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Abstract 

Secondary organic aerosol (SOA) is an important component of fine particular matter 

(PM2.5) in China. Most air quality models use an equilibrium partitioning method along 

with estimated saturation vapor pressure of semi-volatile organic compounds (SVOCs) to 

predict SOA formation. However, this method ignores partitioning of water vapor to the 

organic aerosols and the organic phase non-ideality, both of which affect the partitioning 

of SVOCs. In this study, the Community Multi-scale Air Quality model (CMAQv5.0.1) 

was used to investigate the above impacts on SOA formation during winter (January) and 

summer (July) of 2013 over eastern China. The organic aerosol module was updated by 

incorporating water partitioning into the organic particulate matter (OPM) and considering 

non-ideality of organic-water mixture. The modified model can generally capture the 

observed organic carbon (OC), the total organic aerosol (OA) and diurnal variation of PM2.5 

at ground sites. SOA concentration shows significant seasonal and spatial variations, with 

high concentration levels in North China Plain (NCP), Central China and Sichuan basin 

(SCB) areas during winter (up to 25 μg m-3) and in Yangtze River Delta (YRD) during 

summer (up to 12 μg m-3). When water partitioning is included in winter, SOA 

concentrations increase slightly, with the monthly-averaged daily maximum relative 

difference of 10-20% at the surface and 10-30% for the whole column, mostly due to the 

increase in anthropogenic SOA. The increase in SOA is more significant in summer, by 

20-90% at the surface and 30-70% for the whole column. The increase of SOA over the 

land is mostly due to biogenic SOA while the increase of SOA over the coastal regions is 

related with that of anthropogenic origin. Further analysis of two representative cities, Jinan 

and Nanjing, shows that changes of SOA are favored under hot and humid conditions. The 

increases in SOA cause a 12% elevation in the aerosol optical depth (AOD) and 15% 

enhancement in the cooling effects of aerosol radiative forcing (ARF) over YRD in summer. 

The aerosol liquid water content associated with OPM (ALWorg) at the surface is relatively 

high over the land in winter and over the ocean in summer, with the monthly-averaged 
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daily maximum of 2-9 and 5-12 μg m-3, respectively. By using the 𝜅-Köhler theory, we 

calculated the hygroscopicity of OA with modeled ALWorg, finding that the correlation 

with O:C ratio varies significantly across different cities and seasons. Water partitioning 

into OPM only promotes SOA formation, while non-ideality of organic-water mixture only 

leads to decreases in SOA in most regions of eastern China. Water partitioning into OPM 

should be considered in air quality models in simulating SOA, especially in hot and humid 

environments.  

Keywords: SOA, non-ideality, water partitioning, hygroscopicity 

1 Introduction 

Secondary organic aerosol (SOA) is formed via a complex interaction of volatile organic 

compounds (VOCs) with oxidants and primary particles emitted from anthropogenic and 

biogenic sources in the atmosphere. As an important component of fine particular matter 

(PM2.5), SOA can cause severe air pollution in urban and suburban areas (Huang et al., 

2014) and exhibit adverse health effects (Polichetti et al., 2009;Feng et al., 2016;Xing et 

al., 2016;Atkinson et al., 2014). SOA also plays an important role in new particle formation 

and particle growth (Man et al., 2015;Zhang et al., 2011;Wiedensohler et al., 2009;Yue et 

al., 2011;Liu et al., 2014;Ehn et al., 2014;Huang et al., 2019;Jokinen et al., 2015) and 

further contributes to the enhancement of cloud condensation nuclei (CCN) (Yue et al., 

2011;Wiedensohler et al., 2009;Liu et al., 2014;Jokinen et al., 2015). This will, in turn, 

impact the atmospheric aerosol burden, precipitation and water circulation, solar radiation 

budget, and climate (Rosenfeld et al., 2008;Spracklen et al., 2011;Quaas et al., 

2008;Ramanathan et al., 2001;Hatzianastassiou et al., 2007;Hegerl et al., 2015). However, 

the mechanisms of these influences are not well understood so far, due to the high 

uncertainties associated with the formation and physical and chemical properties of SOA 

(Shrivastava et al., 2017). Large gaps still exist in SOA mass loadings and properties 
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between model estimates and laboratory and field measurements (Gentner et al., 

2017;Ervens et al., 2011;Hayes et al., 2015). Therefore, it is crucial to explore and resolve 

this issue to improve our knowledge of the roles of SOA in the environment, health, and 

climate.  

Gas-particle partitioning of semi-volatile and low-volatile organic compounds 

generated from VOC oxidation is an important pathway of SOA formation. In most current 

chemical transport models (CTMs), this process is treated as an equilibrium partitioning 

that depends on the mass concentration of organic particulate matter (OPM), ambient 

temperature, the mean molecular weight of OPM, and the volatility of purer condensed 

organics (Pankow, 1994). The volatilities of condensed organic products from a certain 

precursor VOC are either represented by that of several lumped surrogates based on 

chamber experiments (2-product model) (Odum et al., 1996) or fitted into different bins of 

a fixed volatility range (usually 0.01-105 μg m-3) (volatility basis set model, VBS model) 

(Donahue et al., 2006). Although the above models can capture the general trend of SOA 

evolution and mass concentration to some extent (Slowik et al., 2010;Li et al., 2017a;Baek 

et al., 2011;Bergström et al., 2012;Woody et al., 2016;Heald et al., 2006), both of them 

neglected two key factors that may lead to biases: 1) the structures and interactions of 

condensed organics (non-ideality); 2) partitioning of water vapor, an abundant atmospheric 

constituent to OPM. The non-ideality alters the volatility of condensed organics, and thus 

their contributions to the total SOA mass loading (Cappa et al., 2008). Water partitioning 

into OPM can reduce the partial pressure of organics and lead to increase in SOA mass, 

which is called the Raoult’s Law effect (Prisle et al., 2010). This impact may vary for 

different SOA precursors (Healy et al., 2009;Prisle et al., 2010). The above two aspects 

will not only affect the chemical composition of SOA but also the inorganic portion (Ansari 

and Pandis, 2000;Meyer et al., 2009) and optical properties (Liu and Wang, 2010;Denjean 

et al., 2015) of aerosols. 
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Laboratory and field studies have confirmed the fact that water absorbed by SOA 

(quantified as hygroscopicity, к) from a variety of VOCs (Lambe et al., 2011;Zhao et al., 

2016b;Asa-Awuku et al., 2010;Varutbangkul et al., 2006). The hygroscopicity of SOA is 

highly correlated with the oxygen-to-carbon ratio (O:C) and increases with more oxidized 

SOA during photochemical aging (Poulain et al., 2010;Wang et al., 2014;Lambe et al., 

2011;Tritscher et al., 2011a;Zhao et al., 2016b;Massoli et al., 2010;Tritscher et al., 

2011b;Duplissy et al., 2011). The OPM-associated water partitioning can be estimated 

using the к-Köhler theory under the Zdanovskii-Stokes-Robinson (ZSR) assumption of no 

interactions between any constitutes in aerosols (Petters and Kreidenweis, 2007). The total 

water content is the summarization of each constitute at the same RH. Guo et al. (2015) 

found that this simplified method, along with the ISORROPIA model which is used to 

predict aerosol liquid water (ALW) associated with the inorganic portion of aerosols, 

reproduced the observed total ALW in the ambient environment. Pye et al. (2017) applied 

this approach along with a parameterization of overall 𝜅  based on O:C ratio and a 

simplified method to estimate activity coefficients of organics and found that modeled OA 

and ALW are improved during daytime but still biased low at nighttime. Shortcomings still 

exist in the above method for water associated organics (ALWorg) as interactions between 

organic species in the organic-water mixture are not considered, which has been shown to 

play an important role in SOA formation and water partitioning to OPM (Kim et al., 2019). 

A representation of water partitioning along with SVOCs with consideration of water-

organic and organic-organic interactions in CTMs showed significant influences in SOA 

and ALW in the eastern U.S. where biogenic SOA dominated in OA and the internal mixing 

assumed for the aerosol (Pankow et al., 2015;Jathar et al., 2016).   

China has been suffering from severe PM2.5 pollution especially in the eastern region 

with fast urbanization and economic development (Guo et al., 2014;Fu and Chen, 

2017;Yang et al., 2016). The secondary portion has been proved to be dominated in PM2.5 

and organic aerosol increases during haze events (Huang et al., 2014;Sun et al., 2019). In 
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addition, SOA is a very important component of PM2.5 in China that contributes about 20-

50% (Li et al., 2017b). Previous modeling studies indicated that SOA was underpredicted 

in this region (Wang et al., 2011;Lin et al., 2016;Jiang et al., 2012) and the impacts of non-

ideality and water-OPM partitioning have not been evaluated. 

In this study, regional simulations of SOA during January and July of 2013 over 

eastern China under several scenarios were conducted to investigate the seasonal variation 

of SOA due to water partitioning into OPM. Model performances were firstly evaluated 

against observed meteorological parameters (temperature and relative humidity) as well as 

PM2.5, OC, and OA at ground monitoring sites. Then, the regional and seasonal impacts on 

SOA and water content were quantified. Factors related to the impacts on SOA, including 

sources of precursors, chemical compositions and meteorological conditions were further 

analyzed. Lastly, the impacts on aerosol optical properties and hygroscopicity were 

investigated.   

2 Methodology 

The Community Multi-scale Air Quality model (CMAQ v5.0.1) coupled with a modified 

SAPRC-11 was used in this study. Model configurations were largely based on that used 

by Hu et al. (2016) as summarized below. Firstly, SAPRC-11 was expanded for more 

detailed treatment of isoprene oxidation and tracking dicarbonyl (glyoxal and 

methylglyoxal) products from different groups of major precursors (Ying et al., 2015); 

Secondly, heterogeneous formation of secondary nitrate and sulfate from NO2 and SO2 

reaction on particle surface (Ying et al., 2014), and SOA from isoprene epoxydiols 

(IEPOX), methacrylic acid epoxide (MAE) and dicarbonyls through surface-controlled 

reactive uptake (Li et al., 2015;Pankow et al., 2015) were added; Thirdly, SOA yields were 

corrected for vapor wall loss (Zhang et al., 2014). 

Two types of SOA were considered in the current model, “semi-volatile” (SV) portion 

that formed via equilibrium absorption-partitioning of SVOCs, and “non-volatile” (NV) 

portion that formed via direct oxidation of aromatics at low-NOx, isoprene oxidation 

under 
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acidic conditions, reactive uptake of dicarbonyls, IEPOX and MAE, and oligomers. The 163 

SV-SOA module mostly based on that of Pankow et al. (2015) with several updates in the 164 

treatment of primary organic aerosol (POA) by including it in the non-ideality calculation 165 

of the organic-water mixture. The mass distribution of SVOCs between the gas-phase and 166 

particle-phase follows the equation: 167 

𝐾𝑝,𝑖 =
𝐹𝑖

𝑀 ∙ 𝐴𝑖
 (Eq 1)

where 𝐾𝑝,𝑖(𝑚
3𝜇𝑔−1) is the gas/particle partitioning constant for compound i, 𝐹𝑖(μg 𝑚−3)168 

is the concentration of species i in the particle phase, 𝐴𝑖(μg 𝑚−3) is the concentration of169 

species i in the gas phase, and 𝑀(μg 𝑚−3) is the total mass concentration of the absorbing170 

phase. The gas/particle partitioning constant 𝐾𝑝,𝑖 is dependent on the composition of the171 

absorbing organic phase. Pankow et al. (1994) derived 𝐾𝑝,𝑖 for SVOCs partitioning into172 

an absorbing organic phase as: 173 

𝐾𝑝,𝑖 =
𝑅𝑇

106𝑀𝑊̅̅ ̅̅ ̅̅ 𝜉𝑖𝑝𝐿,𝑖
𝑜  (Eq 2)

where 𝑝𝐿,𝑖
𝑜 (atm) is the saturation vapor pressure of the pure compound i at temperature 174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

T(K), 𝜉𝑖 is the activity coefficient of species i in the absorbing organic phase, ̅̅𝑀𝑊̅̅̅(g mol-

1) is the average molecular weight of the absorbing organic phase, R (8.314 J mol-1 K-1) is 

the gas constant, and 106 is used to convert the unit to 𝑚3𝜇𝑔−1.

There are 12 lumped SVOCs generated by oxidation of alkanes, alkenes, and 

aromatics oxidized under different NOx conditions (Table S1). Activity coefficients of 

SVOCs were calculated based on the composition of absorbing organic phase using the 

UNIversal Functional Activity Coefficient (UNIFAC) method (Fredenslund et al., 1975), 

with assigned carbon number (nc), functional groups and energy interaction parameters to 

both SV and NV compounds (Pankow et al., 2015). The UNIFAC model is one of the 

commonly used models that activity coefficients of condensed organics and their 

interactions with water can be estimated. This method has been adopted to investigate the 

impacts of non-ideality and water-OPM partitioning on SOA for different precursors in 
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box models (Seinfeld et al., 2001;Bowman and Melton, 2004) and CTMs (Jathar et al., 187 

2016;Pankow et al., 2015;Kim et al., 2019). The primary organic aerosols (POA) was 188 

assumed to have a bulk composition of ten categories of surrogate species (Table S3), as 189 

used by Li et al. (2015). POA is also involved in the calculation of activity coefficients for 190 

the organics in the condensed phase. Detailed information about the surrogate species 191 

including the structures and properties can be found in Li et al. (2015) and references 192 

therein.  193 

In addition to organic compounds, water partitioning into OPM is enabled according 194 

to Eq 1 and Eq 2. In such a case, the absorbing phase in Eq 1 includes both organic aerosols 195 

and water partitioning into OPM. As water considered in the absorbing phase, it will further 196 

alter the molar fraction of each composition, the activity coefficient of SVOCs and the SV-197 

SOA mass concentrations as a result.  198 

As the water partitioning into OPM is highly correlated with the hygroscopicity of 199 

aerosols (𝜅), their correlation can be expressed by the 𝜅-Köhler theory with Kelvin effect 200 

neglected (Peter et al., 2006): 201 

𝐴𝐿𝑊𝑜𝑟𝑔 = 𝑉𝑜𝑟𝑔𝜅𝑜𝑟𝑔

𝑎𝑤

1 − 𝑎𝑤
 (Eq3)

202 

203 

204 

205 

206 

207 

208 

209 

210 

where Vorg is the volume concentration of organic, and aw is the water activity (assumed to 

be the same as RH). Taken the density of organic aerosol to be 1.2 g cm-3 (Li et al., 2019), 

the hygroscopicity of the total OA can estimated. This simplified method can be used to 

estimate OPM associated water (Guo et al., 2015;Li et al., 2019). In addition, the 

hygroscopicity of organic aerosol is dependent on the degree of oxygenation, showing a 

positive linear relationship with the O:C ratio (Massoli et al., 2010;Duplissy et al., 

2011;Lambe et al., 2011;Hong et al., 2018;Li et al., 2019). We therefore estimated the 

correlation of 𝜅 and O:C ratio at 9 representative cities during January and July with the 

reduced major axis regression method (Ayers, 2001). O:C ratio of the total OA was 

calculated as following:  
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𝑂: 𝐶 = ∑ 𝑓𝑖

𝑛

𝑖=1

(𝑂: 𝐶)𝑖 (Eq4) 

where 𝑓𝑖 and (𝑂: 𝐶)𝑖 are the molar fraction and O:C ratio of organic aerosol component 212 

i. For POA, a fixed molar fraction and composition has been assumed following Li et al.213 

(2015). For SOA, the O:C ratio was estimated by their OM:OC ratio (Simon and Bhave, 214 

2012): 215 

O:C=
12

15
(OM:OC)-

14

15
 (Eq5)

OM:OC ratio of each SOA component follows Pye et al. (2017). 216 

The simulation domain has a horizontal resolution 36 km × 36 km and a vertical 217 

structure of 18 layers up to 21 km, which covers eastern China as shown in Figure S1. 218 

Anthropogenic emissions were generated from the Multi-resolution Emission Inventory for 219 

China (MEIC) (Zhang et al., 2009;Li et al., 2014;Zheng et al., 2014;Liu et al., 2015) v1.0 220 

with a 0.25°× 0.25° resolution (http://www.meicmodel.org) for China, and the Regional 221 

Emission inventory in Asia version 2 (REAS2) (Kurokawa et al., 2013) with a 0.25°× 0.25° 222 

resolution (http://www.nies.go.jp/REAS/) for the rest of the domain. Biogenic emissions 223 

were generated by the Model for Emissions of Gases and Aerosols from Nature (MEGAN) 224 

v2.1, with the leaf area index (LAI) from the 8- day Moderate Resolution Imaging 225 

Spectroradiometer (MODIS) LAI product (MOD15A2) and the plant function types (PFTs) 226 

from the Global Community Land Model (CLM 3.0). Open biomass burning emissions 227 

were generated from the Fire INvnetory from NCAR (FINN) (Wiedinmyer et al., 2011). 228 

Dust and sea salt emissions were generated in line during CMAQ simulations. 229 

Meteorological fields were generated using the Weather Research and Forecasting (WRF) 230 

model v3.6.1 with initial and boundary conditions from the NCEP FNL Operational Model 231 

Global Tropospheric Analyses dataset. More details about the model application can be 232 

found in Hu et al. (2016) 233 

Four scenarios are investigated in this study. The base case (BS) that applied the 234 

default secondary organic aerosol module of CMAQ; the water case (S1) that only water 235 
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partitioning into OPM was considered; the UNIFAC case (S2) that effects of molecular 

structure of the primary and secondary organic species were included; and the combined 

case (S3) that S1 and S2 were combined together.   

3 Results 

3.1 Model evaluation 

Temperature and relative humidity (RH) are the two meteorological factors that affect SOA 

formation. Table 1 shows the comparison of WRF predictions and observations in 8 sub-

regions of the domain (Figure S1). Observed data are accessible from the National Climatic 

Data Center at ftp://ftp.ncdc.noaa.gov/pub/data/noaa. Temperature and RH are well 

captured by WRF in YRD, the Pearl River Delta (PRD), and central regions of China (the 

major regions of eastern China). Model estimates of daily organic carbon (OC) from the 

BS case were compared with measurements at monitoring sites in Beijing and Guangzhou 

during the winter of 2013 (Figure 1(a)). Overall, the ratio between modeled and observed 

OC concentration falls in the range of 1:2 to 2:1, with a correlation coefficient R of 0.70. 

The model tends to underestimate OC, especially in Beijing on highly polluted days (by -

37~48%). No significant improvements to modeled OC were observed in S3. The impacts 

of water co-condensation and polarity of organic condensed species on SOA exhibit strong 

seasonal and spatial features, which are further discussed in Section 4. The impacts in 

Beijing and Guangzhou are not significant during winter. The bias in OC might be due to 

under-estimated POA emissions and under-predicted SOA in CMAQ from missing 

precursors (Hu et al., 2017;Zhao et al., 2016a).  

The model estimate of OA was further investigated. As shown in Figure 1(b), CMAQ 

can well capture the observed diurnal variation of OA at Beijing during wintertime, except 

for the underestimates of peak values. A better agreement between the model and the 

observations is observed on non-polluted days (daily-averaged concentration less than 75 

μg m-3). The monthly-averaged mean fractional bias (MFB) and mean fractional error 

(MFE) are -0.13 and 0.27, respectively. POA is the primary contributor to OA at Beijing 
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in winter, accounting for 88% due to aging of POA not treated in the current model. The 

fraction of SOA is small, resulting in little impacts on SOA by water partitioning into OPM 

and insignificant improvements of the modeled OA in S3.   

Figure S2 shows the comparison of modeled and observed PM2.5 at monitoring sites 

as shown in Figure S1 (a) during July of 2013. Generally, our model can well reproduce 

the diurnal variation of PM2.5 in most regions. Predicted PM2.5 on high concentration days 

are biased low compared to observations, especially in the North Central Plain (NCP). The 

NCP region has the highest PM2.5 from 60 μg m-3 to 300 μg m-3 compared to other regions. 

The bias in modeled PM2.5 is significant in cities in the Northwest. This might be due to 

missing dust emissions in the current inventory (Hu et al., 2016). To further evaluate the 

model performance, statistics of MFB and MFE were plotted against observed PM2.5 

concentration at all monitoring sites (Figure S3). The criteria and goal followed 

recommendations of Boylan and Russell (2006). Our model performed well as most of the 

predictions meet the criteria and a large fraction (>58%) meet the goal. The averaged MFB 

and MFE are -0.28 and 0.39 respectively, indicating slightly underestimate of PM2.5 by the 

model.   

3.2 Impacts of water partitioning on SOA 

Distribution of SOA varied greatly in the two seasons. In winter, SOA is relatively high in 

eastern SCB and in the contiguous areas of Shandong, Henan, Anhui, and Hubei provinces 

(Figure 2 and Figure S4). Monthly-averaged SOA concentrations in the above two areas 

are up to 25 and 15-20 μg m-3, respectively. The major precursors of SOA are originated 

from anthropogenic sources such as dicarbonyl products of aromatics oxidation, xylenes 

and toluene (Figure S5). In summer, surface SOA is high in NE, NCP and YRD regions. 

Shanghai, Jiangsu province and coastal areas of Yellow Sea show the highest SOA of ~9-

12 μg m-3 at the surface and ~20 mg m-2 as the column total (col-SOA) in the atmosphere 

below 21 km (Figure S4). Different from winter SOA, a significant fraction of summer 
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SOA is originated from biogenic emissions in Shanghai and Jiangsu province (Figure S5). 

Anthropogenic SOA is high in July in coastal areas of Yellow Sea and Bohai Bay.  

Combined effects of water partitioning into OPM and non-ideality on SOA formation 

(S3) also exhibit strong seasonal variation. In winter, the increase of SOA is relatively 

small, by ~1-4 μg m-3 (10-20%) at the surface (Figure 2) and less than ~5 mg m-2 (10-30%) 

as for the column concentration (Figure S4). The influences on SOA also differ in different 

altitudes. For example, the maximum increment at the surface is observed in Shandong 

province in NCP (Figure 2), while SOA at higher levels of the atmosphere is more 

significant in South China (Figure S4). The increase in SOA is mostly attributed to 

anthropogenic sources in winter (Figure S5 and S7). In summer, higher temperature and 

relative humidity (RH) promote SOA formation as well as water partitioning into OPM. At 

the surface, SOA increases by 3-9 μg m-3 (40-50%) in coastal areas and 2-9 μg m-3 (20-

90%) over the land, which are dominated by anthropogenic and biogenic origin, 

respectively (Figure S6). For col-SOA, in addition to coastal areas, more significant 

increase is observed in YRD, most of Henan province, and the contiguous areas of Hubei, 

Hunan, and Jiangxi province (Figure S4) by about 30-70%.  

Regional distribution of water partitioning into OPM is similar to the changes of SOA. 

Figure 3 shows the regional distribution of monthly-averaged daily maximum ALWorg. We 

see up to 9 μg m-3 ALWorg at surface occurs in Shandong in winter where great increment 

in SOA appears as well. In other areas, ALWorg is about 2-6 μg m-3. The ratio of ALWorg 

to SOA is about 0.1-0.5 in winter. In summer, water partitioning mostly involves in east 

coastal areas at the surface where significant increase of anthropogenic SOA (such as 

toluene and xylenes) is observed. This might be due to the high polarity of anthropogenic 

SVOCs (having more -COOH groups) that absorb more water. In the coastal areas, ALWorg 

is about 5-12 μg m-3, with a ratio to SOA of 0.3-0.6. ALWorg over the land is about 2-7 μg 

m-3 (ALWorg/SOA ratio of 0.1-0.4) in most areas, which is mostly associated with the

increase of BSOA such as isoprene and monoterpenes with abundant OH group in SVOCs. 
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The highest ALWorg
 is 16 μg m-3 near Shanghai (ALWorg/SOA ratio of 0.57). Water 

partitioning also varies at different altitudes (Figure S9). In winter, more column water 

partitions into OPM (col-ALWorg) in Chongqing, Hunan, Guanxi, Guangdong and Guizhou 

province, with the col-ALWorg/col-SOA ratio of 0.2-0.3. In summer, higher col-ALWorg 

is predicted over the land, especially in YRD, with the col-ALWorg/col-SOA ratio of 0.1-

0.3 over eastern China.  

Figure 4 shows the correlation of 𝜅𝑜𝑟𝑔 with O:C ratio. The estimated O:C ratio is 

within the range of 0.2-0.6. In summer, the oxidation state of OA shows different degrees 

of enhancement compared to winter at most of the cities except Guangzhou, due to 

increased contribution of SOA to total OA. The averaged 𝜅𝑜𝑟𝑔 of OA in each O:C bin 

falls in the range of 0.001-0.1, with the highest 𝜅𝑜𝑟𝑔 (~0.3) at Beijing in summer. The 

linear correlation between 𝜅𝑜𝑟𝑔 and O:C shows significant spatial and seasonal variations. 

For example, the slope of 𝜅𝑜𝑟𝑔 -O:C is much smaller in winter (45-74% less) than in 

summer in the Northern cities such as Shenyang, Beijing, Zhengzhou, and Xi’an, while the 

slope of 𝜅𝑜𝑟𝑔 -O:C in winter is much higher (47-104% more) than in summer in the 

Southern cities, such as Nanjing, Chengdu and Guangzhou. In Jinan and Shanghai, the 

slope is quite similar in both seasons. The fitted correlations are very different from 

previous studies with a relatively higher slope of 𝜅𝑜𝑟𝑔-O:C from 0.18 to 0.37 (Duplissy et 

al., 2011;Lambe et al., 2011;Massoli et al., 2010;Chang et al., 2010), indicating the 

hygroscopicity of aerosols with chemical complexity cannot be simply represented by a 

single parameter such as O:C (Rickards et al., 2013).  

3.3 Impacts on solar radiation  

The impacts on aerosol optical depth (AOD) and aerosol radiative forcing (ARF) were 

further investigated. Figure 5 shows the monthly-averaged AOD at 550 nm in January and 

July of 2013. It was calculated as the accumulation of model estimated extinction 

coefficient of fine particles (EXTi) multiplied by the thickness (HLi) of each layer: 
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AOD = ∑ 𝐸𝑋𝑇𝑖

𝑁

𝑖=1

× 𝐻𝐿𝑖 (Eq6)

Where N is the number of layers. There are two methods to estimate the aerosol extinction 342 
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coefficient in CMAQ. One is using the Mie theory (EXTm), and the other is based on 

extinction values from the IMPROVE monitoring network that considers the impacts of 

hygroscopicity of different aerosol components (EXTr)(Malm et al., 1994). AOD calculated 

with the two types of extinction coefficient are denoted as AODm and AODr, respectively. 

In Figure 5, a clear pattern of high AODr in SCB and NCP and low AODr in west 

China in both winter and summer is observed, consistent with previous studies (He et al., 

2019;He et al., 2016;Luo et al., 2014). An identified trend in AODm is observed as shown 

in Figure S10. The monthly-averaged AODr ranges from 1.1 to 3.5 in January and from 0.4 

to 0.8 in July. AODm is lower than AODr, falling in 0.7-2.2 in January and 0.3-0.6 in July. 

The model significantly overestimates AOD in January but agrees better with observations 

from MODIS in the high regions in July (Figure S11). Biases in the predicted AOD might 

be partially due to the empirical equation applied in the calculation of AOD in CMAQ 

(Wang et al., 2009;Liu et al., 2010), and partially due to the uncertainties of fine AOD 

overland from MODIS data (Wang et al., 2009;Levy et al., 2010). With water partitioning 

into OPM, changes in SOA mass concentration and chemical composition lead to increase 

of AOD, which shows a strong spatial and seasonal pattern. In winter, there is no significant 

increase in AODr across the whole domain, due to insignificant changes of SOA. In 

summer, AODr increases in YRD and the adjacent area of Hubei, Hunan, and Jiangxi 

province by up to 12%.  

ARF represents the changes in the radiative flux due to aerosols. The off-line version 

of the Shortwave Radiative Transfer Model For GCMs (RRTMG_SW) is used to calculate 

the direct radiative effect of aerosols on shortwave radiation (Iacono et al., 2008). Generally, 

fine aerosols exhibit cooling effects on the shortwave radiation in both winter and summer 

over the entire domain as shown in Figure 6. This impact is much stronger in the areas 
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where AOD is high (Figure 5). The ARF at top of atmosphere (TOA) is highest in 

Shandong in winter and coastal areas near Jiangsu province, which are about -12 W m-2 

and -9 W m-2, respectively. In winter, no significant changes of ARF are observed in the 

high regions of eastern China (Figure 6). This is likely attributed to an insignificant 

contribution of SOA to PM2.5 in winter compared to other components with cooling effects, 

such as sulfate. In summer, SOA is an important component of PM2.5 (20-60%), and the 

effects of water partitioning on shortwave radiation is relatively stronger. An enhancement 

of up to 15% in the cooling effects of ARF occurs near YRD region where AOD 

significantly changes as well.  

4 Discussion 

Meteorological conditions and SOA precursors affect the impacts of water partitioning on 

SOA. Figure 7 shows the effects of different factors on the daily maximum change of SOA 

in Jinan and Nanjing, two representative cities in winter and summer, respectively. As 

shown in Figure 7(a), the daily maximum elevation of SOA occurs when RH is greater than 

70% in both cities. This is consistent with the previous study in the Southeast U.S. during 

summer (Pankow et al., 2015). A clear correlation of the changes in SOA with SOA 

concentration in Nanjing (R=0.84) during summer can be observed. However, this 

correlation is relatively weak in Jinan (R=0.44) during winter. There is no strong 

correlation between changes in SOA and temperature as shown in Figure 7(b), likely due 

to the daily variation of SOA mass and composition. To better illustrate the dependency of 

SOA on temperature and relative humidity, an offline calculation of SOA formation was 

performed at Jinan and Nanjing when the daily maximum SOA increases occurred. We 

assumed temperature (T) and water vapor mixing ratio (QV) to be within the range of 𝑋̅ ± 

𝜎 , where 𝑋̅ and 𝜎 are the mean and standard deviation calculated based on WRF 

prediction at each location. We chose 10 evenly distributed values for T and QV within the 

range of 𝑋̅ ± 𝜎. The temperature dependence parameter of saturation vapor pressure (Δ𝐻) 

was also scaled by 0.2, 0,8, 1.4 and 2.0 separately for all the SVOCs. As shown in Figure 
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8, SOA indicates a negative correlation with temperature and a positive correlation with 

RH in both cities. SOA is more sensitive to RH under cool conditions (JN) and to 

temperature under hot conditions (NJ). An interesting finding is that significant increases 

in SOA in the two cities occur during different time periods of the day. Water partitioning 

tends to affect SOA in the afternoon and evening in Jinan, which mostly happens in the 

early morning and at noon in Nanjing. The different timing is likely attributed to a 

substantial increase in SOA precursors in the two cities. In Jinan, the most contributing 

SVOCs are originated from toluene and xylenes oxidation, as well as oligomers formed by 

their oxidation products in OPM. Possible emission sources include transportation, 

petroleum refining, manufacturing, painting, etc. SOA increase in Nanjing is mostly 

associated with biogenic sources including isoprene and monoterpenes. 

Impacts of water partitioning into OPM and non-ideality of organic-water mixture on 

SOA are opposite. Water partitioning alone increases SOA by ~20-60% in winter and ~20-

100% in summer (Figure S12). This is because that the molecular weight of water is quite 

small and will reduce the molar averaged weight of OPM (̅̅𝑀𝑊̅̅̅) in Eq 2 (Pankow et al., 

2015). The reduced ̅̅𝑀𝑊̅̅̅ further increases 𝐾𝑝,𝑖 promoting the mass transfer of SVOCs

from the gas phase to the OPM. On the other hand, by considering non-ideality of organic-

water mixture, activity coefficients of SVOCs are usually greater than 1.0 in this study, 

leading to a decrease in 𝐾𝑝,𝑖. As a result, the total SOA concentration is reduced by up to 

~10% in winter and ~30% in summer in the high regions (Figure S13). Overall, the final 

impacts are the combined consequences of the two “processes”. In winter, the increase of 

SOA caused by water partitioning is offset by the decrease of SOA due to the polarity of 

SVOCs in most areas of the domain, resulting in no significant changes. In summer, effects 

of water partitioning overcome that of SVOC polarity so as the total SOA loading increases. 

This further leads to an enhanced attenuation of shortwave solar radiation and cooling of 

the atmosphere.  

5 Conclusion 
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The WRF/CMAQ model was used to investigate the impacts of water partitioning into 

OPM and non-ideality of organic-water mixture on SOA formation over eastern China 

during January and July of 2013. SOA is greatly enhanced in summer especially in YRD 

and over Yellow Sea by up to 90% and 70% at the surface and the whole column, 

respectively. No significant impacts on SOA are observed in winter. ALWorg is highly 

correlated with the changes of SOA, with the ratio of ALWorg to SOA of 0.1-0.5 and 0.1-

0.6 at the surface where significant changes of SOA occur in winter and summer, 

respectively. By using the modeled ALWorg, correlations between 𝜅𝑜𝑟𝑔  and O:C were 

examined in 9 representative cities, showing significant spatial and seasonal variations. 

The increases in SOA lead to 12% elevation of AOD and 15% enhancement in the cooling 

effects of ARF in summer. The effects of water partitioning into OPM and non-ideality of 

organic-water mixture on SOA were also examined separately. Since the activity 

coefficients of SVOCs are mostly greater than 1.0 during the simulated episode, SOA 

concentrations decrease when non-ideality effect is considered. Daily SOA concentration 

decreases by up to ~10% in winter and ~30% in summer in the high regions. Water 

partitioning alone increases SOA by ~20-60% in winter and ~20-100% in summer. It 

should be noticed that the results shown in this study are the lower limit as the current 

model tends to underestimate SOA. It is crucial to consider both effects in simulating SOA 

formation under hot and humid conditions in CTMs.   
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Figure 1. Comparison of (a) observed and modeled organic carbon concentration at 

University of Beihang (BH), Tsinghua University (TH) and Guangzhou (GZ); (b) observed 

organic aerosol (Obs.) at Beijing and predictions of total OA (pOA) and SOA (pSOA), unit 

is μg m-3. Locations of monitoring sites are shown in Figure S1. 
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Figure 2. Monthly-averaged total SOA in BS and monthly-averaged daily maximum 

changes of SOA due to water partitioning and non-ideality of organic-water mixture. “Abs. 

Diff.” represents absolute differences (S3-BS); “Rel. Diff.” represents relative differences 

((S3-BS)/BS, %). Relative differences are shown in areas with monthly-averaged SOA 

concentration greater than 1 μg m-3. 
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Figure 3. Monthly-averaged daily maximum water partitioning into the organic-phase 

(ALWorg, μg m-3) and the ratio to SOA (ALWorg/SOA) during January and July of 2013. 

AWLorg/SOA is shown in areas with monthly-averaged SOA concentration greater than 1 

μg m-3. 
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Figure 4 The correlation of hygroscopicity of aerosol (𝜅) and O:C ratio at 9 representative 

cities including Shenyang (SS), Beijing (BJ), Jinan (JN), Zhengzhou (ZZ), Xi’an (XA), 

Nanjing (NJ), Shanghai (SH), Chengdu (CD), and Guangzhou (GZ). Gray dots on the 

background represent all the data in January and July, which are categorized into several 

O:C bins. In each bin, the ranges of 𝜅  and O:C ratio are represented by dashed bars 

colored for January (navy) and July (light blue), with the mean value colored by the 

averaged RH of each bin. The mean 𝜅 and O:C ratio are fitted by reduced major axis 

regression.  
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Figure 5. Monthly-averaged AODr at 550 nm and the monthly-averaged daily maximum 

changes of AODr due to water partitioning and the non-ideality of organic-water mixture. 

“Abs. Diff.” represents absolute differences (S3-BS); “Rel. Diff.” represents relative 

differences ((S3-BS)/BS, %).  
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Figure 6. Monthly-averaged daily maximum variation of shortwave direct aerosol 

radiative forcing at the top of atmosphere due to water partitioning during January and July 

of 2013. “Abs. Diff.” represents absolute differences (S3-BS); “Rel. Diff.” represents 

relative differences ((S3-BS)/BS, %). 
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Figure 7. Correlation of water partitioning on SOA with (a) RH (b) temperature at Jinan in 

winter and Nanjing in summer, and the contribution from each SOA component to the total 

SOA increase. In plot (a) and (b), “Abs. Diff.” represents the daily maximum change of 

SOA that is calculated as S3-BS. Color box represents RH in (a) and the hour in the day in 

(b) when daily maximum change of SOA occurred. In (c), the left axis represents 
contribution of each SOA component to the daily maximum SOA change due to water 
partitioning, and the right axis represents the concentration of each SOA component.
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Figure 8. Sensitivity of SOA formation to temperature (TEMP), relative humidity (RH) 

and the temperature dependence parameter of SVP (Δ𝐻) at Jinan (JN, first column) and 

Nanjing (NJ, second column). The relative humidity is showing on the right side of y-axis. 
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