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Abstract. The Earth’s equilibrium climate sensitivity (ECS) to a doubling of atmospheric CO2, along with the transient climate

response (TCR) and greenhouse gas emissions pathways, determines the amount of future warming. Coupled climate models

have in the past been important tools to estimate and understand ECS. ECS estimated from Coupled Model Intercomparison

Project Phase 5 (CMIP5) models lies between 2.0 and 4.7 K (mean of 3.2 K), whereas in the latest CMIP6 the spread has

increased: 1.8-5.5 K (mean of 3.7 K), with 5 out of 25 models exceeding 5 K. It is thus pertinent to understand the causes5

underlying this shift. Here we compare the CMIP5 and CMIP6 model ensembles, and find a systematic shift between CMIP

eras to be unexplained as a process of random sampling from modeled forcing and feedback distributions. Instead, shortwave

feedbacks shift towards more positive values, in particular over the Southern Ocean, driving the shift towards larger ECS values

in many of the models. These results suggest that changes in model treatment of mixed-phase cloud processes and changes

to Antarctic sea ice representation are likely causes of the shift towards larger ECS. Somewhat surprisingly, CMIP6 models10

exhibit less historical warming than CMIP5 models; the ,
::::::
despite

:::
an

:::::::
increase

::
in

::::
TCR

:::::::
between

:::::
CMIP

::::
eras

:::::
(mean

:::::
TCR

::::::::
increased

::::
from

:::
1.7

::
K

::
to

:::
1.9

::::
K).

::::
The evolution of the warming suggests, however, that several of the

::::::
CMIP6

:
models apply too strong

aerosol cooling resulting in too weak mid 20th Century warming compared to the instrumental record.

1 Introduction

The equilibrium climate sensitivity (ECS) is defined as the long term globally-averaged amount of surface temperature increase15

in response to a doubling of atmospheric carbon dioxide (CO2) relative to pre-industrial levels. An expression of ECS can be

obtained from the linearised global radiation balance equation N = F +λT , with N the top-of-atmosphere (TOA) radiation

balance, F an external forcing, λ the total feedback parameter and T the global surface temperature change. Assuming a new

equilibrium is reached (N = 0) after applying a sustained doubling of atmospheric CO2 we obtain:

ECS =
−F 2x

λ
, (1)20

where F2x is the radiative forcing from a doubling of CO2, equal to approximately 3.7 Wm-2. Here λ is the total climate feedback

parameter in units of Wm-2K-1, defined as the sum over all feedback processes, including cloud, water vapor, lapse rate, surface

albedo, Planck and other feedbacks. ECS endures as a key metric to examine the joint effect of forcing and feedback on the
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climate system, and for comparison of different climate models to each other (Andrews et al., 2012) and other lines of evidence

besides climate models (Stevens et al., 2016).25

Constraining the Earth’s ECS is a critical problem in climate science, as an accurate estimate is necessary both for under-

standing the Earth’s past climate changes, but also in practice to provide reliable projections of future warming (Collins et al.,

2013). Despite achieving equilibrium with the deep oceans requiring multiple millenia, Grose et al. (2018) found that ECS

explains more of the inter model spread in surface temperature change over the 21st Century than other metrics of climate

sensitivity, such as the commonly used transient climate response (TCR), which is the warming by the time of doubling in a30

run with 1 percent increase in CO2 per year. Unfortunately, the Intergovernmental Panel on Climate Change (IPCC) "likely"

range (greater than 66 percent probability) of 1.5-4.5 K for ECS, with a central estimate of about 3 K, has not significantly

changed since it was first proposed four decades ago by Charney et al. (1979) through to the Fifth IPCC Assessment Report

(AR5) (Collins et al., 2013).

Early estimates of ECS were primarily based on various climate model results starting from the pioneering study of Arrhenius35

(1896), though the IPCC AR5 report assessment includes other sources of evidence in addition to raw ECS estimates from

climate models. Recent community efforts to improve on this stalemate on bounding ECS instead focuses entirely on basic

process-understanding, historical warming and paleoclimate evidence (Stevens et al., 2016). This may be viewed as scientists

abandoning climate models as evidence for ECS, but this is not true. On the contrary models are used as tools in several places

within these three lines of evidence, e.g. to estimate forcing, parts of the feedback, and how temporary sea surface temperature40

patterns might affect historical inference (Armour, 2017).

In light of this, it is certainly valuable to understand how models obtain their respective ECS, and more so interesting that

the currently ongoing sixth phase of the Coupled Model Intercomparison Project (CMIP6) exhibit a marked increase in both

inter model mean (3.7 K) and range (1.8-5.5 K) in ECS, relative to the previous CMIP5 phase (3.2 K, 2.0-4.7). More so, the

CMIP6 models thus far exhibit an interesting bi-modal distribution (Fig. 1), indicative that systematic changes to some, but not45

all models are responsible for the upward shift in model ensemble mean ECS.

Indeed, recent studies of several individual CMIP6 models, including CNRM-CM6-1 (Voldoire et al., 2019), CESM2 (Gettel-

man et al., 2019), E3SMv1 (Golaz et al., 2019), and HadGEM3-GC3.1 (Bodas-Salcedo et al., 2019; Andrews et al., accepted),

each with an ECS of about 5 K or greater, have pointed to model parameterisation changes that increased the positive shortwave

cloud feedbacks or added aerosol-cloud interactions, as driving up their ECS values.50

In this study we set out to investigate whether the collective shift in modelled ECS between CMIP5 and CMIP6 could have

happened by chance as the result of a random sampling process in model development, and whether the structure of the forcing

and feedback shows signs of systematic behavior across the ensembles. We round off by inspecting the ability of models to

represent the evolution of the instrumental record warming with a focus on early and late 20th Century warming. The results

allude to excessive aerosol cooling in early historical warming in a majority of the models.55
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2 Model Experiments and Methodology

The CMIP5 ensemble analyzed in this work includes 27 models, and the CMIP6 ensemble includes the 25 members available

at the time of writing. The first realization for each model (r1i1p1 for CMIP5 and r1i1p1f1 for CMIP6) was used, and all

climate model output was downloaded from the Earth System Federation Grid (ESGF) nodes. All models are listed in Tables

1 and 2 with their ECS, TCR, and feedback parameter values.60

2.1 Estimation of Model Climate Sensitivities and Feedbacks

The ECS for each model was calculated from the CMIP abrupt4xCO2 simulation, in which the CO2 concentration is abruptly

quadrupled at the beginning of the 150-year simulation and then held constant (Eyring et al., 2016). Since some models exhibit

control state drift, accurate estimates of ECS and TCR require correcting for this, which we do here by assuming the underlying

drift is approximately linear in time over the 150 years. The time slice of the pre-industrial control simulation (piControl),65

corresponding to the 150-year abrupt4xCO2 simulation is first chosen, beginning at the simulation year at which abrupt4xCO2

branched off of piControl. One must be cognisant that this information is not always reliable, so in a few cases the correction

may not be accurate. A linear regression is then performed on the global annual mean piControl surface temperature or TOA

radiative flux values to remove annual fluctuations, which is then used as the new piControl. The regression values are then

subtracted from the global annual mean radiative fluxes and surface temperatures from abrupt4xCO2 to obtain the radiative flux70

and surface temperature anomalies. These resulting anomalies are linearly regressed against each other, following the Gregory

method (Gregory et al., 2004), to obtain the ECS value as one-half of the x-interceptand ,
:
the total climate feedback parameter

λ as the slope of the regression.
:
,
:::
and

:::
the

::::::
forcing

::
as
::::::::
one-half

::
of

:::
the

:::::::::
y-intercept.

::::
This

:::::::
method

::::
does

::::::
include

:::::
what

:
is
:::::
often

:::::::
referred

::
to

::
as

:::
fast

:::::::::::
adjustments,

::::::
insofar

::
as
:::::

they
::::::
happen

::
in

:::::
much

::::
less

::::
than

:
a
:::::

year.
::::
The

::::
thus

::::::::
estimated

::::::
forcing

:::
is,

::::::::
however,

::::::
slightly

::::
low

:::::
biased

::::
due

::
to

::::::::
curvature

::
of

:::::::::
imbalance

::::::
versus

::::::::::
temperature

:::::
found

:::
in

::::::
several

:::::::
models.

::::
The

::::
ECS

:::
and

::::::::
feedback

:::::::::
parameter

:::
do

:::
not75

::::::
change

::::::::::
significantly

::
if

:::
the

:::::::::::::
global-average,

:::::::::::
time-average

::
of

:::
the

:::::::::
piControl

::
is

::::::::
subtracted

:::::
from

:::::::::::
abrupt4xCO2

::::::
instead

::
of

::
a

:::::
linear

:::::::::
regression;

:::::::
however,

::
it
::::::
should

::
be

:::::
noted

:::
that

::::::::::
differences

::
in

:::::::::::
methodology

:::
can

:::::::::
contribute

::::
some

::::::::::
uncertainty

::
to

:::
the

::::
ECS

:::::::::
magnitude

:::::::
(Boucher

::
et
:::
al.,

::::::::::
submitted).

:
Shortwave (SW) and longwave (LW) feedback parameters are calculated in a similar manner, but

using the TOA SW radiative flux anomalies or LW radiative flux anomalies, respectively, instead of the total flux.

TCR is calculated from the 1pctCO2 CMIP simulation (Eyring et al., 2016), in which CO2 is gradually increased at a rate80

of 1% per year. The corresponding time slice of piControl is first removed in the same manner as for ECS, to obtain the global

annual mean 1pctCO2 surface temperature anomalies. TCR is then calculated as the mean surface temperature anomaly in a

20-year period centered on year 70 of the simulation; the year at which the CO2 concentration is doubled.

2.2 Estimation of Model and Observational Historical Warming

Historical warming amounts were computed for each model. The early and late periods are defined as 1900-1969 (pre-1970s85

warming) and 1970-2005 (post-1970s warming), respectively, with years corresponding to the Agung
::::
Santa

::::::
María,

:::
Mt.

:::::::
Agung,

::
El

::::::::
Chichón, and Pinatubo volcanic eruptions (

:::::::::
1902-1904,

:
1963-1964

:
,
:::::::::
1982-1984,

:
and 1990-1993

:
,
::::::::::
respectively) excluded to
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limit the influence of natural volcanic aerosol forcing. Pre-1970s warming is strongly influenced by the uncertain aerosol

cooling that off-set some of the greenhouse gas warming (Stevens, 2015), whereas post-1970s warming is dominated by

greenhouse gas warming, while aerosol cooling only changed slightly, and so is expressive of TCR and ECS (Jiménez-de-la90

Cuesta and Mauritsen, 2019). The warming within each period is defined as the difference in the mean surface temperature

between 1994-2005 and 1970-1989 for the late period, and between 1900-1939 and 1940-1969 for the early period.

Model historical warmings are compared to the same periods from the Cowtan and Way (2014) version 2.0 surface tempera-

ture reconstruction for years 1850 to present. In this reconstruction the land surface temperatures and sea surface temperatures

(SST) are based on the HadCRUT version 4.2.0 and UAH version 5.6 global surface temperature datasets. Missing data are95

infilled by kriging. Data coverage uncertainty and ensemble uncertainty, or uncertainty arising from the choice of parameter

values used to create the reconstruction, are included in the data set. Uncertainty from natural variability within each warming

period is computed based on the 100-member Max Planck Institut MPI-ESM1.1 model Grand Ensemble of historical climate

change simulations (Maher et al., 2019), which is larger than the reconstruction uncertainties. Thus the total observational

warming uncertainty is the sum in quadrature of coverage uncertainty ,
::::
taken

::
as

:::
the

::::::::::::
observational

:::::::::
uncertainty

::::
(the

::::::::
coverage100

:::::::::
uncertainty

:::
and

:
reconstruction parameter uncertainty, and

:
)
::::
plus uncertainty due to natural climate variability

:::::::
estimated

:::::
from

::
the

::::
MPI

::::::
Grand

:::::::::
Ensemble,

:::::::
summed

::
in

:::::::::
quadrature.

3 Comparison of the Model Ensembles

In this section we shall first inspect the global ECS and feedback parameters in the two CMIP ensembles, and then we ask

whether the shift could have happened by chance.105

3.1 Shifts in Climate Sensitivity and Global Feedbacks between CMIP5 and CMIP6

Figure 1 displays the distributions of ECS for CMIP5 and CMIP6, with the mean value and standard deviation for each

ensemble also displayed. The ensemble mean ECS increased from 3.2 K (range of 2.0-4.7 K) for CMIP5 to 3.7 K (1.8-5.5 K)

for CMIP6, an increase of 0.5 K or 17%. Moreover, the CMIP6 distribution is shifted towards higher ECS, with a secondary

peak at approximately 5 K. About 11% of CMIP5 models have an ECS greater than 4 K, compared to 40% of CMIP6 models.110

Only one CMIP6 model, INM-CM4-8, exhibits a relatively smaller ECS (1.81 K) than found in any model in CMIP5.

The average radiative forcing from CO2, as estimated using the Gregory method (Gregory et al., 2004), does not change

substantially between the CMIP ensembles, whereas the range narrows slightly (Fig. 2, Tables 1 and 2). The total feedback

parameter λ however, does exhibit an increase in ensemble mean, from -1.13 Wm-2K-1 (± 0.28) to -1.02 Wm-2K-1 (± 0.32).

This shift towards less negative values is also discernible in Fig. 2, particularly for models with ECS on the high end. Therefore,115

the decrease in λ magnitudes, which alone determines most of the variation in ECS, is the main driver behind the shift toward

higher ECS between the CMIP ensembles.
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3.2 Could We Obtain the CMIP6 Ensemble Mean ECS by Chance?

The results presented in Section 3.1 demonstrated a clear shift in ECS
::::
from

::::::
CMIP5

::
to

:::::::
CMIP6,

:::
but

:::
did

:::
not

::::::::
establish

:
if
::::
that

::::
shift

::::
were

::::::::::
statistically

:::::::::
significant.

::::
The

:::::::
recently

::::::::
published

:::::::::::::::::
Zelinka et al. (2020)

:
,
:::::
found

::::
their

:::::::
increase

:::
in

:::::::::::::
ensemble-mean

::::
ECS

::
to

:::
be120

:::
just

::::
short

:::
of

::::::::
statistical

::::::::::
significance

:::::
(95%

:::::::::
confidence

::::
level

:::
or

:
p
::
<

:::::
0.05)

:::::
using

:
a
:::::::
Welch’s

::::
t-test

:::
for

:::::
equal

::::::
means;

::::
this

::::
t-test

:::::
does

:::
not

::::::
assume

:::::
equal

:::::::
variance

::
in

:::
the

:::::::
samples

:::::
being

:::::::::
compared.

::::::::
However,

:::
for

::
the

::::::
subset

::
of

::::::
CMIP5

::::
and

::::::
CMIP6

::::::
models

:::::::::
examined

::
in

:::
this

:::::
work,

::::
also

::::
using

::
a
:::::::
Welch’s

:::::
t-test,

::
we

::::::
obtain

:
a
::::::::::
statistically

:::::::::
significant

::::
shift.

::::
This

::::
may

:::::
seem

::
to

::
be

::::::::::
inconsistent

::
at

::::
first

::::::
glance,

:::
but

:
it
::::::
should

::
be

:::::
noted

::::
that

:::::::::::::::::
Zelinka et al. (2020)

:::::::
included

:::::
some

::::::
models

::::::
which

:::
we

:::
did

:::
not

:::
and

::::
vice

:::::
versa,

::::::
which

::::
may

::::::::
influence

::
the

::::::
results

::
of

::::::
t-tests. One125

::::::::
However,

:
a
::::::::
potential

:::::::::::
complication

:::::
exists

:::::
when

:::::::
applying

:::::
such

:::::::
standard

:::::::
methods

::
to
::::::::
compare

:::::
mean

:::::
ECS:

::::::::
statistical

::::
tests

:::
for

:::::::::::
independence

::
of

::::::
means

:::::
such

::
as

:::::
t-tests

:::::::
usually

::::
rely

::
on

:::
an

::::::::::
assumption

::
of

::
a
::::::::
Gaussian

::
or

::::::::::::
approximately

::::::::
Gaussian

::::::::::
underlying

::::::::::
distribution,

:::
and

::::
may

:::
not

::
be

::::::::::
appropriate

:::
for

:::::::
samples

::::
with

::::::
skewed

:::::::::::
distributions,

::::
such

:::
as

::::
ECS

::::::::::::::::::
(Roe and Baker, 2007)

:
.

::::::
Instead,

::::
one might view such

:::::::::
generational

:
ensembles as small random samples taken from some generic modelling activities

:::
that

:::
are

::::::
subject

::
to

:::::
noise. In this view, how likely is it that we obtain the CMIP6 ensemble mean ECS increase simply by chance?130

In other words, do the high CMIP6 climate sensitivities represent a statistically significant shift in an envisioned underlying

probability distribution based on modeling, or are they encapsulated by the uncertainty of climate modeling? We address this

question
:::
the

:::::::
question

::
of

::::::::
statistical

::::::::::
significance

:
by assuming the underlying

::::
ECS distribution is well described by Equation (1).

First, one must understand that the mean of the resulting
::::
ECS distribution is generally larger than the median,

::::::
caused

:::
by

::
the

:::::::
positive

::::::::
skewness

:::
of

:::
the

::::::::::
distribution (Roe and Baker, 2007); it should be noted that using the mean λ and

:::::
mean F2x in135

Equation (1)
:::::::
therefore represents the median ECS

::::
rather

::::
than

:::
the

:::::
mean

::::
ECS

::
as
:::

the
::::::::
centroid of the underlying distribution. To

show this
:::
We

::::::
assume

::
a
::::::::
Gaussian

:::::::::
distribution

:::
for

:
λ
::::
and

::::
F2x,

::::
then

:::::::
compute

:::
the

::::
ECS

::::::::::
distribution

::::
with

:::::::
Equation

:::
(1)

:::
and

:::::::::
determine

::
the

:::::::
median

::::
ECS

::::::
values

:::
that

:::::::::
correspond

::
to
:::
the

:::::::
CMIP5

:::
and

:::::::
CMIP6

::::::
means;

:::
the

:::::::::
probability

::
of

::::::::
obtaining

:::::
either

::::::
CMIP

::::
mean

:::::
from

::
the

::::::::
resulting

::::::::::
distribution

:::
can

::::
then

:::
be

:::::::
assessed.

:::
To

:::::
show

::::
how

:::
the

:::::
mean

:::
and

:::::::
median

::
of

:::
the

:::::::::
underlying

::::
ECS

::::::::::
distribution

:::::
differ,

we Monte-Carlo sample feedback parameters from Gaussian distributions with a standard deviation equal to the average of140

the CMIP5 and CMIP6 ensemble standard deviations (0.29 Wm-2K-1, Tables 1 and 2), and forcing centered on 3.7 Wm-2

with a standard deviation of 10 percent.
::::
This

::
is

:::
the

::::::
current

:::
best

::::::::
estimate

::::::::::::::::::
(Etminan et al., 2016),

:::
and

::::::::
choosing

::
a

:::::::
different

:::::
value

:::
has

::
no

::::::::::
appreciable

:::::
effect

:::
on

::::
our

:::::
results

:::
as

::::::
forcing

::
is
:::
in

:::
the

:::::::::
numerator.

::
A

:::::
range

:::
of

::::::
median

:::::
ECS

::::::
values,

::::::::
including

::::::::
probable

:::
and

::::::::::
improbable

:::::
values

:::::
from

:::::::
between

:::
0.1

::
to

:::::::::::::
approximately

:
6
::
K

:::::::::::::
(corresponding

::
to

:::::
mean

::::::::
feedback

:::::::::
parameters

::
of
::::

-37
::
to

:::::
-0.63

:::::::
Wm-2K-1

:::::
when

:::::::
forcing

:
is
:::
set

::
to

::::
-3.7

::::::
Wm-2),

::::
were

::::::::
assessed,

:::
all

::::
with

:::
the

:::::::
standard

::::::::
deviation

:::
set

::
to

::::
0.29

::::::::
Wm-2K-1. Negative ECS145

as well as values exceeding 10,000 K are omitted. For each value of median ECS we can then evaluate the resulting mean,

which is quite close for lower values of
::::::
median ECS but diverges for higher sensitivities (Fig. 3, upper panel). For the CMIP5

mean of 3.2 K, the corresponding median is 3.0 K , and for the CMIP6 mean of 3.7 K the median is 3.4 K.

Using these medians we next address the question of whether CMIP6 could be obtained simply by chance. To do so, we first

assume the underlying median ECS is 3.0 K and make 100,000 random ensembles each with 25 models
:::
(the

:::
size

::
of
:::
the

:::::::
CMIP6150

::::::::
ensemble

::::::
studied

::::
here). The resulting distribution

::
of

:::::
mean

::::
ECS

::::::
values

::
of

:::
the

::::::
random

:::::::::
ensembles

:
is shown in Figure 3. It turns

5



out that less than 2 percent of the samples exceed 3.7 K, which is the mean of CMIP6. Likewise, if we assume the underlying

median is 3.4 K, centered at CMIP6, then less than 2 percent of the samples have a mean less than 3.2 K, which is the mean of

CMIP5. Thus, even though the change
:::
the

::::
shift in ensemble mean feedback parameter is fairly small, which in turn caused the

shift in ECS , it
::::
ECS

:::::::
between

::::::
CMIP5

::::
and

::::::
CMIP6 is extremely unlikely to have been caused simply by chance.155

4 Decomposition into Longwave and Shortwave Feedbacks

Having established that there is a systematic shift in feedback underlying the increase in ensemble mean ECS from CMIP5 to

CMIP6, we next divide the feedback into longwave, shortwave, all-sky and clear-sky components, and inspect the zonal mean

distribution in order to seek the possible underlying causes.

4.1 Global-Mean All-Sky and Clear-Sky Feedbacks160

Decomposition of the total feedback parameter into the all-sky shortwave (SW; λSW) and longwave (LW; λLW) components,

and examination of the clear-sky (CS) SW and LW feedbacks (λCS,SW; λCS,LW), elucidates which classes of feedbacks drive the

increase in ECS. As shown in Fig. 4 (top panel), a systematic shift toward more positive λSW has occurred on average for the

CMIP6 ensemble relative to CMIP5: the mean λSW increased from 0.64 to 0.81
:::
0.73

:
Wm-2K-1, whereas the mean λLW remained

almost unchanged (mean of -1.74 and -1.78 Wm-2K-1, respectively). However, much spread in the SW and LW feedbacks exists165

within both ensembles as indicated by the large standard deviations.

The shortwave feedback parameters are strongly associated with the total feedback parameter for both model ensembles,

with a correlation coefficient of 0.83 (p-value less than 0.001) for CMIP5 and 0.56 (p-value of 0.004) for CMIP6, whereas the

longwave feedbacks exhibited small, statistically non-significant correlations with the total feedback parameter (-0.21 and 0.11

for CMIP5 and CMIP6, respectively). The longwave thus exhibits no consistent or systematic shift with ECS, whereas these170

results suggest that λSW is the main cause of both the variations and the shift in λ and thus of ECS. These feedbacks suggest

that much of the spread is caused by cloud parameterisations, and that cloud feedbacks play an important role in the shift to

higher ECS in CMIP6.

In contrast, no systematic shifts are evident in the clear-sky feedback parameters (λCS,SW or λCS,LW) between the CMIP

eras (Fig. 4), and again much spread among models is evident in both ensembles. However, the spread in CMIP6 λCS,SW is175

smaller than that for CMIP5, with a standard deviation of 0.13 compared to 0.18 Wm-2K-1, indicating a greater convergence

of the CMIP6 λCS,SW values, while the standard deviations for the clear-sky longwave feedbacks are of similar magnitude

(0.12 Wm-2K-1). This is in contrast to the all-sky feedbacks, where the standard deviations were larger for both SW and LW for

CMIP6. Lastly, the clear-sky feedbacks in Fig. 4 (bottom panel) do not exhibit a statistically significant slope for both ensembles

despite the spread among models, whereas the all-sky feedbacks (Fig. 4, top panel) exhibited statistically significant, negative180

slopes (-0.37 and -0.47 for CMIP5 and CMIP6, respectively); the dominant direction of the spread has changed between all-

sky and clear-sky. Thus, another feedback besides cloud feedback may be be causing the spread, such as the surface albedo
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feedback, and it is
:
;
:
it
::
is

::::
also notable that the spread in λCS,SW decreased between CMIP5 and CMIP6,

:::::::::
suggesting

::
a

::::
shift

::
in

:::
the

:::::::::
underlying

:::::
albedo

::::::::
feedback

:::::::
between

:::::::::
ensembles.

4.2 Zonal-Mean Feedbacks185

The all-sky and clear-sky feedback parameters are decomposed into zonal-mean feedback parameters, to further investigate the

the causes of the shifts in the shortwave feedbacks and which regions may be the main drivers. The zonal-mean feedbacks are

calculated similarly to the global-mean, annual-mean feedbacks, with the exception that the global-mean, annual-mean surface

temperature anomalies are regressed instead against zonal-mean, annual-mean TOA imbalances. The radiation fluxes are first

divided into 10◦ latitude bins based on each model’s grid, centered between 85◦S to 85◦N, and then the Gregory method is190

applied to compute the zonal-mean all-sky and clear-sky feedbacks. These feedbacks as a function of latitude are displayed in

Fig. 5 for all-sky and Fig. 6 for clear-sky.

Large differences in all-sky feedbacks between CMIP eras tend to occur in the Tropics and towards the poles. In particular,

a broad swath of change is seen for the Southern Hemisphere mid-latitude and polar regions; the largest shortwave feedback

differences are found in these regions, where the CMIP6 zonal shortwave feedbacks have substantially increased (Fig. 5).195

:::::::::
Statistically

:::::::::
significant

:::
(p

:
<
:::::
0.05)

::::::::::
differences

::
in

:::::::::::::
ensemble-mean

:::::
zonal

::::::::
shortwave

:::::::::
feedback,

::::::::
however,

:::::
occur

:::::
solely

::::::
within

:::
the

:::::::
Southern

:::::::::::
Hemisphere,

::::::
within

:::
the

::::
deep

::::::::
Southern

::::::
tropics

:::::
(0-10◦

:::
S),

:::
the

::::::::::
extratropics

::::::
(30-60◦

:::
S),

:::
and

::
in

:::
the

:::::
polar

::::::
region

:::::::
between

:::::
70-80◦

:
S.

:
Though smaller in magnitude, clear-sky zonal shortwave feedback also shows substantial increases between CMIP5

and CMIP6 poleward of 55
::
60◦S, in the Southern Ocean (Fig. 6). The broad increases from CMIP5 to CMIP6 in all-sky λSW

and λLW across much of the Southern Hemisphere extratropics, coupled with changes in clear-sky feedback only within the200

Southern polar regions,
:::::
further

:
indicate that cloud feedbacks have changed between CMIP eras. It is also notable that the

variability among models within the CMIP6 ensemble has decreased relative to CMIP5 in the shortwave for both all-sky and

clear-sky, as indicated by the smaller standard deviation bounds on the ensemble averages in Figs. 5 and 6;
:::
the

::::::
CMIP6

:::::::
models

::::::
display

::::::
greater

:::::::::
agreement

::
on

:::
the

::::::::::
magnitude

:::
and

::::
sign

::
of

:::
the

:::::
zonal

:::::::::
shortwave

:::::::::
feedbacks,

::::::
though

:::::::
whether

:::::::
CMIP6

:::
has

:::::::
become

::::
more

:::::::
realistic

::::::
cannot

::
be

::::::::::
determined

::::
here.205

The largest changes for the
::
and

::::
only

::::::::::
statistically

:::::::::
significant clear-sky feedbacks occur for λCS,SW ::::::::

shortwave
::::::::
feedback

:::::::
changes

::::
occur

:
over the Southern Ocean latitudes (Fig. 6, middle and bottom panels), where a shift towards more positive clear-sky

shortwave feedback is found. This is suggestive of increases in the sea ice induced
:::::::::
ice-induced

:
surface albedo feedback

::
in

::::::
CMIP6, likely due to increased abundance of sea ice near the Antarctic in the underlying piControl climatology in CMIP6

relative to CMIP5 (Fig. 7).
::
In

::::
fact,

:::
the

:::::
only

::::::::::
statistically

:::::::::
significant

::::::
change

:::
in

::::::::
piControl

::
sea

::::
ice

::::::::
coverage

::
is

:::::
found

::
in
::::

the210

:::::::
Southern

::::::
Ocean.

:
Perhaps as a result of this larger base-state abundance, the decrease in sea ice coverage in the Antarctic in the

abrupt4xCO2
:::::::::
simulation is also greater for CMIP6 than CMIP5 (Fig. 7).

:::
This

::::::::
reduction

::
in

:::
sea

:::
ice

:::::::::
abundance

::
in

::::::::::::
abrupt4xCO2

:::::
shown

::
in
::::

Fig.
:::

7,
::::::
defined

:::
as

:::
the

:::::::::
difference

:::::::
between

:::
the

:::::
mean

:::
of

:::
the

::::
last

::
30

:::::
years

:::
of

:::::::::::
abrupt4xCO2

:::
and

:::
the

:::::
mean

:::::
over

:::
the

::::::::
piControl

::::::::::
climatology,

::
is

::::::::::
statistically

::::::::::
significantly

::
(p

::
<

:::::
0.05)

::::::::
correlated

::::
with

::::
ECS

:::
for

:::
the

:::::
70-80◦

:
S
::::
and

:::::
60-70◦

:
S
:::::::
latitude

:::::
bands

::
for

:::
the

:::::::
CMIP6

::::::::
ensemble

::::::::::
(correlation

:::::::::
coefficient

::
of

::::
-0.8

:::
and

::::::
-0.69,

:::::::::::
respectively);

:::
no

:::::::::
statistically

:::::::::
significant

::::::::::
correlations

:::::
were215

:::::
found

:::::::
between

:::
sea

:::
ice

:::::::::
reductions

::
in

::::::::::::
abrupt4xCO2

::
and

:::::
ECS

:::
for

::::::
CMIP5

::::::
within

:::
the

::::::::
Southern

:::::::::::
Hemisphere.

::::::
Greater

:::::::::
decreases
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::
in

::::::::
Antarctic

:::
sea

:::
ice

::
in

:::::::::::
abrupt4xCO2

::
are

::::
thus

:::::::
strongly

:::::::::
associated

::::
with

:::::
larger

:::::
ECS,

:::::
likely

:::::::
through

:::::::::::
strengthening

:::
of

:::
the

:::
sea

:::
ice

:::::
albedo

:::
as

:::::::
indicated

:::
by

:::
the

::::
shift

:::::::
towards

::::
more

:::::::
positive

::::::::
clear-sky

:::::::::
shortwave

::::::::
feedbacks

::
in

::::
this

::::::
region.

:::::::
Further,

:::::::
regional

:::::
maps

::
of

::
the

:::::::::
difference

::
in

::::::::
clear-sky

:::::::::
shortwave

::::::::
feedbacks

::::
(Fig.

:::
8)

:::
and

:::
sea

:::
ice

:::::::
between

:::::::
CMIP5

:::
and

::::::
CMIP6

:::::
(Fig.

::
9)

::::::::::
demonstrate

::::
that

:::
the

::::::::
increased

::::::::
base-state

:::
sea

:::
ice

:::::::::
abundance

::
in

::::::::
piControl,

:::::::
greater

::::::::
reductions

::
in
:::
sea

:::
ice

::
in

::::::::::::
abrupt4xCO2,

::::
and

::::
more

:::::::
positive

::::::::
clear-sky220

::::::::
shortwave

:::::::::
feedbacks

::::
track

::::
each

:::::
other

:::
over

:::::
much

::
of

:::
the

::::::::
Southern

::::::
Ocean;

:::
for

:::::::
example,

:::::
larger

::::::::
clear-sky

::::::::
feedbacks

::
in

:::
the

::::::
region

::
of

::
the

::::::::::::
Bellinghausen

::::
and

:::::::::
Amundsen

::::
Seas

:::
are

::::::::
associated

::::
with

::::::
larger

::::::::
base-state

:::
sea

:::
ice

:::
and

:::::
larger

:::
sea

:::
ice

:::::::::
reductions

::::
with

::::::::
warming.

:::::
These

:::::::
features

:::
are

:::::
found

::
in

:::::
most

::::::
regions

:::
of

:::
the

::::::::
Southern

::::::::::
Hemisphere,

:::::
with

:::
the

::::::::
exception

::
of

::
a
::::::
region

::
off

:::::::
eastern

:::::::::
Antarctica

::::::::
displaying

:::::::
smaller

::::::::
clear-sky

:::::
zonal

:::::::::
feedbacks

::
in

:::::::
CMIP6

::::
than

:::::::
CMIP5,

:::::::::
suggesting

::::
that

:::::::
changes

::::::
across

::::
most

:::
of

:::
the

::::::::
Southern

:::::
Ocean

:::
are

::::::::::
responsible

::
for

:::
the

::::::::
increased

:::::::::
shortwave

:::::::::
feedbacks.

:
225

Larger decreases in sea ice coverage for abrupt4xCO2 are also seen in the Arctic, but accompanied by a much smaller
::::
(and

:::::::::
statistically

:::::::::::
insignificant)

:
change in shortwave feedback relative to the Antarctic;

:::
the

:::::::::
underlying

::::::::
piControl

::
sea

:::
ice

::::::::
coverage

:::
did

:::
not

::::::::::
significantly

:::::::
increase

:::::::
between

:::::::
CMIP5

:::
and

::::::
CMIP6

::
in
:::
the

::::::
Arctic,

:::::::
leading

::
to

:
a
:::::
lesser

::::::
impact

:::
on

:::
the

:::
sea

:::
ice

:::::
albedo

::::::::
feedback.

Furthermore, in contrast to the Antarctic, the difference in net feedback in the Arctic is smaller than for the Antarctic, and

the change in the clear-sky SW
::::::::
shortwave

:
feedback in Northern Hemisphere mid-latitudes is negative (

:::::
albeit

::::::::::
statistically230

::::::::::
insignificant;

:
Fig. 6). Perhaps as a result there is less intense Arctic amplification exhibited by CMIP6 relative to CMIP5

(Fig. 10). Surface temperature increases in the Arctic still exceeds
::::::
exceed warming elsewhere in the CMIP6 ensemble, but

of a somewhat smaller magnitude than CMIP5,
:::::
likely due to a relatively lessened impact of sea ice albedo on the feedback

parameter.

We speculate that much of this behaviour can be explained by an increased focus on the representation of mixed-phase clouds235

by the models
:
’ micro-physics parameterisations. Recent studies have shown that the strength of the negative cloud optical depth

feedback is strongly dependent on the relative partitioning of ice and liquid phase cloud condensate in the control state (Tan

et al., 2016). By increasing the amount of liquid in super-cooled clouds the negative optical depth feedback is weakened and

hence ECS increases. In addition, since liquid clouds are generally more reflective than ice clouds the long-standing Southern

Ocean warm bias may have been reduced through these efforts, thereby resulting in more abundant sea ice. These effects could,240

together, explain the non-trivial increase in ECS in the CMIP6 ensemble over CMIP5.

:::
Our

::::::::
feedback

:::::::
analysis

::::::
results

:::
are

:::::::
broadly

::
in

:::::::::
agreement

:::::
with

:::::
those

::
of

:::::::::::::::::
Zelinka et al. (2020).

::::
The

::::::
global

::::
and

:::::
zonal

::::::
all-sky

::::::::
shortwave

:::::::::
feedbacks

::::::::
examined

::::
here

:::::::
clearly

::::
point

:::
to

::::::
clouds

::
as

:::
the

:::::
main

:::::
driver

::::::
behind

:::
the

:::::
shift

:::::::
towards

:::::
more

::::::
positive

:::::
total

::::::::
feedback,

:::::
which

::
in
::::

turn
::::::

drove
:::
the

::::
shift

:::::::
towards

::::::
higher

::::
ECS.

::::::::::::::::::
Zelinka et al. (2020)

:::
also

:::::
found

::::
the

:::::::
increase

::
in

::::
ECS

:::
to

::
be

::::
due

::
to

:::
less

::::::::
negative

::::
total

::::::::
feedback,

::::::
driven

:::
by

:::::::
stronger

:::::::
positive

:::
low

::::::
cloud

::::::::
shortwave

::::::::::
feedbacks.

:::::
Using

::::::::
radiative

::::::
kernels

::::
and

:::
the245

::::::::::
approximate

::::::
partial

:::::::
radiative

::::::::::
perturbation

::::::::
technique

::
to
::::::
further

:::::::
analyze

:::
the

:::::
cloud

:::::::::
feedbacks,

:::
they

::::::::::
determined

:::
that

:::
the

:::::::::
shortwave

:::
low

:::::
cloud

:::::::
amount

:::
and

:::::::
optical

:::::
depth

::::::::::
(essentially

::::
what

::
is
:::::::
referred

:::
to

::
in

:::::::
Zelinka

::
et

::
al.

:::
as

:::
the

::::::::
scattering

:::::::::
feedback)

:::::::::
feedbacks

:::::
shifted

:::::::
towards

:::::
more

:::::::
positive

::::::
values

::
in

:::::::
CMIP6,

:::::::::
particularly

:::
in

:::
the

::::::::::
extratropics;

::::
this

::::
shift

:::::::::
ultimately

:::::
drove

:::
the

::::
total

::::::::
feedback

::::::::
parameter

:::::::
towards

:::
less

:::::::
negative

::::::
values.

:::
As

::
in

:::
this

:::::
work,

:::
the

:::::::
analysis

::
of

::::::::::::::::::
Zelinka et al. (2020)

::::::
pointed

::::::
towards

:::::::
changes

::
in

::::::
model

:::::::::::
representation

:::
of

:::::
cloud

::::::::
processes

::
in

:::::::
CMIP6

::::::
relative

:::
to

:::::::
CMIP5.

:::::::
Further,

:::::::::
statistically

:::::::::
significant

::::::::
increases

:::
in

:::::::::::::
ensemble-mean250

:::::::::
zonal-mean

::::
low

:::::
cloud

::::::
amount

::::::::
feedback

:::::
were

:::::
found

::
in

:::
the

::::::::
Southern

::::::::::
Hemisphere

::::::::::
extratropics,

:::::::::
consistent

::::
with

:::
our

::::::::::
statistically
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::::::::
significant

::::::::
Southern

:::::::::::
extratropical

:::::::::
differences

::
in

::::::
all-sky

::::
zonal

:::::::::
feedbacks

:::::::
(though

::::
these

::::::
include

:::::
more

::::
than

:::
just

:::::
cloud

::::::::::
feedbacks).

:::::::
Notably,

:::::::::::::::::
Zelinka et al. (2020)

:::::
found

:
a
:::::::
decrease

::
in

:::
the

::::::
spread

::
of

:::
the

:::::
albedo

::::::::
feedback

:::
for

:::::::
CMIP6,

::::::::
consistent

::::
with

:::
the

::::::::
reduction

::
in

::::::::
variability

:::
we

:::::
found

:::
for

:::
the

:::::::
clear-sky

:::::::::
shortwave

::::::::
feedback,

:::
and

::::
Fig.

::
S7

::
in

::::
their

:::::::::::
supplemental

:::::::
material

::::::::
indicates

:::
that

:::::::::::
strengthened

::::::::::
extratropical

::::::
albedo

::::::::
feedback

::::
may

::
be

:::
an

::::::::
important

:::::::::
secondary

:::::
driver

::
of

:::
the

:::::::
increase

::
in

:::::
ECS

::
for

:::::
many

:::::::
CMIP6

:::::::
models.

::::
This

::
is255

::::
again

:::::::::
consistent

::::
with

::::
our

:::::
results

:::
for

::::
the

:::::
zonal

::::::::
shortwave

::::::::
clear-sky

:::::::::
feedback,

:::::
which

::::
also

:::::::::::
demonstrate

:
a
:::::::::
decreased

::::::
spread

::
in

:::::::
clear-sky

:::::::::
shortwave

:::::::::
feedbacks

::
for

:::::::
CMIP6.

::::
Our

:::::
zonal

::::::::
feedback

:::::::
analysis

:::::::
suggests

::::
that

:::
the

::::::::
increased

::::::
albedo

::::::::
feedback

:
is
::::::

found

:::::::
primarily

::
in
:::
the

::::::::
Southern

::::::
Ocean,

:::
and

::
is
::::::
linked

::
to

::::::::
increased

:::
sea

::
ice

::::::::
coverage

::
in

:::
this

::::::
region

::
in

:::
the

::::::
CMIP6

::::::::
piControl

::::::::::
climatology.

::::::::
Increased

::::::::
base-state

:::
sea

:::
ice

::::::::
coverage

:::::
likely

::::::
caused

:::::::
greater

:::::::::
reductions

::
in

:::
sea

:::
ice

::
in

:::
the

::::::::::::
abrupt4xCO2

::::::::::
simulations,

::::::
which

:::
are

::::::::
associated

::::
with

:::::::::::
strengthened

:::::
zonal

::::::::
clear-sky

:::::::::
shortwave

:::::::::
feedbacks

:::
(as

:::
sea

:::
ice

::::::
albedo

:::::::::
feedback)

::
in

:::
the

::::::::
Southern

::::::
Ocean

::::
and260

:::::
larger

::::
ECS.

::::::
Model

:::::::
changes

:::
in

::::::::::::
representation

::
of

::::::
clouds

:::
and

:::
sea

:::
ice

:::
are

::::
thus

:::
the

::::::
likely

::::::
culprits

:::::::
causing

:::
the

::::::
change

:::
in

:::
sea

:::
ice

::::::::::
climatology,

::::::
though

:::
the

::::::
details

::
of

::::
such

:::::::
changes

:::
and

::::
their

::::::
effects

::::
may

::::
vary

::::::
among

::::::
models

::::
and

::::::
warrant

::::::
further

::::::::::::
investigation.

5 Transient Climate Response, Historical Warming and Aerosol Cooling

The instrumental record warming is the prima facie test of climate models: if models are not able to reproduce the history

of warming then they do not represent a credible hypothesis of how the climate system works. However, the warming in a265

model is a result of both climate change feedbacks, radiative forcing, deep ocean heat uptake and pattern effects and therefore

modellers can trade off these factors to obtain an overall warming in line with observations (Kiehl, 2007). Some modelling

centres use this explicitly to tune their models (Hourdin et al., 2017; Mauritsen et al., 2019) whereas others state they do not

do this (Schmidt et al., 2017). In either case, as such representing historical warming is a necessary, but insufficient validation

of a climate model.270

A central metric that incorporates several of the factors relevant for historical warming is the transient climate response

(TCR). TCR is computed from an idealized simulation with a gradual 1% per year CO2 increase as the warming around the

time of doubling. Just as ECS, also TCR has increased in CMIP6 to a mean of 1.98 K (range 1.30-2.91 K) compared to the

CMIP5 mean of 1.75 K (0.96-2.58 K), as seen in Fig. 11. One can obtain an approximate estimate of TCR in terms of physical

bulk properties of the climate system (Jiménez-de-la Cuesta and Mauritsen, 2019):275

TCR ≈ −F 2x

λ− εγ
, (2)

where the product εγ is equal to 0.93 Wm-2K-1 with an uncertainty range of 0.54-1.32 Wm-2K-1 in CMIP5 (Geoffroy et al.,

2013); ε is the deep ocean heat uptake efficacy representative of forced temporary pattern effects, and γ is the deep ocean heat

uptake coefficient. The product εγ controls the relationship between TCR and ECS. Models in CMIP6 follow the predicted

behavior of Equation (2) using CMIP5 parameters surprisingly well (Fig. 11).
::::::::
However,

:::
the

:::::
mean

::
of

::
ε
:
γ
::::::::
increased

:::
to

::::
0.98280

:::::::
Wm-2K-1

:::::
while

::::
the

:::::::::
uncertainty

:::::
range

:::::::::
decreased

:::::::::
(0.73-1.23

::::::::
Wm-2K-1)

:::::
based

:::
on

:::
the

:::::::
CMIP6

::::::::
ensemble

::::::::
examined

::::
here

:::::::
relative

::
to

:::::::
CMIP5.

:::::::
Though

:::
not

:
a
::::::::::

statistically
:::::::::
significant

:::::::::
difference

:::::::
between

:::
the

::::
two

::::::
means,

:::::::
several

::::::
CMIP6

:::::::
models

::::
with

::::
high

:::::
TCR

:::
and

::::
ECS

::::
now

::::
fall

::::::
outside

:::
the

:::::
upper

::::::::::
uncertainty

::::::
bound

:::
for

:::::::
expected

:::::
TCR

:::::
when

:::::
using

:
ε
::
γ

:::::
based

::
on

:::::::
CMIP6

::::
(Fig.

::::
11).

::::::
These
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:::
four

:::::::::
high-TCR

:::::::
CMIP6

::::::
models

:::
are

:::::::::
associated

::::
with

:::::
much

:::::::
smaller

::::::
values

:::
for

:
ε
:
γ
:::::::::
(0.54-0.69

:::::::::
Wm-2K-1)

::::
and

:::
the

::::
total

::::::::
feedback

::::::::
parameter

::::::::
(between

:::::
-0.80

:::
and

:::::
-0.62

:::::::::
Wm-2K-1),

::::::
though

:
it
::
is
:::
left

::
to
::::::
future

::::
work

::
to
::::::::::
disentangle

:::
the

:::::
shifts

::
in

::::::
specific

:::::::::::
phenomena,285

::::
such

::
as

::::::
pattern

::::::
effects,

::::
that

::::::::
contribute

::
to

::::
this.

:

Given that TCR is on average higher in CMIP6 one might naively expect stronger historical warming; however, this is not

the case (Fig. 12). Whereas CMIP5 on average tracked the instrumental record quite well, warming slightly too much in the

latter half of the 20th Century, the CMIP6 models are systematically on average colder than observed starting around 1940, but

nearly catching up with global warming in the beginning of the 21st Century. Looking at individual model simulations (Fig.290

13) reveals that also the spread in overall centennial warming increased in CMIP6, and furthermore that there is not a strong

relationship with TCR.

To demonstrate at this point that the most likely explanation for why CMIP6 on average warms less is because of stronger

aerosol cooling we divide warming into the pre-1970s and post-1970s (Fig. 14). The rationale behind this division is that

aerosol cooling, which has off-set some of the greenhouse gas warming, increased rapidly with industrialisation up until around295

1970, where after air quality regulations have resulted in stabilised global aerosol cooling. Since the amount of anthropogenic

aerosol cooling, in contrast to greenhouse gas warming, is highly uncertain (Bellouin et al., 2019) and varies among models,

total forcing uncertainty in the pre-1970s period is dominating the global temperature response (Stevens, 2015). In the post-

1970s period instead, the greenhouse gas forcing change dominates and is less uncertain, such that the variations in TCR are

more important (Jiménez-de-la Cuesta and Mauritsen, 2019).300

Interestingly, the majority of models from both ensembles underpredicts the pre-1970s warming (Fig. 14), with several
:
a
::::
few

CMIP6 models exhibiting close to no warming
:::
and

::::::
several

:::::::::
exhibiting

::::
less

::::
than

:::
0.1

::
K

::
of

::::::::
warming. This is a strong indication

that many models apply too strong aerosol cooling, and that this is more outspoken in CMIP6. More than
:::::
About half the

models, however, make up for this lack of warming by instead warming more than observed in the post-1970s period. As

expected, there is no apparent relationship between pre-1970s warming and TCR, but a correlation exists with post-1970s305

warming, more
:::
with

::::::
higher

::::
TCR

::::::
models

:::::::::
exhibiting

:::::
larger

:::::::::
post-1970s

::::::::
warming.

:::::
This

:
is
:::::
most apparent for models with TCR of

1.5-2.0 K
::::::::::
(statistically

:::::::::
significant

:::::::::
correlation

:::::::::
coefficient

::
of

::::
0.72

:::
for

:::::::
CMIP6;

::::::
CMIP5

:::::::::
correlation

::
is

:::
not

::::::::::
significant),

:::
and

:::::::
smaller

::
or

::::::::::::
non-significant

:::::::::
correlation

:::
for

:::::
other

::::
TCR

::::::
ranges. None of the models with TCR greater than 2.5 K provide a realistic post-

1970s warming.
::::::::::::
Unfortunately,

::::::::
Radiative

:::::::
Forcing

:::::
Model

::::::::::::::
Intercomparison

::::::
Project

:::::::::::::
(RFMIP)-style

:::::::::
simulations

:::
are

::::::::
available

:::
for

::::::
CMIP6

:::
but

:::
not

:::
for

:::::::
CMIP5,

::
as

:::::
these

::::
types

::
of

:::::::::::
experiments

:::
are

:::
best

::::::
suited

:::
for

:::::::::
deciphering

:::
the

::::::
causes

::
of

:::
the

::::::::::
exaggerated

:::::::
aerosol310

:::::::
cooling.

:

6 Conclusions

We have compared the CMIP5 and CMIP6 model ensembles in terms of their climate sensitivities, feedback parameters, and

historical warming evolution. The ECS and total feedback parameter values were computed with the Gregory method, and we

found that both the ensemble mean ECS and the spread in ECS values has increased between CMIP5 (mean 3.2 K, spread315

2.0-4.7 K) and CMIP6 (mean 3.7 K, spread 1.8-5.5 K).
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We examined whether this shift in ECS between ensembles could have arisen simply by chance, or whether it is a statistically

significant change. This is a critical question, because it speaks to whether such a shift in ECS is truly unexpected or not.

We modeled distributions of forcing and feedbacks as random samples from Gaussian distributions centered at CMIP5, and

determined that the probability of obtaining the CMIP6 ensemble mean ECS value was less than 2 percent. Previous model320

ensemble mean ECS values are similar to that obtained for the CMIP5 ensemble, together suggesting that the CMIP6 ensemble

mean ECS is indeed highly unusual.

This shift towards higher ECS for the CMIP6 ensemble is primarily driven by increases in the shortwave feedback parameter

for some models within the ensemble. The mean total feedback parameter increased from -1.13 Wm-2K-1 for CMIP5 to -1.02

Wm-2K-1 for CMIP6, and the mean all-sky shortwave feedback parameter increased from 0.64 Wm-2K-1 to 0.81 Wm-2K-1.325

While the all-sky shortwave feedback parameters exhibited statistically significant correlations with the total feedbacks for each

CMIP ensemble, no statistically significant correlation or systematic change was seen for the longwave feedback parameters.

This constitutes a systematic shift in feedbacks underlying the increase in ensemble mean ECS, and are suggestive of the role

of cloud feedback processes. The global and zonal clear-sky shortwave feedback parameters also suggested a significant role

for the albedo feedback in the increase in ECS, likely driven by increases in Southern Ocean sea ice coverage in CMIP6 relative330

to CMIP5. We speculate that these results are due to changes in model treatment of mixed-phase cloud processes reducing the

negative optical depth cloud feedback
:::
and

:::::::
affecting

:::
the

:::
low

:::::
cloud

:::::::
amount

::::::::
feedback, and resulting changes to Antarctic sea ice

representation, and are the likely cause of the systematic shift towards larger ECS.

Lastly, we examined the historical warming in the model ensembles, which surprisingly despite an increase in ECS and TCR

is weaker in CMIP6 than in CMIP5. Whereas CMIP5 models on average track the instrumental record warming fairly well,335

CMIP6 models are colder than observed from around 1940 and onwards, to only catch up with global warming in the early

21st Century. Detailed examination of pre- and post-1970s warming is suggestive that the majority of climate models from both

ensembles exaggerate anthropogenic aerosol cooling, but that this is more so the case for some CMIP6 models. Models that

best agree with observations of post-1970s warming tend to have mid-range TCR, whereas no model with a TCR above 2.5 K

matches observations.340
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Table 1. List of CMIP5 Models and model climate parameters.

Model ECS TCR F2x λ λSW λLW λCS,SW λCS,LW

ACCESS1.0 3.76 1.72 2.87 -0.76 0.78 -1.54 0.76 -1.62

BCC-CSM1.1 2.81 1.74 3.36 -1.19 0.49 -1.69 0.77 -1.90

BCC-CSM1.1(m) 2.77 2.00 3.88 -1.40 0.50 -1.90 0.49 -1.97

BNU 3.98 2.58 3.71 -0.93 0.66 -1.60 1.10 -1.75

CCSM4 2.90 1.64 3.43 -1.18 0.68 -1.86 0.94 -1.94

CNRM-CM5 3.21 2.04 3.67 -1.14 0.49 -1.63 0.79 -1.73

CNRM-CM5-2 3.40 1.63 3.68 -1.08 0.58 -1.66 0.90 -1.73

CSIRO-Mk3.6.0 4.05 1.76 2.58 -0.64 1.32 -1.96 0.85 -1.71

CanESM2 3.71 2.37 3.72 -1.00 0.40 -1.40 0.74 -1.86

FGOALS-g2 3.39 1.42 2.79 -0.82 0.76 -1.54 1.01 -1.71

GFDL-CM3 3.85 1.85 2.95 -0.77 1.27 -2.03 0.71 -1.97

GFDL-ESM2G 2.30 0.96 3.00 -1.30 0.55 -1.59 0.64 -1.70

GFDL-ESM2M 2.33 1.23 3.27 -1.40 0.62 -1.68 0.61 -1.69

GISS-E2-H 2.33 1.69 3.72 -1.60 -0.22 -1.37 0.54 -1.65

GISS-E2-R 2.06 1.41 3.66 -1.78 -0.37 -1.44 0.41 -1.96

HADGEM2-ES 3.96 2.38 3.63 -0.92 0.63 -1.54 0.42 -1.68

INM-CM4 2.01 1.22 2.91 -1.45 0.59 -2.04 0.68 -2.01

IPSL-CM5A-LR 3.97 1.94 3.17 -0.80 1.17 -1.97 0.46 -2.01

IPSL-CM5A-MR 4.03 1.96 3.30 -0.82 1.05 -1.87 0.44 -2.01

IPSL-CM5B-LR 2.58 1.44 2.64 -1.02 0.89 -1.91 0.57 -1.89

MIROC-ESM 4.68 2.15 4.23 -0.90 0.99 -1.89 0.82 -1.91

MIROC5 2.70 1.49 4.09 -1.51 0.39 -1.90 0.85 -1.86

MPI-ESM-LR 3.48 1.94 4.05 -1.16 0.51 -1.68 0.73 -1.85

MPI-ESM-MR 3.31 1.93 4.03 -1.22 0.57 -1.78 0.69 -1.91

MPI-ESM-P 3.31 1.96 4.24 -1.28 0.42 -1.71 0.68 -1.86

MRI-CGCM3 2.65 1.58 3.20 -1.21 0.92 -2.13 0.81 -1.93

NORESM1-M 2.75 1.34 3.05 -1.11 0.70 -1.82 0.86 -1.87

Ensemble Mean ± Std: 3.20 ± 0.70 1.75 ± 0.38 3.44 ± 0.48 -1.13 ± 0.28 0.64 ± 0.37 -1.75 ± 0.37 0.71 ± 0.18 -1.84 ± 0.12
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Table 2. List of CMIP6 Models and model climate parameters.

Model ECS TCR F2x λ λSW λLW λCS,SW λCS,LW

BCC-ESM1 3.29 1.77 3.02 -0.92 0.65 -1.57 0.69 -1.83

BCCCSM2MR 3.07 1.60 3.06 -1.00 0.79 -1.79 0.71 -1.91

CESM2 5.15 1.99 3.19 -0.62 1.32 -1.94 0.54 -1.80

CESM2-WACCM 4.65 1.92 3.26 -0.70 1.34 -2.04 0.31 -1.86

CNRM-ESM2-1 4.75 1.82 2.96 -0.62 0.72 -1.35 0.75 -1.59

CNRMCM61 4.81 2.23 3.70 -0.77 0.68 -1.45 0.77 -1.76

CanESM5 5.58 2.75 3.68 -0.66 0.70 -1.36 0.78 -1.86

E3SM-1-0 5.27 2.91 3.28 -0.62 1.27 -1.89 0.54 -1.78

EC-EARTH3-VEG 4.17 2.76 3.34 -0.80 0.82 -1.62 0.86 -1.63

GFDL-CM4 3.79 – 3.14 -0.83 0.77 -1.59 0.80 -1.79

GFDL-ESM4 2.56 – 3.84 -1.50 0.13 -1.63 – –

GISSE2-1-G 2.60 1.66 3.84 -1.48 -0.04 -1.44 – –

GISSE2-1-H 2.99 1.81 3.47 -1.16 0.21 -1.37 – –

HADGEM3-GC31-LL 5.46 2.47 3.48 -0.64 1.64 -2.28 0.67 -1.83

INM-CM4-8 1.81 1.30 2.64 -1.46 0.53 -1.99 0.79 -1.88

IPSL-CM6A-LR 4.50 2.39 3.39 -0.75 1.10 -1.66 0.62 -1.51

MIROC-ES2L 2.66 1.51 4.03 -1.51 0.38 -1.89 0.76 -1.87

MIROC6 2.60 1.58 3.61 -1.39 0.61 -2.05 0.83 -1.98

MPI-ESM1-2-HR 2.84 1.57 3.60 -1.27 0.22 -1.49 0.63 -1.90

MRI-ESM2 3.11 1.67 3.37 -1.08 0.84 -1.93 0.84 -1.95

NESM3 4.50 – 3.78 -0.84 0.61 -1.45 0.81 -1.69

NORCPM1 2.78 1.55 3.58 -1.29 0.62 -1.89 0.82 -1.90

NORESM2-LM 2.49 1.48 3.44 -1.38 1.46 -1.89 0.57 -1.75

SAM0UNICON 3.67 2.08 3.85 -1.05 1.46 -2.56 0.82 -2.01

UKESM1-0-LL 5.31 2.79 3.56 -0.67 1.59 -2.26 0.72 -1.91

Ensemble Mean: 3.78 ± 1.12 1.98 ± 0.48 3.44 ± 0.32 -1.00 ± 0.32 0.82 ± 0.46 -1.78 ± 0.46 0.71 ± 0.13 -1.82 ± 0.12
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Figure 1. Histograms displaying number of CMIP5 (left) or CMIP6 (right) models that fall within 0.5 K ECS bins. ECS mean value and

standard deviation for CMIP5 and CMIP6 ensemble displayed in black and red, respectively, above each histogram.
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Figure 2. ECS vs. total net feedback parameter. Black curve represents the expected ECS value based on a forcing of 3.7 Wm-2 over

the range of feedbacks plotted (top), and effective forcing vs. total net feedback parameter. Black lines represent the expected forcing-

feedback relationship based on the ECS value given in the label of each line (bottom). Circles represent CMIP5 models, right-facing triangles

represent CMIP6 models. Mean value and standard deviation for each parameter for CMIP5 and CMIP6 ensemble displayed in black and

red, respectively, on the appropriate axis in each plot. Plot symbols colored by ECS values as shown in legend.
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Figure 3. Random sampling of ECS from Gaussian distributions of λ and F2x. Upper panel shows relationship between the median and

mean of ECS, arising from the inverse relationship between ECS and λ. Lower panel shows distributions of mean ECS from random 25

member ensembles centered at the means of CMIP5 and CMIP6.
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Figure 4. All-sky λLW vs. λSW for the CMIP5 and CMIP6 ensemble (top), and clear-sky λCS,LW vs. λCS,SW for CMIP5 and CMIP6 (bottom).

CMIP5 as circles and CMIP6 as right-facing triangles. Mean CMIP5 feedbacks and standard deviations as black circle and lines, and mean

CMIP6 and standard deviations as dark gray triangle and lines in each plot. Lines of constant ECS based on forcing of 3.7 Wm-2 in light

gray. Plot symbols colored by ECS values as shown in legend.
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Figure 5. All-sky zonal average λLW (top) and λSW (middle) for the CMIP5 ensemble average (blue) and CMIP6 ensemble (red).
:::::
Dashed

::::
blue

:::
and

::
red

::::
lines

::::::
indicate

::::::
regions

:::::
where

::::::::
difference

::
in

::::
mean

:::::::
feedback

::
is

:::::::::
statistically

::::::::
significant

::
(p
::

<
:::::
0.05). Light blue and red shading represent

standard deviation of each ensemble. Bottom panel displays the difference between the CMIP6 and CMIP5 ensemble average SW, LW, and

net feedbacks as a function of latitude.
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Figure 6. Clear-sky zonal average λCS,LW (top) and λCS,SW (middle) for the CMIP5 ensemble average (blue) and CMIP6 ensemble (red).

:::::
Dashed

::::
blue

:::
and

:::
red

::::
lines

:
in
:::

top
:::
and

::::::
middle

:::::
panels

::::::
indicate

::::::
regions

:::::
where

:::::::
difference

::
in

::::
mean

:::::::
feedback

::
is
:::::::::
statistically

::::::::
significant

::
(p

:
<
:::::
0.05).

Light blue and red shading represent standard deviation of each ensemble. Bottom panel displays the difference between the CMIP6 and

CMIP5 ensemble average SW, LW, and net feedbacks.
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Figure 7. Zonal average sea ice coverage
:::
from

::::::::
piControl for the CMIP5 ensemble average (blue) and CMIP6 ensemble (red)

::
as

::::
solid

:::
red

:::
and

:::
blue

:::::
lines;

:::::
dashed

::::
lines

::
in

::::
these

:::::
curves

::::::
indicate

::::::
regions

:::::
where

::::::::
difference

::
in

::::
mean

:::
sea

::
ice

:::::::
coverage

::
is

:::::::::
statistically

::::::::
significant

::
(p

:
<
::::
0.05).

Light blue and red shading
:::::
around

:::
the

::::
solid

:::
lines

:
represent standard deviation of each ensemble. Dashed

:::::::
Dash-dot lines represent the zonal

average difference
:
in

:::
sea

:::
ice

::::::
coverage

:
between the

::::
zonal

::::::
average

:
piControl simulation

::::
(over

:::
the

:::
150

::::
years

:::::::::::
corresponding

::
to

::::::::::
abrupt4xCO2

:
)

and the mean of the last 30 years of the abrupt4xCO2 simulation.
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Figure 8.
::::
Map

::
of

::
the

::::::::
difference

::
in

:::::::
clear-sky

::::
zonal

::::::::
feedbacks

:::
for

::
the

:::::::
Antarctic

::::::
region

::::::
between

::::::
CMIP6

:::
and

::::::
CMIP5.

:::
Red

:::::
colors

:::::::
indicate

:::
that

::
the

::::::
CMIP6

:::::::
feedback

::
is

::::
larger

::::
than

::::::
CMIP5,

:::
and

::::
blue

::::::
indicates

::::
that

:::::
CMIP6

::
is

::::::
smaller

:::
than

::::::
CMIP5.

::::::::
Averaged

::
on

:
a
::
5◦

::
by

::
5◦

::::
grid.
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Figure 9.
:::
(top

:::::
panel)

::::
Map

::
of

:::
the

:::::::
difference

::
in
:::::
mean

:::::::
piControl

:::
sea

::
ice

::::::::
abundance

:::::::::
climatology

:::::::
between

::::::
CMIP6

:::
and

::::::
CMIP5

:
in
:::

the
::::::::
Antarctic,

:::
and

::::::
(bottom

:::::
panel)

::
of

:::
the

:::::::
difference

:::::::
between

::::::
CMIP6

:::
and

::::::
CMIP5

::
in

::
the

::::::::
reduction

::
of

::
sea

:::
ice

::::::::
abundance

::
in

:::::::::::
abrupt4xCO2.

::::::::
Reduction

::
in

:::
sea

::
ice

:::
for

::::
each

:::::
CMIP

:::::::
ensemble

::::::::
calculated

::
as
::::::::

difference
::

in
:::

sea
:::

ice
:::::::
coverage

:::::::
between

:::
the

::::::
average

:::::::
piControl

::::::::
simulation

::::
(over

:::
the

:::
150

:::::
years

::::::::::
corresponding

::
to

::::::::::
abrupt4xCO2

:
)
:::
and

:::
the

::::
mean

::
of

:::
the

:::
last

::
30

::::
years

::
of

:::
the

::::::::::
abrupt4xCO2

::::::::
simulation.

:::::::
Averaged

::
on

:
a
::
5◦

:
by

::
5◦

:::
grid.
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Figure 10. Zonal average surface temperature anomaly
::::
from

::::::::::
abrupt4xCO2

::::::
relative

:
to
::::::::

piControl for the CMIP5 ensemble average (blue) and

CMIP6 ensemble (red). Light blue and red shading represent standard deviation of each ensemble.
:::::
Dashed

:::
blue

:::
and

:::
red

::::
lines

::::::
indicate

::::::
regions

::::
where

::::::::
difference

::
in

::::
mean

:::::::
feedback

::
is

:::::::::
statistically

:::::::
significant

::
(p
::
<
:::::
0.05).
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Figure 11. TCR vs. ECS for the CMIP5 ensemble (black, circles) and CMIP6 ensemble (red, right-facing triangles). Expected values based

on forcing of 3.7 Wm-2 and value of εγ = 0.93 Wm-2K-1 is the black curve, and uncertainty of εγ value as gray bounding lines
:
.
:::::
Dashed

:::::
black

:::
and

:::
gray

:::::
curves

:::::::
represent

:::
the

::::
same

:::::::
expected

:::::
values

:::
but

::::
based

:::
on

:
a
::::
value

::
of
::
ε

:
γ

:
=
::::
0.98

:::::::
Wm-2K-1,

::::::::
computed

::::
from

::
the

::::::
CMIP6

::::::::
ensemble. ECS

and TCR mean values and standard deviations for CMIP5 and CMIP6 ensemble displayed in black and red, respectively.
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Figure 12. Ensemble mean historical surface warming in CMIP5 and CMIP6 compared with observations. Shading on the models is the

ensemble standard deviation. The baseline is 1850-1900.
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Figure 13. As in Figure 12 but for individual model runs. Upper panel shows CMIP5 models and lower panel shows CMIP6 models. Color

coding is according to the respective models’ TCR.
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Figure 14. Post-1970s warming (surface temperature change between (1970-1990) and (1994-2005) periods) vs. pre-1970s warming (surface

temperature change between (1900-1939) and (1940-1969) periods), with plot symbols colored by TCR bins shown in the legend. Circles

represent CMIP5 models, right-facing triangles represent CMIP6 models. Observational pre- and post-1970s warmings plotted as black circle

with uncertainty as black lines. Solid gray lines represent outer bounds of pre- and post-1970s warming summing to total observed warming.
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