Over Asia, larger PM2.5 concentrations are 

simulated in the CMIP6 models CESM2-WACCM, HadGEM3-GC31-LL and UKESM1-0-LL, mainly due to the larger OA 

component (Fig. S11). Across South Asia, concentrations are relatively well simulated in JJA but a larger discrepancy (15 µg 

m-3) exists in DJF between the model and observations.          375 

 

 

Figure 6 – Individual and multi-model (110 CMIP6 models) monthly mean surface PM2.5 concentrations across different world 

regions compared with the regional monthly values from all the PM2.5 observations (◊) and the MERRA-2 reanalysis product (x) 

within the region for the period 2000-2010. The number of observations within the region is shown in parenthesis. The shading and 380 
errors bars show variability in observations and the reanalysis product across all sites within the region. 

3.2.2 MERRA Reanalysis Product 

An additional comparison of surface PM2.5 concentrations from the MERRA-2 aerosol reanalysis product is made with that 

simulated by the CMIP6 models to improve the spatial coverage and provide a more consistent evaluation of the approximate 

PM2.5 concentrations. Figure 7 shows the same comparison as in Fig. 5 but now using the approximate PM2.5 obtained from 385 



16 
 

the MERRA-2 reanalysis product over the period 2005-2014. In comparison to MERRA-2, the CMIP6 models are shown to 

underpredict PM2.5 concentrations across North America, Europe and Eurasia, but by a smaller amount than in comparison to 

ground-based observations. A similar seasonal cycle comparison is shown for Europe and North America (regions with most 

ground based observations) in both Fig. 6 and 8, providing confidence that the underestimation of PM2.5 by CMIP6 models is 

robust over these regions. Across all other regions, the MERRA-2 reanalysis product provides much greater spatial coverage 390 

for each region and therefore the features shown in the site-level comparison (Fig. 6) will not necessarily apply here. A large 

overestimation of the MERRA-2 reanalysis product by the CMIP6 multi-model mean is shown across East and South Asia. 

Figure 8 shows that on a regional mean basis most CMIP6 models are within the spread of the MERRA-2 concentrations for 

East Asia, although MERRA-2 was previously shown to underestimate PM2.5 concentrations across East Asia (Buchard et al., 

2017; Provençal et al., 2017) and also on Fig. 6. CESM2-WACCM and MRI-ESM2-0 isare the exceptions to this with distinctly 395 

higher PM2.5 concentrations over East Asia, potentially due to larger OA concentrations and more dust aerosols within the 

western side of this region (Fig. S87 and S110). Across the South Asian region, CMIP6 models show a more consistently 

overestimateion of MERRA-2 by more than 10 µg m-3, in certain months. with UKESM1-0-LL, MRI-ESM2-0 and CESM2-

WACCM showingsimulate particularly high monthly PM2.5 concentrations of 20-40 µg m-3 over South Asia, again due to large 

contributions from SO4, dust and OA. Across North Africa there is considerablea lot of inter-regional  variability in PM2.5 400 

within this region, as with CMIP6 models both under and over-estimateing the MERRA-2 PM2.5 concentrations, although this 

results in a relatively good regional mean representation (Fig. 7 and 8). The annual mean cycle in MERRA-2 PM2.5 

concentrations across South America is well represented by the CMIP6 models, although the peak in the biomass burning 

season is underestimated by 5-10 µg m-3  in some models. A more pronounced annual cycle is exhibited by UKESM1-0-LL 

across Southern Africa, potentially due to the larger contributions from the OA fraction (Fig. S110), thatpotentially result from 405 

enhanced biogenic emissions thatleading to result in secondary OA formation (SOA). Across oceanic locations all of the 

CMIP6 models underestimate the MERRA-2 PM2.5 concentrations by 5 µg m-3, although MERRA-2 was previously shown to 

overestimate sea-salt concentrations (Buchard et al., 2017; Provençal et al., 2017), accounting for some of this discrepancy. 

Overall, comparisons of CMIP6 models with the MERRA-2 reanalysis product show biases across Europe and North America 

that are consistent with the comparison to ground-based observations. Additionally, similar comparisons are shown in annual 410 

mean cycles across other regions, for which appropriate ground based data is lacking.         
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Figure 7 – Multi-model (101 CMIP6 models) annual and seasonal mean surface PM2.5 concentrations in a) annual mean, d) December 

January, February (DJF) and dg) June, July, August (JJA) over the 2005-2014 period. The standard deviation in the multi-model 

mean in b) annual mean, e) DJF and eh) JJA. The difference between the multi-model mean and MERRA-2 reanalysis for c) annual 415 
mean, f) DJF and if) JJA. 
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Figure 8 – Individual and multi-model (101 CMIP6 models) monthly mean surface PM2.5 concentrations across different world 

regions compared with the regional monthly values from the PM2.5 MERRA-2 reanalysis within the region for the period 2005-2014. 

The number of reanalysis points within the region is shown in parenthesis. The shading shows variability in the values of the 420 
MERRA-2 reanalysis products across the region. 

4 Air Pollutants from Pre-Industrial to Present-day 

4.1 Surface Ozone 

The simulated changes in surface O3 across 65 CMIP6 models and the HTAP_param are shown in Figure 9 and S14-S15 over 

the historical period of 1850 to 2014. The CMIP6 multi-model mean shows that global annual mean surface O3 has increased 425 

by 11.75 +/- 2.32 ppb since 1850 (+/- 1 standard deviation), although the change could be as large as 14 ppb (from BCC-

ESM1) or as little as 7 ppb (from UKESM1-0-LL). Globally and over most regions there has been a larger historical increase 

in surface O3 in JJA than in DJF (Figure S16). The 1850 to 2000 multi-model annual mean change in surface O3 from the 

CMIP6 models of 10.6 ppb is in good agreement with the 10 +/- 1.6 ppb simulated by the CMIP5 models used in ACCMIP 

(Young et al., 2013). An evaluation of the long-term changes in surface O3 over the historical period simulated by the CMIP6 430 

models at specific measurement locations is presented separately in the tropospheric O3 CMIP6 companion paper of Griffiths 

et al., (2020). , whichThis shows that the CMIP6 models are able tocan reasonably represent long term changes in surface 

ozone since the 1960s, providing a degree of confidence in the future projections of changes in the CMIP6 scenarios. However, 

long term changes in simulated surface O3 from the previous generation of global coupled chemistry-climate models (used in 

CMIP5) were found to underestimate the observed trend at northern hemisphere monitoring locations (Parrish et al., 2014). 435 

Further comparisons of historical surface O3 simulated by CMIP6 models with long-term historical observations is outside the 

scope of the current work but will be the subject of future research. 
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A large diversity in the simulated historical changes is shown across the different regions analysed here, with UKESM1-0-LL 

tending to simulate the lowesmallest historical change and GISS-E2-1-GH or BCC-ESM1 the highlargest. The large diversity 

across CMIP6 models in the surface O3 response over the historical period can be attributed to the different magnitude of 440 

simulated O3 concentrations in the 1850 period (Figure S14) and the rate of change in regional mean O3 concentrations (Figure 

S15), which is related to the different chemical sensitivity of O3 formation in each model to changing NOx concentrations 

(Figure S17). Larger differences between CMIP6 models are shown in the DJF mean historical changes over northern 

hemisphere regions than occurred in JJA (Figure S16), reflecting the differences shown in the model evaluation (Fig. 4) and 

the strong seasonality of the changes. Even, though the historical surface O3 response is small in UKESM1-0-LL, it is shown 445 

to have larger tropospheric changes in O3 over the historical period compared to other CMIP6 models (Griffiths et al., 2020).  

South Asia is the region with the largest diversity in simulated historical changes in surface O3 of between 16 and 40 ppb, with 

a larger range in DJF (10-40 ppb) than in JJA (19-36 ppb). The large diversity in CMIP6 models is attributed to the large 

differences in simulated NOx concentrations, and hence chemical sensitivities of O3 formation, occurring across South Asia 

over the historical period (Figure S17). In addition, the large historical change in PM2.5 over this region (Fig. S18) could alter 450 

the heterogeneous loss rate of radicals to aerosols and therefore also affect O3 formation. Surface O3 is simulated to have 

increased  by between 10 to 30 ppb on an annual mean basis and by a larger amount in JJA (12 to 37 ppb) over the major 

northern anthropogenic source regions since 1850, driven mainly by the large increases in anthropogenic precursor emissions 

of CH4, NOx, CO, and NMVOCs over this period.  

A qualitative estimate of the influence of non-emission driven processes (chemistry and climate change) can be ascertained by 455 

comparing results from the HTAP_param, an emission-only driven model, to those of the CMIP6-models. Simulated historical 

changes in surface O3 from UKESM1-0-LL are similarcomparable to those from the HTAP_param, indicating that the 

magnitude of changes simulated by UKESM1-0-LL areis strongly determinedsimilar to that solely byfrom changes in 

precursor emissions. However, the global annual mean surface O3 response of 7.6 +/- 0.7 ppb from HTAP_param over the 

historical period is 3.94.1 ppb lower than the CMIP6 multi-model mean, indicating globally that non-emission driven processes 460 

have contributed to approximately 30% of the change in surface O3, although this contribution varies regionally. The different 

magnitude of response across models could be due to non-emission driven process, e.g. from different chemistry schemes and 

climate change signals within models.   
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Figure 9 – Changes in the regional and global annual mean surface O3 concentrations, relative to a 2005-2014 mean value, across 56 465 
CMIP6 models and the HTAP_param. The multi-model annual mean year 2005-2014 surface O3 concentrations (+/- 1 standard 

deviation) are shown in the top left of each panel. Regions are defined in Figure S1. 

4.2 Surface PM2.5 

The simulated change in annual mean surface PM2.5 across 101 CMIP6 models is shown in Figure 10 acrossover the historical 

period of 1850 to 2014. Since 1850, CMIP6 models simulated an increase in global annual and seasonal mean surface PM2.5 470 

concentrations of <2 µg m-3 (15-20%). Larger regional increases of surface annual mean PM2.5 of up to 12 µg m-3 are simulated 

across South and East Asia, with changes in DJF (up to 21 µg m-3) larger than those in JJA (up to 12 µg m-3) (Fig. S16), 

reflecting the strong seasonality of PM2.5 concentrations in these regions. The historical increase in surface PM2.5 is primarily 

driven by the large increase in anthropogenic aerosol and aerosol precursor emissions over the 1850-2014 period (Hoesly et 

al., 2018). The largest model diversity is also exhibited over the Asian regions with variations in the response between models 475 

of up to 50%, potentially due to differences in with larger differences between models in DJF than JJA (Figure S16), reflecting 

the differences shown in the present day model evaluation (Fig. 6). The inter-model differences can be attributed to the different 

simulation of historical changes in the anthropogenic components sulphate, black carbon and organic aerosols (Figure S18)  

dust emissions and simulation of organic aerosols. The largest interannual variability in surface PM2.5 concentrations occurs 

over the North African and Middle East regions as they are located near large sources of dust, whose emissions are highly 480 

dependent on meteorological fluctuations (wind speed). Over Europe, and to a lesser extent Russia, Belarus, Ukraine and North 

America, the increase in surface PM2.5 concentrations since 1850 peaked in the 1980s at 4 µg m-3 above the 2005-2014 mean 

value before decreasing over the last 30 years. This change is consistent with both observations and simulated changes in 

aerosols over this period in response to emission reductions from the implementation of air quality legislation (Leibensperger 

et al., 2012; Tørseth et al., 2012; Daskalakis et al., 2016; Turnock et al., 2016; Archibald et al., 2017) There is limited long-485 
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term multi-decadal observational data available to assess changes in aerosols simulated by global models. Previous studies 

using long-term data since the 1980s, mainly over Europe and North America, have found that global models are able to 

reproduce the observed multi-decadal changes in aerosols relatively well (Pozzoli et al., 2011; Leibensperger et al., 2012; 

Tørseth et al., 2012; Chin et al., 2014; Turnock et al., 2015; Aas et al., 2019). More recently, global composition models, 

including some CMIP6 models, were shown to be able to reproduce the observed changes in AOD, sulphate and particulate 490 

matter over the last two decades (Mortier et al., 2020). The ability of global composition models to reproduce historical changes 

in aerosols provides a degree of confidence in the future projections under the CMIP6 scenarios. Further model observational 

comparisons of multi-decadal changes in aerosols will need to be undertaken to improve the understanding of changing aerosol 

properties and processes.        

 495 

Figure 10 – Changes in the regional and global annual mean surface PM2.5 concentrations, relative to a 2005-2014 mean value, across 

110 CMIP6 models. Changes for each region are computed as 10 year running means over the historical period. The multi-model 

mean 2005-2014 surface PM2.5 concentrations (+/- 1 standard deviation) are shown in the top left of each panel. Regions are defined 

in Figure S1. 

5 Air Pollutants from Present-day to 2100 500 

An analysis is now made of the future projections of air pollutants in the CMIP6 Tier 1 scenarios, including ssp370-lowNTCF. 

A comparison is made of the projected future changes byin 2050 and 2100 infrom the four CMIP6 models (CESM2-WACCM, 

GFDL-ESM4 and UKESM1-0-LL for both O3 and PM2.5, along with BCC-ESM1 for O3 and MIROC-ES2L for PM2.5) 

whichthat had the most data available for the ssp370 scenario.   
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5.1 Surface Ozone 505 

Global annual mean surface O3 is reduced by more than 45 +/- 01.25 ppb (+/- 1 standard deviation value of the multi-model 

mean) in the near-term (2050) and by 98 +/- 1.60 ppb in 2100 in the strong air pollutant and climate mitigation scenario ssp126 

(Figure 11). Smaller reductions in global annual mean surface O3 are predicted for the middle of the road pathway (ssp245) of 

34 +/- 0.1.7 ppb by 2100. Whereas for the weak climate and air pollutant mitigation scenario ssp370, a global annual mean 

increase in surface O3 of 1.86 +/- 0.98 ppb in 2050 and 10.06 +/- 01.09 ppb is predicted by 2100. However, implementing 510 

strong emission controls for NTSLCFs on top of a weak climate mitigation scenario (ssp370-lowNTCF) shows that previous 

increases in global annual mean surface O3 can be substantially reduced to values that are 2.5 +/- 0.54 ppb below the 2005-

2014 mean value in 2050, with benefits to air quality and climate (Allen et al., 2020). For ssp585, which has weak climate 

mitigation measures but strong air pollution controls, a near-term increase in global annual mean surface O3 of 21.4 +/- 0.87 

ppb is predicted in 2050 but by 2100 surface O3 reduces by 42.7 +/- 01.58 ppb, relative to 2005-2014, due to the implementation 515 

of air pollutant controls in the latter half of the 21st Century.     

The global response in annual mean surface O3 concentrations to the different scenarios is also repeated across the different 

world regions, albeit with differing magnitudes. In ssp370 increases in annual mean surface O3 are predicted to occur across 

North America (+1.69 ppb), Europe (+5.4.8 ppb) and East Asia (+75.95 ppb), with the largest increase predicted in South Asia 

of 915.17 +/- 39.67 ppb by 2100. Surface O3 increases across most world regions in this scenario can be attributed to the large 520 

increase in global CH4 abundances (80%) and the large predicted increase in surface temperatures (Figure S13), dDespite the 

reductions in O3 precursor emissions across North America, Europe and East Asia by 2100 (Fig. 2) surface O3 concentrations 

have continued to increase up to the end of this period, indicating the importance of future changes in chemistry, global CH4 

abundances and climate on the response of surface O3 in ssp370 (Wild et al., 2012; Gao et al., 2013; Rasmussen et al., 2013; 

Young et al., 2013; Colette et al., 2015; Fortems-Cheiney et al., 2017; Li et al., 2019; Turnock et al., 2019). South Asia shows 525 

the largest increase in surface O3 as precursor emissions are anticipated to increase across this region on top of the large climate 

change signal and growth in CH4 abundance. Additionally, the largest diversity in predictions between the CMIP6 models is 

shown over South Asia, indicating that there is some disagreement between the models as to the magnitude and extent of 

changes over this region. Surface O3 across oceanic regions (background) are predicted to remain at or near current values in 

ssp370 due to the increases in water vapour in a warming world leading to more O3 destruction (Johnson et al., 1999; Doherty 530 

et al., 2013). The impact of more aggressive near-term reductions to emissions of NTSLCFs (but not CH4) on top of the ssp370 

pathway is shown by the smaller changes in the ssp370-lowNTCF (Fig. 11 and Figures S19-S20 for individual models). In this 

pathway surface O3 concentrations are reduced globally and across most regions to be at or near 2005-2014 values, a substantial 

benefit to surface O3 air quality compared to ssp370. Surface O3 concentrations are predicted to have almost halved by 2050 

across South Asia in ssp370-lowNTCF. However, across East Asia the additional precursor emission reductions in ssp370-535 

lowNTCF have resulted in made little differencesmaller benefits to surface O3 concentrations predictedbeing simulated by the 

CMIP6 models than in other regions (Figure S20),, indicating that other factors are more important over this region (chemistry 

or climate change) which is attributed to an increase in surface O3 concentrations over Eastern China (a part of the larger East 

Asian region shown in Fig. S1). This increase in surface O3 results from the slight increase in NMVOC emissions (Fig. 2) and 

a reduction in the NOx titration of O3 due to the large decreases in NOx emissions in ssp370-lowNTCF. In addition, a reduction 540 

in the heterogeneous loss of radicals due to decreases in PM2.5 concentrations in ssp370-lowNTCF could also lead to increased 

surface O3 concentrations (Li et al., 2019).  

Surface O3 concentrations predicted across northern hemisphere regions in ssp585 are similar to ssp370 due to comparable 

changes in air pollutant emissions and climate change. However, a notable exception is a reduction in surface O3 across regions 

towards the latter half of the 21st Century (post 2080) when there are additional reductions in precursor emissions and global 545 

CH4 abundances by 2100. Surface O3 is predicted to stay at or near 2005-2014 values shows a slower increase until 2040 over 

South Asia in ssp585 than occurred in ssp370. This is despite increases in NOx precursor emissions and changes in climate, 
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indicating that there are potentially some changes in chemical O3 formation within certain CMIP6 models across this region 

and in this scenario that constrain any increases in surface O3.  

The future scenario ssp245 (middle-of-the-road) predicts annual mean surface O3 concentrations that tend to remain at or near 550 

the 2005-2014 mean values by 2100 across the major anthropogenic source regions of the Northern Hemisphere, whereas for 

other tropical and southern hemisphere regions surface O3 concentrations are reduced by up tomore than 4 ppb. The changes 

in ssp245 are driven by larger precursor emission controls, a smaller climate change signal and controlling CH4 so that global 

abundances are just below 2015 values by 2100 (Fig. 1g). In ssp245 a near-term (up to 2040) increase in surface O3 is shown 

across Europe, East Asia and South Asia, which could be attributed to the peaking of global CH4 abundances at this point prior 555 

to then reducing. 

The Tier1 future scenario with the strongest climate and air pollutant mitigation measures, ssp126, shows substantial decreases 

in surface O3 concentrations across most regions due to the large reduction in precursor emissions, global CH4 abundances, 

and small climate change signal. Reductions in surface O3 of more than 108 ppb are predicted across anthropogenic emission 

source regions of the northern hemisphere, with smaller reductions across southern hemisphere regions. 560 

Predictions from the CMIP6 models show that to achieve global benefits for regional surface O3 it is important to control O3 

precursor emissions (including CH4) in addition to limiting future climate change. However, scenarios with large increases in 

global CH4 abundances, a large climate change signals (ssp370 and ssp585) and limited but different post 2050 controls ofn 

O3 precursors emissions(most notably CH4 and NOx), fail to restrict regional increases inshow different long-term changes in 

regional surface O3 concentrations, leading to poor future air quality andwhich could have important consequences for any 565 

potential human health impacts (Silva et al., 2017).     

 

Figure 11 – Future global and regional changes in annual mean surface O3, relative to 2005-2014 mean, for the different SSPs used 

in CMIP6. Each line represents a multi-model mean across the region with shading representing the +/- 1 standard deviation in the 

mean. See Table 1 for details of models contributing to each scenario. The multi-model regional mean value (+/- 1 standard deviation) 570 
for the year 2005-2014 is shown in the top left corner of each panel.  
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A more detailed comparison of future surface O3 predictions between CMIP6 models has been undertaken for ssp370, as it is 

the scenario with the largest number of available models (Table 1). The regional change in decadal annual and seasonal mean 

surface O3, relative to 2005-2014, in 2050 (2045 - 2055 mean) and 2095 (2090 – 2100 mean) for ssp370 from four CMIP6 

models and the HTAP_param is shown in Figure 12. An analysis of the relationships, in terms of correlation coefficients, 575 

between future annual mean surface O3 concentrations and other variables (CH4 concentrations, surface air temperature, NOx 

concentrations, emissions of BVOCs and anthropogenic emissions of NMVOCs) is undertaken for CMIP6 models in the 

ssp370 scenario (Figure 13). Discrepancies in the simulated response of background O3 across the ocean region (also South 

Pole and Pacific, Australia and New Zealand) are noticeable between individual models, with UKESM1-0-LL predicting a 

decrease in surface O3 compared to the small increase from the HTAP_param and most other models in both 2050 and 2095 580 

(Figure S1914). The future surface O3 response in UKESM1-0-LL over the ocean region exhibits a large negative correlation 

with surface temperature changes (Figure 13), indicating the importance of future climate change in this model over remote 

regions. UKESM1-0-LL is a model with high equilibrium climate sensitivity (ECS, 5.4 K) compared to other CMIP6 models 

(Forster et al., 2019; Sellar et al., 2019), and therefore will exhibit a larger climate response (surface temperature and water 

vapour), leading to enhanced background O3 destruction via water vapour and the hydroxyl radical (OH). Over the North Pole 585 

region all models show surface O3 increases that are larger than the HTAP_param, with a larger increase in DJF than JJA. 

indicating that tThe large future temperature response over the Arctic, as well as changes in NOx concentrations and emissions 

of NMVOCs are particularly or changes to long-range transport could be an important drivers of surface O3 changes across 

most CMIP6 models inover this region with comparatively low local emissions (Figure 13).  

Differences in the predicted surface O3 between models exist across South Asia where CESM2-WACCM (and BCC-ESM1 in 590 

2050) predict a response that is twice as large as UKESM1-0-LL and GFDL-ESM4. The lower annual mean response over 

South Asia in UKESM1-0-LL and GFDL-ESM4 is driven by a reduction in DJF in these models (Fig. S21), which results in 

the DJF change in 2050 being lower than the 2005-2014 annual mean value (Fig. 12). The large increase in NOx emissions in 

ssp370this scenario over South Asia (~80%) has resulted in areas of NOx titration, particularly in DJF, near the Indo-Gangetic 

plain in both UKESM1-0-LL and GFDL-ESM4, reducing surface O3 concentrations (Fig. S19 and S2114). This strong feature 595 

of NOx titration of O3 in DJF is absent in both CESM2-WACCM and BCC-ESM1, resulting in larger O3 production over 

South Asia. The comparison in Fig. 12 shows how the O3 chemistry within models responds differently across a particular 

area in a future scenario with a large climate change signal and over a region with large increases in local precursor emissions, 

but that all the drivers related to regional O3 change in South Asia are similarly important across all models (Figure 13).    

Over South America and Southern Africa, particularly the tropical areas (Fig. S1914), larger future changes in surface O3, 600 

particularly by 2100,  are predicted by GFDL-ESM4 and /UKESM1-0-LL than by CESM2-WACCM. These changes over 

South America are larger in JJA in all models, with small seasonal differences over Southern Africa. Over this region, biogenic 

emissions (particularly isoprene) are an important source of O3 formation. Discrepancies in the magnitude of change infuture 

response of these BVOC emissions between models could be occurring due to the differing magnitudes of climate and land-

use change and how they are coupled within individual CMIP6 models (Table S1), which could affect lead to the inter-model 605 

differences in future surface O3. Future changes in the Ttotal emissions of BVOCs (isoprene and monoterpenes) and those 

solely from isoprene their future change in ssp370 obtained from threefive CMIP6 models (Figure S22 and S2315) show that 

CESM2-WACCM has larger total BVOC emissions over the period 2005-2014 (due to the inclusion of more BVOCs), which 

then increase in the future ssp370 scenario, along with isoprene emissions, resulting in a smaller increase (and decreases over 

some parts of the region) in O3. Whereas, GFDL-ESM4 and UKESM1-0-LL shows a larger increase in O3 have smaller 610 

increases and a reduction in BVOC emissions, mainly from isoprene (Fig. 23), with some emissions reducing over parts of 

South America and tropical Africa in UKESM1. Figure 13 shows that there are differing relationships between future surface 

O3 concentrations, BVOC emissions and NOx concentrations across CMIP6 models over South America and Southern Africa. 

Over Southern Africa, UKESM1-0-LL shows a different relationship between BVOC emissions and surface O3 concentrations 
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than other CMIP6 models, indicating that this could be leading to the different future O3 response in this model over this 615 

region. Similarly, Figure 13 shows that over South America, CESM2-WACCM has a different relationship between surface 

O3 and the variables considered here than in other CMIP6 models, particularly for BVOCs, leading to the different future 

responses in this model over this region. The BVOC emission changes appear to have affected the future O3 formation 

differently in the individual models over these regions and represents an Figure 13 shows that there are differences between 

models in the surface O3 response over regions such as South America and Southern Africa, which are potentially linked to 620 

the land-surface response and are important process to understand furthermore in future work.  

Whilst there isare disagreements between models over some regions, there is also substantial consistency in the predicted 

increase to annual mean surface O3 in ssp370 over North America, Europe and East Asia, which is larger than that from 

HTAP_param.  However, BCC-ESM1 tends to predict a larger increase than the other three models, potentially due to the 

coarser resolution of this ESM. There are differences in simulated seasonal response across these regions, with all models 625 

showing a smaller increase in JJA than DJF across North America and Europe, whilst across East Asia there tends to a be a 

larger future surface O3 increase in JJA than DJF. Figure 13 shows that there is a negative correlation between surface O3 and 

NOx concentrations, as well as between O3 and NMVOC emissions, for most CMIP6 models across these regions, reflecting 

that Aas most anthropogenic precursor emissions (including NOx) are decreaseing in this scenario (Fig. 2)across all these 

regions, then surface O3 is simulated to increase. An exception to this is across East Asia, where the increase in NMVOC 630 

emissions in ssp370 (Fig. 2) are positively correlated with surface O3, indicating different chemical drivers of future O3 across 

this region. In addition, there are positive correlations between the other variables (temperature, CH4 and BVOCs) for most 

CMIP6 models indicating that changes in climate and global CH4 abundances seem to be the major  are also important drivers 

of surface O3 increases over these regions. 

The differences between the individual CMIP6 models highlight the importance of further understanding how future O3 635 

chemistry is affected by changes to precursor emissions and climate. The predicted differences in models can be quite 

pronounced over regions like South Asia where changes in one model can be double that of another model, which could have 

important consequences for future regional air quality.   
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Figure 12 – Future global and regional changes in the decadal annual and seasonal mean surface O3, relative to the 2005-2014 mean, 640 
for the ssp370 pathway used in CMIP6. Each black circle represents the decadal annual mean response for an individual model in 

a) 2045-2055 and b) 2090-2100, with the coloured bars showing the standard deviation across the decadal annual mean. The DJF 

and JJA seasonal mean response averaged over the relevant 10 year period is shown by squares and triangles respectively. The 

multi-model regional mean over the period 2005- 2014 is given towards the left of each panel. The response from the HTAP_param 

in each time period is shown by the separate gold circle. 645 
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Figure 13 – Correlation coefficients calculated when comparing future annual mean surface O3 concentrations against individual 

variables of surface CH4 concentrations, surface air temperature (TAS), emissions of biogenic volatile organic compounds (BVOCs), 

NOx (NO + NO2) concentrations and anthropogenic emissions of non-methane volatile organic compounds (NMVOCs)  from 

individual CMIP6 models over the period 2015 to 2100 in the ssp370 scenario.   650 

5.2 Surface PM2.5 

Relatively small global changes in annual mean surface PM2.5 are predicted for all CMIP6 models across all scenarios (Figure 

14), with an increase in ssp370 and a reduction in the others. Small reductions in PM2.5 are predicted for all scenarios across 

Europe (0.3 to 3 µg m-3) and North America (0.01 to 1.3 µg m-3) due to the reduction in aerosol and aerosol precursor emissions. 

Differences in PM2.5 between scenarios are highlighted across a number of regions.  655 

For the weak climate and air pollutant mitigation scenario ssp370, increases in annual mean surface PM2.5 are predicted across 

South Asia (7.34 +/- 34.14 µg m-3 by 2050 and 43.13 +/- 3.10 µg m-3 by 2100), South East Asia (32.70 +/- 54.73 µg m-3 by 

2100), Southern Africa (1.69 +/- 43.75 µg m-3 by 2100), Central (32.83 +/- 3.25 µg m-3 by 2100) and South America (32.91 

+/- 3.6 µg m-3 by 2100). The increases in PM2.5 are driven mainly by the increase in aerosol and aerosol precursor emissions 

in this scenario (Fig. 2), shown by the positive correlations between emissions and surface PM2.5 in CMIP6 models across 660 

these regions (Figure 16). However, there is a degree of uncertainty associated with all of these future predictions indicated by 

the large diversity across the CMIP6 models. Some of the largest predicted increases in surface PM2.5 occur across South Asia 

in ssp370, a region already with high present day PM2.5 concentrations. The increase in PM2.5 peak in 2050 across this region, 

which coincides with the increase of SO2, BC and OC emissions, before declining to 2100 when emissions reduce. Over East 

Asia, annual mean PM2.5 concentrations are simulated to remain at or near 2005-2014 values until the latter half of the 21st 665 

Century when the decrease in emissions reduce PM2.5 concentrations by 2.58 +/- 2.76 µg m-3. The impact of reductions in 

NTSLCFs on top of the ssp370 scenario act to constrain any increases of PM2.5 concentrations to near present day values across 

most regions. However, substantial reductions in PM2.5 concentrations of 5.6 +/- 2.01 µg m-3 and 5.93 +/- 12.14 µg m-3 below 
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2005-2014 values are achieved by 2050 across East and South Asia respectively, by implementing these measures. Due to the 

short lifetime of aerosols in the atmosphere PM2.5 concentrations respond rapidly to the large cuts in emissions that occur in 670 

ssp370-lowNTCF and show the benefits to targeting these emissions, although there could be a potential climate impact (Allen 

et al., 2020). 

Reductions in annual mean surface PM2.5 are simulated across all regions for ssp126, ssp245 and ssp585. Differences exist in 

the magnitude and timing of PM2.5 reductions across regions linked to the changes in emissions. The largest reductions in 

PM2.5 occur over South Asia in 2100 and range from 121.1 +/- 12.89 µg m-3 in ssp126 to 98.61 +/- 12.9 µg m-3 in ssp585, a 675 

substantial benefit to regional air quality. Similar benefits to PM2.5 are achieved over East Asia by 2100 although the more 

rapid improvements occur over this region in the first part of the 21st Century.  

The response of PM2.5 concentrations is more variable, with a larger diversity across CMIP6 models within regions that are 

close to natural aerosol emission sources. This is particularly noticeable over North Africa where the variability across CMIP6 

models in dust emissions from the Saharan source region (Fig. S87) results in an uncertain PM2.5 response across this region. 680 

A similar response is also exhibited across the Middle East and Central Asia. The potential influence of BVOCs on SOA 

formation (Fig. S2215 and S2618) could also be contributing to the diversity in the CMIP6 model responses across the South 

America and Southern Africa regions.  

The CMIP6 models show that future reductions in aerosols and aerosol precursors will lead to a decrease in surface PM2.5 

concentrations across most world regions and a benefit to regional air quality (and human health), consistent with that from 685 

CMIP5. However, if emissions are not controlled over economically developing regions such as South America, Asia and 

Africa then surface PM2.5 is anticipated to increase and worsen future regional air quality. Targeting emission reductions of 

NTSLCFs in the short-term shows the potential for rapid improvements in surface PM2.5 and air quality.    
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Figure 143 – Future global and regional changes in annual mean surface PM2.5, relative to 2005-2014 mean, for the different SSPs 690 
used in CMIP6. Each line represents a multi-model mean across the region with shading representing the +/- 1 standard deviation 

in the mean. See Table 1 for details of models contributing to each scenario. The multi-model regional mean value (+/- 1 standard 

deviation) for the year 2005-2014 is shown in the top left corner of each panel.  

In a similar analysis to that for surface O3, a more detailed comparison has been undertaken of four CMIP6 models predicting 

changes in annual and seasonal surface PM2.5 in 2050 and 2095 under ssp370 (Figure 154). In addition, an analysis of the 695 

relationships, in terms of correlation coefficients, between future annual mean surface PM2.5 and other variables (total surface 

precipitation, surface air temperature and emissions of BVOCs, SO2, BC and organic aerosol) has been undertaken for CMIP6 

models in the ssp370 scenario (Figure 16). Small reductions in annual mean surface PM2.5 concentrations (<2 µg m-3) are 

simulated consistently by all CMIP6 models across North America and Europe in ssp370, with larger reductions simulated in 

DJF than JJA.  The reductions in annual mean PM2.5 over Europe and North America are mainly attributed to decreases in the 700 

BC and SO4 components (Fig. S24 and S25), as indicated by the strong correlations with BC and SO2 emissions across CMIP6 

models (Figure 16). However, by 2095 a small increase (up to 2 µg m-3) is simulated in JJA by UKESM1-0-LL and CESM2-

WACCM over North America, which could be attributed to changes in climate due to the strong positive correlations in both 

models for temperature, precipitation and BVOCs (Figure 16). 

South Asia, the region with the largest simulated future change in annual mean surface PM2.5 of up to 12 µg m-3, shows fairly 705 

good agreement between three CMIP6 models (UKESM1-0-LL, GFDL-ESM4 and CESM2-WACCM) as predictions in 2050 

and 2095 are all within the range of each of the individual models. The future increases in annual mean surface PM2.5 appear 

to be strongly driven by emission changes as there are strong positive correlations between these variables across South Asia 

in all models (Figure 16).  Across South Asia, all models simulate a larger increase in DJF mean surface PM2.5 concentrations, 

of up to 18 µg m-3 by 2050, than occurs in JJA, and reflects the seasonality shown in the model evaluation. The MIROC-ES2L 710 

model predicts smaller future increases in surface PM2.5 than the other models across South Asia of up to 5 µg m-3 in both 

2050 and 2095. This is a result of smaller changes in the BC, OA and sulphate aerosol components in the MIROC-ES2L model 

despite increases in aerosols and aerosol precursor emissions across South Asia in ssp370 (Figure S2416-S2618).  

Disagreements in both the sign and magnitude of simulated future annual and seasonal mean surface PM2.5 changes between 

CMIP6 models are also exhibited across East Asia. Small regional annual mean increases are predicted in 2050 due to PM2.5 715 

increases in JJA fromor all models apart from GFDL-ESM4., attributed to aA larger reduction in the SO4 component is 

simulated over East Asia by GFDL-ESM4 than in other models across this region (Fig S2517), resulting in an overall decrease 

in PM2.5. In 2095 most models, apart from CESM2-WACCM, simulate a reduction in PM2.5 concentrations in both seasons 

across East Asia, apart from CESM2-WACCM due to the increase in JJA. All models simulate continual reductions out to 

2100 for SO4 across this region, whereas BC increases in the near-term before decreasing out to 2100. For OA, CESM2-720 

WACCM shows larger increases over East Asia in both 2050 and 2095 compared to the other models, which show a smaller 

increase in 2050 and a reduction by 2095 (Fig. S2618). CESM2-WACCM includes a more complex treatment of SOA 

formation, showing a strong response to climate and historical trends in OA (Tilmes et al., 2019)., Positive correlations are 

shown for CESM2-WACCM between surface PM2.5 and emissions of BVOC and temperature (Fig. 16), which are not present 

in other models and could explain the multi-model differences between this model and others across East Asia. The 725 

discrepancies in CMIP6 models are not as obvious over South Asia as the effect of the increase in OA over South Asia in 

CESM2-WACCM is masked by coincident increases in other components across other models, as indicated by the strong 

correlations with emissions here. CESM2-WACCM also shows larger simulated increases in PM2.5 over South America, 

Central America, Southern Africa and South East Asia than other models, which can be attributed to the larger increase in the 

OA fraction (Fig. S26) in this modeland the strong correlations in this model with changes in temperature and emissions 730 

(BVOCs and SO2). However, oOver Southern Africa UKESM1-0-LL shows a reduction in future PM2.5, in contrast to the 

other models., This can again be attributed due to a reduction in the BC, OA fractionand dust aerosol components in UKESM1 

(Fig. S24, S26 and S2718),. UKESM1-0-LL exhibits particularly strong negative correlations for surface PM2.5 when compared 
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with temperature and precipitation. These relationships over Southern Africa are quite different to other CMIP6 models, which 

is also highlighted in the model evaluation over this region (Fig. 8) and indicates that climate change influences aerosol 735 

concentrations differently over this region in this model (Figure 16). In addition, there is a slight positive correlation of PM2.5 

with BVOC emissions in UKESM1-0-LL over Southern Africa. Future related to potential changes in land use and a reduction 

in biogenic emissions (including monoterpenes) reduce here across Southern Africa in ssp370 (Fig. S2215), potentially due to 

land-use vegetation change as UKESM1-0-LL has dynamic vegetation coupled to BVOC emissions (Table S1). This could 

also reduce PM2.5 concentrations over this region because monoterpene emissions are the main precursor to SOA formation in 740 

this UKESM1-0-LLmodel (Mulcahy et al., 2019). 

The decadal annual and seasonal mean PM2.5 response is variable across individual CMIP6 models over regions close to natural 

sources of particulate matter (North Africa, Central Asia and Pacific, Australia and New Zealand). Over these regions there is 

a large range in both the sign and magnitude of the annual and seasonal PM2.5 response, which can be mainly attributed to the 

dust fraction (Fig. S2719) and the fact that this aerosol source has a large inter-annual variability in its emission strength. There 745 

is also a lack of consistency across CMIP6 models in the correlations of PM2.5 with any individual driver, indicating the 

variability of aerosol sources in these regions within models. Interestingly, the CMIP6 models do not agree in the sign and 

magnitude of future changes to dust concentrations in ssp370 (Fig. S2719).  

Across the ocean and North Pole regions all the CMIP6 models tend to simulate a small increase in PM2.5 concentrations, 

which can be attributed to increases in sea salt concentrations (Fig. S280). A strong increase in sea salt concentrations all 750 

models is simulated in all models across the Southern Ocean (and other oceans), potentially driven by changes to 

meteorological conditions (reflected by the positive correlations of PM2.5 with the climate variables temperatures and 

precipitation in Fig. 16), which increase wind speed and sea salt emissions. As ssp370 is a scenario with a large climate change 

signal, the increases in PM2.5 across the North Pole, particularly in 2100, can be attributed to the melting of sea ice increasing 

sea salt emissions, which again is reflected in the positive correlations of PM2.5 with climate variables over this region. 755 

However, the magnitude of this response is different in the CMIP6 models due to the underlying ECS and the response of 

Arctic surface temperatures within the individual model.  

The differences in the simulated future PM2.5 changes across the CMIP6 models in ssp370 highlight that it is important to 

consider how natural sources of aerosol respond in a future climate in addition to that from changes in anthropogenic emissions. 

Particular differences between models have been shown for dust, sea salt and also organic (secondary) aerosols, which should 760 

be explored further. In addition, the different representations of aerosols within individual models e.g. organic aerosols, are an 

important consideration as they can make a large difference to any future regional prediction of PM2.5.   
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Figure 154 – Future global and regional changes in the decadal annual and seasonal mean surface PM2.5, relative to the 2005-2014 765 
mean, for the ssp370 pathway used in CMIP6. Each black circle represents the decadal annual mean response for an individual 

model in a) 2045-2055 and b) 2090-2100, with the coloured bars showing the standard deviation across the decadal annual mean. 

The DJF and JJA seasonal mean response averaged over the 10 relevant period are shown by squares and triangles respectively. 

The multi-model regional mean over the period 2005- 2014 is given towards the left of each panel.  
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 770 

Figure 16 – Correlation coefficients calculated when comparing future annual mean surface PM2.5 concentrations against individual 

variables of precipitation, surface air temperature (TAS), emissions of biogenic volatile organic compounds (BVOCs) and emissions 

of SO2, black carbon (BC) and organic carbon (OC) from individual CMIP6 models (that had data out to 2100) over the period 2015 

to 2100 in the ssp370 scenario.   

6 Conclusions 775 

In this study we have provided an initial analysis of the historical and future changes in air pollutants (O3 and PM2.5) from the 

latest generation of Earth system and climate models that have submitted results from experiments conducted as part of CMIP6. 

Data was available from the historical experiments of 56 CMIP6 models for surface O3 and 101 models for surface PM2.5. 

Historical changes in regional concentrations of O3 and PM2.5 are presented over the period 1850 to 2014 using data from all 

models. A present day model evaluation of the CMIP6 models was conducted against surface observations of O3 and PM2.5 780 

obtained from the TOAR and GASSP databases respectively. An additional comparison was performed for simulated PM2.5 

concentrations against the MERRA-2 aerosol reanalysis product. An assessment is then made of the changes in surface O3 and 

PM2.5 simulated by the CMIP6 models across different future scenarios, ranging from weak to strong air pollutant and climate 

mitigation.  

The 56 CMIP6 models simulate present day (2005-2014) surface O3 concentrations that are elevated in the Northern 785 

Hemisphere summer, with lower values throughout the year across the Southern Hemisphere. However, a large model diversity 

is shown across the continental Northern Hemisphere due to the large simulated seasonal cycles in certain models. Compared 

to surface O3 measurements, CMIP6 models consistently overestimatepredict observed annual mean values and in both 

summer and winter across most regions by up to 16 ppb (a similar result to previous multi-model evaluations of global 

chemistry-climate models in (Young et al., (2018)). An exception to this is at observation locations across Antarctica where 790 

CMIP6 models tend to underestimatepredict observed values by 5 ppb.     
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Large surface PM2.5 concentrations are simulated in CMIP6 models near dust and anthropogenic emission source regions. 

Model diversity across the CMIP6 models is largest near the dust source regions due to their sensitivity to meteorological 

variability, whereas across other regions the CMIP6 models are relatively similar in their simulation of PM2.5 concentrations. 

Evaluating the approximate PM2.5 calculated from CMIP6 models (excluding nitrate aerosols) against ground based PM2.5 795 

observations shows an consistent underestimationprediction across most regions of up to 10 µg m-3. The underestimation of 

observations by models is larger in the northern hemisphere winter than summer, in part due to the absence of nitrate aerosols 

within most CMIP6 models and also due to underrepresentation of other aerosol processes within the global models (a similar 

result to other multi-model assessments). To improve the spatial coverage and consistency of the PM2.5 evaluation with CMIP6 

models an additional comparison was made to the MERRA-2 aerosol reanalysis product. A similar, but slightly smaller, 800 

underestimation of PM2.5 concentrations over Europe and North America was found in the comparison of CMIP6 models and 

MERRA-2, providing further confidence in theis result from the ground-based comparison. CMIP6 models overestimated the 

monthly PM2.5 concentrations in MERRA-2 over South and East Asia by up 15 µg m-3, contraryin contrast to the evaluation 

using ground based observations. Mean Aannual mean cycles simulated by CMIP6 models and MERRA-2 tend to agree across 

other regions for which there are no suitable ground-based observations. The comparison of surface O3 and PM2.5 simulated 805 

by CMIP6 models to observations shows similar biases to previous generations of global composition-climate models. Further 

studies are required (e.g. global sensitivity or process studies) to explore uncertainties in models and the differences with 

observations. 

Across the historical period (1850-2014), the CMIP6 models simulated a global annual increase in surface O3 of between 7 

and 14 ppb, with a larger increase in JJA than DJF. A global multi-model mean increase of 11.75 +/- 2.32 ppb was simulated 810 

by the CMIP6 models which agrees well with the change previously simulated by CMIP5 models. A large diversity in the 

historical change of surface O3 was simulated by CMIP6 models across South Asia and other Northern Hemisphere regions. 

CMIP6 models predicted larger historical changes in surface O3 than those from an emission-only driven parameterisation, 

indicating a potential climate change impact (Wu et al., 2008; Bloomer et al., 2009; Weaver et al., 2009; Rasmussen et al., 

2013; Colette et al., 2015) on surface O3 over the historical period. Small global increases in surface PM2.5 are simulated over 815 

the historical period by CMIP6 models, with larger regional changes of up to 12 µg m-3 on an annual mean basis and up to 18 

µg m-3 in DJF across East and South Asia. The largest diversity in the response of CMIP6 models occurs over Asian regions, 

with large interannual variabilities near dust source regions. CMIP6 models simulate the peak in PM2.5 concentrations in the 

1980s across Europe and North America, prior to simulating the observed decline in concentrations to present day 

(Leibensperger et al., 2012; Tørseth et al., 2012; Turnock et al., 2015), resulting fromattributed to the implementation of air 820 

pollutant emission controls over these regions. 

The CMIP6 models predict surface O3 to increase across most regions in the weak mitigation scenarios (ssp370 and ssp585), 

particularly over South and East Asia (up to 106 ppb by 2100) due to a combination of increases in air pollutant emissions, 

increases in global CH4 abundances and climate change. Discrepancies exist in the regional surface O3 response in ssp370 

between individual CMIP6 models due to differences in the future response of chemistry (NOx), climate (temperature) and 825 

biogenic precursor emissions. Benefits to regional air quality from large reductions in surface O3 are possible across all regions 

for scenarios that contain strong climate and air pollutant mitigation measures, including those targeting CH4.  

CMIP6 models predict surface PM2.5 concentrations to decreases across all regions in both the middle-of-the-road (ssp245) 

and strong mitigation scenarios (ssp126) by up to 12 µg m-3 due to the reduction in anthropogenic aerosols and aerosol 

precursor emissions, yielding a benefit to regional air quality. Whereas for the weak climate and air pollutant mitigation 830 

scenario (ssp370), annual and seasonal mean surface PM2.5 is simulated to increase across a number of regions. Implementing 

mitigation measures specifically targeting NTSLCFs on top of the ssp370 scenario shows immediate improvements in PM2.5 

concentrations, restricting any changes to below present day values. The largest change in regional mean PM2.5 concentrations, 

and also largest diversity across CMIP6 models, is predicted in ssp370 across South Asia, an area with already poor air quality. 
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Disagreements in the prediction of future changes to regional surface PM2.5 concentrations between individual CMIP6 models 835 

can mainly be attributed to differences in the complexity of the aerosol schemes implemented within models, in particular the 

formation mechanisms of organic aerosols and emission of BVOCs over certain regions. Additionally, along with the strength 

of the climate change signal (temperature and precipitation) within simulated by models and how theis can have important 

impacts this has on natural aerosol emissions via Earth system couplings leading to discrepancies between models.  

The results from CMIP6 provide an opportunity to assess the simulation of historical and future changes in air pollutants within 840 

the latest generation of Earth system and climate models using up to date scenarios of future socio-economic development. 

Large changes in air pollutants were simulated over the historical period, primarily in response to changes in anthropogenic 

emissions. Future regional concentrations of air pollutants depend on the particular trajectory of climate and air pollutant 

mitigation that the world follows, with important consequences for regional air quality and human health. Substantial benefits 

can be achieved across most world regions by implementing measures to mitigate the extent of climate change, as well as from 845 

large reductions in air pollutants emissions, including CH4 which is particularly important for controlling O3. In future 

scenarios which do not mitigate climate change and air pollutant emissions, the regional concentrations of air pollutants are 

anticipated to increase. Important differences between individual CMIP6 models have been identified in terms of how they 

treat thesimulate air pollutants from the interaction of chemistry (O3 and NOx), climate (temperature and precipitation) and 

natural precursor emissions (BVOCs) in the future. Further research and understanding is necessary of these processes to 850 

improve the robustness of regional predictions of air pollutants on climate change timescales (decadal to centennial).    

Data Availability 

CMIP6 data is archived at the Earth System Grid Federation and is freely available to download. A list of the model datasets 

used in this study are provided in Table 1.  
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