1 Supplement of

2 Elucidating the pollution characteristics of nitrate, sulfate and ammonium in 3 PM2.5 in Chengdu, southwest China based on long-term observations Liuwei Kong¹, Miao Feng², Yafei Liu¹, Yingying Zhang¹, Chen Zhang¹, Chenlu Li¹, Yu 4 Qu³, Junling An³, Xingang Liu^{1,*}, Qinwen Tan^{2,*}, Nianliang Cheng⁴, Yijun Deng⁵, 5 Ruixiao Zhai⁵, Zheng Wang⁵ 6 7 ¹State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China 8 9 ²Chengdu Academy of Environmental Sciences, Chengdu 610072, China 10 ³State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 11 12 100029, China ⁴Beijing Municipal Environmental Monitoring Center, Beijing 100048, China 13 14 ⁵Yuncheng Municipal Ecological Environment Bureau, Yuncheng, 044000, China 15 * Corresponding author. E-mail addresses: liuxingang@bnu.edu.cn (Xingang Liu) and 11923345@qq.com 16 17 (Qinwen Tan) Table S1. Comparison of PM_{2.5}, NO₂ and SO₂ (μ g/m³)mass concentrations from 2013 18 19 to 2017.

	2013	2014	2015	2016	2017
PM _{2.5}	97	77	64	63	56
NO_2	63	59	53	54	53
SO_2	31	19	14	14	11

Data from Chengdu Municipal Ecology and Environment Bureau: Ambient air quality report, last access: 12 February 2020

Fig. S1. Monthly variations in meteorological conditions during the observations(2015-2017).

Fig. S2. Monthly variations in NO₂, SO₂ and NH₃ concentrations from 2015 to 2017.

30 Fig. S3. Seasonal variations in NO_3^- , SO_4^{2-} and NH_4^+ mass concentrations from 2015 31 to 2017.

34 Fig. S4. Diurnal variations in gaseous pollutants from 2015 to 2017.

40 Fig. S6. Weekly variations in NSA during the overall observation period.

43 Fig. S7. Weekly variations in NSA from 2015 to 2017 (Broken line diagram).

46 Fig. S8. Weekly variations in NSA from 2015 to 2017 (Box diagram).

49 Fig. S9. Diurnal variations in NSA during weekdays and weekends from 2015 to 2017.

51 Table S2. Correlation analysis of Fe and Mn concentrations with SOR and NOR under

52 different PM_{2.5} concentrations.

	(Fe+Mn) under different PM _{2.5} concentrations											
		0-50	50-100	100-150	150-200	200-250	>250					
	\mathbb{R}^2	0.0061	0.0989	0.1118	0.0245	-0.0010	-0.0007					
SOR	r	-0.0789**	-0.3149**	-0.3352**	-0.1593**	0.0264	0.0416					
	k	-0.0412	-0.0968	-0.0898	-0.0386	0.0062	0.0086					
	\mathbb{R}^2	0.0014	0.0418	0.0036	0.0258	0.1132	0.1544					
NOR 1	r	0.0392**	-0.2050**	-0.0645**	0.1632**	0.3384**	0.3952**					
	k	0.0083	-0.0285	-0.0081	0.0203	0.0408	0.0423					

 R^2 : Coefficient of determination of the regression analysis; r: Pearson's correlation coefficient;

k: Slope of regression analysis; **: Level of significance: p < 0.01.

58 ISORROPIA-II thermodynamic model sensitivity analysis

59 The sensitivity analysis of NSA was simulated by changing the pollutant concentration input into the ISORROPIA-II thermodynamic model by controlling the variable method. 60 Variables: SO₄²⁻, NO₃⁻ and NH₃ (measurement data during observation periods); 61 Invariants: temperature (T), RH, Na⁺, Cl⁻, Ca²⁺, K⁺ and Mg²⁺ (mean values of 62 63 measurement data during observation periods). For example, to study the response of ammonium and nitrate to changes in sulfate concentration, the Variable is $\mathrm{SO_4^{2-}}$ and 64 Invariants include temperature (T), RH, Na⁺, Cl⁻, Ca²⁺, K⁺, Mg²⁺, NO₃⁻ and NH₃. The 65 degree of response is expressed by the coefficient of variation: standard deviation/mean 66 67 value*100.

Fig. S11. The effect of changes in NO₃⁻, SO₄²⁻, NH₄⁺ and aerosol water content (AWC)
on pH.

74

71

76 Table S3. Simulation of NSA emission reduction control effect (%) and its influence on pH based on the ISORROPIA-II thermodynamic model.

Reduction	Only Reduction NO ₃ ⁻			Only Reduction SO ₄ ²⁻			Only Reduction NH ₃			Synergistic						
	NO ₃ -	SO4 ²⁻	$\mathrm{NH_4}^+$	PH	NO ₃ -	SO_4^{2-}	$\mathrm{NH_4}^+$	PH	NO ₃ -	SO_4^{2-}	$\mathrm{NH_4}^+$	PH	NO ₃ -	SO_4^{2-}	$\mathrm{NH_4}^+$	PH
5%	14.48	5.31	18.46	3.56	9.81	9.95	18.84	3.60	11.69	5.44	17.59	3.49	15.06	10.26	21.63	3.57
10%	18.62	5.30	20.35	3.57	9.25	14.97	21.11	3.67	13.18	5.86	18.72	3.43	19.70	15.14	26.67	3.61
15%	22.81	5.29	22.26	3.63	8.77	19.99	23.35	3.73	14.93	6.33	20.01	3.37	24.37	20.04	31.65	3.63
20%	27.05	5.28	24.20	3.60	8.30	25.01	25.63	3.82	16.99	6.96	21.52	3.29	29.01	25.04	36.63	3.69

Synergistic: simultaneous emissions reductions of NO₃⁻, SO₄²⁻ and NH₃

88

Fig. S13. PolarPlot of the NO_3^- (µg/m³) and NOx (ppb) concentrations from 2015 to 2107 in Chengdu based on the conditional probability functions (CPF) for the following ranges of percentile intervals: 0-25%, 25-50%, 50-75%, and 75-100%. (a) NO_3^- . (b) NOx.

94

Fig. S14. PolarPlot of the SO_4^{2-} (µg/m³) and SO_2 (ppb) concentrations from 2015 to 2107 in Chengdu based on the CPF for the following ranges of percentile intervals: 0-25%, 25-50%, 50-75%, and 75-100%. (a) SO_4^{2-} . (b) SO_2 .

99

100 Fig. S15. PolarPlot of the NH_4^+ ($\mu g/m^3$) and NH_3 (ppb) concentrations from 2015 to

101 2017 in Chengdu based on the CPF for the following ranges of percentile intervals: 0-

102 25%, 25-50%, 50-75%, and 75-100%. (a) NH_4^+ . (b) NH_3 .

105 Fig. S16. Spatial distribution characteristics of NO₂ and SO₂ in the Sichuan Basin in 106 China 2017. Southwest from 2015 to (Data from are 107 https://giovanni.gsfc.nasa.gov/giovanni/, last access: 12 February 2020). (a) Nitrogen 108 dioxide (NO₂) total column (30% cloud screened) (1/cm²), data source: OMI. (b) Sulfur dioxide (SO₂) column mass density (kg/m²), data source: MERRA-2 Model. 109

104

Fig. S17. Gridded NH₃ emissions in southwest China in 2016 from the Multiresolution
Emission Inventory for China (MEIC, website: www.meicmodel.org, last access: 12
February 2020).