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 Reply to RC1: ' Review of "Influences of hydroxyl radicals (OH) on top-down estimates of the global 

and regional methane budgets" ' 

 

Comment: Zhao et al. assess systematically how uncertainties of OH concentrations affects our inference 

of the global and regional methane emissions and their decadal changes from the existing surface 

measurement network. The authors performed a series of inversion experiments using varied OH fields 

and used the standard deviations of an inversion ensemble to represent the uncertainty due to OH fields. 

The work is very important, as the uncertainty source of prescribed OH fields have not been quantitatively 

assessed in previous syntheses (e.g., Saunois et al. 2017, 2019). However, the manuscript can be improved 

with better presentation and in-depth discussion. I’d recommend the publication of this manuscript if the 

following issues are addressed. 

 

Response: We thank the reviewer for his/her helpful comments. All of them have been addressed in 

the revised manuscript. Please see out itemized responses below.  

 

Comments: 1. The manuscript lacks quantitative comparisons of the results with other uncertainty 

sources (as assessed in literature) of methane emission estimations. The comparison could provide readers 

both the context and the insight. For example, I am looking for answers to the following questions:  

1 how large is the uncertainty due to OH compared to other uncertainty sources (e.g., transport)?  

Response:  

For the uncertainties in global total CH4 emissions lead by OH, we added the values in section 3.1.1 

(L316-326): 

” The minimum-maximum range of the CH4 emissions estimated by the 10 OH fields is almost 

similar to the range estimated by previous bottom-up studies (542-852Tg yr-1 given by Kirschke et 

al., 2013 and 583-861Tg yr-1 given by Saunois et al, 2016) from GCP syntheses and much larger 

than that reported by an ensemble of top-down studies for 2000-2009 in Kirschke et al. (2013) (526-

569Tg yr-1), Saunois et al. (2016) (535-566Tg yr-1) or the recent Saunois et al. (2019) (522-559 Tg yr-

1). (Table 2 and Fig. 2). In the three top-down model ensembles, most of the inversion systems use 

TransCom OH fields, and the reported differences are mainly from different model transport and 

set-up of the inversion systems (e.g. the observations used in the inversions). Excluding the two 

https://editor.copernicus.org/index.php/acp-2019-1208-RC1.pdf?_mdl=msover_md&_jrl=10&_lcm=oc108lcm109w&_acm=get_comm_file&_ms=82722&c=177497&salt=9862862111056130755
https://editor.copernicus.org/index.php/acp-2019-1208-RC1.pdf?_mdl=msover_md&_jrl=10&_lcm=oc108lcm109w&_acm=get_comm_file&_ms=82722&c=177497&salt=9862862111056130755
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outliers (MOCAGE and SOCOL-3) in Inv1, we find an uncertainty of about 17% in global methane 

emissions (518 to 611Tg yr-1) due to OH global burden and distributions, while transport model 

errors lead to only 5% of the uncertainty of the global methane budget (Table 3, Locatelli et al. 

(2013)). ” 

 

For the regional emissions, we now better compare the uncertainties lead by OH with that lead by 

model transport errors and set-up of the inversion systems given in Saunois et al. (2016) and of 

Locatelli et al. (2015). We have inserted a new Table 3 summarizes the results. 

 

Table 3. Global, latitudinal, and regional CH4 emission in Tg yr-1 (mean±SD and the [min-max] range of 

the inversions) calculated by Inv1 and Inv2 during the early 2000s (2000/07/01-2002/06/01) in Tg yr-1 

(excluding MOCAGE and SOCOL-3). The uncertainties (Unc. = (max－min)/multi-inversions mean) 

lead by using different OH fields are compared with the uncertainties in CH4 emissions given by Saunois 

et al. (2016）and Locatelli et al. (2013). 

Study This study (Impact of OH) 
Saunois et 

al. (2016） 

Locatelli et 

al. (2013) 

Period 2000/07/01-2002/06/01 2000-2009 2005 

Experiment Inv1 (Original OH) Inv2 (Scaled OH) 
TD 

ensemble 

Transport 

model 

errors 

Region Mean±SD[range1] Unc. Mean±SD [range] Unc. Unc. Unc. 

global 567±34[518-611] 17% 551±2[548-555] 1% 6% 5% 

60°-90°N 29±1[27-30] 12% 29±1[27-30] 12% 50% 

10%(NH) 
30°N-60°N 174±8[158-183] 14% 172±6[159-178] 11% 20% 

0°-30°N 199±14[178-217] 20% 192±1[191-194] 1% 
13% 

(<30°N) 0°-30°S 147±14[121-167] 30% 140±6[133-153] 14% 
24%(SH) 

30°S-90°S 19±1[17-20] 18% 18±1[18-19] 9% 

America 45±2[42-48] 11% 45±1 [42-46] 8% 25% 37% (North 

America) Canada 27±1[24-28] 17% 27±1 [24-28] 13% 70% 

Europe 27±1 [25-28] 12% 27±1 [25-28] 11% 43% 23% 

Russia 33±1 [30-35] 13% 33±1 [30-34] 12% 31% 38% 

China 42±5 [33-50] 39% 40±3 [35-43] 20% 11% 

25% (Asia) Southeast Asia 38±3 [34-41] 20% 37±0.3 [36-37] 3% 42% 

South Asia 59±6 [51-66] 24% 57±0.8 [56-58] 4% 44% 

Northern 

South America 
73±9[58-85] 37% 69±4 [65-77] 17% 44% 

48% (South 

America) Southern 

South America 
33±4[27-39] 37% 31±2[29-36] 20% 94% 

Africa 76±4 [68-82] 18% 74±1 [73-77] 6% 42%-45% 30% 
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And we added in section 3.2.2 (L387-391 and L400-405): 

“The uncertainties in global OH burden and distributions lead to larger uncertainty (maximum－

minimum) in top-down estimated CH4 emissions over the tropics (>20% of multi-inversion mean) 

and smaller uncertainty over the northern mid-latitude regions (14%) compare with that lead by 

transport model errors and different observations given by Saunois et al. (2016) (13% over tropics 

and 20% over northern mid-latitude regions) (Table 3).” 

 

” As shown in Table 3, at regional scales, the uncertainty (maximum－minimum) in top-down 

estimated CH4 emissions due to different OH global burden and distributions over Asia and South 

America (~37% of multi-inversion mean) are of the same order than those lead by transport errors 

(25% and 48%) or given by Saunois et al. (2016) (~40%). Over other regions, using different OH 

fields lead to smaller uncertainties (11%-18%) compared to other causes of errors (23%-70%) 

(Table 3).” 

 

For emissions changes during the 2000s, we added in section 3.2.2 (L555-566): 

” We now compare the uncertainty of top-down estimated CH4 emission changes from the early to 

the late 2000s due to different OH spatial-temporal variations with that ensemble of top-down 

studies given by Saunois et al. (2017). For the sectoral emissions, the emission changes from 

agriculture and waste and from wetland show the largest uncertainties (more than 50% of multi-

inversions mean, Inv3－Inv2 in Table 6) induced by OH spatial-temporal variations, comparable 

to that given by Saunois et al. (2017). On the contrary, the uncertainty of fossil fuel emission changes 

(24% of multi-inversions mean) is much smaller than that given by Saunois et al. (2017). For 

regional CH4 emission changes, the uncertainty induced by OH spatial-temporal variations is 

usually larger than the multi-inversion mean emission changes (except South Asia) and similar to 

that given by Saunois et al. (2017). The large differences existing in different top-down estimated 

regional and sectoral emission changes are mainly attributed to model transport errors in Saunois 

et al. (2017). Here, our results show that uncertainties due to OH spatio-temporal variations can 

lead to similar biases in top-down estimated CH4 emission changes.” 

 

2 Is the uncertainty due to OH the bottleneck for understanding the global and regional methane budget? 

In which regions, the uncertainty due to OH dominates; and in which regions, they are not that important? 
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Response:  

For the global CH4 budget, in the conclusions and discussion, we have demonstrated (L640-L645): 

” Based on the ensemble of 10 original OH fields ([OH]GM-CH4:10.3-16.3×105 molec cm-3), the global 

total CH4 emissions inverted by our system vary from 518 to 757Tg yr-1 during the early 2000s, 

similar to the CH4 emission range estimated by previous bottom-up syntheses and larger than the 

range reported by the top-down studies (Kirschke et al., 2013; Saunois et al, 2016). The top-down 

estimated global total CH4 emission varies linearly with [OH]GM-CH4, which indicates that at the 

global scale, a small uncertainty of 1×105 molec cm-3 (10%) [OH]GM-CH4 can result in 40.4Tg yr-1 

uncertainties in optimized CH4 emissions.”  

 

For the regional CH4 budget, we added in “Conclusions and discussion” (L647-L654) : 

“At regional scale (excluding the two highest OH fields), CH4 emission uncertainties due to different 

OH global burdens and distributions are largest over South America (37% of multi-inversion 

mean), South Asia (24%), and China (39%), resulting in significant uncertainties in optimized 

emissions from the wetland and agriculture and waste sectors. These uncertainties are comparable 

in these regions with those due to model transport errors and inversion system set-up (Locatelli et 

al., 2013; Saunois et al., 2016). For these regions, the uncertainty due to OH is critical for 

understanding their methane budget. In other regions, OH leads to smaller uncertainties compared 

to that given by Locatelli et al. (2013) and Saunois et al. (2016). ” 

 

Is it adequate to reduce the uncertainty of global mean OH for the purpose of improving estimates for 

global and regional methane emissions? Or reducing uncertainty in OH spatial distribution is equally 

important? 

Response: We added in Section 4 “Conclusions and discussion” (L705-L713):  

” Our results indicate that OH spatial distributions, which are difficult to obtain from proxy 

observations (e.g. MCF), are equally important as the global OH burden for constraining CH4 

emissions over mid- and high-latitude regions. Constraining global annual mean OH based on 

proxy observations (e.g. Zhang et al., 2018; Maasakkers et al., 2019) provides a constraint on global 

total methane emissions, through the necessity of balancing the global budget (sum of source – sum 

of sinks = atmospheric growth rate). It also largely reduces uncertainties in optimized CH4 

emissions due to OH over most of the tropical regions but not over South America and overall mid-
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high latitude regions. Also, the spatial and seasonal distributions of OH is found critical to properly 

infer temporal changes of regional and sectoral CH4 emissions.” 

 

 These questions are interesting to readers and can be addressed by putting the results of this paper in the 

context of literature (such as Saunois et al. 2017 from the authors’ group). 

  

Comments: 2. The regional results are specific to the observing system (i.e., NOAA surface network). 

Surface observations are relatively dense in North America and West Europe, but very sparse near South 

America, Tropical Africa, and Tropical Asia. Therefore, the inversion tends to adjust emissions from 

regions less constrained by observations, if any global mismatch exists, leading to large spread of 

estimates in these regions. Inclusion of more observations may lead to different spatial patterns in Fig. 3. 

It is important to acknowledge that the conclusion about regional emissions applies to only this specific 

observing system. The authors mentioned site locations when explaining the difference between Inv1 and 

Inv2; however results from other experiments may also be explained by this factor, at least partly. In 

addition, OH concentrations are highest over tropics, therefore, it is expected that the difference in OH 

from varied fields is largest over tropics. This could explain the larger posterior flux range in tropics for 

Inv1. 

Response: We added in the 3.1.2 (L407-415): 

” The uncertainties in the top-down estimated regional emissions are not only due to inter-model 

differences of the regional OH fields but also rely on the distribution of the surface observations 

used in the inversions. Over the regions with large prior emissions but less constrained by 

observations (e.g. South America, South Asia, and China), our OH analysis leads to larger 

uncertainties than regions that are well constrained by observations (e.g. the North America and 

Canada) (Fig. S3). The results may indicate that on the regional scale, the top-down estimated CH4 

emissions and the uncertainties lead by OH are specific to the observation system retained. If more 

surface observations (e.g. in the southern hemisphere) or satellite columns with a more even global 

coverage were included in our inversions, spatial patterns of the top-down estimated CH4 emissions 

and their uncertainties (as shown by Fig.3) could be different.” 

 

Comments: 38-40: The sentence reads awkward. Physically, increases in OH burden cannot contribute 

to increases in emissions. Clarify or rephrase to avoid any confusion. 
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Response: We changed the sentence to (L37-L38):  

“From the early to the late 2000s, the optimized CH4 emissions increased by 21.9±5.7Tg yr-1 (16.6-

30.0Tg yr-1), of which ~25% (on average) offsets the 0.7% (on average) increase in OH burden ” 

 

Comments: 53-54: The word “additional” is confusing here. 

Response: We removed “additional” 

 

Comments: 71-72: Unclear what “catalytic chemistry” in this sentence is referred to. Also, the statement 

“a small perturbation of OH can result in significant change in atmospheric CH4” is inaccurate or 

ambiguous. The author may want to say “. . . significant change in the budget (or budget imbalance) of 

atmospheric CH4”. 

Response: We rephrased the sentence as suggested:” A small perturbation of OH can result in 

significant changes in the budget of atmospheric CH4 (Turner et al., 2019).” 

 

Comments: 72-75: There are other OH sources such as O3+HO2, H2O2 photolysis, and OVOCs 

photolysis that become important depending on the chemical environment, for example, see Lelieveld et 

al. (2016). 

Response: We changed in the text (L70-L75): 

” At the global scale, tropospheric OH is mainly produced by the reaction of excited oxygen atoms 

(O(1D)) with water vapor (primary production) but also by the reaction of nitrogen oxide (NO) and 

ozone (O3) with hydroperoxyl radicals (HO2) and organic peroxy radicals (RO2) (secondary 

production). At regional scales, photolysis of hydrogen peroxide and oxidized VOC photolysis can 

be important depending on the chemical environment (Lelieveld et al. 2016).” 

And we added in the reference list: 

Lelieveld, J., Gromov, S., Pozzer, A., and Taraborrelli, D.: Global tropospheric hydroxyl 

distribution, budget and reactivity, Atmospheric Chemistry and Physics, 16, 12477-12493, 

10.5194/acp-16-12477-2016, 2016. 

 

Comments: 78: A direct measurement of OH is challenging but possible. But estimates of global ˘ mean 

from sparse direct measurements is nearly impossible because the large variation of OH as a result of its 

short lifetime. 
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Response: We rephrased the sentence to (L77-L89) “Tropospheric OH has a very short lifetime of 

a few seconds (Logan et al., 1981; Lelieveld et al., 2004), hindering estimates of global OH 

concentrations ([OH]) through direct measurements and limiting our ability to estimate the global 

CH4 sink.” 

 

Comments:101-103:Optimizations of CH4 emissions together with OH concentrations have been done 

using 3-D model inversions (e.g., Cressot et al., 2014, Zhang et al., 2018 and Maasakkers et al., 2019), in 

addition to two-box model analysis. These studies all used satellite data though. 

Response: We added in the text (L105-L111): 

 “The role of OH variations on the top-down estimates of CH4 emissions has been evaluated using 

two box-model inversions with surface observations (e.g. Rigby et al., 2017; Turner et al., 2017, 

Naus et al., 2019) and 3D models that optimize CH4 emissions together with [OH] by assimilating 

surface observations (Bousquet et al., 2006) or satellite data (Cressot et al., 2014, McNorton et al., 

2018; Zhang et al., 2018; Maasakkers et al., 2019). The proxy-based constraints usually optimize 

[OH] on a global or latitudinal scale, the impact of OH vertical and horizontal distributions being 

less quantified to date. Also, proxy methods do not allow to access underlying processes as direct 

chemistry modeling (Zhao et al., 2019). ”  

 

Comments: Line 155: What temperature field do you use to compute [OH]GM-CH4 for different models? 

And how “troposphere” is defined in this calculation? Line 158: Is latitudinal distribution of OH also a 

factor (and maybe even more important factor) that results in [OH]GM-CH4 > [OH]GM-M ? 

Response: We clarified in the text (L167-L169):  

“The tropopause height is assumed at 200hPa following Naik et al. (2013) and the 3D temperature 

field used to compute [OH]GM-CH4 is from ERA Interim re-analysis meteorology data (Dee et al, 

2011). ”  

 

As we can see in Table 1, if MOCAGE and SOCOL3 OH fields are excluded, differences between 

[OH]GM-M and [OH]GM-CH4 are largely reduced. We clarified in the text (L175-L177): 

” This is mainly because MOCAGE and SOCOL3 OH fields show much higher [OH] near the 

surface than in the upper troposphere (Zhao et al., 2019).”, and we removed: ” as some of the OH 

fields show distinct vertical distributions”. 
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Comments: Eq. 1. The (x-xb) term is repeated twice. 

Response: Thank you very much for pointing out this, we removed the (x-xb).  

 

Comments: Line 172: Since only emissions are optimized in the inversion, it’s a bit misleading to say 

H(x) represents sensitivity to sinks. 

Response: We removed the “sinks” as suggested. 

 

Comments: Line 205: What about Cl? 

Response: We added in the text (L225-226) “The CH4 sink by reaction with chlorine is not 

considered in our LMDz model simulations.” 

 

Comments: Line 231-232: “To separate the influence of OH spatial distributions from that of global 

mean [OH]: : :”. As commented above, it is unclear whether the OH fields vary monthly or annual mean. 

If the former, then in addition to influence of spatial distribution, the influence of seasonal variation is 

also embedded. If the latter, then the study design has a major flaw because the latitudinal distribution of 

OH has a pronounced seasonal cycle. 

Response: OH fields vary monthly in our inversions, the seasonal variations of OH fields can impact 

inversion results. Thank you for mentioning the role of the OH seasonal cycle, which is not detailed 

in our analysis. We clarified in the text (in section 2.2 - L186): 

” We conduct an ensemble of variational inversions … but different prescribed monthly mean OH 

fields as described in Sect. 2.1.”  

 

In section 2.3, to emphasize the impact of OH seasonal variation, although not analyzed separately 

in this work. we added:  

L254-255: “To separate the influence of OH spatial distributions (including their seasonal 

variations) from that of the global annual mean [OH].”  

L257-258: “As such, Inv2 provides the uncertainty range of CH4 emissions induced by OH spatial 

distribution in both horizontal and vertical directions as well as seasonal variations…” 

 

Comments: Line 239-240: Please denote inv3 and inv4 explicitly after 2007-2009 and 2000-2002 to 
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make it easier to follow. 

Response: This has been changed as suggested.  

 

Comments: Line 241-243: I don’t think Inv4-Inv2 represents the impact of OH spatial distribution. 

Response: Here we mean the difference in Inv4－Inv2 estimated by different OH fields represents 

the uncertainties lead by the different OH spatial and seasonal distributions since they are all using 

OH fields scaled to the same value globally for 2000-2002.  

 

We clarified in the text (L268-272): 

” Therefore, the difference Inv3－Inv2 reveal the impact of OH on CH4 emission changes between 

the early and late 2000s (the yellow box with solid lines of Fig. 1), Inv3－Inv4 separates the impact 

of OH interannual variations, and the difference Inv4－Inv2 allows assessing the uncertainties of 

optimized CH4 emission changes due to different OH spatial and seasonal distributions (the yellow 

boxes with dashed lines in Fig. 1). ” 

 

Comments: Line 250: Which one has the largest trend, which may be more relevant in this setting? 

We added in the text (L279):  

“…shows the largest year-to-year OH variations and a positive trend of 0.35% yr-1 …” 

 Comments: Line 269-273: This sentence does not flow smoothly within the context (results from Inv1). 

Remove it or move it somewhere else. 

Response: We removed this sentence as suggested 

 

Comments: Line 278: Not clear to me how this helps decreasing discrepancies with bottom-up estimates? 

Fig. 2 does not show the discrepancies are reduced to me. Please clarify. Also please provide the values 

(and ranges) of bottom-up estimates in the text for a clear comparison. 

Response: We removed “help decreasing discrepancies with bottom-up estimations”, and we added 

the number in the text (L316-L320):  

”The minimum-maximum range of the CH4 emissions estimated by the 10 OH fields is almost 

similar to the range estimated by previous bottom-up studies (542-852Tg yr-1 given by Kirschke et 

al., 2013 and 583-861Tg yr-1 given by Saunois et al, 2016) from GCP syntheses and much larger 

than that reported by an ensemble of top-down studies for 2000-2009 in Kirschke et al. (2013) (526-
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569Tg yr-1), Saunois et al. (2016) (535-566Tg yr-1) or the recent Saunois et al. (2019) (522-559 Tg yr-

1). (Table 2 and Fig. 2). ” 

 

Comments: Line 284-290: Is it possible that the difference is due to the fact that [OH]GM-CH4 is used 

here instead of [OH]GM-M (which I assume was used in these studies)? It does not convince me that the 

difference is due to the inter-hemispheric transport and stratospheric loss in 3-D model vs. 2-box model. 

Choices of hemispheric mean reaction rate of OH+CH4 can also introduce biases in 2-box model. 

 

Response: For the two-box model inversion, the [OH] GM-CH4 is the same as [OH] GM-M since the air 

mass and temperature are homogeneously distributed over space. For 3D model inversion, the 

optimized CH4 emissions do not show a linear relationship with [OH]GM-M. One can see that the 

[OH]GM-M of CMAM OH field (11.3×105 molec cm-3) is a bit lower than that EMAC-L90MA (11.5

×105 molec cm-3 ) and CESM1-WACCM (11.4×105 molec cm-3), but the top-down estimated CH4 

emissions using CMAM OH field (599Tg yr-1) is higher than that estimated using CESM1-WACCM 

(578Tg yr-1) and EMAC-L90MA (589Tg yr-1). 

 

For the explanation of the difference between two-box model and 3-D model inversions, we agree 

that the choice of hemispheric mean rate is a more important factor. We added in the text (L342-

L345): 

 “This difference probably results from the different hemispheric mean reaction rates of OH+CH4 

applied in box models, but could also be due to different treatments of inter-hemispheric transport 

and stratospheric CH4 loss in global 3D transport models compared to simplified box-models (Naus 

et al., 2019).” 

 

Comments: Line 316: Does the seasonality of OH fields also play a role here? 

Response: Yes, the seasonality can also contribute to the differences in Inv2. As we cannot separate 

the contribution from seasonal variations and spatial distribution, we emphasized this in Section 

2.3 (L245-L255): 

 “To separate the influence of OH spatial and seasonal distributions from that of the global mean 

[OH].”  
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Comments: Line 338: Please explicitly state which uncertainty sources Saunois et al. (2016) considered. 

The comparison may be misleading otherwise. 

Response: We clarify in the text (L387-L391):  

“The uncertainties in global OH burden and distributions lead to larger uncertainty (maximum－

minimum) in top-down estimated CH4 emissions over the tropics (>20% of multi-inversion mean) 

and smaller uncertainty over the northern mid-latitude regions (14%) compare with that lead by 

transport model errors and different observations given by Saunois et al. (2016) (13% over tropics 

and 20% over northern mid-latitude regions) (Table 3).” 

 

Comments: Line 343-345: Likely because these regions have high prior emissions, but are not well 

constrained by surface measurements. So, it should be stated that these regional features are not intrinsic 

of the atmosphere, but specific to the observing system of interest. 

Response: As already mentioned in the first comments, we added in the text (L407-415):  

“The uncertainties in the top-down estimated regional emissions are not only due to inter-model 

differences of the regional OH fields but also rely on the distribution of the surface observations 

used in the inversions. Over the regions with large prior emissions but less constrained by 

observations (e.g. South America, South Asia, and China), our OH analysis leads to larger 

uncertainties than regions that are well constrained by observations (e.g. the North America and 

Canada) (Fig. S3). The results may indicate that on the regional scale, the top-down estimated CH4 

emissions and the uncertainties lead by OH are specific to the observation system retained. If more 

surface observations (e.g. in the southern hemisphere) or satellite columns with a more even global 

coverage were included in our inversions, spatial patterns of the top-down estimated CH4 emissions 

and their uncertainties (as shown by Fig.3) could be different.” 

 

Comments: Line 355: what is the “total differences”? How large are they? 

Response: We clarified in the text (L427-L429):  

”… account for 50% of the differences due to both OH burden and spatial distributions… ” 

 

Comments: Line 364-367: I don’t understand the logic here. I think it is probably related to OH 

concentration being much higher in tropics than extra-tropics. 
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Response: When scaling all OH fields to the same total global loss, the inter-model difference of OH 

is reduced by 33% over northern mid and high latitudes and uncertainties in top-down estimated 

CH4 emissions are reduced by only 22%. Over northern tropical regions, the inter-model difference 

in OH is reduced by 67% but the uncertainties in CH4 emissions are reduced by 93%, as we show 

in the text. The explanations here, we think, are similar to the comments for Line 343-345, which 

related that OH over tropical regions is more sensitive to global OH burdens as less constrained by 

local/direct observations. We clarified this point in the text (L434-L440):  

 

”Over tropical regions, CH4 emissions are less constrained (with few to none observation sites near 

source regions) than in the northern extra-tropics, where several monitoring sites located at or near 

the regions with high CH4 emission rates and high OH uncertainties (e.g. North America, Europe, 

and downwind of East Asia). Thus, CH4 emissions over the tropical regions mainly contribute to 

match the global total CH4 sinks (instead of the sinks over the tropical regions only) estimated by 

inversion systems. When all OH fields are scaled to the same CH4 losses (Inv2), differences of 

emissions over the tropical regions are therefore largely reduced. ” 

 

 Comments: Line 379: The range of global total CH4 emissions by Inv2 (551+-2Tg a-1) should be 

reported and discussed in 3.3.1, in comparison with Inv1. 

Response: We added in section 3.1.1 (L347-L350): 

” With the OH fields scaled to the same [OH]GM-CH4 (11.1×105molec cm-3 ), the Inv2 simulations 

(assuming a global total OH burden well constrained) estimated global CH4 emissions of 551±2Tg 

yr-1 (Table 3), as expected by the scaling. Differences in OH spatial distributions only lead to 

negligible uncertainty in global total CH4 emissions estimated by top-down inversions.” 

 

Comments: Line 418: Be clearer what “global scale increase” in this sentence is referred to. It is 

ambiguous in the current form. 

Response: We add in the text (L491):” the increase in global mean [OH]” 

 

Comments: Line 485-489: The assessment of the uncertainty due to OH fields relative to other 

uncertainty sources are too qualitative throughout the manuscript. More insight can be gained by 

quantitatively comparing to uncertainty estimates in literature such as Saunois et al. 
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Response: We added in section 3.2.2(L555-L566): 

” We now compare the uncertainty of top-down estimated CH4 emission changes from the early to 

the late 2000s due to different OH spatial-temporal variations with that ensemble of top-down 

studies given by Saunois et al. (2017). For the sectoral emissions, the emission changes from 

agriculture and waste and from wetland show the largest uncertainties (more than 50% of multi-

inversions mean, Inv3－Inv2 in Table 6) induced by OH spatial-temporal variations, comparable 

to that given by Saunois et al. (2017). On the contrary, the uncertainty of fossil fuel emission changes 

(24% of multi-inversions mean) is much smaller than that given by Saunois et al. (2017). For 

regional CH4 emission changes, the uncertainty induced by OH spatial-temporal variations is 

usually larger than the multi-inversion mean emission changes (except South Asia) and similar to 

that given by Saunois et al. (2017). The large differences existing in different top-down estimated 

regional and sectoral emission changes are mainly attributed to model transport errors in Saunois 

et al. (2017). Here, our results show that uncertainties due to OH spatio-temporal variations can 

lead to similar biases in top-down estimated CH4 emission changes.” 

 

Comments: Table 2 Quite confusing. Why global and hemispheric emissions are only shown for Inv1, 

but the inter-hemispheric differences are shown for both Inv1 and Inv2? Also, unit should be denoted in 

the caption. 

Response: We added the global and hemispheric CH4 emissions estimated by Inv2 to Table2 as 

suggested. And we included the unit.  

 

 Table 2. The global total, hemispheric CH4 emissions, and inter-hemispheric difference of CH4 

emissions calculated by Inv1 and Inv2 during the early 2000s (2000/07/01-2002/06/01) in Tg yr-1. 

 Unit: Tg yr-1 
Inv1 original OH Inv2 scaled OH 

Global 0-90°N 90°S-0 N-SInv1 Global 0-90°N 90°S-0 N-SInv2 

Prior 522 384 138 246 522 384 138 246 

TransCom 530 368 162 206 549 377 172 205 

INCA NMHC-AER-S 518 380 138 242 553 399 154 245 

INCA NMHC 552 392 160 232 552 392 160 232 

CESM1-WACCM 587 420 166 254 551 400 151 249 

CMAM 599 419 180 239 553 399 154 245 

EMAC-L90MA 589 414 175 239 555 396 159 237 

GEOSCCM 611 424 187 237 550 392 159 233 

MOCAGE 716 /a / / / / / / 

MRI-ESM1r1 553 396 156 240 548 396 152 244 

SOCOL3 757 / / / / / / / 
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Mean±SD 601±78 401±21 166±15 236±14 551±2 393±7 158±7 236±14 
a We do not analyze the hemispheric CH4 emission estimated with MOCAGE and SOCOL3 OH field 

since inversions using the two OH fields calculate much higher CH4 emissions than using other OH fields.  

 

Comments: Table 5 With fixed OH field, you still expect an increasing OH sink (and therefore increasing 

emissions) because of increasing CH4 concentration and temperature. This should be clarified somewhere 

in the text. 

Response: We clarified in the 3.2.1 (L522-L525): 

”Keeping OH fields from 2000-2002, top-down estimated CH4 emissions increase by 16.9±1.9Tg yr-

1 (14.3-19.3Tg yr-1, Table 5) between the early 2000s (Inv2) to the late 2000s (Inv4) in response to 

increasing atmospheric CH4 mixing ratios and temperature. This represents 75% of total optimized 

emission changes (Inv3－inv2) between the early and late 2000s (21.9±5.7Tg yr-1, Table 5).” 

 

Comments: Fig. 2 The R2=0.99 line in the right panel: it should be acknowledged that other sinks of 

methane (such as soil absorption, Cl, and stratospheric loss) are not optimized and are specified with the 

same field in these inversions. Uncertainty in these sinks, if considered, will certainly create some spread 

in the data. 

Response: We added in the Section 3.1.1 (L334-338): ” Where a 1×105 molec cm-3 (1%) increase in 

[OH]GM-CH4 will increase the top-down estimated CH4 emissions (EMISCH4) by 40.4 Tg yr-1, 

consistent with that given by He et al. (2020) using full-chemistry modeling and a mass balance 

approach. Other CH4 sinks including soil uptake and oxidation by O1(D), which are prescribed in 

this study, remove 66.7Tg yr-1 CH4. If uncertainties in all the CH4 sinks were also considered, the 

correlation between optimized CH4 emissions and the [OH]GM-CH4 would be reduced. ” 

 

Comments: Fig. 3 To interpret this figure, the author should consider the uneven sampling of the surface 

network. The ranges of inferred regional emissions are large where observations are sparse, because it 

“costs” the least for the inversion to adjust in these regions. The inference for regional emissions is 

specific to the particular observing system. Having more surface stations in the southern hemisphere, or 

including satellite observations, would change the spatial pattern shown in this figure. 

Response: As stated in previous comments, we added in section 3.1.2 (L407-L415): 

 ”The uncertainties in the top-down estimated regional emissions are not only due to inter-model 

differences of the regional OH fields but also rely on the distribution of the surface observations 
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used in the inversions. Over the regions with large prior emissions but less constrained by 

observations (e.g. South America, South Asia, and China), our OH analysis leads to larger 

uncertainties than regions that are well constrained by observations (e.g. the North America and 

Canada) (Fig. S3). The results may indicate that on the regional scale, the top-down estimated CH4 

emissions and the uncertainties lead by OH are specific to the observation system retained. If more 

surface observations (e.g. in the southern hemisphere) or satellite columns with a more even global 

coverage were included in our inversions, spatial patterns of the top-down estimated CH4 emissions 

and their uncertainties (as shown by Fig.3) could be different. ” 
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Reply to RC2: ' Review' 

 

1 Overview: 

Review of “Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional 

methane budgets” by Zhao et al. This review slipped through the cracks as the COVID-19 situation 

evolved here. My sincere apologies for any hold ups. Zhao et al. present an analysis of a set of methane 

inversions using a set of 10 different OH fields from the CCMI experiment. They find the magnitude of 

methane emissions differs by roughly 30% (518-757 Tg/yr) depending on what OH fields they use. Over 

all, the study is useful in quantifying some of the uncertainties in methane emission estimates due to 

uncertain OH concentrations. The main shortcoming is the lack of discussion of what actually causes 

some of the differences (or really any discussion of OH). The figures are high quality but the text is very 

hard to follow because it’s filled with many acronyms and parenthetical expressions. I would recommend 

major revisions. 

 

Response: We thank the reviewer for his/her helpful comments. This manuscript is the second step 

of our previous study, in which we have made a detailed description of the CCMI, INCA and 

TransCom OH fields and where we analyzed the factors controlling the inter-model differences in 

OH burden and spatial distribution and the increasing trend of OH simulated by CCMI models 

(Zhao et al., 2019). This manuscript mainly focuses on the impact of the inter-model differences of 

different OH fields on the top-down estimates of CH4 emissions. Thus, regarding discussions on OH, 

we directly refer to the conclusion from Zhao et al. (2019) (see the response for the comments 2.1) 

without re-detailing all results. However, we now better explain the link with our first paper in the 

revised version and include summaries of results from Zhao et al. (2019) in this second paper.  

 

Also, we have rephrased large parts of the original manuscript in this revised version, and especially 
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Section 3.2, which includes most of the acronyms and parenthetical expressions. All of the other 

comments have been addressed in the revised manuscript. Please see out itemized responses below. 

 

2 Comments: 

2.1 What processes actually drive these differences? 

 

The main issue I feel is totally missing from the manuscript is any discussion of what processes are 

actually driving some of these differences. I believe there was only a single paragraph (Lines 70-79) even 

mentioning anything about what might affect OH. For example, do some of the CCMI models or 

inversions show consistent patterns with known climate oscillations? This was surprising given that this 

is a paper focused on how OH impacts methane. The obvious question is what leads to these 

differences/similarities in OH. The authors seem to treat the CCMI models as a black box which makes 

it hard to gain any understanding of what’s happening.  

Response: 

As mentioned in the overview, this paper follows Zhao et al. (2019) where we analyzed in detail OH 

fields from CCMI models. Including the main conclusions of this first paper in the updated section 

2.1 of this paper provides the required elements on what causes OH differences in CCMI models.  

 

In the introduction, to clarify the link with our previous paper, we added (L112-121): 

 “This paper follows the work of Zhao et al. (2019), where we analyzed in details 10 OH fields 

derived from atmospheric chemistry models considering different chemistry, emissions, and 

dynamics (Patra et al., 2011; Szopa et al., 2013; Hegglin and Lamarque, 2015; Morgenstern et al., 

2017; Zhao et al., 2019; Terrenoire et al., 2019). We now aim to build on this previous paper to 

estimate the impact of these OH fields on methane emissions as inferred by an atmospheric 4D 

variational inversion system. To do so, we use each of the OH fields in the 4D variational inversion 
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system PYVAR-LMDz based on LMDZ-SACS (Laboratoire de Météorologie Dynamique model 

with Zooming capability-Simplified Atmospheric Chemistry System) 3D chemical transport model 

to evaluate the influence of OH distributions and variations on the top-down estimated global and 

regional CH4 budget. Section 2 briefly describes the OH fields and their characteristics and 

underlying processes (see also Zhao et al., 2019 for more details)”   

 

In section 2.1, we added (L146-L154):  

“The inter-model differences of OH burden and vertical distributions are mainly attributed to 

differences in chemical mechanisms related to NO production and loss. The differences in [OH] 

spatial distributions are due to applying different natural emissions: for example, primary biogenic 

VOC emissions and NO emissions from soil and lightning (Zhao et al., 2019). As a result, the regions 

dominated by natural emissions (e.g. South America, central Africa) show the largest inter-model 

differences in [OH] (Fig.S1). The CCMI models consistently simulated positive OH trend during 

2000-2010, mainly due to more OH production by NO than loss by CO over the East and Southeast 

Asia and positive trend of water vapor over the tropical regions (Zhao et al., 2019; Nicely et al., 

2020). More details can be found in Zhao et al. (2019) and the herein cited literature.” 

 

In section 3.1.1 (L310-L314), we added:  

“The high [OH]GM-CH4 simulated by SOCOL3 and MOCAGE are mainly due to high surface and 

mid-tropospheric NO mixing ratio simulated by these two models (Zhao et al., 2019). As analyzed 

in Zhao et al. (2019), the lack of N2O5 heterogeneous hydrolysis (by both SOCOL3 and MOCAGE) 

and the overestimation of tropospheric NO production by NO2 photolysis (by SOCOL3) are the 

major factors behind the overestimation of NO and OH.” 

 

Given this, the only major take-away I had from the paper is that “OH can lead to big differences in 
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methane estimates”, but this was already demonstrated by the box modeling papers (and others) that Zhao 

et al. are highly critical of. For example, the Rigby paper had error bars on their OH fields that bounded 

zero and the Turner paper had a case where OH didn’t change. Both of these led to radically different 

methane emissions. 

 

Response: Two-box models are an effective tool to assess changes in global CH4 budget (Rigby et 

al., 2017, Turner et al., 2017), but we think that 3D analysis is still needed : (i) to check if box-model 

results are not biased by the oversimplification of atmospheric transport, (ii) to infer the regional 

CH4 budgets, and (iii) to estimate methane decadal budgets as box-models are less relevant for 

estimating budgets than budget changes (Saunois et al., 2019). The study aims to quantify the 

uncertainties lead by using the prescribed OH fields in 3D model inversions.  

Also, we have been more precise in the abstract and conclusions for the reader to get a more 

complete take away of our work (regions that are sensitive/important, quantitative estimates, 

comparison with other causes of uncertainties).   

 

We added in the abstract (L25-L27): 

“Current top-down estimates of the global and regional CH4 budget using 3D models usually apply 

prescribed OH fields and attribute model-observation mismatches almost exclusively to CH4 

emissions, leaving the uncertainties due to prescribed OH field less quantified. ”  

And we clarified in the text that we conducted inversions using an ensemble of OH fields not only 

to show that OH can lead to differences in CH4 emissions but also to quantify the influences at 

global and regional scales.  

 

 In “conclusions and discussion”, we compared the uncertainties lead by OH with other causes of 

uncertainty. 
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For global total CH4 emissions (L640-L644): 

” Based on the ensemble of 10 original OH fields ([OH]GM-CH4:10.3-16.3×105 molec cm-3), the global 

total CH4 emissions inverted by our system vary from 518 to 757Tg yr-1 during the early 2000s, 

similar to the CH4 emission range estimated by previous bottom-up syntheses and larger than the 

range reported by the top-down studies (Kirschke et al., 2013; Saunois et al, 2016). ”  

 

For the regional emissions (L647-L654): 

” At regional scale (excluding the two highest OH fields), CH4 emission uncertainties due to 

different OH global burdens and distributions are largest over South America (37% of multi-

inversion mean), South Asia (24%), and China (39%), resulting in significant uncertainties in 

optimized emissions from the wetland and agriculture and waste sectors. These uncertainties are 

comparable in these regions with those due to model transport errors and inversion system set-up 

(Locatelli et al., 2013; Saunois et al., 2016). For these regions, the uncertainty due to OH is critical 

for understanding their methane budget. In other regions, OH leads to smaller uncertainties 

compared to that given by Locatelli et al. (2013) and Saunois et al. (2016).” 

 

And we emphasized the importance of the OH spatial distributions on the top-down estimation of 

regional CH4 budget (L705-713): 

” Our results indicate that OH spatial distributions, which are difficult to obtain from proxy 

observations (e.g. MCF), are equally important as the global OH burden for constraining CH4 

emissions over mid- and high-latitude regions. Constraining global annual mean OH based on 

proxy observations (e.g. Zhang et al., 2018; Maasakkers et al., 2019) provides a constraint on global 

total methane emissions, through the necessity of balancing the global budget (sum of source – sum 

of sinks = atmospheric growth rate). It also largely reduces uncertainties in optimized CH4 

emissions due to OH over most of the tropical regions but not over South America and overall mid-

file:///C:/Users/hong/AppData/Local/youdao/DictBeta/Application/7.1.0.0421/resultui/dict/
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high latitude regions. Also, the spatial and seasonal distributions of OH is found critical to properly 

infer temporal changes of regional and sectoral CH4 emissions.”   

 

Back to my point, I would find this manuscript much more useful and compelling if the authors actually 

highlighted processes and phenomena that lead to similar methane inversion responses. From Holmes et 

al., ACP (2013; https://doi.org/10.5194/acp-13- 285-2013) we know some of the major processes that 

influence OH and Turner et al., PNAS (2018; https://doi.org/10.1073/pnas.1807532115) showed how this 

can with things like ENSO, do the authors see ENSO signals in the methane inversions? A recent paper 

from Nguyen et al., GRL (2020) tried to look at these feedbacks in a simple model. The authors should at 

least touch on the processes that influence OH, particularly those that could also influence methane. 

 

Response: We acknowledge that it is important to analyze processes and phenomena that lead to 

similar methane inversion responses. During the time period of this manuscript (the 2000s), the 

CCMI model simulated OH show a consistent positive trend (Zhao et al., 2019; Nicely 2020). As 

stated in our response to comments 2.1, the positive OH trend is mainly due to more OH production 

by NO than loss by CO over the East and Southeast Asia and positive trend of water vapor over the 

tropical regions (Zhao et al., 2019; Nicely et al., 2020). We have analyzed the impact of positive [OH] 

trend during the 2000s on top-down estimates of CH4 emissions in section 3.2 and section 3.3. The 

ENSO signal during the early 2000s is very weak (with small year-to-year variations of [OH]) and 

the time period of this paper very short. Therefore, analyzing the impact of ENSO seems beyond 

the scope of this paper. However, please note that we have another manuscript submitted to ACP 

using CCMI models that analyzes the impact of trend and interannual variability of OH on the CH4 

budget on the decadal time scale (1980-2010) with a focus on the ENSO (https://doi.org/10.5194/acp-

2020-308).  

 

https://doi.org/10.5194/acp-13-
https://doi.org/10.5194/acp-2020-308
https://doi.org/10.5194/acp-2020-308
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Yet, we discussed shortly the impact of ENSO in Section 4 (L692-L701):  

“The trend and interannual variations of tropospheric OH burden are determined by both 

precursor emissions from anthropogenic and natural sources and climate change (Holmes et al., 

2013; Murray et al., 2014). Based on satellite observations, Gauber et al. (2017) estimated that ~20% 

decrease in atmospheric CO concentrations during 2002-2013 led to an ~8% increase in 

atmospheric [OH]. The El Niño-Southern Oscillation (ENSO) has been proven to impact the 

tropospheric OH burden and CH4 lifetime mainly through changes in biomass burning from CO 

(Nicely et al., 2020; Nguyen et al, 2020) and in NO emission from lightning (Murrary et al., 2013; 

Turner et al., 2018). The ENSO signal is weak during the early 2000s, resulting in small interannual 

variations of tropospheric OH burden (Zhao et al., 2019). The mechanisms of OH variations related 

to ENSO and their impacts on the CH4 budget need to be explored by inversions, but over a longer 

time period than this study (e.g. 1980-2010, Zhao et al., 2020).” 

 

2.2 Oversight of previous work and faith in the CCMI models  

The authors seem to have quite a bit of faith in the CCMI models, more than this reviewer finds to be 

justified. There are quite a few known shortcomings of the models. For example, the models don’t even 

get the ratio of the N/S gradient in OH correct. Yet the authors are quick to criticize MCF-constrained 

[OH] fields with seemingly no validation of their own OH fields (e.g., Lines 595 600). Is their analysis 

consistent with MCF? The authors seem to be arguing that these model derived forward simulations of 

OH are more reliable than reconstructions. The strongest claims made in this paper seem to be those that 

are critical of previous work estimating OH (e.g., Rigby and Turner). For example, Lines 595-600, the 

abstract is dismissive of box modeling results: ‘previous research mostly relied on box modeling 

inversions with a very simplified atmospheric transport”. The latter line in the abstract isn’t even correct 

as there has been quite a bit of non-box model work the authors seem to discount or miss: McNorton et 

al., ACP (2016; https://doi.org/10.5194/acp-16- 7943-2016), Gaubert et al., GRL (2017; 
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https://doi.org/10.1002/2017GL074987), Rigby et al., PNAS (2017; 

https://doi.org/10.1073/pnas.1616426114), Turner et al., PNAS (2017; 

https://doi.org/10.1073/pnas.1616020114), McNorton et al., ACP (2018; https://doi.org/10.5194/acp-18-

18149-2018), Maasakkers et al., ACP (2019; https://doi.org/10.5194/acp-19-7859-2019), Naus et al., 

ACP (2018; https://doi.org/10.5194/acp 19-407-2019), Nguyen et al., (2020; 

https://doi.org/10.1029/2019GL085706), and He et al., ACP (2020; https://doi.org/10.5194/acp-20-805-

2020). About half of these papers use 3-D atmospheric transport models and some even include fully-

coupled chemistry (e.g., He et al., 2020), which is more comprehensive than the models used by the 

authors. The authors should do a more complete reading of the literature as they don’t cite Holmes et al., 

ACP (2013), Murray et al., ACP (2014), or any of Michael Prather’s papers. 

 

Response:  

About CCMI models and proxy methods. 

To date, we have mostly two approaches to estimate regional and global [OH], one using direct 

atmospheric chemistry modeling and one using proxy tracers, the main one being MCF. We do not 

have a specific faith in CCMI models (neither we deny the interest of MCF) but here, we choose to 

investigate the first approach using chemistry models, taking benefit of an important collaborative 

effort of this scientific community (CCMI experiments) to compare and, in fine, improve their 

models. Each method has its caveats and, following the comment of the reviewer, we try to balance 

more things between the two approaches in the updated version of the manuscript.  

 

We added in the introduction(L104-106): “However, the OH fields simulated by atmospheric 

chemistry models show some uncertainties in both global burden and spatial-temporal variations 

(Naik et al., 2013; Zhao et al., 2019)”  

 

https://doi.org/10.5194/acp
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For the N/S ratio>1 simulated by CCMI models, we reported their ranges, with a clarification in 

the text (L176-179): 

 

” The inter-hemispheric OH ratios range from 1.0 to 1.5, larger than ones derived from MCF 

inversions (e.g. Bousquet et al., 2005; Patra et al., 2014), partly explained by the underestimation 

of CO in the northern hemisphere by atmospheric chemistry models (Naik et al., 2013).”  

 

For lines 595-600, we just wanted to mention that the OH trend simulated by CCMI models 

(positive) is different than that from MCF inversions, which mainly show a decrease of [OH] after 

the early 2000s. It is hard to say which one is correct since both of the methods have their caveats 

regarding trends. For the increasing trend simulated by CCMI models, we have discussed the 

impact on CH4 budget in the manuscript by writing with caution:” if the CCMI models represent 

the OH trend properly, a higher increasing trend of CH4 emissions is needed to match the CH4 

observations (compared to the CH4 emission trend derived using constant OH).”. We do not argue 

that CCMI models simulate a more realistic OH trend than two-box model inversions and/or proxy-

based methods.  

 

For the abstract, we removed “previous research mostly relied on box modeling inversions with a 

very simplified atmospheric transport”.  

 

About missing literature  

For previous studies that quantify the impact of OH variations on the top-down estimate of CH4 

by 3D models, we acknowledge the missing references and thank the reviewer to have provided 

them. We added in the introduction (L105-L112):  

“The role of OH variations on the top-down estimates of CH4 emissions has been evaluated using 
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two box-model inversions with surface observations (e.g. Rigby et al., 2017; Turner et al., 2017, 

Naus et al., 2019) and 3D models that optimize CH4 emissions together with [OH] by assimilating 

surface observations (Bousquet et al., 2006) or satellite data (Cressot et al., 2014, McNorton et al., 

2018; Zhang et al., 2018; Maasakkers et al., 2019). The proxy-based constraints usually optimize 

[OH] on a global or latitudinal scale, the impact of OH vertical and horizontal distributions being 

less quantified to date. Also, proxy methods do not allow to access underlying processes as direct 

chemistry modeling (Zhao et al., 2019). ” 

 

He et al. (2020) estimated the global CH4 budget by forward-model simulations and mass balance 

method and estimated that a 1 % change in OH levels could lead to an annual mean difference of 

∼ 4 Tg yr−1 in the optimized emissions, consistent with our top-down estimates. We cited in Section 

3.1.1 (L334-336):  

“Where a 1×105 molec cm-3 (1%) increase in [OH]GM-CH4 will increase the top-down estimated CH4 

emissions (EMISCH4) by 40.4 Tg yr-1, consistent with that given by He et al. (2020) using full-

chemistry modeling and a mass balance approach.”  

 

Holmes et al. ACP (2013), Murray et al. ACP (2014), Gaubert et al. (2017), Nguyen et al. (2020) 

analyzed the factors controlling OH variability, we cited them in the conclusions and discussion 

(L692-L698): 

”The trend and interannual variations of tropospheric OH burden are determined by both 

precursor emissions from anthropogenic and natural sources and climate change (Murray et al., 

2014; Holmes et al., 2013). Based on satellite observations, Gauber et al. (2017) estimated that ~20% 

decrease in atmospheric CO concentrations during 2002-2013 led to an ~8% increase in 

atmospheric [OH]. The El Niño-Southern Oscillation (ENSO) has been proven to impact the 

tropospheric OH burden and CH4 lifetime mainly through changes in biomass burning from CO 
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(Nicely et al., 2020; Nguyen et al, 2020) and in NO emission from lightning (Murrary et al., 2013; 

Turner et al., 2018).” 

 

We also cited Prather et al. (2012) and Prather et al. (2017):  

L85: “resulting in a chemical lifetime of ~9 years for tropospheric CH4 (Prather et al., 2012; Naik 

et al., 2013).”  

L86-L88: “However, accurate estimation of [OH] magnitude, distributions, and year-to-year 

variations needed for CH4 emission optimizations are still pending (Prather et al., 2017; Turner et 

al., 2019).” 

 

And in the conclusions and discussion (L729-L731): 

“In addition, as suggested by Prather et al. (2017), the OH inversion would benefit from including 

in their prior data the responses of [OH] to variations of the precursor emissions (e.g. biomass 

burning and lighting) using the uncertainties estimated by 3D models.” 

 

We added the following references: 

 

McNorton, J., Wilson, C., Gloor, M., Parker, R. J., Boesch, H., Feng, W., Hossaini, R., and 

Chipperfield, M. P.: Attribution of recent increases in atmospheric methane through 3-D inverse 

modelling, Atmos. Chem. Phys., 18, 18149-18168, 10.5194/acp-18-18149-2018, 2018. 

Holmes, C. D., Prather, M. J., Søvde, O. A., and Myhre, G.: Future methane, hydroxyl, and their 

uncertainties: key climate and emission parameters for future predictions, Atmospheric Chemistry 

and Physics, 13, 285-302, 10.5194/acp-13-285-2013, 2013. 

Gaubert, B., Worden, H. M., Arellano, A. F. J., Emmons, L. K., Tilmes, S., Barré, J., Martinez 

Alonso, S., Vitt, F., Anderson, J. L., Alkemade, F., Houweling, S., and Edwards, D. P.: Chemical 
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Feedback From Decreasing Carbon Monoxide Emissions, Geophysical Research Letters, 44, 9985-

9995, 10.1002/2017gl074987, 2017. 

Nguyen, N. H., Turner, A. J., Yin, Y., Prather, M. J., and Frankenberg, C.: Effects of Chemical 

Feedbacks on Decadal Methane Emissions Estimates, Geophysical Research Letters, 47, 

e2019GL085706, 10.1029/2019gl085706, 2020. 

He, J., Naik, V., Horowitz, L. W., Dlugokencky, E., and Thoning, K.: Investigation of the global 

methane budget over 1980–2017 using GFDL-AM4.1, Atmos. Chem. Phys., 20, 805-827, 

10.5194/acp-20-805-2020, 2020. 

Murray, L. T., Logan, J. A., and Jacob, D. J.: Interannual variability in tropical tropospheric ozone 

and OH: The role of lightning, Journal of Geophysical Research: Atmospheres, 118, 11,468-411,480, 

10.1002/jgrd.50857, 2013. 

Murray, L. T., Mickley, L. J., Kaplan, J. O., Sofen, E. D., Pfeiffer, M., and Alexander, B.: Factors 

controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum, 

Atmospheric Chemistry and Physics, 14, 3589-3622, 10.5194/acp-14-3589-2014, 2014. 

Prather, M. J., Holmes, C. D., and Hsu, J.: Reactive greenhouse gas scenarios: Systematic 

exploration of uncertainties and the role of atmospheric chemistry, Geophysical Research Letters, 

39, L09803, doi:10.1029/2012GL051440, 2012. 

Prather, M. J., and Holmes, C. D.: Overexplaining or underexplaining methane’s role in climate 

change, Proceedings of the National Academy of Sciences, 114, 5324-5326, 10.1073/pnas.1704884114, 

2017. 

Nicely, J. M., Duncan, B. N., Hanisco, T. F., Wolfe, G. M., Salawitch, R. J., Deushi, M., Haslerud, A. 

S., Jöckel, P., Josse, B., Kinnison, D. E., Klekociuk, A., Manyin, M. E., Marécal, V., Morgenstern, 

O., Murray, L. T., Myhre, G., Oman, L. D., Pitari, G., Pozzer, A., Quaglia, I., Revell, L. E., Rozanov, 

E., Stenke, A., Stone, K., Strahan, S., Tilmes, S., Tost, H., Westervelt, D. M., and Zeng, G.: A 

machine learning examination of hydroxyl radical differences among model simulations for CCMI-



13 
 

1, Atmos. Chem. Phys., 20, 1341-1361, 10.5194/acp-20-1341-2020, 2020. 

Zhao, Y., Saunois, M., Bousquet, P., Lin, X., Berchet, A., Hegglin, M. I., Canadell, J. G., Jackson, 

R. B., Deushi, M., Jöckel, P., Kinnison, D., Kirner, O., Strode, S., Tilmes, S., Dlugokencky, E. J., and 

Zheng, B.: On the role of trend and variability of hydroxyl radical (OH) in the global methane 

budget, Atmos. Chem. Phys. Discuss., 2020, 1-28, 10.5194/acp-2020-308, 2020. 

 

Other references were already cited in the previous version of the paper. 

 

2.3 Very difficult to follow The paper is filled with jargon and abbreviations. For example, nearly half of 

the text in Lines 440-452 are acronyms or parenthetical expressions interjecting things. This was very 

hard to follow as a reader. 

Response: the jargon and abbreviations are mainly used in the 3.2, we reduced the jargon and 

abbreviations used in this section and organize sentences in the text.  
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Reply to SC1: '  'Important evidence to importance of OH but it can have more impact' ' 

 

Comments: This study provides important evidence to the importance of improving our estimates of the 

tropospheric OH sink in other to accurate quantify the CH4 budget. However, I believe that there are three 

main aspects this study that could make this study have a much stronger impact: 

Response: We thank Tonatiuh Guillermo Nuñez Ramirez for the helpful comments. Please see out 

itemized responses below.  

 

Comments: 1. The study found the largest absolute OH induced differences for Inv1 over northern South 

America, South Asia and China and at gridcell level over South America, Central Africa, East and South 

Asia, and mainly for wetlands, and agriculture and waste. While, it is already explained that the 

distribution of sampling stations is one of the reasons for this. This and further reasons for the larger 

uncertainty in the Tropics were discussed in detail in Bousquet et al., 2011 (another paper from this groups 

which I think should be reference at that this point in the paper). Furthermore, there are not only less 

sensitivity to observations in the Tropics, but also larger uncertainty in the fluxes. As a consequence, the 

inversion fits in everything in the Tropics which is too costly to accommodate elsewhere. Unfortunately, 

the Tropics is also the region where most of the OH reaction occurs. Therefore, it is very difficult to make 

conclusions on how the estimation of Tropical fluxes is affected by the OH assumptions on a regional 

level. I believe the study is missing either one more scenario where the uncertainties for each source are 

uniform globally, e.g. 5 nmol m-2 s-1 for wetlands (if there are wetland emissions in the gridcell), and/or 

include the analysis of the uncertainty reduction and posterior correlations, to determine how well 

resolved are these regions. 

Response: We discussed the impact of the distribution of the sampling stations in the text(L407-

415): 

”The uncertainties in the top-down estimated regional emissions are not only due to inter-model 

https://editor.copernicus.org/index.php/acp-2019-1208-SC1.pdf?_mdl=msover_md&_jrl=10&_lcm=oc108lcm109w&_acm=get_comm_file&_ms=82722&c=177204&salt=14431886621396651208
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differences of the regional OH fields but also rely on the distribution of the surface observations 

used in the inversions. Over the regions with large prior emissions but less constrained by 

observations (e.g. South America, South Asia, and China), our OH analysis leads to larger 

uncertainties than regions that are well constrained by observations (e.g. the North America and 

Canada) (Fig. S3). The results may indicate that on the regional scale, the top-down estimated CH4 

emissions and the uncertainties lead by OH are specific to the observation system retained. If more 

surface observations (e.g. in the southern hemisphere) or satellite columns with a more even global 

coverage were included in our inversions, spatial patterns of the top-down estimated CH4 emissions 

and their uncertainties (as shown by Fig.3) could be different.” 

 

We acknowledge the fact that more scenarios could provide additional conclusions but this would 

necessitate extensive additional work and the paper is already long. Here this study aims to quantify 

the uncertainties in the current top-down due to uncertainties in OH. Analysis of how the top-down 

inversion can resolve the regional emissions by testing the uncertainty reduction and posterior 

correlations can be a separate study in our further study. However, we thank you for the suggestion 

and keep the idea for future works. 

 

Comments: 2. The main goal of using an inversion is to find the fluxes that best explain the observations. 

However, we do not get to see how well the observations are fitted by the inversions with the different 

OH fields. Therefore, we cannot evaluate which features of the different OH distributions are realistic. 

By knowing for example the spatial distribution of the residuals, or of the correlations between posterior 

mixing ratio and observations, we can evaluate if certain spatial patterns are realistic. Also the use of 

aircraft profiles for validation, e.g. over the Amazon (Miller et al., 2007, Beck et al., 2012, Gatti et al., 

2015, Basso et al., 2016), Asia (Brenninkmeijer et al., 2007, Baker et al., 2012, Schuck et al., 2010) or 

across latitudinal transects (e.g. Wofsy, 2011 and Schuck et al., 2012) could provide information on the 
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realism of the vertical distribution. During the period of the simulation, there were two satellites sensors 

available SCIAMACHY and IASI with distinctly different sensitivities. SCIAMACHY is more sensitive 

to the surface, while IASI to the upper troposphere. Using this, it may be possible to say something about 

how realistic is both the horizontal and vertical distribution. 

Response:  

In the updated version, we evaluate the inversions using aircraft observations. Usually, one can use 

the surface observations to evaluate the inversions using satellite data but we do not use satellite 

data to evaluate the inversions using surface observations. Comparison can still be made but (i) the 

observations from IASI do not provide the averaging kernel, thus they cannot directly compare 

with model simulations, and (ii) SCIAMACHY CH4 data experience significant to large systematic 

errors, limiting strongly the interest of comparison.  

 

We added in the text (L284-L296): 

“We evaluate the optimized CH4 emissions by comparing the simulated CH4 mixing ratios using 

prior and posterior CH4 emissions with independent measurements from the NOAA/ESRL Aircraft 

Project. The location of the observation site (Table S1) and the vertical profile of the model bias in 

CH4 mixing ratios compared with the aircraft observations (model minus observations) are shown 

in the supplement (Fig. S4a for Inv1 and Fig. S4b for Inv2). The comparisons with independent 

aircraft observations confirm the improvement of model-simulated CH4 mixing ratios when using 

posterior emissions. All of the inversions in Inv1 and Inv2 reach small biases when compared with 

aircraft observations (right panel of Fig.S4a and Fig.S4b), which means that it is hard to distinguish 

which OH spatial and vertical distributions are more realistic in terms of quality of fit to these 

aircraft CH4 observations. For Inv1, the root mean square errors (𝐑𝐌𝐒𝐄 =
√∑(𝒎𝒐𝒅𝒆𝒍−𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏)𝟐

𝒏_𝒐𝒃𝒔
, 

n_obs is the number of observations) are reduced from up to more than 100ppbv (prior) emissions 
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to ~10ppbv (posterior). For Inv2, although the CH4 mixing ratios simulated using prior emissions 

already match well with aircraft observations (MSE=8-17ppbv), the posterior emissions still reduce 

the RMSE by up to 10ppbv. ” 

We added Table S1 and Figure S4a and Figure 4b in the supplement: 

 

Table S1. Location of the NOAA ESRL aircraft sites. 

STATION 

ID 

SITE LOCATION BOTTOM 

ALT(m) 

TOP 

ALT(m) 

latitude longitude 

CAR Briggsdale, Co 1658 11879 40°22’N 104°17’W 

HAA Molokai Island, HI 305 8104 21°14’N 158°57’W 

HFM Harvard Forest, Ma 582 8063 42°32’N 72°10’W 

PFA Poker Flat, AK 131 7604 65°04’N 147°17’W 
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Figure S4a. The vertical profiles of the bias in LMDz simulated monthly CH4 mixing ratios compare 

with measurements from the NOAA/ESRL Aircraft Project (model－observations) during 2000/7-2002/6. 

The left panels show the bias simulated by prior emissions with 10 original OH fields and the right panels 

show the bias simulated by corresponding posterior emissions from Inv1.The root mean square errors 
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(RMSE =
√∑(𝑚𝑜𝑑𝑒𝑙−𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)2

𝑛_𝑜𝑏𝑠
) are shown inset. 

 

Figure S4b. The same as figure S3a but for Inv2.   
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Comments: 3. Link to the validation, there is little discussion on the features of the OH fields provided 

by the models. For example, Patra et al., (2015) determine that observations of CH3CCl3 support a N/S 

gradient of 1, so more should be done to explain how probable bias in the modeled OH distributions 

affects the CH4 estimations. Also many of the different features in the spatial distributions OH are caused 

by known biases in the climate chemistry models, e.g. the NMVOC levels, the CO burden, CO biases, 

O3 biases (e.g. Naik et al. 2013, Shindell et al., 2006). Here, it would be very interesting to see, for 

example, if there is a relationship between the N/S ratio of the OH distributions and the N/S ratio of the 

posterior fluxes (similar to figure 2). Also  why are SOCOL3 and MOCAGE such outliers? 

Response: We have evaluated the impact of the uncertainties in OH spatial distribution by 

conducting Inv2. For the relationship between the N/S ratio of the OH and N/S ratio of the posterior 

fluxes, we have stated in the text (L369-371):” The TransCom OH field, for which OH N/S ratio is 

1.0, leads to an inter-hemispheric CH4 emission difference of 205Tg yr-1, which is 35Tg yr-1 (27Tg 

yr-1) smaller than the mean (minimum) inter-hemispheric difference calculated using other OH 

fields with OH N/S ratio of 1.2-1.3.”  We don’t think it will be helpful if we further estimate the 

correlation between the N/S ratio of OH and fluxes because, among the 8 OH fields analyzed here 

(exclude MOCAGE and SOCOL3), only one has N/S ratio of 1, five having N/S ratio of 1.2, and two 

of 1.3. 

 

The explanation of SOCOL3 and MOCAGE simulating high [OH] can be found in Zhao et al. (2019) 

and we added in section 3.1.1 (L310-L314):  

” The high [OH]GM-CH4 simulated by SOCOL3 and MOCAGE are mainly due to high surface and 

mid-tropospheric NO mixing ratio simulated by these two models (Zhao et al., 2019). As analyzed 

in Zhao et al. (2019), the lack of N2O5 heterogeneous hydrolysis (by both SOCOL3 and MOCAGE) 

and the overestimation of tropospheric NO production by NO2 photolysis (by SOCOL3) are the 
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major factors behind the overestimation of NO and OH.” 

 

Comments: We are shown inversions with and without interannual variability in the OH fields. However, 

due to the increase of tropospheric temperatures, even in the simulations with fixed OH or the fields 

distributed in the TRANSCOM-CH4 experiment, the lifetime of CH4 will decrease. This effect is not 

quantified in the paper unless I missed it. 

Response: Indeed, temperature changes will impact the CH4 lifetime but we do not test the impact 

of this effect here.  

 

Comments: As stated in the study, the transport model uncertainty is very large. This means that the 

distribution of CH4 is model dependent. Therefore, there could be a large uncertainty in the global OH 

means weighted by the CH4 reaction. I believe an airmass or volume weighted OH means should be at 

least provided in the supplement and that the comparison with box models or with other models should 

be done with air mass or volume weighted means, including the relationship in figure 2. 

Response: The air mass-weighted [OH] is already given in table 1 and volume-weighted OH was 

given by Zhao et al. (2019).  

We added in section 2.1 (L170):” The volume-weighted [OH] was given by Zhao et al. (2019).”  

For the relationship in Figure 2, the air mass-weighted and volume-weighted [OH] do not show a 

linear relationship with optimized CH4 emissions since some OH field shows distinct vertical 

variations. For example, the air mass and volume-weighted [OH] simulated by CMAM model (11.3

×105 molec cm-3 and 10.4×105 molec cm-3) is smaller than simulated by EMAC-L90MA model 

(11.5×105 molec cm-3 and 11.1×105 molec cm-3), but the top-down inversions using CMAM OH 

field estimated larger CH4 emissions (599Tg yr-1) than that using EMAC-L90MA OH fields (589Tg 

yr-1). 
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Comments: On which basis did you choose only 7 of the 20 CCMI simulations? 

Response: The same reasons explained in Zhao et al. (2019) as we explained it in section 2.1. 

 

Comments: You mentioned the TRANSCOM-2011 project. However, this was actually known as the 

TRANSCOM-CH4 (Patra et al., 2011), since there have been several TRANSCOM projects mainly with 

CO2 . It might be useful to mention, that in Patra et al., (2011), the OH fields from Spivakovsky (2000). 

Response: We corrected TRANSCOM-2011 to TRANSCOM-CH4.  

We have already mentioned this in Sect 2.1.1 (L161-L163):  

“We also include the climatological OH field used in the TransCom simulations (Patra et al., 2011), 

which uses the semi-empirical, observation-based OH field computed by Spivakovsky et al. (2000) 

in the troposphere” 

 

Comments: Table 1 and Table 2 are missing the units 

Response: We added the units, thank you very much. 

 

Comments: Could you specify which convection parameterization is used? In Locatelli et al., (2015) 

three parameterizations are used. 

Response: We added in the text(L226):  

“The deep convection is parametrized based on the Tiedtke (1989) scheme.” 

 

We added in the reference: “Tiedtke, M.: A Comprehensive Mass Flux Scheme for Cumulus 

Parameterization in Large-Scale Models, Monthly Weather Review, 117, 1779-1800, 10.1175/1520-

0493(1989)117<1779:acmfsf>2.0.co;2, 1989.” 

 

Comments: I think that at least in the supplements you should include the maps of the mean differences 
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between the scenarios, e.g. Echangeall;Echangef ixoh;Echangevaroh: 

Response: Thank you very much for the suggestion. Here we mainly analyzed the regional emission 

changes for the large emitting regions follow Saunois et al. (2016; 2017) and Locatelli et al. (2013). 

The differences in emission changes on the grid-scale cannot be well resolved by the global 

inversions with limited surface observations so it is not analyzed here and we prefer to only provide 

results aggregated at the regional scale. Analysis of the impact of OH top-down emission changes 

on grid-scale belongs to future studies doing regional inversions using more dense observation 

networks (e.g. satellite). 

 

Comments: In figures 4 and 5, would it be possible to show the a priori uncertainties as error bars? In 

general I find the double axes confusing and maybe a single axis with absolute emissions would be better. 

Response: Thank you very much for the suggestion. The prior uncertainties are 100% of the prior 

emissions (see Section 2.2). So it is the same as the prior emissions which limit the interest to show 

them in the figure.  

We agree that showing the absolute value will be easier to understand. But the aim of Fig. 4 and 

Fig.5 is to show the uncertainties due to OH. Showing absolute emissions (0-100Tg yr-1) will make 

it difficult to recognize the spread among different inversions (<20Tg yr-1 or even <5Tg yr-1), which 

is the purpose of this figure. 



1 
 

Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane 

budgets 

 

Yuanhong Zhao1, Marielle Saunois1, Philippe Bousquet1, Xin Lin1,a, Antoine Berchet1, Michaela I. 

Hegglin2, Josep G. Canadell3, Robert B. Jackson4, Edward J. Dlugokencky5, Ray L. Langenfelds6 , Michel 5 

Ramonet1, Doug Worthy7, and Bo Zheng1 

 
1 Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), 

Université Paris-Saclay, 91191 Gif-sur-Yvette, France 
2 Department of Meteorology, University of Reading, Reading, RG6 6LA, UK 10 
3 Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra, Australian Capital Territory 2601, 

Australia 
4 Earth System Science Department, Woods Institute for the Environment, and Precourt Institute for 

Energy, Stanford University, Stanford, CA 94305, USA 
5 NOAA ESRL, 325 Broadway, Boulder, CO 80305, USA 15 
6 Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria 3195, Australia 
7 Environment and Climate Change Canada, Toronto, M3H 5T4, Canada 

 
a now at: Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, 

USA 20 

 

  



2 
 

Abstract 

The hydroxyl radical (OH), which is the dominant sink of methane (CH4), plays a key role to close the 

global methane budget. Current top-down estimates of the global and regional CH4 budget using 3D 25 

models usually apply prescribed OH fields and attribute model-observation mismatches almost 

exclusively to CH4 emissions, leaving the uncertainties due to prescribed OH field less quantified. Here, 

using a variational Bayesian inversion framework and the 3D chemical transport model LMDz, combined 

with 10 different OH fields derived from chemistry-climate models (CCMI experiment), we evaluate the 

influence of OH burden, spatial distribution, and temporal variations on the global and regional CH4 30 

budget. The global tropospheric mean CH4-reaction-weighted [OH] ([OH]GM-CH4) ranges 10.3-16.3×105 

molec cm-3 across 10 OH fields during the early 2000s, resulting in inversion-based global CH4 emissions 

between 518 and 757 Tg yr-1. The uncertainties in CH4 inversions induced by the different OH fields are 

similar to the CH4 emission range estimated by previous bottom-up syntheses and larger than the range 

reported by the top-down studies. The uncertainties in emissions induced by OH are largest over South 35 

America, corresponding to large inter-model differences of [OH] in this region. From the early to the late 

2000s, the optimized CH4 emissions increased by 21.9±5.7Tg yr-1 (16.6-30.0Tg yr-1), of which ~25% (on 

average) offsets the 0.7% (on average) increase in OH burden. If the CCMI models represent the OH 

trend properly over the 2000s, our results show that a higher increasing trend of CH4 emissions is needed 

to match the CH4 observations compared to the CH4 emission trend derived using constant OH. This study 40 

strengthens the importance to reach a better representation of OH burden and of OH spatial and temporal 

distributions to reduce the uncertainties on the global and regional CH4 budgets.  
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1 Introduction 

Methane (CH4) plays an important role in both climate change and air quality as a major greenhouse gas 45 

and tropospheric ozone precursor (Ciais et al., 2013). CH4 is emitted from various anthropogenic sources 

including agriculture, waste, fossil fuel, and biomass burning, as well as natural sources including 

wetlands and other freshwater systems, geological sources, termites, and wild animals. CH4 is removed 

from the atmosphere mainly by reaction with hydroxyl radical (OH) (Saunois et al. 2016, 2017). 

Tropospheric CH4 levels have more than doubled between the 1850s and present-day (Etheridge et al., 50 

1998) in response to anthropogenic emissions and climate variabilities, leading to about 0.62 W m-2  

radiative forcing (Etminan et al., 2016) and increases in tropospheric ozone levels of ~5 ppbv (Fiore et 

al., 2008). The global CH4 atmospheric mixing ratio stabilized in the early 2000s but resumed growing at 

a rate of ~5ppbv yr-1 or more since 2007 (Dlugokencky, NOAA/ESRL, 2019).  

 55 

Explaining the CH4 stabilization and renewed growth requires an accurate estimation of the CH4 budget 

and its evolution, as the source-sink imbalance that is responsible for the contemporary CH4 yearly growth 

only accounts for 3% of the total CH4 burden (Turner et al., 2019). To reconcile the uncertainties in the 

current estimation of CH4 emissions from various sources, the Global Carbon Project integrates top-down 

and bottom-up approaches (Kirschke et al. 2013; Saunois et al., 2016; 2017; 2019). However, gaps remain 60 

in global and regional CH4 emissions estimated by top-down and bottom-up approaches, as well as within 

each approach (Kirschke et al. 2013; Saunois et al., 2016; Bloom et al., 2017). The top-down method, 

which optimizes emissions by assimilating observations in an atmospheric inversion system, is expected 

to reduce uncertainties of bottom-up estimates. Among the remaining causes of uncertainties in the global 

methane budget, the representation of CH4 sinks, mainly from OH oxidation, is one of the largest, as seen 65 

by process-based models for atmospheric chemistry (Saunois et al., 2017).  

 

OH is the most important tropospheric oxidizing agent determining the lifetime of many pollutants and 
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greenhouse gases including CH4 (Levy, 1971). A small perturbation of OH can result in significant 

changes in the budget of atmospheric CH4 (Turner et al., 2019). At the global scale, tropospheric OH is 70 

mainly produced by the reaction of excited oxygen atoms (O(1D)) with water vapor (primary production) 

but also by the reaction of nitrogen oxide (NO) and ozone (O3) with hydroperoxyl radicals (HO2) and 

organic peroxy radicals (RO2) (secondary production). At regional scales, photolysis of hydrogen 

peroxide and oxidized VOC photolysis can be important depending on the chemical environment 

(Lelieveld et al. 2016). OH is rapidly removed by carbon monoxide (CO), methane (CH4), and non-75 

methane volatile organic compounds (NMVOCs) (Logan et al., 1981; Lelieveld et al., 2004). 

Tropospheric OH has a very short lifetime of a few seconds (Logan et al., 1981; Lelieveld et al., 2004), 

hindering estimates of global OH concentrations ([OH]) through direct measurements and limiting our 

ability to estimate the global CH4 sink. 

 80 

Global tropospheric [OH] is approximately 1×106 molec cm-3 as calculated by atmospheric chemistry 

models (Naik et al., 2013; Voulgarakis et al., 2013, Zhao et al., 2019) and inversions of 1-1-

1trichloroethane (methyl chloroform, MCF) (Prinn et al., 2001; Bousquet et al., 2005; Montzka et al., 

2011; Cressot et al., 2014), resulting in a chemical lifetime of ~9 years for tropospheric CH4 (Prather et 

al., 2012; Naik et al., 2013). However, accurate estimation of [OH] magnitude, distributions, and year-to-85 

year variations needed for CH4 emission optimizations are still pending (Prather et al., 2017; Turner et al., 

2019). For global tropospheric [OH], both MCF inversions and atmospheric chemistry model inter-

comparisons give a 10%-15% uncertainty (Prinn et al., 2001; Bousquet et al., 2005; Naik et al., 2013; 

Zhao et al., 2019). For [OH] spatial distributions, MCF-based inversions generally infer similar mean 

[OH] over both hemispheres (Bousquet et al., 2005; Patra et al., 2014), while atmospheric chemistry 90 

models generally give [OH] Northern hemisphere to Southern hemisphere (N/S) ratios above 1 (e.g. Naik 

et al., 2013; Zhao et al., 2019). For [OH] year-to-year variations, some studies have estimated magnitudes 

significant enough to help explain part of the stagnation in atmospheric CH4 concentrations during the 
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early 2000s (Rigby et al., 2008; McNorton et al., 2016; Dalsøren et al., 2016; Rigby et al., 2017; Turner 

et al., 2017), whereas others show smaller trends and inter-annual variations of [OH] (Montzka et al, 2011; 95 

Naik et al., 2013; Voulgarakis et al., 2013; Zhao et al., 2019). In a recent study, Zhao et al. (2019) 

simulated atmospheric CH4 with an ensemble of OH fields and showed that uncertainties in [OH] 

variations could explain up to 54% of model-observation discrepancies in surface CH4 mixing ratio 

changes from 2000 to 2016.  

 100 

Current top-down estimates of the global CH4 budget usually apply prescribed and constant [OH] 

simulated by atmospheric chemistry models and attribute model-observation mismatches exclusively to 

CH4 emissions (Saunois et al., 2017). However, the OH fields simulated by atmospheric chemistry models 

show some uncertainties in both global burden and spatial-temporal variations (Naik et al., 2013; Zhao et 

al., 2019). The role of OH variations on the top-down estimates of CH4 emissions has been evaluated 105 

using two box-model inversions with surface observations (e.g. Rigby et al., 2017; Turner et al., 2017, 

Naus et al., 2019) and 3D models that optimize CH4 emissions together with [OH] by assimilating surface 

observations (Bousquet et al., 2006) or satellite data (Cressot et al., 2014, McNorton et al., 2018; Zhang 

et al., 2018; Maasakkers et al., 2019). The proxy-based constraints usually optimize [OH] on a global or 

latitudinal scale, the impact of OH vertical and horizontal distributions being less quantified to date. Also, 110 

proxy methods do not allow to access underlying processes as direct chemistry modeling (Zhao et al., 

2019). This paper follows the work of Zhao et al. (2019), where we analyzed in details 10 OH fields 

derived from atmospheric chemistry models considering different chemistry, emissions, and dynamics 

(Patra et al., 2011; Szopa et al., 2013; Hegglin and Lamarque, 2015; Morgenstern et al., 2017; Zhao et al., 

2019; Terrenoire et al., 2019). We now aim to build on this previous paper to estimate the impact of these 115 

OH fields on methane emissions as inferred by an atmospheric 4D variational inversion system. To do so, 

we use each of the OH fields in the 4D variational inversion system PYVAR-LMDz based on LMDZ-

SACS (Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric 
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Chemistry System) 3D chemical transport model to evaluate the influence of OH distributions and 

variations on the top-down estimated global and regional CH4 budget. Section 2 briefly describes the OH 120 

fields and their characteristics and underlying processes (see also Zhao et al., 2019 for more details), the 

inversion method, and the setups of inversion experiments. Section 3 illustrates the influence of OH on 

the top-down estimation of CH4 budgets and variations, specifically: i) global, regional, and sectoral CH4 

emissions (Section 3.1), ii) emission changes between the early 2000s and late 2000s (Section 3.2), and 

iii) year-to-year variations in methane emissions (Section 3.3). Section 4 summarizes the results and 125 

discusses the impact of OH on the current CH4 budget.    

 

2 Method 

2.1 OH fields 

In this study, we test the 10 OH fields presented in by Zhao et al. (2019), including 7 OH fields simulated 130 

by chemistry-transport and chemistry-climate models from Phase 1 of the Chemistry-Climate Model 

Initiative (CCMI) (Hegglin and Lamarque, 2015; Morgenstern et al., 2017), 2 OH fields simulated by the 

Interaction with Chemistry and Aerosols (INCA) model coupled to the general circulation model of the 

Laboratoire de Météorologie Dynamique (LMD) model (Hauglustaine et al., 2004; Szopa et al., 2013), 

and 1 OH field from the TRANSCOM-CH4 inter-comparison exercise (Patra et al., 2011)(Table 1). 135 

 

The CCMI project conducted simulations with 20 state-of-the-art atmospheric chemistry-climate and 

chemistry-transport models to evaluate the model’s projections of atmospheric composition (Hegglin and 

Lamarque, 2015; Morgenstern et al., 2017). To force atmospheric inversions during 2000-2010, we use 

OH fields from 7 of the 20 CCMI model simulations of REF-C1 experiments (Table 1), which were driven 140 

by observed sea surface temperatures and state-of-the-art historical forcings (covering 1960-2010). For 

the inversions after 2010 (only with the CESM1-WACCM model, see Section 2.3), we apply inter-annual 

variations of OH generated from REF-C2 experiments, which were driven by sea surface conditions 



7 
 

calculated by the online-coupled ocean and sea ice modules. Although all of the CCMI models use the 

same anthropogenic emission inventories, the simulated OH fields show different spatial and vertical 145 

distributions. The inter-model differences of OH burden and vertical distributions are mainly attributed 

to differences in chemical mechanisms related to NO production and loss. The differences in [OH] spatial 

distributions are due to applying different natural emissions: for example, primary biogenic VOC 

emissions and NO emissions from soil and lightning (Zhao et al., 2019). As a result, the regions dominated 

by natural emissions (e.g. South America, central Africa) show the largest inter-model differences in [OH] 150 

(Fig.S1). The CCMI models consistently simulated positive OH trend during 2000-2010, mainly due to 

more OH production by NO than loss by CO over the East and Southeast Asia and positive trend of water 

vapor over the tropical regions (Zhao et al., 2019; Nicely et al., 2020). More details can be found in Zhao 

et al. (2019) and the herein cited literature. 

 155 

The two INCA OH fields, INCA NMHC-AER-S and INCA NMHC are simulated by two different 

versions of the INCA (Interaction with Chemistry and Aerosols) chemical model coupled to LMDz 

(Szopa et al., 2013; Terrenoire et al., 2019). The main difference between the two simulations is that INCA 

NMHC-AER-S includes both gas-phase and aerosol chemistry in the whole atmosphere while INCA 

NMHC only includes gas-phase chemistry in the troposphere (Szopa et al., 2013; Terrenoire et al., 2019). 160 

We also include the climatological OH field used in the TransCom simulations (Patra et al., 2011), which 

uses the semi-empirical, observation-based OH field computed by Spivakovsky et al. (2000) in the 

troposphere.   

 

Table 1 summarizes the global tropospheric mean CH4-reaction-weighted [OH] ([OH]GM-CH4, [OH] 165 

weighted by reaction rate of OH with CH4 (KOH+CH4)×dry air mass, Lawrence et al., 2001) and dry air 

mass-weighted [OH] ([OH]GM-M), as well as inter-hemispheric ratios (N/S ratios) calculated with [OH]GM-

CH4 for the 10 OH fields used in this study. The tropopause height is assumed at 200hPa following Naik 
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et al. (2013) and the 3D temperature field used to compute [OH]GM-CH4 is from ERA Interim re-analysis 

meteorology data (Dee et al, 2011). The volume-weighted [OH] was given by Zhao et al. (2019). The 170 

[OH]GM-CH4 is a better indicator of the global atmospheric oxidizing efficiency for CH4 than [OH]GM-M 

since the latter is insensitive to the CH4+OH reaction rate increased with temperature (Lawrence et al., 

2001). Both the mean value (12.3±3.8×105 molec cm-3) and absolute range (10.3-16.3×105 molec cm-

3) of [OH]GM-CH4 calculated for the 10 OH fields are larger than those of [OH]GM-M (11.4±2.8×105 molec 

cm-3 and 9.4-14.4×105 molec cm-3, respectively). This is mainly because MOCAGE and SOCOL3 OH 175 

fields show much higher [OH] near the surface than in the upper troposphere (Zhao et al., 2019). The 

inter-hemispheric OH ratios range from 1.0 to 1.5, larger than ones derived from MCF inversions (e.g. 

Bousquet et al., 2005; Patra et al., 2014), partly explained by the underestimation of CO in the northern 

hemisphere by atmospheric chemistry models (Naik et al., 2013). A comprehensive analysis of spatial 

and vertical distributions of these OH fields was presented in Zhao et al. (2019).  180 

 

2.2 Inverse method  

We conduct an ensemble of variational inversions of CH4 budget that rely on Bayes’ theorem (Chevallier 

et al., 2005) with the same set of atmospheric observations of CH4 mixing ratios but different prescribed 

monthly mean OH fields as described in Sect. 2.1. A variational data assimilation system optimizes CH4 185 

emissions and sinks by minimizing the cost function J, defined as: 

𝐽(𝒙) =
1

2
(𝒙 − 𝒙𝒃)𝑇𝐁−1(𝒙 − 𝒙𝒃) +

1

2
(𝐻(𝒙) − 𝒚)𝑇𝐑−1(𝐻(𝒙) − 𝒚)     (1) 

where x is the control vector that includes total CH4 emissions per 10 days at the model resolution of 

3.75°(in longitude)×1.85°(in latitude) and initial conditions at longitudinal and latitudinal bands of 

20°×15°; xb is the prior of the control vector x; y is the observation vector of observed CH4 mixing ratios, 190 

here at the surface; and H(x) represents the sensitivity of simulated CH4 to emissions, for comparison 

with y. B and R represent the prior and observation error covariance matrix, respectively. The cost 
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function J is minimized iteratively by the M1QN3 algorithm (Gilbert and Lemaréchal, 1989). We do not 

include sinks in the control vector x but prescribe the different OH fields mentioned above.   

 195 

Prior knowledge (xb) on CH4 emissions is provided by the Global Carbon Project (GCP, Saunois et al., 

2019). The GCP emission inventory includes time-varying anthropogenic and fire emissions and 

climatology of the natural emissions. Global total CH4 emissions of the GCP inventory are 511Tg yr-1 in 

2000, increased to 562Tg yr-1 in 2010, and 581Tg yr-1 in 2016 (with soil uptake excluded). The soil uptake 

of CH4 is estimated to be 38Tg yr-1 with seasonal variations. Averaged over 2000-2016, the anthropogenic 200 

sources (including biofuel emissions, agriculture, and waste) and wetlands contribute 56% and 32% of 

total CH4 emissions, respectively (Fig. S2). The prior information of emissions by sector in each grid cell 

is used to separate the total optimized CH4 emissions into four broad categories: wetlands, agriculture and 

waste, fossil fuel, and other natural sources (biomass burning, termite, geological, and ocean emissions). 

The spatial distributions of the prior emissions from the four categories averaged over 2000-2016 are 205 

shown in Fig. S2. A detailed description of the GCP emission inventory can be found in Zhao et al. (2019) 

and Saunois et al. (2019). The prior error of CH4 fluxes is set to 100% of xb, and the error correlation is 

calculated with a correlation length of 500km over land and 1000km over the oceans for CH4 fluxes. 

 

The vector of observations (y) is generated from surface measurements of the World Data Centre for 210 

Greenhouse Gases (WDCGG, https://gaw.kishou.go.jp/ ) through the WMO Global Atmospheric Watch 

(WMO-GAW) program. The surface measurements include both continuous time series of hourly 

afternoon observations and flask data. In total, 97 sites are included here, covering different time periods, 

including 68 sites from the Earth System Research Laboratory from the U.S. National Oceanic and 

Atmospheric Administration (NOAA/ESRL, Dlugokencky et al. (1994)), 14 sites from the Laboratoire 215 

des Sciences du Climat et de l'Environnement (LSCE), 8 sites from Environment and Climate Change 

Canada (ECCC), 4 sites from the Commonwealth Scientific and Industrial Research Organisation (CSIRO, 

https://gaw.kishou.go.jp/
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Francey et al. (1999)), and 3 from the Japan Meteorological Agency (JMA: 

http://www.jma.go.jp/jma/indexe.html). The location of the sites is shown in Fig. S3.  

 220 

Atmospheric CH4 sensitivities to fluxes (H(x)) are simulated by LMDz5B, an offline version of the LMDz 

atmospheric model (Locatelli et al., 2015), which has been widely used for CH4 studies (e.g. Bousquet et 

al., 2005; Pison et al., 2009; Lin et al., 2018; Zhao et al., 2019). LMDz5B is associated with the simplified 

chemistry module SACS (Pison et al., 2009), which calculates the CH4 chemical sink using prescribed 

4D OH and O(1D) fields. The CH4 sink by reaction with chlorine is not considered in our LMDz model 225 

simulations. The deep convection is parametrized based on the Tiedtke (1989) scheme. Air mass fluxes 

simulated by the general circulation model LMDz with temperature and wind nudged to ERA Interim re-

analysis meteorology data (Dee et al, 2011) are used to force the transport of chemical tracers in LMDz5B 

every 3 hours.  

 230 

2.3 Model experiments  

As shown in Fig. 1, we performed six groups of inversions (Inv1 to Inv6, 34 inversions in total). The 

impacts of OH on the top-down estimation of CH4 emissions are comprehensively analyzed by comparing 

the inversion results within one group or between two different groups. We analyze the overall impacts 

of differences in OH burden, spatial distribution, and temporal change on CH4 emissions (colored boxes 235 

on the right in Fig. 1), and separate the impacts of OH spatial distribution and temporal variations (colored 

boxes on the left in Fig. 1). The results are presented and discussed in three sections as shown in different 

colors in Fig. 1. 

 

We perform four groups of 3-year CH4 inversion experiments using 6 to 10 OH fields (Inv1 to Inv4, Fig. 240 

1), and two groups of 17-year CH4 inversions from 2000 to 2016 (Inv5 and Inv6, Fig. 1) using only 

CESM1-WACCM OH fields. For the short-term inversions, the first and last six months are treated as 
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spin-up and spin-down periods and discarded from the following analyses (to avoid edge effect). Thus, 

we only analyze the results over 2000/07-2002/06 (i.e. the early 2000s) for Inv1 and Inv2 and 2007/07-

2009/06 (i.e. the late 2000s) for Inv3 and Inv4. The early 2000s and the late 2000s represent the time 245 

periods with stagnant and resumed growth of atmospheric CH4 mixing ratios, respectively. For the long-

term inversions, we take a one-year spin-up and spin-down and analyze the 15-year results from 2001 to 

2015.  

 

The aim of Inv1, conducted for 2000-2002 with 10 OH fields, is to quantify the influence of both OH 250 

global burden and spatial distributions on top-down estimates of global, regional, and sectoral CH4 

emissions (the brown box with the solid line, Fig. 1). Because of the long lifetime of CH4 relative to OH, 

the top-down estimates of regional CH4 emissions can be influenced by both global total OH burden and 

OH spatial and seasonal distributions. To separate the influence of OH spatial distributions (including 

their seasonal variations) from that of the global annual mean [OH], we conduct Inv2, where all the 255 

prescribed OH fields are globally scaled to the global [OH]GM-CH4 value of the INCA NMHC OH field in 

2000 to get the same loss of CH4 by OH (scaled OH fields). As such, Inv2 provides the uncertainty range 

of CH4 emissions induced by OH spatial distribution in both horizontal and vertical directions as well as 

seasonal variations when assuming that the global total burden of OH can be precisely constrained (the 

brown box with the dashed line, Fig. 1). Thus, Inv1 (the inversions using original OH fields) and Inv2 260 

(the inversions using scaled OH fields) yield upper (uncertainties from both global OH burden and spatial 

distributions) and lower (uncertainties only from OH spatial and seasonal distributions) limits of 

influences of OH on regional CH4 emissions, respectively.  

 

To quantify the influence of OH on CH4 interannual emission changes, we also conduct Inv3 and Inv4 265 

over 2007-2009, with 6 scaled OH fields (instead of 10 to limit computational time). While both of the 

inversions are done for 2007-2009 (Inv3 and Inv4), the OH variations during 2007-2009 (Inv3) and 2000-
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2002 (Inv4) are used for the two inversions, respectively. Therefore, the difference Inv3－Inv2 reveal the 

impact of OH on CH4 emission changes between the early and late 2000s (the yellow box with solid lines 

of Fig. 1), Inv3－Inv4 separates the impact of OH interannual variations, and the difference Inv4－Inv2 270 

allows assessing the uncertainties of optimized CH4 emission changes due to different OH spatial and 

seasonal distributions (the yellow boxes with dashed lines in Fig. 1).  

 

Finally, we test the impact of OH year-to-year variations and trends on CH4 emissions over 2001-2015 

by running two long-term inversions (Inv5 and Inv6) with the OH fields simulated by CESM-WACCM 275 

only (the green box with dashed lines in Fig. 1). Inv5 is forced by the OH fields with both year-to-year 

variations and trends, while Inv6 is forced by the OH fields for the year 2000. For each group, only one 

experiment was done for computational reasons. We chose OH fields simulated by CESM1-WACCM 

because it shows the largest year-to-year OH variations and a positive trend of 0.35% yr-1 during 2000-

2010 among the CCMI OH fields (Zhao et al., 2019). Therefore, inversions using CESM1-WACCM OH 280 

are expected to yield an upper limit of the influence of OH variations on CH4 emissions as seen from 

atmospheric chemistry models.  

 

We evaluate the optimized CH4 emissions by comparing the simulated CH4 mixing ratios using prior and 

posterior CH4 emissions with independent measurements from the NOAA/ESRL Aircraft Project. The 285 

location of the observation site (Table S1) and the vertical profile of the model bias in CH4 mixing ratios 

compared with the aircraft observations (model minus observations) are shown in the supplement (Fig. 

S4a for Inv1 and Fig. S4b for Inv2). The comparisons with independent aircraft observations confirm the 

improvement of model-simulated CH4 mixing ratios when using posterior emissions. All of the inversions 

in Inv1 and Inv2 reach small biases when compared with aircraft observations (right panel of Fig.S4a and 290 

Fig.S4b), which means that it is hard to distinguish which OH spatial and vertical distributions are more 

realistic in terms of quality of fit to these aircraft CH4 observations. For Inv1, the root mean square errors 
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(RMSE =
√∑(𝑚𝑜𝑑𝑒𝑙−𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)2

𝑛_𝑜𝑏𝑠
, n_obs is the number of observations) are reduced from up to more than 

100ppbv (prior) emissions to ~10ppbv (posterior). For Inv2, although the CH4 mixing ratios simulated 

using prior emissions already match well with aircraft observations (MSE=8-17ppbv), the posterior 295 

emissions still reduce the RMSE by up to 10ppbv.  

 

In the following sections, to quantify uncertainties in top-down estimations of CH4 emissions due to OH, 

we calculate OH-induced CH4 emission differences and uncertainties as the standard deviation and the 

maximum minus mininimum values of the inversion results, respectively.  300 

 

3 Results 

3.1 The impacts of OH burden and spatial distributions on CH4 emissions in 2000-2002 

3.1.1 Global total CH4 emissions 

Based on the ensemble of the 10 different OH fields listed in Table 1, global total emissions inverted by 305 

our system in Inv1 vary from 518 to 757Tg CH4 yr-1 during the early 2000s (2000/07-2002/06). The 

highest CH4 emissions exceeding 700Tg yr-1 are calculated using MOCAGE and SOCOL3 OH fields, for 

which [OH]GM-CH4 (15.0×105 and 16.3×105 molec cm-3) are much higher than those of other OH fields 

(10.3-12.6×105 molec cm-3), leading to a larger CH4 sink, and as a consequence larger CH4 emissions 

due to the mass balance constraint of atmospheric inversions. The high [OH]GM-CH4 simulated by SOCOL3 310 

and MOCAGE are mainly due to high surface and mid-tropospheric NO mixing ratio simulated by these 

two models (Zhao et al., 2019). As analyzed in Zhao et al. (2019), the lack of N2O5 heterogeneous 

hydrolysis (by both SOCOL3 and MOCAGE) and the overestimation of tropospheric NO production by 

NO2 photolysis (by SOCOL3) are the major factors behind the overestimation of NO and OH.  

 315 

The minimum-maximum range of the CH4 emissions estimated by the 10 OH fields is almost similar to 
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the range estimated by previous bottom-up studies (542-852Tg yr-1 given by Kirschke et al., 2013 and 

583-861Tg yr-1 given by Saunois et al, 2016) from GCP syntheses and much larger than that reported by 

an ensemble of top-down studies for 2000-2009 in Kirschke et al. (2013) (526-569Tg yr-1), Saunois et al. 

(2016) (535-566Tg yr-1) or the recent Saunois et al. (2019) (522-559 Tg yr-1). (Table 2 and Fig. 2). In the 320 

three top-down model ensembles, most of the inversion systems use TransCom OH fields, and the 

reported differences are mainly from different model transport and set-up of the inversion systems (e.g. 

the observations used in the inversions). Excluding the two outliers (MOCAGE and SOCOL-3) in Inv1, 

we find an uncertainty of about 17% in global methane emissions (518 to 611Tg yr-1) due to OH global 

burden and distributions, while transport model errors lead to only 5% of the uncertainty of the global 325 

methane budget (Table 3, Locatelli et al. (2013)). Our results indicate that considering different OH fields 

within top-down CH4 inversions would lead to larger uncertainty on the top-down CH4 budget.  

 

Plotting top-down estimated CH4 emissions against [OH]GM-CH4, which directly reflects the global OH 

oxidizing efficiency with respect to CH4 (Lawrence et al., 2001), reveals that the global total CH4 330 

emissions vary linearly with [OH]GM-CH4 (r
2 >0.99, Fig. 2, right panel). The top-down estimation of global 

total CH4 emissions (EMISCH4) can be approximately calculated as: 

          EMISCH4=40.4×[OH]GM-CH4+66.7                 (1) 

Where a 1×105 molec cm-3 (1%) increase in [OH]GM-CH4 will increase the top-down estimated CH4 

emissions (EMISCH4) by 40.4 Tg yr-1, consistent with that given by He et al. (2020) using full-chemistry 335 

modeling and a mass balance approach. Other CH4 sinks including soil uptake and oxidation by O1(D), 

which are prescribed in this study, remove 66.7Tg yr-1 CH4. If uncertainties in all the CH4 sinks were also 

considered, the correlation between optimized CH4 emissions and the [OH]GM-CH4 would be reduced. 

Using box-model inversions, previous studies calculated that a 4% (0.4×105molec cm-3) decrease in 

[OH]GM is equivalent to an increase of 22Tg yr-1 CH4 emissions (Rigby et al., 2017; Turner et al., 2017, 340 
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2019). If we apply the same [OH]GM changes in Eq.1 (0.4×105molec cm-3), the equivalent emissions 

change is 16Tg yr-1, about 25% smaller than that given by Turner et al., (2017). This difference probably 

results from the different hemispheric mean reaction rates of OH+CH4 applied in box models, but could 

also be due to different treatments of inter-hemispheric transport and stratospheric CH4 loss in global 3D 

transport models compared to simplified box-models (Naus et al., 2019).  345 

 

With the OH fields scaled to the same [OH]GM-CH4 (11.1×105molec cm-3 ), the Inv2 simulations (assuming 

a global total OH burden well constrained) estimated global CH4 emissions of 551±2Tg yr-1 (Table 3), as 

expected by the scaling. Differences in OH spatial distributions only lead to negligible uncertainty in 

global total CH4 emissions estimated by top-down inversions. 350 

 

3.1.2 Regional CH4 emissions 

Inv1 and Inv2 

Since MOCAGE and SOCOL3 OH fields show much higher [OH]GM than constrained by MCF 

observations (~10×105 molec cm-3, e.g. Prinn et al., 2001; Bousquet et al., 2005) and give much higher 355 

estimates of CH4 emissions (>700Tg yr-1) than other OH fields, we exclude inversion results with these 

two OH fields from the following analyses.  

 

In response to both global total OH burden and inter-hemispheric OH ratios (Table 1), CH4 emissions 

over northern and southern hemispheres calculated by Inv1 (Table 2) vary from 368 to 424Tg yr-1 (401±360 

21Tg yr-1) and 138 to 187Tg yr-1 (166±15Tg yr-1), respectively; resulting in a range in inter-hemispheric 

CH4 emission difference (NH－SH) of 206-254Tg yr-1 (236±14Tg yr-1). When scaling all OH fields to 

the same loss for Inv2, the standard deviations of hemispheric CH4 emissions are reduced to 7Tg CH4 yr-

1 for both hemispheres (Table 2), much smaller than those derived in Inv1 (21Tg yr-1 and 15Tg yr-1 over 

the northern and southern hemisphere, respectively). However, the CH4 emission inter-hemispheric 365 
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difference calculated by Inv2 remains at 236±14Tg yr-1, similar to that calculated by Inv1, which 

indicates that the hemispheric CH4 emissions differences are mainly determined by OH spatial 

distributions. Without the TransCom OH simulation, the inter-hemispheric CH4 emission difference 

ranges between 232 and 246Tg yr-1. The TransCom OH field, for which OH N/S ratio is 1.0, leads to an 

inter-hemispheric CH4 emission difference of 205Tg yr-1, 35Tg yr-1 (27Tg yr-1) smaller than the mean 370 

(minimum) inter-hemispheric difference calculated using other OH fields (OH N/S ratio = 1.2-1.3). 

Previous studies show that differences in atmospheric transport models can lead to ±28Tg yr-1 

uncertainties in the top-down calculation of the inter-hemispheric CH4 emission difference, using a single 

OH field – TransCom (Locatelli et al., 2013). Here, using a single atmospheric transport model, but 

different OH fields, we find a ±14Tg yr-1 uncertainty, about half of the atmospheric transport model 375 

uncertainty. Combining the two studies, one could expect more than 30Tg yr-1 uncertainty in top-down 

estimates of the inter-hemispheric CH4 emission difference, based on different atmospheric models and 

different OH fields. 

 

Fig. 3 shows the optimized and prior CH4 emissions calculated by Inv1 (top) and Inv2 (bottom) over 380 

latitudinal intervals (left panels) and large emitting regions (right panels). Compared with prior emissions, 

nearly all the optimized latitudinal and regional emissions show the same increment direction from prior 

emissions, but the magnitudes of the increment largely vary. The CH4 emissions calculated by Inv1 

amount to i) 147±14Tg yr-1 and are 1-47Tg yr-1 higher than the prior estimate over the southern tropical 

regions (30°S-0°), ii) 199±14Tg yr-1 and are 6-45Tg yr-1 higher than the prior estimate over the northern 385 

tropical regions (0°-30°N), and iii) 174±8Tg yr-1 and are 1-26Tg yr-1 lower than the prior estimate over 

the northern mid-latitude regions (30°N-60°N) (Table 3). The uncertainties in global OH burden and 

distributions lead to larger uncertainty (maximum－minimum) in top-down estimated CH4 emissions 

over the tropics (>20% of multi-inversion mean) and smaller uncertainty over the northern mid-latitude 

regions (14%) compare with that lead by transport model errors and different observations given by 390 
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Saunois et al. (2016) (13% over tropics and 20% over northern mid-latitude regions) (Table 3). 

 

Over the large emitting regions Europe (EU), Canada (CAN), and China (CHN), optimized emissions are 

lower than the prior. The emissions calculated by Inv1 show the largest absolute OH induced differences 

over South America (SA, 73±9Tg yr-1), South Asia (SAS, 59±6Tg yr-1), and China (42±5Tg yr-1) (Fig. 3, 395 

right panels and Table 3), of which the uncertainty (maximum－minimum) account for more than 20% 

of the multi-inversion mean emission over the corresponding regions (Table 3). Over high-latitude regions 

(Canada, Europe, and Russia), OH lead to small uncertainty ranges (<10Tg yr-1). At the model grid-scale, 

the uncertainty range due to OH can be much larger than the regional mean (middle panel of Fig. 3), for 

example, larger than 50% of the multi-inversion mean emissions over South America and East Asia. As 400 

shown in Table 3, at regional scales, the uncertainty (maximum－minimum) in top-down estimated CH4 

emissions due to different OH global burden and distributions over Asia and South America (~37% of 

multi-inversion mean) are of the same order than those lead by transport errors (25% and 48%) or given 

by Saunois et al. (2016) (~40%). Over other regions, using different OH fields lead to smaller 

uncertainties (11%-18%) compared to other causes of errors (23%-70%) (Table 3). 405 

 

The uncertainties in the top-down estimated regional emissions are not only due to inter-model differences 

of the regional OH fields but also rely on the distribution of the surface observations used in the inversions. 

Over the regions with large prior emissions but less constrained by observations (e.g. South America, 

South Asia, and China), our OH analysis leads to larger uncertainties than regions that are well constrained 410 

by observations (e.g. the North America and Canada) (Fig. S3). The results may indicate that on the 

regional scale, the top-down estimated CH4 emissions and the uncertainties lead by OH are specific to the 

observation system retained. If more surface observations (e.g. in the southern hemisphere) or satellite 

columns with a more even global coverage were included in our inversions, spatial patterns of the top-

down estimated CH4 emissions and their uncertainties (as shown by Fig.3) could be different.  415 
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Comparing Inv1 and Inv2 

We now compare the inversion results using the original OH fields (Inv1) with those using scaled OH 

fields (Inv2) to estimate how much the optimized regional CH4 emission differences of Inv1 are 

dominated by OH spatial and seasonal distributions versus the global OH burden. Applying one single 420 

global scaling factor per model reduces the inter-model differences of original OH fields by 33%, 67%, 

and 33% in the southern tropics(0°-30°S), northern tropics(0°-30°N), and northern mid and high latitudes 

(30°-90°N) (Table S2). This scaling results in 57%, 93%, and 22% reduction of OH induced latitudinal 

CH4 emission differences, respectively for the southern tropics(0°-30°S), northern tropics(0°-30°N), and 

northern mid and high latitudes (30°-90°N) (Fig. 3, left panels comparing standard deviations of Inv1 and 425 

Inv2). At the regional scale (Fig. 3, right panel and Table 3), the OH spatial distribution-induced CH4 

emission differences (standard deviation of Inv2) account for 50% of the differences due to both OH 

burden and spatial distributions (standard deviation of Inv1) over northern mid-latitude regions (China, 

North America) and South America. Over northern tropical regions (Southern Asia and Southeast Asia), 

the OH spatial distribution induces negligible CH4 emission differences.     430 

 

The comparison of Inv1 and Inv2 reveals that methane emissions in tropical regions are less sensitive to 

OH spatial distribution than mid- and high-latitude regions in our framework. One possible explanation 

could be the location of monitoring sites. Over tropical regions, CH4 emissions are less constrained (with 

few to none observation sites near source regions) than in the northern extra-tropics, where several 435 

monitoring sites located at or near the regions with high CH4 emission rates and high OH uncertainties 

(e.g. North America, Europe, and downwind of East Asia). Thus, CH4 emissions over the tropical regions 

mainly contribute to match the global total CH4 sinks (instead of the sinks over the tropical regions only) 

estimated by inversion systems. When all OH fields are scaled to the same CH4 losses (Inv2), differences 

of emissions over the tropical regions are therefore largely reduced.   440 
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3.1.3 Global and regional CH4 emissions per source category  

Fig. 4 compares optimized and prior global total CH4 emissions and the difference between the prior and 

optimized CH4 emissions for four broad source categories: wetlands, agriculture and waste (named Agri-

waste), fossil fuels, and other natural sources. We attribute the optimized emissions to different source 445 

sectors depending on the relative strength of individual prior sources in each grid-cell. With original OH 

fields, Inv1 calculates CH4 emissions of 203±15Tg yr-1 for wetlands, 209±12Tg yr-1 for Agri-waste, 

89±4Tg yr-1 for fossil fuel, and 66±3Tg yr-1 for other natural sources. Optimized emissions of the four 

sectors are 23±15Tgyr-1 (-2-42Tg yr-1 ), 13±12Tg yr-1 (-3-29Tg yr-1), 5±4Tg yr-1 (-1-9Tg yr-1), and 4±3Tg 

yr-1 (0.1-8Tg yr-1) higher than the prior emissions, respectively. Although Inv2 is conducted with scaled 450 

OH fields and all inversions calculate similar global total CH4 emissions (551±2Tg yr-1), optimized CH4 

emissions still show some uncertainties due to OH (as standard deviation) (3Tg yr-1 for wetland emissions 

and 2Tg yr-1 for agriculture and waste, yellow boxplots in Fig. 4), in response to different OH spatial 

distributions.      

 455 

We have further calculated CH4 emissions per source category and per region estimated by Inv1 (Fig. 5), 

to explore the contribution of each region to the OH-induced sectoral emission uncertainties. Wetland 

CH4 emissions mainly dominate emissions over Northern South America, Africa, South and East Asia, 

and Canada. Northern South America (53±7Tg yr-1) and Africa (30±2Tg yr-1) contribute most of the 

global total OH induced wetland emission differences and are 1-22Tg yr-1 and 1-8Tg yr-1 higher than prior 460 

emissions, respectively. In contrast to the higher wetland emissions than prior ones over tropical regions, 

optimized boreal wetland emissions (in Canada) are 6-9Tg yr-1 lower than prior emissions, consistent with 

lower top-down estimations than the prior given by Saunois et al. (2016). Agriculture and waste emissions 

are most intensive over China (25±3Tg yr-1) and South Asia (SAS) (39±3Tg yr-1). The optimized 

inventories show lower agriculture and waste emissions over China (0.6-10Tg yr-1) and Europe (1-3Tg 465 
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yr-1) and much higher emissions over SAS (4-13Tg yr-1) compared with the prior emission inventory. The 

OH induced differences in fossil fuel emissions are found mainly in China and Africa, which are 0.8-5Tg 

yr-1 lower and 0.6-3Tg higher than prior emissions, respectively. In agreement with the previous regional 

discussion, scaling the OH (Inv2) highly reduces the uncertainties attributable to different OH over the 

tropical regions but not for the mid-high latitude regions. In Inv2, the largest CH4 emission differences 470 

due to different OH spatial distribution are found for wetland emissions in South America (60±4Tg yr-

1), agriculture and waste emissions in South Asia (17±1Tg yr-1) and China (24±2Tg yr-1), and fossil fuel 

emissions in China (8±0.7Tg yr-1) and Russia (9±0.4Tg yr-1).  

  

Previous studies have highlighted that anthropogenic emissions over China are largely overestimated by 475 

bottom-up emissions inventories compared with top-down estimates (Kirschke et al., 2013; Tohjima et 

al., 2014; Saunois et al., 2016). In our study, total anthropogenic emissions (agriculture, waste, and fossil 

fuel) over China are 1-15Tg yr-1 lower than the prior bottom-up inventory as calculated by Inv1, and 7-

14Tg yr-1 as calculated by Inv2, with the lowest emissions calculated with the TransCom OH field (for 

both Inv1 and Inv2). The TransCom OH field is the one most widely used in current top-down CH4 480 

emission estimations but shows much lower [OH] over China than other OH fields (Zhao et al., 2019), 

which may be due to the use of the same NOx profile over East Asia as for remote regions based on the 

observations of 1990s when constructing the TransCom OH field (Spivakovsky et al., 2000). Thus, the 

large reduction of top-down estimated anthropogenic CH4 emissions over China as compared to the prior 

emissions may be partly due to an underestimation of [OH] over China in the TransCom field.     485 

 

3.2 Impact of OH on CH4 emission changes between 2000-2002 and 2007-2009 

As shown in Table 4, the global mean [OH] simulated by CCMI models increased by 0.7%-1.8% from 

2000-2002 to 2007-2009, in response to anthropogenic emissions and climate change (Zhao et al., 2019), 

whereas the INCA-NMHC model-simulated global [OH] shows a slight decrease of 0.5%. The TransCom 490 
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OH field, being constant over time, shows no change. The increase in global mean [OH] mainly results 

from the combination of a higher increase in the tropics compared to the northern extra-tropics and a 

slight decrease in the southern extra-tropics. As a result, the changes in OH between the two periods show 

different patterns between regions. We have conducted inversions for 2007-2009 with scaled OH fields 

(Inv3) to explore how uncertainties in OH (both spatial and seasonal distribution and interannual changes) 495 

can influence the top-down estimates of temporal CH4 emission changes from the early 2000s (2000/07-

2002/06, Inv2) to the late 2000s (2007/07-2009/06, Inv3) (Inv3－Inv2). We have also performed Inv4 for 

2007-2009 but using OH fields of 2000-2002 to separate the contribution of OH from different time 

periods (Inv3－Inv4).  

 500 

3.2.1 Global total emission changes between 2000-2002 and 2007-2009  

Total emission changes. From the early 2000s (Inv2) to the late 2000s (Inv3), the top-down estimated 

CH4 emissions increased by 21.9±5.7Tg yr-1 (16.6-30.0Tg yr-1
,
 Table 5). The largest CH4 increase of 

30.0Tg yr-1 is estimated with CESM1-WACCM OH fields (for which OH increased by 1.8% from 2000-

2002 to 2007-2009), 13.4Tg yr-1 higher than the smallest increase of 16.6 yr-1 estimated with the INCA 505 

NMHC OH field (for which OH decreased by 0.5% from 2000-2002 to 2007-2009). In Saunois et al. 

(2017), the minimum-maximum uncertainty range of emission changes between 2002-2006 and 2008-

2012 was 16Tg yr-1. This means that the uncertainty attributable to uncertainty in OH fields (13.4Tg yr-

1), is comparable to the minimum-maximum uncertainty resulting from using different atmospheric 

chemistry transport models and observations (surface and satellite), but mostly constant OH over time 510 

(16Tg yr-1, Saunois et al., 2017). 

 

Spatial versus temporal OH effects. Only changing OH from 2000-2002 (Inv4) to 2007-2009 (Inv3), 

top-down estimated CH4 emissions due to OH interannual changes are +5.1±6.4Tg yr-1 (-2.7-13.5Tg yr-
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1, Table 5), which contribute 25% of total optimized emission changes (Inv3－inv2) between the early 515 

and late 2000s (21.9±5.7Tg yr-1, Table 5). As listed in Table 5, the largest emission increase due to OH 

interannual changes are calculated using MRI-ESM1r1 OH fields, for which a 1.1% global increase in 

OH can up to double the top-down estimation of CH4 emission increase from the early to the late 2000s. 

This result indicates that a large bias likely exists in the former top-down estimation of the CH4 emission 

trend calculated without considering OH changes (Saunois et al., 2017).  520 

 

Keeping OH fields from 2000-2002, top-down estimated CH4 emissions increase by 16.9±1.9Tg yr-1 

(14.3-19.3Tg yr-1, Table 5) between the early 2000s (Inv2) to the late 2000s (Inv4) in response to 

increasing atmospheric CH4 mixing ratios and temperature. This represents 75% of total optimized 

emission changes (Inv3－inv2) between the early and late 2000s (21.9±5.7Tg yr-1, Table 5). The 1.9Tg 525 

yr-1 uncertainty (as standard deviation) is due to the different OH spatial and seasonal distributions, 

indicating that OH spatial and seasonal distributions, which are not considered in box-models, can also 

contribute to the uncertainties in optimized CH4 emission changes.  

 

3.2.2 Emission changes by source types and regions 530 

Total emission changes. We further analyze the influence of OH (both spatial distributions and 

interannual variations) on the top-down estimated sectoral and regional CH4 emission changes from the 

early 2000s (Inv2) to the late 2000s (Inv3). As shown in Fig. 6 (top panels), the smaller increase of the 

optimized global CH4 emissions from the early 2000s to the late 2000s (21.9±5.7Tg yr-1) compared to the 

prior change (39.4Tg yr-1) is mainly due to decrease in wetland emissions over the southern tropics (-535 

4.4±1.5Tg yr-1, 15°S-0°) and northern mid-latitude regions (-3.4±0.4Tg yr-1, 45°N-60°N) in contrast to 

climatology prior wetland emissions, and a lower fossil fuel emission increase over 30°N-45°N (3.7±

0.4Tg yr-1) compared to prior emission increase (8.9Tg yr-1). Wetlands (-3.5±2.5Tg yr-1) and agriculture 

and waste (14.2±2.1Tg yr-1) contribute most of the total OH induced uncertainty in global total emission 
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changes (21.9±5.7Tg yr-1) from the early 2000s (Inv2) to the late 2000s (Inv3) (Table 6), whereas fossil 540 

fuel emissions (8.7±0.8Tg yr-1) show smaller uncertainty.  

 

Considering emissions over latitudinal bands (Fig. 6, top panels), the largest spread of emission changes 

are found over the southern tropics (15°S –tropics, -1.3 to -6.5Tg yr-1), northern subtropics (15°N-30°N, 

15.5 to 20.0Tg yr-1), and northern extratropical regions (30°N-45°N, 7.6 to 10.7Tg yr-1). The spread over 545 

the southern tropics is dominated by emission changes from wetlands (-2.3 to -6.3Tg yr-1), over northern 

subtropics by agriculture and waste (7.3 to 10.0Tg yr-1), and over northern extratropical regions by 

agriculture and waste (3.7 to 5.1Tg yr-1) and fossil fuels (3.3 to 4.3Tg yr-1). At the regional scale (Fig. 7, 

top panels), northern South America (-1.2 to -5.2Tg yr-1), South Asia (9.1 to 12.4Tg yr-1), and China (-

0.1 to 4.9Tg yr-1) show the largest differences in emission changes from the early 2000s to the late 2000s. 550 

The multi-inversions calculated emission changes in China disagree in sign (Fig. 7; top panels), mainly 

due to differences in the agriculture and waste sector, which range from 1.3Tg yr-1 decrease to 1.5Tg yr-

1 increase from the early 2000s to the late 2000s.  

 

We now compare the uncertainty of top-down estimated CH4 emission changes from the early to the late 555 

2000s due to different OH spatial-temporal variations with that ensemble of top-down studies given by 

Saunois et al. (2017). For the sectoral emissions, the emission changes from agriculture and waste and 

from wetland show the largest uncertainties (more than 50% of multi-inversions mean, Inv3－Inv2 in 

Table 6) induced by OH spatial-temporal variations, comparable to that given by Saunois et al. (2017). 

On the contrary, the uncertainty of fossil fuel emission changes (24% of multi-inversions mean) is much 560 

smaller than that given by Saunois et al. (2017). For regional CH4 emission changes, the uncertainty 

induced by OH spatial-temporal variations is usually larger than the multi-inversion mean emission 

changes (except South Asia) and similar to that given by Saunois et al. (2017). The large differences 

existing in different top-down estimated regional and sectoral emission changes are mainly attributed to 
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model transport errors in Saunois et al. (2017). Here, our results show that uncertainties due to OH spatio-565 

temporal variations can lead to similar biases in top-down estimated CH4 emission changes. 

 

Spatial versus temporal effects. We now separate influences of OH interannual changes (Inv3－Inv4) 

on optimized regional CH4 emission changes. As shown in the bottom panels of Fig. 6 and Fig. 7, at the 

regional scale, OH interannual changes mainly perturb top-down estimated CH4 emission changes (Fig. 570 

6; bottom panel) over the southern tropics (0°-15°S, -3.4-5.9Tg yr-1) and northern subtropics (15°N-30°N, 

0-5.4Tg yr-1). This corresponds to the two largest spreads observed in Fig.7 (bottom panel) associated 

with wetland emissions over northern South America (-2.0-3.5Tg yr-1) and with agriculture and waste 

emissions over South Asia (-0.2-2.6Tg yr-1). Among the four emission sectors, wetland emissions (mainly 

southern tropical wetland) show the largest increase (3.3-4.8Tg yr-1) in response to OH temporal changes 575 

(Table 6), which account for 60% of total wetland emission changes between these two periods. 

 

The OH spatial and seasonal distribution can lead to large uncertainties in regional CH4 emission changes. 

For regional and latitudinal scales, the spreads (uncertainty ranges) of Inv4－inv2 (OH fixed to 2000-

2002) (Fig. S5 and Fig. S6) are comparable to the spread of regional and latitudinal emission changes 580 

lead by both OH interannual changes and spatial and seasonal distributions (Inv3－Inv2) (top panels of 

Fig. 6 and Fig. 7) as mentioned above (e.g., 2.6-5.4Tg yr-1 decrease over northern South America, a 6.1-

11.1Tg yr-1 increase over South Asia, and a 0.4-4.2Tg yr-1 increase over China). These results show that 

even if the global total OH burden is well constrained (as in Inv4 and Inv2, where all OH fields are scaled 

to the same [OH]GM-CH4, and the differences in optimized CH4 emissions changes from the early 2000s to 585 

the late 2000s are only due to different OH spatial distributions), top-down estimates of sectoral and 

regional temporal CH4 emission changes remain highly uncertain.  

 

3.3 Impacts of OH on year to year variations of CH4 emissions from 2001 to 2015 
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To infer the influence of OH year-to-year variations on top-down optimized long-term CH4 emission 590 

changes, we conducted two inversions, Inv5 and Inv6. Inv5 calculates optimized CH4 emissions from 

2001-2015 with the CESM1-WACCM OH field varying from one year to the next, while Inv6 uses the 

CESM1-WACCM OH field but fixed to the year 2000. The choice of the CESM1-WACCM OH field is 

explained in Sect. 2.3 above. As shown in Fig. 8, the [OH]GM-CH4 of the CESM1-WACCM OH field 

increases by 0.47×105 molec cm-3 (4.2%) from 2001 to 2011 and then decreases by 0.13×105 molec cm-595 

3 (1.1%) from 2011 to 2015.  

 

With OH fixed to the year 2000 (Inv6), global CH4 emissions stall at 550±2Tg yr-1 during 2001-2003, 

decrease to 538Tg yr-1 in 2004, which is different from the continuous increase of CH4 emissions given 

by the bottom-up inventory (Fig. 8, top panel). After 2004, global total CH4 emissions show a positive 600 

trend of 3.5 ± 1.8Tg yr-2 (P<0.05), but smaller than the prior bottom-up inventory (4.3 ± 0.6Tg yr-2 

(P<0.05)). Both stalled/decreased emissions during 2001-2004 and increasing trend after 2004 are 

consistent with previous top-down estimations (Saunois et al., 2017).   

 

The trend of global CH4 emission during 2004-2016 calculated by Inv5 (using varying OH) is 4.8 ± 1.8Tg 605 

yr-2 (P<0.05), which is 1.3Tg yr-2 (36%) higher than that calculated by Inv6 (OH fixed to 2000) due to 

the small increase in [OH], and also 0.5Tg yr-2 higher than the prior emission trend (4.3 ± 0.6Tg yr-2). 

Accounting for the OH increasing trend leads to increasing the prior trend in Inv5 instead of decreasing 

it in Inv6. When calculating the differences between Inv5 and Inv6 for different latitude intervals, we find 

that before 2004, differences between Inv5 and Inv6 are mainly contributed by northern middle-latitude 610 

regions, whereas after 2004 they are dominated by tropical regions (Fig. 8, bottom). 

 

We further compare CH4 emission trends for the four previously defined emission sectors and the ten 

continental regions between Inv5 and Inv6. As shown in Fig. 9, the positive global CH4 emission trend 
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during 2004-2016 is mainly contributed by anthropogenic sources from agriculture and waste, and fossil 615 

fuel-related activities, which are 1.9±0.7Tg yr-2, and 2.3±0.4Tg yr-2, respectively, as calculated by Inv6 

(fixed OH). Wetland emissions show a small negative trend (-0.5±0.7Tg yr-2) and other natural emissions 

do not show a significant trend (0.04±0.6Tg yr-2). Both sectors show large uncertainties in their trends 

reflecting large year-to-year variations. When considering [OH] variations, Inv5 estimates a higher 

agriculture and waste emission trend (2.4±0.8Tg yr-2) compared to Inv6, mainly contributed by China 620 

(1.5±0.5Tg yr-2 for Inv6 versus 1.7±0.5Tg yr-2 for Inv5) and southern South America (-0.1±0.1Tg yr-2 for 

Inv6 versus 0.1±0.3Tg yr-2 for Inv5). Accounting for interannual OH variations the negative wetland 

emission trend reduces to near zero (0.1±0.6Tg yr-2), mainly due to increased emission trends over 

northern South America (-0.3±0.3Tg yr-2 for Inv6 versus 0.2±0.5Tg yr-2 for Inv5). In contrast to 

agriculture and waste, and wetland emissions, fossil fuel emissions have a similar positive trend of 625 

2.4±0.4Tg yr-2 in Inv5 and Inv6. This result comes from a higher CH4 emission trend over China 

calculated by Inv5 balanced by a lower CH4 emission trend over America and Russia (0.2 ± 0.2Tg yr-2 

for Inv6 versus 0.1 ±0.3Tg yr-2 for Inv5) since the CESM1-WACCM OH field shows a significant 

negative [OH] trend over America (Zhao et al., 2019).  

 630 

4 Conclusions and discussion 

In this study, we have performed six groups of variational Bayesian inversions (top-down, 34 inversions 

in total) using up to 10 different prescribed OH fields to quantify the influence of OH burden, interannual 

variations, and spatial and seasonal distributions on the top-down estimation of i) global total, regional, 

and sectoral CH4 emissions, ii) emission changes between the early 2000s and late 2000s, and iii) year-635 

to-year emission variations. Our top-down system estimates monthly CH4 emissions by assimilating 

surface observations with atmospheric transport of CH4 calculated by the offline version LMDz5B of the 

LMDz atmospheric model using different prescribed OH fields. 
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Based on the ensemble of 10 original OH fields ([OH]GM-CH4:10.3-16.3×105 molec cm-3), the global total 640 

CH4 emissions inverted by our system vary from 518 to 757Tg yr-1 during the early 2000s, similar to the 

CH4 emission range estimated by previous bottom-up syntheses and larger than the range reported by the 

top-down studies (Kirschke et al., 2013; Saunois et al, 2016;2019). The top-down estimated global total 

CH4 emission varies linearly with [OH]GM-CH4, which indicates that at the global scale, a small uncertainty 

of 1×105 molec cm-3 (10%) [OH]GM-CH4 can result in 40.4Tg yr-1 uncertainties in optimized CH4 emissions.   645 

 

At regional scale (excluding the two highest OH fields), CH4 emission uncertainties due to different OH 

global burdens and distributions are largest over South America (37% of multi-inversion mean), South 

Asia (24%), and China (39%), resulting in significant uncertainties in optimized emissions from the 

wetland and agriculture and waste sectors. These uncertainties are comparable in these regions with those 650 

due to model transport errors and inversion system set-up (Locatelli et al., 2013; Saunois et al., 2016). 

For these regions, the uncertainty due to OH is critical for understanding their methane budget. In other 

regions, OH leads to smaller uncertainties compared to that given by Locatelli et al. (2013) and Saunois 

et al. (2016). By performing inversions with globally-scaled OH fields, we calculated that emission 

uncertainties due to different OH spatial and seasonal distributions account for ~50% of total uncertainties 655 

(induced by both different OH burden and different OH spatial and seasonal distributions) over mid-high 

latitude regions and South America. CH4 emission differences due to OH spatial distributions are the 

largest in northern South America and China but are negligible over South Asia and other northern tropical 

regions. Based on CH4 emission optimization with surface observations, our study shows that tropical 

regions appear more sensitive to OH global burden (as less constrained regions used to achieve the global 660 

mass balance of the methane budget) and mid-to-high latitude regions are found sensitive to both OH 

global burden and spatial distributions. 

 

The global CH4 emission change between 2000-2002 and 2007-2009 as estimated by top-down inversions 
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using 6 different OH fields, is 21.9±5.7Tg yr-1, of which 25% (5.1±6.4Tg yr-1) is contributed by OH 665 

interannual variations (mainly by an increase in [OH]), while 75% can be attributed to emission changes 

resulting from the increase in observed CH4 mixing ratios and atmospheric temperature (considering 

constant OH). Among the four emission sectors, wetland emissions (mainly southern tropical wetlands) 

show the largest increase of 2.1±3.4Tg yr-1 in response to OH temporal changes, which account for 60% 

of total wetland emission changes between these two periods. For global total emission changes, OH 670 

spatial distributions lead to lower uncertainties than interannual variations (1.9Tg yr-1 versus 6.4Tg yr-1), 

but at the regional scale, OH spatial distributions and interannual variations are of equal importance for 

quantifying CH4 emission changes. 

 

As the modeled OH used here mainly shows an increase in [OH] (meaning increasing CH4 sink) during 675 

the 2000s, our inversion using year-to-year OH variations infers a 36% higher CH4 emission trend 

compared with an inversion driven by climatological OH over the 2001-2015 period. The different OH 

fields from CCMI models consistently show increasing OH trends during 2000-2010 (Zhao et al., 2019). 

These variations disagree with MCF-constrained [OH], which show a decrease of 8±11% during 2004-

2014 and 7% during 2003-2016 estimated by Rigby et al. (2017) and Turner et al. (2017), respectively. A 680 

drop of OH between 2006-2007 (Rigby et al., 2008, Bousquet et al., 2011) is captured by CESM1-

WACCM OH fields but with (possibly) smaller changes (1%) compared to (the very uncertain) 4±14% 

changes constraint by MCF (Rigby et al., 2008). This OH drop in 2006-2007 results in a 6Tg yr-1 smaller 

increase of CH4 emissions between 2006 and 2007 compared to that derived using constant OH. However, 

such [OH] drop is treated as a year-to-year variation instead of a trend, and cannot fully explain the 685 

resumption of CH4 growth from 2006-2007. Thus, during 2004-2010, at the decadal timescale, if the 

CCMI models represent the OH trend properly, a higher increasing trend of CH4 emissions is needed to 

match the CH4 observations (compared to the CH4 emission trend derived using constant OH). After 2010, 

CCMI models simulated OH trends of different signs (Zhao et al., 2019), thus the influence on the CH4 
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emission trend is more uncertain.   690 

 

The trend and interannual variations of tropospheric OH burden are determined by both precursor 

emissions from anthropogenic and natural sources and climate change (Holmes et al., 2013; Murray et al., 

2014). Based on satellite observations, Gauber et al. (2017) estimated that ~20% decrease in atmospheric 

CO concentrations during 2002-2013 led to an ~8% increase in atmospheric [OH]. The El Niño-Southern 695 

Oscillation (ENSO) has been proven to impact the tropospheric OH burden and CH4 lifetime mainly 

through changes in biomass burning from CO (Nicely et al., 2020; Nguyen et al, 2020) and in NO 

emission from lightning (Murrary et al., 2013; Turner et al., 2018). The ENSO signal is weak during the 

early 2000s, resulting in small interannual variations of tropospheric OH burden (Zhao et al., 2019). The 

mechanisms of OH variations related to ENSO and their impacts on the CH4 budget need to be explored 700 

by inversions, but over a longer time period than this study (e.g. 1980-2010, Zhao et al., 2020). 

 

Compared to previous box-model studies (e.g. Rigby et al., 2017; Turner et al. 2017), the inversions 

performed in this study take advantage of 4D OH fields from CCMI to quantify impacts on regional and 

sectoral emission estimations. Our results indicate that OH spatial distributions, which are difficult to 705 

obtain from proxy observations (e.g. MCF), are equally important as the global OH burden for 

constraining CH4 emissions over mid- and high-latitude regions. Constraining global annual mean OH 

based on proxy observations (e.g. Zhang et al., 2018; Maasakkers et al., 2019) provides a constraint on 

global total methane emissions, through the necessity of balancing the global budget (sum of source – 

sum of sinks = atmospheric growth rate). It also largely reduces uncertainties in optimized CH4 emissions 710 

due to OH over most of the tropical regions but not over South America and overall mid-high latitude 

regions. Also, the spatial and seasonal distributions of OH is found critical to properly infer temporal 

changes of regional and sectoral CH4 emissions.   

 



30 
 

Top-down inversions, particularly variational Bayesian systems, are powerful tools to infer greenhouse 715 

gas budgets, in particular, methane the target of this study. However, they suffer from some limitations 

impacting the budget uncertainty. Some work has been done regarding atmospheric transport errors (e.g., 

Locatelli et al., 2013, 2015) and sensitivity to observation constraints (Locatelli et al., 2015; Houweling 

et al., 2000), but less on the chemistry side of the budget. Overall, our study significantly contributes to 

assessing the impact of OH uncertainty on the CH4 budget. We have shown that it is insufficient to 720 

consider a unique OH field, constant over time, to fully understand and assess the global CH4 budget and 

its changes over time. Indeed, further work is needed to help determining OH fields to be used in future 

variational top-down inversion studies to properly account for changes in both source and sinks. There 

are different ways to optimize the current OH fields. One way can be to build semi-empirical OH fields 

by combining atmospheric chemistry models and observation-based meteorological data and chemical 725 

species concentrations (e.g. NOx, CO, VOCs. etc) as initiated in Spivakovsky et al. (2000); another way 

is conducting multi-species variational inversion of OH (e.g. Zheng et al., 2019) with such HFC species 

(Liang et al., 2017), formaldehyde (Glenn et al., 2019), CH4 (Zhang et al., 2018; Maasakkers et al., 2019), 

or CO (Zheng et al., 2019). In addition, as suggested by Prather et al. (2017), the OH inversion would 

benefit from including in their prior data the responses of [OH] to variations of the precursor emissions 730 

(e.g. biomass burning and lighting) using the uncertainties estimated by 3D models. These resulting OH 

fields should include a mean 3D global [OH] distribution, associated with temporal variations and 

uncertainties. A lot remains to be done to better constrain the chemistry side of the global methane budget, 

a critical step toward its closure.   

 735 
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at http://www.earthsystemgrid.org (Climate Data Gateway at NCAR, 2019). The surface observations for 

CH4 inversions are available at the World Data Centre for Greenhouse Gases (WDCGG, 

https://gaw.kishou.go.jp/, 2019). Other datasets, including INCA OH fields and optimized CH4 emissions, 

can be accessed by contacting the corresponding author. 
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Tables 1050 

 

Table 1. Global tropospheric mean [OH] (×105 molec cm-3) and inter-hemispheric OH ratios (N/S) 

averaged over 2000-2002 for 10 OH fields used in this study. The global tropospheric [OH] weighted by 

reaction with CH4 ([OH]GM-CH4) and weighted by dry air-mass ([OH]GM-M) are both given. 

 1055 

 [OH]GM-CH4 [OH]GM-M N/S 

TransCom 10.6 10.0 1.0 

INCA NMHC-AER-S 10.3 9.4 1.3 

INCA NMHC 11.1 10.4 1.2 

CESM1-WACCM 11.9 11.4 1.3 

CMAM 12.2 11.3 1.2 

EMAC-L90MA 11.8 11.5 1.2 

GEOSCCM 12.6 12.3 1.2 

MOCAGE 15.0 12.5 1.5 

MRI-ESM1r1 10.9 10.6 1.2 

SOCOL3 16.3 14.4 1.5 

Mean±SD 12.3±3.8 11.4±2.8 1.3±0.3 

Mean±SD 

(8 OH)1 
11.3±0.8 10.9±0.9 1.2±0.1 

1 The OH fields simulated by SOCOL3 and MOCAGE are excluded.  

 

Table 2. The global total, hemispheric CH4 emissions, and inter-hemispheric difference of CH4 emissions 

calculated by Inv1 and Inv2 during the early 2000s (2000/07/01-2002/06/01) in Tg yr-1. 

 Unit: Tg yr-1 
Inv1 original OH Inv2 scaled OH 

Global 0-90°N 90°S-0 N-SInv1 Global 0-90°N 90°S-0 N-SInv2 

Prior 522 384 138 246 522 384 138 246 

TransCom 530 368 162 206 549 377 172 205 

INCA NMHC-AER-S 518 380 138 242 553 399 154 245 

INCA NMHC 552 392 160 232 552 392 160 232 

CESM1-WACCM 587 420 166 254 551 400 151 249 

CMAM 599 419 180 239 553 399 154 245 

EMAC-L90MA 589 414 175 239 555 396 159 237 

GEOSCCM 611 424 187 237 550 392 159 233 
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MOCAGE 716 /a / / / / / / 

MRI-ESM1r1 553 396 156 240 548 396 152 244 

SOCOL3 757 / / / / / / / 

Mean±SD 601±78 401±21 166±15 236±14 551±2 393±7 158±7 236±14 
a We do not analyze the hemispheric CH4 emission estimated with MOCAGE and SOCOL3 OH field 1060 

since inversions using the two OH fields calculate much higher CH4 emissions than using other OH fields.  

 

 

Table 3. Global, latitudinal, and regional CH4 emission in Tg yr-1 (mean±SD and the [min-max] range of 

the inversions) calculated by Inv1 and Inv2 during the early 2000s (2000/07/01-2002/06/01) in Tg yr-1 1065 

(excluding MOCAGE and SOCOL-3). The uncertainties (Unc.= (max－min)/multi-inversions mean) 

lead by using different OH fields are compared with the uncertainties in CH4 emissions given by Saunois 

et al. (2016）and Locatelli et al. (2013). 

Study This study (Impact of OH) 
Saunois et 

al. (2016） 

Locatelli et 

al. (2013) 

Period 2000/07/01-2002/06/01 2000-2009 2005 

Experiment Inv1 (Original OH) Inv2 (Scaled OH) 
TD 

ensemble 

Transport 

model 

errors 

Region Mean±SD[range1] Unc. Mean±SD [range] Unc. Unc. Unc. 

global 567±34[518-611] 17% 551±2[548-555] 1% 6% 5% 

60°-90°N 29±1[27-30] 12% 29±1[27-30] 12% 50% 

10%(NH) 
30°N-60°N 174±8[158-183] 14% 172±6[159-178] 11% 20% 

0°-30°N 199±14[178-217] 20% 192±1[191-194] 1% 
13% 

(<30°N) 0°-30°S 147±14[121-167] 30% 140±6[133-153] 14% 
24%(SH) 

30°S-90°S 19±1[17-20] 18% 18±1[18-19] 9% 

America 45±2[42-48] 11% 45±1 [42-46] 8% 25% 37% (North 

America) Canada 27±1[24-28] 17% 27±1 [24-28] 13% 70% 

Europe 27±1 [25-28] 12% 27±1 [25-28] 11% 43% 23% 

Russia 33±1 [30-35] 13% 33±1 [30-34] 12% 31% 38% 

China 42±5 [33-50] 39% 40±3 [35-43] 20% 11% 

25% (Asia) Southeast Asia 38±3 [34-41] 20% 37±0.3 [36-37] 3% 42% 

South Asia 59±6 [51-66] 24% 57±0.8 [56-58] 4% 44% 
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Northern 

South America 
73±9[58-85] 37% 69±4 [65-77] 17% 44% 

48% (South 

America) Southern 

South America 
33±4[27-39] 37% 31±2[29-36] 20% 94% 

Africa 76±4 [68-82] 18% 74±1 [73-77] 6% 42%-45% 30% 

 

 1070 

Table 4. Global and latitudinal percentage changes of CH4 reaction weighted [OH] from 2000-2002 to 

2007-2009. 

 90-30°S 30°S-0° 0°-30°N 30°-90°N Global 

TransCom 0.0% 0.0% 0.0% 0.0% 0.0% 

INCA NMHC -0.5% -0.9% -0.3% -0.2% -0.5% 

CESM1-WACCM 1.1% 1.6% 2.5% 1.2% 1.8% 

EMAC-L90MA -0.1% 0.1% 1.3% 1.1% 0.7% 

GEOSCCM -0.3% 1.1% 1.4% 1.0% 1.0% 

MRI-ESM1r1 -2.0% 0.2% 2.4% 1.7% 1.1% 

 

 

Table 5. Global total emission changes (in Tg yr-1) from the early 2000s (2000/07/01-2002/06/01) to the 1075 

late 2000s (2007/07/01-2009/06/01) calculated to identify the effect of OH fields (Inv3－Inv2), of OH 

fixed to early 2000s (Inv4－Inv2), and the contribution of OH changes from the early to late 2000s to 

top-down estimated CH4 emissions changes (Inv3－Inv4).    

 Inv3－Inv2 Inv4－Inv2 Inv3－Inv4 

TransCom 17.2 17.2 0.0 

INCA NMHC 16.6 19.3 -2.7 

CESM1-WACCM 30.0 18.5 11.5 

EMAC-L90MA 20.4 15.3 5.1 

GEOSCCM 19.1 16.1 3.0 

MRI-ESM1r1 27.8 14.3 13.5 

Mean±SD 21.9±5.7 16.9±1.9 5.1±6.4 

 

 1080 
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Table 6. Global sectoral emission changes (in Tg yr-1) from the early 2000s (2000/07/01-2002/06/01) to 

the late 2000s (2007/07/01-2009/06/01) (mean±SD and the [min-max] range). 1085 

 Inv3－Inv2 Inv4－Inv2 Inv3－Inv4 Prior 

Wetland -3.5±2.5[-6.4- -0.3] -5.6±1.3[-6.8- -3.0] 2.1±3.4[3.3-4.8] 0.0 

Agri-waste 14.2±2.1[12.2-17.2] 12.3±0.7[11.1-13.2] 1.9±2.3[-0.4-5.3] 19.0 

Fossil fuel 8.7±0.8[8.0-10.1] 8.1±0.8[7.1-9.6] 0.6±0.9[-0.1-2.2] 18.0 

Other 2.4±0.5[2.1-3.1] 2.0±0.2[1.7-2.2] 0.5±0.5[-0.1-1.2] 2.5 

Total 21.9±5.7[16.7-30.0] 16.8±1.9[14.3-19.3] 5.1±6.4[-2.5-13.1] 39.4 

 

 

Figures 

 
 1090 

Figure 1. A diagram showing inversion experiments (Inv1–Inv6) performed in this study. For each 

experiment, “Inv” gives the time period of inversion, and “OH” gives the time period of the OH fields 

used in the inversion. Inv1 is performed using the original OH field, whereas Inv2-Inv5 are performed 

using scaled OH fields. The colored boxes on the left and right show analyses of inversions we did to 

examine the OH impacts on inverted CH4 emissions. The brown, yellow, and green textboxes correspond 1095 

to analyses presented in Section 3.1, Section 3.2, and Section 3.3, respectively.   
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Figure 2．Left: The global CH4 emissions from Inv1 (averaged over 2000/07/01-2002/06/01). The 1100 

bottom-up and top-down estimations over 2000-2009 from previous GCP (Kirschke et al., 2013; Saunois 

et al., 2016; 2019) are also presented for comparison. The brown box plot shows the inversion results 

using 10 OH fields, while the orange one shows the results that exclude the largest estimates from the 

SOCOL3 and MOCAGE OH fields. The left, middle and right whisker chart (vertical lines) represent the 

minimum, mean, and maximum values of different inversion, and the left and right edges of boxes 1105 

represent the mean ±one standard deviation. The definition of the box plot is applicable to all those 

hereafter. Right: The relationship between the optimized CH4 emissions (Tg yr-1) in Inv1 and the 

corresponding [OH]GM-CH4 (×105 mole cm-3). The correlation coefficient (r) and the linear regression 

equation fitted to the data are shown inset.     

 1110 
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Figure 3. Zonal (left), and regional averages (right) of CH4 emissions calculated by Inv1 (top row) and 

Inv2 (bottom row) with 8 OH fields from 2000/07/01 to 2002/06/01. Left and right panels: prior (dash 

red line) and mean optimized (solid red line) CH4 emissions for every 15-degree latitudinal band and 10 

regions, respectively. Where USA=America, CAN=Canada, EU=Europe, RUS=Russia, CHN=China, 1115 

SEAS=Southeast Asia, SAS=South Asia, NSA=northern South America, SSA=southern South America, 

AF=Africa. The full names of the abbreviations are applicable to all figures hereafter. The differences 

between prior and optimized emissions (optimized minus prior) are shown by the box plots (defined in 

Fig. 1). Prior and optimized emissions values correspond to the right axes and their differences correspond 

to the left axes. Middle panel: the ratio of the uncertainty range of emissions estimated with different OH 1120 

fields (max-min) in each grid-cell calculated by Inv1 (top) and Inv2 (bottom) to multi-inversion mean 

CH4 emissions.  

   

  



46 
 

 1125 

 
 

Figure 4. Global total CH4 emissions from four broad categories from 2000/07/01-2002/06/01 in Tg yr-

1. The red circles and dots show the prior emissions and mean optimized emissions, respectively, as 

calculated by Inv1 (right axes), and the box plots (defined in Fig. 1) show the difference between 1130 

optimized emissions calculated by Inv1 (blue) and Inv2 (yellow) and prior emissions (optimized minus 

prior, left axes).  
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Figure 5. Same as Fig. 4 but for prior and optimized emissions over 10 emitting regions covering most 1135 

of the emitting lands. W=Wetlands, A=Agri-waste, F=Fossil fuels, and O=Others. In Tg yr-1. 
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 1140 

Figure 6. Top panel: latitudinal emission (every 15-degree latitudinal band) changes in Tg yr-1 from the 

early 2000s (2000/07/01-2002/06/01) to the late 2000s (2007/07/01-2009/06/01) of total, wetlands, 

agriculture and waste, and fossil fuel emissions (Inv3－Inv2). Bottom panel: contribution of OH changes 

on top-down estimated CH4 emission changes between the two periods (Inv3－Inv4). The red lines are 

changes of prior emissions and the black lines are the mean changes of optimized emissions. The box 1145 

plots (defined by Fig. 1) show the standard deviations and ranges calculated with different OH fields.   
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Figure 7. Top panel: optimized global total and sectoral regional emission changes in Tg yr-1 from the 1150 

early 2000s to the late 2000s (y-axis) plotted against prior emission changes between the two time periods 

(x-axis) as derived from Inv2 and Inv3. The prior wetland emissions are constant over time, thus show 

zero changes (all ‘0’ on the x-axis). Bottom panel: contribution of OH changes between the two periods 

on top-down estimated emission changes (Inv3－Inv4). The box plots (defined by Fig. 1) show the 

standard deviations and ranges calculated with different OH fields. 1155 
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Figure 8. Top panel: Time series of global total CH4 emissions calculated by Inv5 (yellow) and Inv6 

(purple) plotted together with prior emissions (black), and [OH]GM-CH4 anomaly of CESM OH fields (blue). 1160 

Bottom panel: the difference of global total (black line) and latitudinal (stack bar plots) CH4 emissions 

between Inv5 and Inv6 (Inv5-Inv6).  

 

 

Figure 9. Comparison between Inv5 (x-axis) and Inv6 (y-axis) estimated global total CH4 emissions 1165 

trends in Tg yr-2 between 2004 and 2015 for the four categories (left) and over the ten continental regions 

(right). The error bars show the trend with 95% confidence intervals.    


