
 

Response to comments on the revised submission of ‘Pollutant emission reductions deliver decreased PM2.5- 

caused mortality across China during 2015–2017’ 

 

Response to Editor comments: 

Concerning the data, I would recommend that you store the data behind your study on an open-accessible 

repository (with a DOI). The current way of referencing to data via web addresses is not optimal. Please have a 

look at the data guidelines of ACP: https://www.atmospheric-chemistry-and-physics.net/about/data_policy.html 

We thank the editor for this suggestion and hope that it will be useful to share our data. We have deposited the 

data in ‘Research Data Leeds Repository,’ which is registered with https://www.re3data.org/. The repository 

has the DOI: https://doi.org/10.5518/878. Here we have included the calculated trends from the measurement 

data and both model runs, at each of the 

measurement station locations. We also include 

a copy of the measurement dataset containing 

data from 2014-05-13 to 2020-06-06, along with 

the results of our data cleaning process. We 

think having the measurements dataset in this 

convenient and accessible form will be very 

useful to other researchers. We have amended 

the data availability statement accordingly. 

One further question from my side: In Sect. 2.1, 

you write "We conducted quality control on the 

measured data following the methods outlined 

in Silver et al. (2018), which include excluding 

data with a high proportion of repeated 

measurements and periods of low variability." 

Why do you exclude data with low variability? 

Shouldn't it be the opposite (e.g. excluding local 

plumes/spikes in the observational data)? 

The periods of low variability we refer to are 

periods where almost exactly the same 

measurements are repeated each day for long 

periods. This example shows the anomalous 

data found at some stations which we wish to 

exclude. The algorithm highlights the area of 

almost repeated measurements. If the station 

has more than 60 days of flagged data, we 

exclude it from the analysis. The algorithm is 

https://www.atmospheric-chemistry-and-physics.net/about/data_policy.html
https://www.re3data.org/
https://doi.org/10.5518/878


 

described in our previous paper (https://doi.org/10.1088/1748-9326/aae718). We have amended lines 85-87 to 

better descript this as “We conducted quality control on the measured data following the methods outlined in 

Silver et al. (2018), which include excluding data with a high proportion of repeated measurements identified as 

periods of low variability, which represent periods of missing or invalid data.” 

Response to referee #2 

The authors really worked hard on the new version of the manuscript considering comments from all reviewers. I 

believe the manuscript is in much better shape now and I only have minor comments. 

We thank the reviewer for the positive comments. 

Comments by line: 

115-128. This paragraph corresponds to model evaluation, not to trend estimation, so consider having it in it’s 

own section (maybe even move it to results) 

We thank the referee for pointing this out. We have moved that paragraph as suggested to the next section, 

and given it the sub-heading ‘3.1 Model Evaluation.’ 

Section 3.1. It would be informative to add the trends in aerosol composition for the Spartan Beijing site and 

compare it to a nearby PM2.5 trends, both in observations and model to add to the discussion. 

The SPARTAN data is very useful in evaluating the ability of the model to capture aerosol speciation. However, 

the SPARTAN data is of limited temporal resolution and consistency. The SPARTAN data is collected every two 

weeks, but there are large areas of missing data throughout the time series. As a result, trends calculated from 

the SPARTAN data cannot be confidently compared with those calculated from the CNEMC data or model data. 

For this reason we would prefer not to add trends from the SPARTAN data to our paper. 

159-161. Another reason could be linked to the representation of aerosol speciation, the fact that NO2 trends 

are all negative and the model tends to overpredict the nitrate fraction could drive the PM2.5 trends. Same for 

overprediction of the magnitude of the SO2 trend. 

We agree with the referee that inaccuracies in the model nitrate and sulphate estimations will affect the overall 

PM2.5 trend, among other model inaccuracies. However, due to the lack of speciated aerosol data across China, 

it is difficult to quantify the degree of inaccuracy in the PM2.5 across the model domain. To further highlight this 

issue, we add the sentence ‘However, as the above comparisons with speciated aerosol measurements show, 

the underlying trends in individual aerosol species may contain inaccuracies that affect the overall PM2.5 trend.’   

Fig S4. Add to the caption for what period of time you are comparing 

We have added ‘during 2015-2017’ to the caption. 

Fig S5. Are statistics build with hourly or daily values? 

https://doi.org/10.1088/1748-9326/aae718


 

According to the Zhou et al. paper, the aerosol components were measure at around 15 minute intervals. We 

have added the text ‘The measurements had a time resolution of ~15 minutes and averaged by season’ to the 

caption. 

Minor Edits 

69-72. Since these are previous studies you could change the tense to past? 

We have amended these sentences to past tense, thank you for the correction. 

Abstract. Air pollution is a serious environmental issue and leading contributor to the disease burden in China. Rapid 

reductions in fine particulate matter (PM2.5) concentrations and increased ozone concentrations have occurred across China, 

during 2015 to 2017. We used measurements of particulate matter with a diameter < 2.5 µm (PM2.5) and Ozone (O3) from 

>1000 stations across China along with Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) 

regional air quality simulations, to explore the drivers and impacts of observed trends. The measured nationwide median PM2.5 

trend of -3.4 µg m-3 year-1, was well simulated by the model (-3.5 µg m-3 year-1). With anthropogenic emissions fixed at 2015-

levels, the simulated trend was much weaker (-0.6 µg m-3 year-1), demonstrating interannual variability in meteorology played 

a minor role in the observed PM2.5 trend. The model simulated increased ozone concentrations in line with the measurements, 

but underestimated the magnitude of the observed absolute trend by a factor of 2. We combined simulated trends in PM2.5 

concentrations with an exposure-response function to estimate that reductions in PM2.5 concentrations over this period have 

reduced PM2.5-attribrutable premature morality across China by 150 000 deaths year-1.  

1 Introduction 

Concentrations of particulate matter and ozone across China largely exceed international air quality standards (Reddington et 

al., 2019; Silver et al., 2018). This poor air quality is estimated to hasten the deaths of 870 000 - 2 470 000 people across China 

each year (Apte et al., 2015; Burnett et al., 2018; Cohen et al., 2017; Gu and Yim, 2016; Lelieveld et al., 2015). The Chinese 

government’s efforts to improve air quality began in the 1990s, but emissions of pollutants continued to increase into the 21 st 

century and air pollution worsened (Krotkov et al., 2016; Streets et al., 2008; Zhang et al., 2012). In 2013, China experienced 

episodes of severe particulate matter pollution (Zhang et al., 2016). In response, the Chinese government announced the Action 

Plan on the Prevention and Control of Air Pollution which focused on the reduction of fine particulate matter (PM2.5) through 

stringent emission controls during 2012-2017 (Zheng et al., 2017).  

1.1 Previous studies of trends in China’s air quality 

Satellite remote sensing studies have been used to show large changes in air pollution across China in recent decades, with 

positive trends in Nitrogen Dioxide (NO2) (Van der A et al., 2006), Sulfur Dioxide (SO2) (Zhang et al., 2017) and PM2.5 (Ma 

et al., 2016) during the 1990s and early 2000s. Trends in aerosol optical depth have been used to estimate changes in PM2.5, 



 

which peaked around 2011 (Ma et al., 2016). NO2 across China peaked around 2011 (De Foy et al., 2016; Irie et al., 2016), 

although concentrations in the Pearl River Delta (PRD) peaked earlier and western regions may have peaked later (Cui et al., 

2016). Several remote sensing studies show that SO2 concentrations in China peaked around 2006 (Van Der A et al., 2017; 

Krotkov et al., 2016; Zhang et al., 2017), matching the period of maximum emissions (Duan et al., 2016; Li et al., 2017a; 

Zheng et al., 2018). Analysis of measurements from the Acid Deposition Monitoring Network in East Asia (EANET) shows a 

negative pH trend (i.e., becoming more acidic) from 1999 until a reversal occurs in 2006, matching peak SO2 emissions and 

concentrations (Duan et al., 2016). Measurements of O3 concentrations at background monitoring sites indicate positive trends 

in western China during 1994-2013 (Xu et al., 2016), and Taiwan during 1994-2003 (Chang and Lee, 2007), suggesting that 

O3 has been increasing across China during the past two decades. More recently, measurements at urban sites, also show 

positive O3  trends during 2005-2011 (Zhang et al., 2014). 

The establishment of China’s air pollution monitoring network, operated by the China National Environmental Monitoring 

Centre (CNEMC) (Wang et al., 2015), which includes measurements from over 1600 locations, has enabled more detailed 

analysis of recent air pollution changes (Silver et al., 2018; Zhai et al., 2019). Between 2015 and 2017, PM2.5 concentrations 

across China decreased by 28% (Silver et al., 2018). Zhai et al., (2019) reported a 30-40% decrease in PM2.5 concentrations 

during 2013-2017. In contrast O3 concentrations have increased, with median concentration of O3 across 74 key cities 

increasing from 141 μg m-3 in 2013 to 164 μg m-3 in 2017 (Huang et al., 2018). Silver et al. (2018) found that O3 maximum 8 

h mean concentrations (O3MDA8) increased by 4.6 % year-1 over 2015-2017. Lu et al., (2020) reported positive trends in 

April-September O3MDA8 at 90% of sites during 2013 to 2019. Positive regional O3 trends remain even after meteorological 

variability has been removed (Li et al., 2019b). Trends in NO2 are more variable, with a negative trend reported in eastern 

China and positive trends in western areas (Li and Bai, 2019). Silver et al., (2018) found that NO2 had negative trends in Hong 

Kong and North China Plain regions, but positive trends in the Yangtze River Delta (YRD), Sichuan Basin (SCB) and PRD, 

and no overall trend at the national scale. 

1.2 Identifying drivers of recent trends 

Changes in the concentrations of air pollutants may be caused by changing emissions or by interannual variability of 

meteorology. Stringent emission controls have started to reduce emissions of various pollutants across China. Between 2013 

and 2017, emissions of PM2.5, SO2 and NOx (NO2 + Nitrogen Oxide) declined whereas emissions of Ammonia (NH3) and Non-

Methane Volatile Organic Compounds (NMVOCs) remained fairly constant (Zheng et al., 2018). B. Zheng et al. (2018) also 

demonstrate that emission reductions were primarily driven by pollution controls, rather than decreasing activity rates. 

Meteorological variability alters atmospheric mixing, deposition and transport, all of which can influence the concentration of 

pollutants. Separating the influence of meteorology and emissions on air pollutant concentrations is difficult, due to the 

interlinked nature of the chemistry-climate system (Jacob and Winner, 2009). However, to assess the efficacy of China’s 

emissions reductions, it is necessary to separate these two factors. 



 

There are two commonly used approaches to separate the influences of meteorology and emissions on variability in 

atmospheric pollutant abundances. The first approach uses statistical models, such as multi-linear regression, to control for the 

influence of meteorology and allowing the proportion of air pollutant concentration variability that can be explained by 

meteorological variables to be calculated (Tai et al., 2010). The second approach is to use an atmospheric chemistry transport 

model to simulate pollutant concentrations (Ansari et al., 2019; Xing et al., 2011). 

There are a limited number of modelling studies that attempt to separate the influence of meteorology and emissions changes 

on recent air quality trends in China. Chen et al. (2019) used WRF-Chem with 2010 emissions to examine the drivers of trends 

in wintertime PM. Ding et al. (2019) used WRF-CMAQ to evaluate importance of emissions, meteorology and demographic 

changes on PM2.5 related mortality during 2013-2017. Our paper adds to these previous studies by evaluating the ability of a 

online-coupled model (WRF-Chem) to capture trends in NO2, O3 and SO2 as well as PM, using the most recent emissions and 

evaluated against a comprehensive measurement dataset.  

Through a comparison of multiple simulations, where either annual variability in emissions or meteorology are held constant, 

the relative influence of the two factors can be estimated. Here we analyse measurements and a regional air quality model to 

explore the role of changing anthropogenic emissions on air pollutant concentrations and human health across China during 

2015 to 2017. 

2 Materials and Methods 

2.1 Measurement dataset 

We used hourly measurements from the CNEMC monitoring network (Wang et al., 2015) of PM2.5, O3, NO2, and SO2 for the 

period 2015-2017, which includes data from over 1600 monitoring stations across mainland China and is available to download 

from http://beijingair.sinaapp.com/. This was combined with data from the Hong Kong Environmental Protection Department 

(https://cd.epic.epd.gov.hk/EPICDI/air/station/) and Taiwan’s Environmental Protection Administration 

(https://taqm.epa.gov.tw/taqm/en/YearlyDataDownload.aspx). We conducted quality control on the measured data following 

the methods outlined in Silver et al. (2018), which include excluding data with a high proportion of repeated measurements 

and periods of low variability, which represent periods of missing or invalid data. The cleaned dataset included measurements 

from 1155 sites. 

2.2 WRF-Chem model setup 

We used the Weather Research and Forecasting model with Chemistry (WRF-Chem) version 3.7.1 (Grell et al., 2005) to 

simulate trace gas and particulate pollution over China for 2015 to 2017. The model domain uses a Lambert Conformal grid 

(11-48 °N, 93-128 °E) centred on eastern China with a horizontal resolution of 30 km.  The model has 33 vertical layers, with 

the lowest layer ~29 m above the surface, and the highest at 50 hPa (~19.6 km). 

http://beijingair.sinaapp.com/
https://cd.epic.epd.gov.hk/EPICDI/air/station/
https://taqm.epa.gov.tw/taqm/en/YearlyDataDownload.aspx


 

European Centre for Medium Range Weather Forecasts (ECMWF) ERA-Interim fields were used to provide meteorological 

boundary and initial conditions, as well as to nudge the model temperature, winds and humidity above the boundary layer 

every 6 hours. Restricting nudging to above the boundary layer, allowed a more realistic representation of vertical mixing 

(Otte et al., 2012). Chemical boundary and initial conditions were provided by global fields from the Model for Ozone and 

Related Chemical Tracers version 4 (MOZART-4) chemical transport model (Emmons et al., 2010). 

Anthropogenic emissions were from the Multi-resolution Emission Inventory for China (MEIC; www.meicmodel.org). MEIC 

estimates emissions using a database of activity rates across residential, industrial, electricity generation, transportation and 

agricultural emission sectors combined with China-specific emission factors (Hong et al., 2017). We used the 2015 MEIC 

dataset, then used sector-specific and species-specific scaling for 2016 and 2017 based on the emission totals estimated in B. 

Zheng et al. (2018). Table 1 shows emission totals for 2015, 2016 and 2017. Over the 2015 to 2017 period, Chinese emissions 

decreased by 38% for SO2, 16% for PM2.5 and 8% for NOx. For regions outside the MEIC dataset, we used anthropogenic 

emissions from the EDGAR-HTAPv2.2 emission inventory for 2010. 

Biogenic emissions were generated online by the Model of Emissions of Gases and Aerosol from Nature (MEGAN) (Guenther 

et al., 2000). Biomass burning emissions were provided by the Fire Inventory from NCAR (FINN) version 1.5 (Wiedinmyer 

et al., 2011), which uses satellite fire observations of fires and land cover to estimate daily 1 km2 emissions. Dust emissions 

were generated online the Georgia Institute of Technology-Goddard Global Ozone Chemistry Aerosol Radiation and Transport 

(GOCART) model with Air Force Weather Agency (AFWA) modifications (LeGrand et al., 2019). 

Gas-phase chemistry is simulated using the MOZART-4 scheme and aerosol is treated by the Model for Simulating Aerosol 

Interactions and Chemistry (MOSAIC; Zaveri et al., 2008) scheme, including grid-scale aqueous chemistry and an extended 

treatment of organic aerosol (Hodzic and Jimenez, 2011; Hodzic and Knote, 2014). Four discrete size bins were used within 

MOSAIC (0.039–0.156 μm, 0.156–0.625 μm, 0.625–2.5 μm, 2.5–10 μm) to represent the aerosol size distribution. 

2.3 Model and measurement trend estimation 

For comparison with the measurements, we sampled the model at the station locations using linear interpolation. Over 2015-

2017, the model well simulated PM2.5 (normalised mean bias (NMB) = 0.45), O3 (NMB=-0.13) and SO2 (NMB=0.07), while 

overestimating NO2 concentrations by a factor of around 2 (NMB=1.17). Model biases were similar to previous model studies 

in China (Supplementary Table 1). We also evaluated the model against speciated aerosol measurements from the Surface 

PARTiculate mAtter Network (SPARTAN) (Snider et al., 2015, 2016) site in Beijing (https://www.spartan-

network.org/beijing-china, last accessed: 2nd July 2020) (Fig S4), as well as Zhou et al. (2019) (Figure S5) and from across 

China (Li et al., 2017b)  (Fig S6). Measurements reported by  Li et al. (2017b) were made from various years spanning 2006 

to 2013 and do not match the years simulated by the model. Comparison against these data show that the model underestimates 

the sulfate fraction in PM2.5, while overestimating the nitrate fraction. Underestimation of sulfate in comparison to  Li et al., 

(2017b) will partly be caused by the large decline in SO2 emissions that has occurred in the last decade (Zheng et al., 2018). 

Underestimate of sulfate, particularly in winter, and overestimation of nitrate are consistent with previous modelling studies 

https://www.spartan-network.org/beijing-china
https://www.spartan-network.org/beijing-china


 

(Shao et al., 2019)   including those using WRF-chem (Zhou et al., 2019). Newly proposed mechanisms to explain the rapid 

sulfate formation in China’s winter haze (Gen et al., 2019; Shao et al., 2019; Xue et al., 2014; Zhang et al., 2019) need to be 

included and evaluated in models. 

To separate the influence of changing anthropogenic emissions from interannual variability in meteorology, we conducted two 

3-year simulations, both for 2015-2017. The first simulation (Control) included interannual variability in both anthropogenic 

emissions and meteorology. The second simulation (Fixed emissions) included interannual variability in meteorology, but with 

anthropogenic emissions fixed at 2015 levels. Both simulations include interannual variability in biogenic and biomass burning 

emissions, allowing us to isolate the impacts of changing anthropogenic emissions. 

Trends in the model data were calculated using the same method as the measurement data (Silver et al., 2018). The hourly data 

are averaged to monthly means, which are then deseasonalised using locally weighted scatterplot smoothing. The magnitude 

and direction of linear trends were calculated using the Theil-Sen estimator, a non-parametric method that is resistant to outliers 

(Carslaw, 2015). The Mann-Kendall test was used to assess the significance of trends, using a threshold of p < 0.05. This stage 

of the analysis was performed using the R package ‘openair’ (Carslaw and Ropkins, 2012). 

2.4 Health impact estimation 

Health impacts are estimated for ambient PM2.5 using the Global Exposure Mortality Model (GEMM) (Burnett et al., 2018), 

which uses cohort studies to estimate health risks integrated over a range of PM2.5 concentrations. GEMM applies a supralinear 

association between exposure and risk at lower concentrations and then a near-linear association at higher concentrations. We 

used the GEMM for non–accidental mortality (non–communicable disease, NCD, plus lower respiratory infections, LRI), 

using parameters including the China cohort (GBD 2017 Risk Factor Collaborators, 2018). For ambient O3, we used the 

methodology of the Global Burden of Disease (GBD) study for 2017 (GBD 2017 Risk Factor Collaborators et al., 2018) to 

estimate the mortality caused by chronic obstructive pulmonary disease, which is based on exposure and risk information from 

five epidemiological cohorts. It estimates a near-linear relationship between exposure and risk at lower concentrations of O3, 

and a sub-linear association at higher concentrations. The United Nations adjusted population count dataset for 2015 at 0.05° 

× 0.05° resolution was obtained from the Gridded Population of the World, Version 4, along with population age distribution 

from GBD2017. Health impacts depend on population count, population age, and baseline mortality rates which have changed 

over the period studied (Butt et al., 2017). To isolate the impacts of changing air pollution, other variables were kept constant 

for 2015-2017.  

3 Measured and modelled trends comparison 

3.1 Model evaluation 

For comparison with the measurements, we sampled the model at the station locations using linear interpolation. Over 2015-

2017, the model well simulated PM2.5 (normalised mean bias (NMB) = 0.45), O3 (NMB=-0.13) and SO2 (NMB=0.07), while 



 

overestimating NO2 concentrations by a factor of around 2 (NMB=1.17). Model biases were similar to previous model studies 

in China (Supplementary Table 1). We also evaluated the model against speciated aerosol measurements from the Surface 

PARTiculate mAtter Network (SPARTAN) (Snider et al., 2015, 2016) site in Beijing (https://www.spartan-

network.org/beijing-china, last accessed: 2nd July 2020) (Fig S4), as well as Zhou et al. (2019) (Figure S5) and from across 

China (Li et al., 2017b)  (Fig S6). Measurements reported by  Li et al. (2017b) were made from various years spanning 2006 

to 2013 and do not match the years simulated by the model. Comparison against these data show that the model underestimates 

the sulfate fraction in PM2.5, while overestimating the nitrate fraction. Underestimation of sulfate in comparison to  Li et al., 

(2017b) will partly be caused by the large decline in SO2 emissions that has occurred in the last decade (Zheng et al., 2018). 

Underestimate of sulfate, particularly in winter, and overestimation of nitrate are consistent with previous modelling studies 

(Shao et al., 2019) including those using WRF-chem (Zhou et al., 2019). Newly proposed mechanisms to explain the rapid 

sulfate formation in China’s winter haze (Gen et al., 2019; Shao et al., 2019; Xue et al., 2014; Zhang et al., 2019) need to be 

included and evaluated in models. 

 

3.21 Varying emissions scenario 

Figure 1 and 2 compare measured and simulated air quality trends over China during 2015 to 2017. The measurements show 

widespread decline in PM2.5 and SO2 concentrations, widespread increase in O3MDA8, and spatially variable trends in NO2 

concentrations, as reported previously (Silver et al., 2018). The model (Control simulation) simulates the widespread decline 

in PM2.5 concentrations, with the median measured trend across China (-3.4 μg m-3 year-1) well simulated by the model (-3.5 

μg m-3 year-1). However, as the above comparisons with speciated aerosol measurements show, the underlying trends in 

individual aerosol species may contain inaccuracies that affect the overall PM2.5 trend.  In the measurements, 90% of significant 

trends are negative and 10% of significant trends are positive, with positive trends mostly being in the Fenwei Plain region, 

Jiangxi and Anhui. No significant positive trends are simulated by the model, possibly due to coarse resolution of the model 

and the simplified scaling we apply to emissions for 2016 and 2017. 

WRF-Chem captures the widespread increase in O3MDA8, but underestimates the magnitude of the trend by a factor 2 (2.7 

μg m-3 year-1 in the measurements, versus 1.3 μg m-3 year-1 simulated by WRF-Chem). WRF-Chem simulates negative 

O3MDA8 trends in the Sichuan Basin and Taiwan, whereas in the measured data, all regions have positive median trends.  

The measurements show zero overall median trend in NO2 concentrations, with 46% of sites with significant trends being 

negative and 54% positive. In contrast, WRF-Chem simulates widespread reductions in NO2 concentrations, with 100% of 

significant sites exhibiting negative trends and a negative nationwide median trend of -2.2 μg m-3 year-1. The 7.0 % nationwide 

median decline in simulated NO2 concentrations over 2015-2017, matches the 7.6 % decline in Chinese NOx emissions in the 

MEIC.  

The measurements show a widespread decline in SO2 concentrations, with a median nationwide trend of -1.9 μg m-3 year-1. 

WRF-Chem captures the direction of the trend, but the magnitude of the trend is overestimated by a factor 2. The 32.5 % 

https://www.spartan-network.org/beijing-china
https://www.spartan-network.org/beijing-china


 

decline in simulated nationwide median SO2 concentrations over 2015-2017, matches the 37.8 % decline in SO2 emissions in 

the MEIC. 

3.32 Fixed emissions scenario 

The model simulation where anthropogenic emissions in China were fixed at 2015 levels has a weak negative PM2.5 trend (-

0.6 μg m-3 year-1), a factor of six smaller than either the control simulation or the measurements (Figure 3). This suggests that 

the measured negative PM2.5 trend has largely been driven by decreased anthropogenic emissions, with limited impact from 

interannual variability in meteorology. Chen et al. (2019) also concluded that emission reductions were the primary cause of 

reduced wintertime PM2.5 across China during 2015-2017. Cheng et al., (2019) found that local and regional reductions in 

anthropogenic emissions were the dominant cause of reduced PM2.5 concentrations in Beijing between 2013 and 2017.  

The median O3MDA8 trend in the fixed emission simulation is 0.0 μg m-3 year-1. This suggests that interannual meteorological 

variation had little influence on O3 trends at the China-wide scale during 2015-2017, which were largely driven by changing 

emissions. However, meteorological variability did drive regional changes in O3. For example, in Guizhou province, a trend 

of -2.5 μg m-3 year-1 was calculated in the fixed emissions simulation. Li et al. (2019a) also report that the positive ozone trend 

over 2013 to 2017 is due to changes in anthropogenic emissions, and the magnitude of their estimated trend of 1-3 ppbv year-

1 (approximately 2-6 μg m-3 year-1)  is comparable to the 2.6 μg m-3 year-1 trend found in this study. Lu et al. (2019) analysed 

changes in O3 between 2016 and 2017 and concluded that hotter and drier conditions in 2017 contributed to higher O3 

concentrations in that year. Liu and Wang (2020) reported a complex O3 response during 2013 to 2017, with changing 

anthropogenic emission increasing O3MDA8 in urban areas and decreasing it in rural areas, whereas meteorological changes 

drove regionally contrasting changes in O3MDA8 through changes in cloud cover, wind, and temperature and through driving 

changes in biogenic emissions.   

The fixed emission simulation also has a smaller NO2 trend (-0.5 μg m-3) compared to the control simulation (-2.2 μg m-3 year-

1), demonstrating emission reductions that are estimated in the MEIC are also the main reason for the negative simulated NO2 

trend. However, unlike PM2.5 and O3, the NO2 trend calculated from the fixed emission simulation more closely matches 

measured trend. This may suggest that MEIC has overestimated the NO2 emission reductions during 2015-2017. This 

suggestion is supported by recent satellite studies which found a slowing down or even reversal of NO2 reductions during 

2016-2019 (Li et al., 2019c), no significant trend in NO2 during 2013-2017 (Huang et al., 2018), and increases in NO2 

concentration in the YRD, PRD and FWP regions during 2015-2017 (Feng et al., 2019). If NOx emissions decline too strongly 

in MEIC, this may contribute to the simulated underestimate of the positive observed O3MDA8 trend in areas of China with a 

NOx limited or mixed Ozone regimes that cover the majority of China (Jin and Holloway, 2015). Other work has suggested 

that increased O3 concentrations are possibly linked to the rapid decline in aerosol (Li et al., 2019b). Liu and Wang (2020b) 

found that the reasons for increased O3 concentrations during 2013-2017 were regionally dependent and that anthropogenic 

VOC emission reductions of 16-24% would have been needed to avoid increased concentrations.    



 

Table 2 compares the control and fixed emission simulations against PM2.5, O3 and SO2 and NO2 measurements in 2015, 2016 

and 2017. In the control simulation model biases remain similar during 2015-2017. In the fixed emission simulation, model 

biases for PM2.5, O3 and SO2 increase between 2015 and 2017. This further suggests that changing anthropogenic emissions 

during 2015-2017 have been the dominant cause of changing concentrations. 

An important future step is to understand how changing anthropogenic emissions, in terms of emission species or emission 

sectors, have contributed to observed trends in pollutant concentrations. Residential and industrial emissions are dominant 

causes of PM2.5 concentrations across much of China (Reddington et al., 2019), but it is not clear which emission sectors have 

contributed most to observed PM2.5 trends. Cheng et al. (2019) suggests that emission controls in the residential and industrial 

sectors were the dominant causes for reduced PM2.5 in Beijing between 2014 and 2017. Measurements of aerosol composition 

(Li et al., 2017b; Weagle et al., 2018) add confidence to model simulations and can inform our understanding of how aerosol 

chemistry responds to emission changes. However, except for Beijing, there is insufficient measurement data of how aerosol 

composition has changed across China in recent years. Li et al. (2019a) found large declines in wintertime organics and sulfate 

and smaller declines in nitrate and ammonium in Beijing between 2014 and 2017. Zhou et al. (2019) also analysed aerosol 

composition data from Beijing and found large declines in all aerosol components except nitrate between 2011-12 and 2017-

18. Continuous measurements of aerosol composition across China are required to determine how different aerosol components 

are contributing to the observed PM2.5 trend and to evaluate simulated responses to emission changes.  

4 Health impacts of changes to PM2.5 and O3 concentrations 

4.1 PM2.5 health impacts 

The control run simulated nation-wide population-weighted mean PM2.5 concentration decreased by 12.8 % (10.1 µg m-3), 

from 79.2 µg m-3 in 2015 to 69.1 µg m-3 in 2017. Greater decreases were simulated in more polluted and highly populated 

regions such as Beijing (-15.3 µg m-3), Tianjin (-19.4 µg m-3), Chongqing (province) (-14.2 µg m-3) and Henan (-22.3 µg m-3). 

Using the methodology of Burnett et al., (2018), we estimate that mortality due to exposure to PM2.5 decreased from 2 800 

000 (CI: 2 299 000 – 3 302 000) premature mortalities in 2015, to 2 650 000 premature mortalities in 2017. The simulated 

reduction in PM2.5 concentrations therefore reduced the number of premature mortalities attributable to PM2.5 exposure by 150 

000 (CI: 129 000 – 170 000) annual premature mortalities across China. The 12.8% reduction in PM2.5 exposure only led to a 

5% reduction in attributable mortality due to the non-linearity of the exposure-response function, which is less sensitive at 

higher exposure ranges (Conibear et al., 2018). The largest absolute reductions in premature mortality occur in Henan (15 000 

deaths year-1), Sichuan, Hebei and Tianjin (11 000 deaths year-1) (Figure 4). The decline in PM2.5 exposure also led to reduced 

morbidity with the Disability Adjusted Life Years (DALYs) rate per 100,000 population reduced from 159 to 150, with the 

largest changes occurring in central provinces such as (Supplementary Figure S3). Our results are comparable to Zheng et al., 

(2017), who found that population weighted annual mean PM2.5 concentrations decreased 21.5% during 2013 – 2015, resulting 

in a premature mortality decrease of 120 000 deaths year-1. Ding et al., (2019) estimated that during 2013-2017, a nationwide 



 

PM2.5 decrease of 9 µg m-3 year-1 caused premature mortalities pear year to decrease by 287 000, using the methodology from 

the GBD 2015 study, which estimates health impacts as having a weaker and less linear relationship to PM2.5 concentrations. 

Yue et al. (2020) estimated that the annual number of mortalities in China attributable to PM2.5 decreased by 64 000 (7%) from 

2013 to 2017. Zhang et al. (2019) reported a 32% decline in population-weighted PM2.5 concentration during 2013 to 2017, 

largely due to strengthened industrial emission standards and cleaner residential fuels.  

4.2 O3 health impacts 

Increasing O3 concentrations will result in an increase in health impacts that will act to offset some of the health benefits from 

declining PM2.5 concentrations. WRF-Chem simulated O3 concentrations across China during 2015-2017 to within 15% 

(NMB=-0.13), which is consistent with previous studies, but underestimated the magnitude of the observed O3 trend. To 

provide an estimate of the health impacts due to exposure to O3 we used simulated concentrations to estimate average exposure 

to O3 over the 2015-2017 period. We estimate that exposure to O3 caused an average of 143 000 (CI: 106 000 – 193 000) 

premature mortalities each year over 2015-2017. Applying the simulated change in O3 concentrations would underestimate the 

change in exposure that has occurred, Instead, we estimated the impacts of increased O3 by multiplying the average health 

impacts over 2015-2017 by the measured relative change in O3MDA8. Assuming linear behaviour, the 15% measured increase 

in O3MDA8 would result in an increase of 21 000 premature mortalities per year. The exposure-outcome function is in reality 

sub-linear, so this is likely to be an overestimate. Regardless, this is substantially smaller than the 150 000 reduction in annual 

premature mortality due to reduced PM2.5. We therefore suggest that changes in Chinese air pollution over 2015-2017 have 

likely had an overall beneficial impact on human health. The dominance of the PM2.5 reduction over the O3 increase on health 

impacts is also found in Dang and Liao (2019) who reported a 21% reduction in PM2.5 and 12% increase in O3 concentrations 

between 2012 and 2017 resulted in 268 000 fewer annual mortalities overall. 

5 Conclusions 

We used the WRF-Chem model to explore the drivers and impacts of changing air pollution across China during 2015-2017. 

A simulation with annually updated emissions was able to reproduce the measured negative trends in PM2.5 concentrations 

over China during 2015 – 2017, while overestimating the negative trend in SO2 and NO2, and underestimating the positive 

trend in O3. By comparing this with a simulation where emissions are held constant at 2015 levels, but meteorological forcing 

was updated, we show that interannual meteorological variation was not the main driver of the substantial trends in air 

pollutants that were observed across China during 2015 – 2017. Our work shows that reduced anthropogenic emissions are the 

main cause of reduced PM2.5 concentrations across China, suggesting that the Chinese government’s ‘Air Pollution Prevention 

and Control Action Plan’ has been effective at starting to control particulate pollution. We estimate that the 12.8% reduction 

in population-weighted PM2.5 concentrations that occurred during 2015-2017 has reduced premature mortality due to exposure 

to PM2.5 by 5.3%, preventing 150 000 premature mortalities across China annually. Despite these substantial reductions, PM2.5 



 

concentrations still exceed air quality guidelines and cause negative impacts on human health. We estimate that exposure to 

O3 during 2015-2017 causes on average 143 000 premature mortalities across China each year. Increases in O3 concentration 

over 2015-2017, may have increased this annual mortality by about 20 000 premature mortalities per year, substantially less 

than the reduction in premature mortality due to declining particulate pollution. Changes in air pollution across China during 

2015-2017 are therefore likely to have led to overall positive benefits to human health, amounting to a ~5 % reduction of the 

ambient air pollution disease burden. However, to achieve larger reductions in the disease burden, further reductions in PM2.5 

concentrations are required, and pollution controls need to be designed that simultaneously reduce PM2.5 and O3 concentrations. 

Data availability 

Data used to create all figures are available in the supplement. Data associated with this work has been made available at 

https://doi.org/10.5518/878, including the full trend results and the mainland China air quality stations measurement dataset. 

Air quality measurement data from mainland China’s monitoring network is available from http://beijingair.sinaapp.com/. Air 

quality measurement data from Hong Kong is available from https://cd.epic.epd.gov.hk/EPICDI/air/station/.  Air quality 

monitoring data from Taiwan is available from https://taqm.epa.gov.tw/taqm/en/YearlyDataDownload.aspx. Data from all 

WRF-Chem model simulations and post-processing codes are available from the corresponding author on request. 

Author contributions 

BS, CLR, DVS and SRA designed the research. BS performed the WRF-Chem model simulations, analysed all the model data 

and wrote the manuscript. LC performed the health impact calculations. All authors contributed to scientific discussions and 

to the manuscript. 

Competing interests 

The authors declare that they have no conflict of interest. 

Acknowledgements 

We gratefully acknowledge the AIA Group Limited and Natural Environment Research Council (NE/S006680/1; 

NE/N006895/1) for funding for this research. Model simulations were undertaken on ARC3, part of the High Performance 

Computing facilities at the University of Leeds. We thank Qiang Zhang and Meng Li for providing MEIC data. We 

acknowledge use of the WRF-Chem preprocessor tools bio_emiss, anthro_emiss, fire_emiss, and mozbc provided by the 

Atmospheric Chemistry Observations and Modeling Lab (ACOM) of the NCAR. We acknowledge use of NCAR/ACOM 

.MOZART-4 global model output available at http://www.acom.ucar.edu/wrf-chem/mozart.shtml (last accessed 12th 

https://doi.org/10.5518/878
https://cd.epic.epd.gov.hk/EPICDI/air/station/
https://taqm.epa.gov.tw/taqm/en/YearlyDataDownload.aspx
http://www.acom.ucar.edu/wrf-chem/mozart.shtml


 

December 2018). We thank the SPARTAN project for its effort in establishing and maintaining the site in Beijing. The 

SPARTAN network was initiated with funding from the Natural Sciences and Engineering Research Council of Canada.  


