Molecular Characterization of Firework-Related Urban Aerosols using FT-ICR Mass Spectrometry

5

Qiaorong Xie^{1,8}, Sihui Su², Shuang Chen², Yisheng Xu³, Dong Cao⁴, Jing Chen⁵, Lujie Ren², Siyao Yue^{1,6,8}, Wanyu Zhao^{1,8}, Yele Sun¹, Zifa Wang¹, Haijie Tong⁶, Hang Su⁶, Yafang Cheng⁶, Kimitaka Kawamura⁷, Guibin Jiang⁴, Cong-Qiang Liu², and Pingqing Fu²

¹State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric
 Physics, Chinese Academy of Sciences, Beijing 100029, China

²Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
 ³State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
 ⁴State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science,

Chinese Academy of Sciences, Beijing 100085, China
 ⁵School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
 ⁶Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
 ⁷Chubu Institute for Advanced Studies, Chubu University, Kasugai 487-8501, Japan
 ⁸College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

20 Correspondence to: Pingqing Fu (fupingqing@tju.edu.cn)

This supplementary information document contains 12 pages including 3 tables, 7 figures and references.

		All	СНО	CHNO	CHOS	
LNY D	Number frequency	9511	3120	3604	1249	
	Molecular weight (Da)	448±97	456±120	472±112	402±82	
	O/C	0.35±0.14	0.31±0.12	0.33±0.11	0.40±0.13	
	O/C _w	0.36	0.31	0.33	0.39	
	H/C	1.18±0.36	1.14±0.37	1.08±0.29	1.37±0.43	
	H/C _w	1.18	1.10	1.05	1.46	
	OM/OC	1.65±0.22	1.50±0.17	1.60±0.16	1.80±0.21	
	OM/OC _w	1.66	1.50	1.60	1.79	
	DBE	11.2±4.98	12.2±5.95	13.2±4.97	7.21±4.65	
	DBEw	10.8	11.8	13.1	6.05	
	DBE/C	0.47±0.17	0.47±0.18	0.53±0.14	0.37±0.21	
	DBE/C _w	0.48	0.50	0.55	0.33	
LNY N	Number frequency	8426	2618	2515	1626	
	Molecular weight (Da)	413±85	420±100	415±86	402±78	
	O/C	0.34±0.13	0.28±0.12	0.34±0.11	0.34±0.16	
	O/C _w	0.35	0.28	0.34	0.31	
	H/C	1.28±0.38	1.24±0.40	1.14±0.34	1.42±0.42	
	H/C _w	1.28	1.24	1.08	1.50	
	OM/OC	1.66±0.20	1.47±0.16	1.61±0.17	1.71±0.25	
	OM/OC _w	1.67	1.48	1.61	1.68	
	DBE	9.19±4.8	9.98±5.23	11.0±4.50	6.80±4.30	
	DBEw	8.71	9.38	11.3	5.81	
	DBE/C	0.43±0.20	0.42±0.20	0.51±0.17	0.34±0.21	
	DBE/C _w	0.43	0.43	0.54	0.31	

Table S1. Number of compounds in each subgroup and arithmetic and weighted mean elemental ratio for each subgroup in LNY D and LNY N samples.

		All	СНО	CHNO	CHOS	
Normal D	Number frequency	5945	5945 2168		1399	
	Molecular weight (Da)	405±80	400±90	406±79	405±83	
	O/C	0.36±0.15	0.31±0.12	0.34±0.10	0.38±0.15	
	O/C _w	0.36	0.31	0.34	0.36	
	H/C	1.26±0.38	1.14±0.38	1.10±0.34	1.44±0.40	
	H/C _w	1.29	1.12	1.11	1.54	
	OM/OC	1.69±0.22	1.51±0.15	1.62±0.16	1.77±0.24	
	OM/OC _w	1.69	1.51	1.62	1.76	
	DBE	9.01±4.25	10.6±4.95	11.0±4.26	6.49±4.06	
	DBEw	8.59	10.6	10.9	5.38	
	DBE/C	0.44±0.19	0.47±0.19	0.53±0.17	0.34±0.20	
	DBE/C _w	0.42	0.49	0.52	0.29	
Normal N	Number frequency	5454	2071	2140	1243	
	Molecular weight (Da)	416±88	408±99	414±89	395±81	
	O/C	0.37±0.14	0.31±0.11	0.34±0.11	0.41±0.14	
	O/C _w	0.38	0.31	0.34	0.41	
	H/C	1.24±0.36	1.19±0.37	1.11±0.30	1.36±0.42	
	H/C _w	1.23	1.16	1.09	1.40	
	OM/OC	1.70±0.19	1.51±0.15	1.61±0.17	1.81±0.22	
	OM/OC _w	1.72	1.51	1.61	1.82	
	DBE	9.71±4.47	10.2±4.77	11.6±4.20	7.17±4.48	
	DBEw	9.20	10.0	11.4	6.49	
	DBE/C	0.46±0.18	0.45±0.18	0.52±0.15	0.38±0.20	
	DBE/C _w	0.46	0.47	0.53	0.36	

Table S2. Number of compounds in each subgroup and arithmetic and weighted mean elemental ratio for each subgroup in Normal D and Normal N samples.

T 11 C2	0	•	c	1 1	1			r ,	1 1 1	•		1 .	1		1
Ighle N4	(om	narison	ot	chemical	ch	aracterizati	nn nt	water.	.coliihle	organic	com	nounds i	n aerosol	camn	lec
Table 55	• Com	parison	OI.	chennear		aracterizat	1011 01	water	Solution	organic	com	pounds i	II acrosor	samp	103.

Sampling site	Compounds	O/C	H/C	DBE	DBE/C	Ref.
Non-firework	All	0.37±0.14	1.24±0.37	9.36±4.42	0.45±0.18	This study
Firework	All	0.37±0.13	1.23±0.37	10.1±4.82	0.45±0.18	This study
Free tropospheric	All	0.53±0.2	1.48±0.3	6.18±3.0	NA	(Mazzoleni et al., 2012)
Free tropospheric	All	0.46±0.13	1.17±0.26	10.7±4.0	0.47±0.14	(Dzepina et al., 2015)
Rural	All	0.46 ± 0.23	1.34 ± 0.39	5.3 ± 2.6	0.45 ± 0.21	(Lin et al., 2012)
Rural	All	0.28–0.32	1.37–1.46	6.30–7.45	0.33–0.38	(Wozniak et al., 2008)
Marin boundary layer	All	0.36–0.42	1.49–1.56	5.88–6.76	0.28–0.32	(Wozniak et al., 2014)
Remote	All	0.39–0.42	1.30–1.34	7.71–8.38	0.41–0.42	(An et al., 2019)
Free tropospheric	СНО	0.47 ± 0.2	0.47 ± 0.2	0.47 ± 0.2	NA	(Mazzoleni et al., 2012)
Free tropospheric	СНО	0.47 ± 0.14	1.19 ± 0.27	10.8 ± 4.3	0.46 ± 0.14	(Dzepina et al., 2015)
Rural	СНО	0.40 ± 0.21	1.29 ± 0.35	5.6 ± 2.4	0.44 ± 0.18	(Lin et al., 2012)
Urban (hazy)	СНО	0.41 ± 0.19	1.19 ± 0.38	8.0 ± 3.9	0.47 ± 0.19	(Jiang et al., 2016)
Free tropospheric	CHNO	0.57 ± 0.2	0.57 ± 0.2	6.72 ± 2	NA	(Mazzoleni et al., 2012)
Free tropospheric	CHNO	0.45±0.10	1.14±0.22	10.3±2.9	0.51±0.12	(Dzepina et al., 2015)
Rural	CHNO	0.41 ± 0.19	1.15 ± 0.31	6.4 ± 2.1	0.59 ± 0.16	(Lin et al., 2012)
Urban (hazy)	CHNO	0.45 ± 0.22	1.13 ± 0.38	8.8 ± 4.0	0.55 ± 0.19	(Jiang et al., 2016)
Free tropospheric	CHOS	0.56 ± 0.2	1.64 ± 0.3	1.64 ± 0.3	NA	(Mazzoleni et al., 2012)
Free tropospheric	CHOS	0.50±0.11	1.75±0.31	3.5±2.6	0.2±0.14	(Dzepina et al., 2015)
Rural	CHOS	0.55 ± 0.17	1.67 ± 0.31	3.0 ± 1.9	0.25 ± 0.16	(Lin et al., 2012)
Urban (hazy)	CHOS	0.65 ± 0.28	1.64 ± 0.37	3.4 ± 2.4	0.26 ± 0.18	(Jiang et al., 2016)

Figure S1: The clustering air mass two-day backward trajectories.

Figure S2: Intensity of CHO species of subgroups according to the number of O atoms in their molecules.

Figure S3: The H/C (**a**, **b**, **c**) and O/C (**d**, **e**, **f**) ratios of CHO formulae are shown as a function of their neutral mass from NYE D (**a**, **d**), NYE N (**b**, **e**) and LNY D (**c**, **f**) samples with their X_c values color-coded. Grey data points indicate non-aromatic compounds ($X_c < 2.5$), blue to green data (2.5<X_c<2.71) are mono-aromatic compounds and pink to black data ($X_c > 2.71$) includes PAHs. The size of the symbols reflects the relative peak intensities of molecular formulae on a logarithmic scale.

5

Figure S4: Van Krevelen diagrams (the H/C via O/C ratios) for the CHNO compounds with various aromatic index (AI) values ranges. The dashes lines separate the different AI regions. The size of the symbols reflects the relative peak intensities of compounds on a logarithmic scale.

Figure S5: Intensity of CHNO species of subgroups according to the number of N and O atoms in their molecules.

Figure S6: Intensity of CHOS species of subgroups according to the number of O and S atoms in their molecules.

Figure S7: Van Krevelen diagrams (the H/C via O/C ratios) for the CHOS compounds with various aromatic index (AI) values ranges. The dashes lines separate the different AI regions. The size of the symbols reflects the relative peak intensities of compounds on a logarithmic scale.

References

An, Y. Q., Xu, J. Z., Feng, L., Zhang, X. H., Liu, Y. M., Kang, S. C., Jiang, B., and Liao, Y. H.: Molecular characterization of organic aerosol in the Himalayas: insight from ultra-high-resolution mass spectrometry, Atmos. Chem. Phys., 19, 1115-1128, 10.5194/acp-19-1115-2019, 2019.

5 Dzepina, K., Mazzoleni, C., Fialho, P., China, S., Zhang, B., Owen, R. C., Helmig, D., Hueber, J., Kumar, S., Perlinger, J. A., Kramer, L. J., Dziobak, M. P., Ampadu, M. T., Olsen, S., Wuebbles, D. J., and Mazzoleni, L. R.: Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with a long-range transported biomass burning plume, Atmos. Chem. Phys., 15, 5047-5068, 10.5194/acp-15-5047-2015, 2015.

Jiang, B., Kuang, B. Y., Liang, Y., Zhang, J., Huang, X. H., Xu, C., Yu, J. Z., and Shi, Q.: Molecular composition of urban organic aerosols on clear and hazy days in Beijing: a comparative study using FT-ICR MS, Environ. Chem., 13, 888-901, 2016.

- Lin, P., Rincon, A. G., Kalberer, M., and Yu, J. Z.: Elemental composition of HULIS in the Pearl River Delta Region, China: Results inferred from positive and negative electrospray high resolution mass spectrometric data, Environ. Sci. Technol., 46, 7454-7462, 2012.
 Mazzoleni, L. R., Saranjampour, P., Dalbec, M. M., Samburova, V., Hallar, A. G., Zielinska, B., Lowenthal, D. H., and Kohl, S.: Identification of water-soluble organic carbon in non-urban aerosols using ultrahigh-resolution FT-ICR mass spectrometry: Organic anions,
- 15 Environ. Chem., 9, 285-297, 2012. Wozniak, A. S., Bauer, J. E., Sleighter, R. L., Dickhut, R. M., and Hatcher, P. G.: Technical Note: Molecular characterization of aerosolderived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Atmos. Chem. Phys., 8, 5099-5111, 10.5194/acp-8-5099-2008, 2008.
- Wozniak, A. S., Willoughby, A. S., Gurganus, S. C., and Hatcher, P. G.: Distinguishing molecular characteristics of aerosol water soluble organic matter from the 2011 trans-North Atlantic US GEOTRACES cruise, Atmos. Chem. Phys., 14, 8419-8434, 2014.