Response to comments on the revised submission of ‘Pollutant emission reductions deliver decreased PM2.5-

caused mortality across China during 2015-2017’

Response to Editor comments:

Concerning the data, | would recommend that you store the data behind your study on an open-accessible
repository (with a DOI). The current way of referencing to data via web addresses is not optimal. Please have a
look at the data guidelines of ACP: https://www.atmospheric-chemistry-and-physics.net/about/data policy.html

We thank the editor for this suggestion and hope that it will be useful to share our data. We have deposited the
data in ‘Research Data Leeds Repository,” which is registered with https://www.re3data.org/. The repository
has the DOI: https://doi.org/10.5518/878. Here we have included the calculated trends from the measurement

data and both model runs, at each of the
measurement station locations. We also include
a copy of the measurement dataset containing
data from 2014-05-13 to 2020-06-06, along with
the results of our data cleaning process. We
think having the measurements dataset in this
convenient and accessible form will be very
useful to other researchers. We have amended
the data availability statement accordingly.

One further question from my side: In Sect. 2.1,
you write "We conducted quality control on the
measured data following the methods outlined
in Silver et al. (2018), which include excluding
data with a high proportion of repeated
measurements and periods of low variability."
Why do you exclude data with low variability?
Shouldn't it be the opposite (e.g. excluding local
plumes/spikes in the observational data)?

The periods of low variability we refer to are
periods where almost exactly the same
measurements are repeated each day for long
periods. This example shows the anomalous
data found at some stations which we wish to
exclude. The algorithm highlights the area of
almost repeated measurements. If the station
has more than 60 days of flagged data, we
exclude it from the analysis. The algorithm is
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described in our previous paper (https://doi.org/10.1088/1748-9326/aae718). We have amended lines 85-87 to
better descript this as “We conducted quality control on the measured data following the methods outlined in
Silver et al. (2018), which include excluding data with a high proportion of repeated measurements identified as
periods of low variability, which represent periods of missing or invalid data.”

Response to referee #2

The authors really worked hard on the new version of the manuscript considering comments from all reviewers. |
believe the manuscript is in much better shape now and | only have minor comments.

We thank the reviewer for the positive comments.
Comments by line:

115-128. This paragraph corresponds to model evaluation, not to trend estimation, so consider having it in it’s
own section (maybe even move it to results)

We thank the referee for pointing this out. We have moved that paragraph as suggested to the next section,
and given it the sub-heading ‘3.1 Model Evaluation.’

Section 3.1. It would be informative to add the trends in aerosol composition for the Spartan Beijing site and
compare it to a nearby PM2.5 trends, both in observations and model to add to the discussion.

The SPARTAN data is very useful in evaluating the ability of the model to capture aerosol speciation. However,
the SPARTAN data is of limited temporal resolution and consistency. The SPARTAN data is collected every two
weeks, but there are large areas of missing data throughout the time series. As a result, trends calculated from
the SPARTAN data cannot be confidently compared with those calculated from the CNEMC data or model data.
For this reason we would prefer not to add trends from the SPARTAN data to our paper.

159-161. Another reason could be linked to the representation of aerosol speciation, the fact that NO2 trends
are all negative and the model tends to overpredict the nitrate fraction could drive the PM2.5 trends. Same for
overprediction of the magnitude of the SO2 trend.

We agree with the referee that inaccuracies in the model nitrate and sulphate estimations will affect the overall
PM. s trend, among other model inaccuracies. However, due to the lack of speciated aerosol data across China,
it is difficult to quantify the degree of inaccuracy in the PM,s across the model domain. To further highlight this
issue, we add the sentence ‘However, as the above comparisons with speciated aerosol measurements show,
the underlying trends in individual aerosol species may contain inaccuracies that affect the overall PM; s trend.’

Fig S4. Add to the caption for what period of time you are comparing
We have added ‘during 2015-2017’ to the caption.

Fig S5. Are statistics build with hourly or daily values?


https://doi.org/10.1088/1748-9326/aae718

According to the Zhou et al. paper, the aerosol components were measure at around 15 minute intervals. We
have added the text ‘The measurements had a time resolution of ~15 minutes and averaged by season’ to the
caption.

Minor Edits
69-72. Since these are previous studies you could change the tense to past?
We have amended these sentences to past tense, thank you for the correction.

Abstract. Air pollution is a serious environmental issue and leading contributor to the disease burden in China. Rapid
reductions in fine particulate matter (PM.5) concentrations and increased 0zone concentrations have occurred across China,
during 2015 to 2017. We used measurements of particulate matter with a diameter < 2.5 um (PM35) and Ozone (O3) from
>1000 stations across China along with Weather Research and Forecasting model coupled with Chemistry (WRF-Chem)
regional air quality simulations, to explore the drivers and impacts of observed trends. The measured nationwide median PM3 5
trend of -3.4 pg m year?, was well simulated by the model (-3.5 pg m year?). With anthropogenic emissions fixed at 2015-
levels, the simulated trend was much weaker (-0.6 pg m™ year?), demonstrating interannual variability in meteorology played
a minor role in the observed PM 5 trend. The model simulated increased ozone concentrations in line with the measurements,
but underestimated the magnitude of the observed absolute trend by a factor of 2. We combined simulated trends in PM2 s
concentrations with an exposure-response function to estimate that reductions in PM.s concentrations over this period have

reduced PM_s-attribrutable premature morality across China by 150 000 deaths year-..

1 Introduction

Concentrations of particulate matter and ozone across China largely exceed international air quality standards (Reddington et
al., 2019; Silver et al., 2018). This poor air quality is estimated to hasten the deaths of 870 000 - 2 470 000 people across China
each year (Apte et al., 2015; Burnett et al., 2018; Cohen et al., 2017; Gu and Yim, 2016; Lelieveld et al., 2015). The Chinese
government’s efforts to improve air quality began in the 1990s, but emissions of pollutants continued to increase into the 21
century and air pollution worsened (Krotkov et al., 2016; Streets et al., 2008; Zhang et al., 2012). In 2013, China experienced
episodes of severe particulate matter pollution (Zhang et al., 2016). In response, the Chinese government announced the Action
Plan on the Prevention and Control of Air Pollution which focused on the reduction of fine particulate matter (PM. ) through

stringent emission controls during 2012-2017 (Zheng et al., 2017).

1.1 Previous studies of trends in China’s air quality

Satellite remote sensing studies have been used to show large changes in air pollution across China in recent decades, with
positive trends in Nitrogen Dioxide (NO2) (Van der A et al., 2006), Sulfur Dioxide (SO2) (Zhang et al., 2017) and PM2s (Ma
et al., 2016) during the 1990s and early 2000s. Trends in aerosol optical depth have been used to estimate changes in PM3s,



which peaked around 2011 (Ma et al., 2016). NO- across China peaked around 2011 (De Foy et al., 2016; Irie et al., 2016),
although concentrations in the Pearl River Delta (PRD) peaked earlier and western regions may have peaked later (Cui et al.,
2016). Several remote sensing studies show that SO concentrations in China peaked around 2006 (Van Der A et al., 2017;
Krotkov et al., 2016; Zhang et al., 2017), matching the period of maximum emissions (Duan et al., 2016; Li et al., 2017a;
Zheng et al., 2018). Analysis of measurements from the Acid Deposition Monitoring Network in East Asia (EANET) shows a
negative pH trend (i.e., becoming more acidic) from 1999 until a reversal occurs in 2006, matching peak SO2 emissions and
concentrations (Duan et al., 2016). Measurements of O3 concentrations at background monitoring sites indicate positive trends
in western China during 1994-2013 (Xu et al., 2016), and Taiwan during 1994-2003 (Chang and Lee, 2007), suggesting that
O3 has been increasing across China during the past two decades. More recently, measurements at urban sites, also show
positive Oz trends during 2005-2011 (Zhang et al., 2014).

The establishment of China’s air pollution monitoring network, operated by the China National Environmental Monitoring
Centre (CNEMC) (Wang et al., 2015), which includes measurements from over 1600 locations, has enabled more detailed
analysis of recent air pollution changes (Silver et al., 2018; Zhai et al., 2019). Between 2015 and 2017, PM2 s concentrations
across China decreased by 28% (Silver et al., 2018). Zhai et al., (2019) reported a 30-40% decrease in PM2s concentrations
during 2013-2017. In contrast Os; concentrations have increased, with median concentration of O3z across 74 key cities
increasing from 141 pg m31in 2013 to 164 pg m2in 2017 (Huang et al., 2018). Silver et al. (2018) found that O3 maximum 8
h mean concentrations (OsMDAB) increased by 4.6 % year? over 2015-2017. Lu et al., (2020) reported positive trends in
April-September OsMDAB8 at 90% of sites during 2013 to 2019. Positive regional Oz trends remain even after meteorological
variability has been removed (Li et al., 2019b). Trends in NO, are more variable, with a negative trend reported in eastern
China and positive trends in western areas (Li and Bai, 2019). Silver et al., (2018) found that NO, had negative trends in Hong
Kong and North China Plain regions, but positive trends in the Yangtze River Delta (YRD), Sichuan Basin (SCB) and PRD,
and no overall trend at the national scale.

1.2 Identifying drivers of recent trends

Changes in the concentrations of air pollutants may be caused by changing emissions or by interannual variability of
meteorology. Stringent emission controls have started to reduce emissions of various pollutants across China. Between 2013
and 2017, emissions of PM. 5, SO, and NOx (NO; + Nitrogen Oxide) declined whereas emissions of Ammonia (NH3) and Non-
Methane Volatile Organic Compounds (NMVOCs) remained fairly constant (Zheng et al., 2018). B. Zheng et al. (2018) also
demonstrate that emission reductions were primarily driven by pollution controls, rather than decreasing activity rates.
Meteorological variability alters atmospheric mixing, deposition and transport, all of which can influence the concentration of
pollutants. Separating the influence of meteorology and emissions on air pollutant concentrations is difficult, due to the
interlinked nature of the chemistry-climate system (Jacob and Winner, 2009). However, to assess the efficacy of China’s

emissions reductions, it is necessary to separate these two factors.



There are two commonly used approaches to separate the influences of meteorology and emissions on variability in
atmospheric pollutant abundances. The first approach uses statistical models, such as multi-linear regression, to control for the
influence of meteorology and allowing the proportion of air pollutant concentration variability that can be explained by
meteorological variables to be calculated (Tai et al., 2010). The second approach is to use an atmospheric chemistry transport
model to simulate pollutant concentrations (Ansari et al., 2019; Xing et al., 2011).

There are a limited number of modelling studies that attempt to separate the influence of meteorology and emissions changes
on recent air quality trends in China. Chen et al. (2019) used WRF-Chem with 2010 emissions to examine the drivers of trends
in wintertime PM. Ding et al. (2019) used WRF-CMAQ to evaluate importance of emissions, meteorology and demographic
changes on PM s related mortality during 2013-2017. Our paper adds to these previous studies by evaluating the ability of a
online-coupled model (WRF-Chem) to capture trends in NO,, Oz and SO as well as PM, using the most recent emissions and
evaluated against a comprehensive measurement dataset.

Through a comparison of multiple simulations, where either annual variability in emissions or meteorology are held constant,
the relative influence of the two factors can be estimated. Here we analyse measurements and a regional air quality model to
explore the role of changing anthropogenic emissions on air pollutant concentrations and human health across China during
2015 to 2017.

2 Materials and Methods
2.1 Measurement dataset

We used hourly measurements from the CNEMC monitoring network (Wang et al., 2015) of PM. s, O3, NO2, and SO, for the
period 2015-2017, which includes data from over 1600 monitoring stations across mainland China and is available to download

from http://beijingair.sinaapp.com/. This was combined with data from the Hong Kong Environmental Protection Department

(https://cd.epic.epd.qov.hk/EPICDI/air/station/) and Taiwan’s Environmental Protection Administration

(https://tagm.epa.gov.tw/tagm/en/YearlyDataDownload.aspx). We conducted quality control on the measured data following

the methods outlined in Silver et al. (2018), which include excluding data with a high proportion of repeated measurements

and periods of low variability, which represent periods of missing or invalid data. The cleaned dataset included measurements

from 1155 sites.

2.2 WRF-Chem model setup

We used the Weather Research and Forecasting model with Chemistry (WRF-Chem) version 3.7.1 (Grell et al., 2005) to
simulate trace gas and particulate pollution over China for 2015 to 2017. The model domain uses a Lambert Conformal grid
(11-48 °N, 93-128 °E) centred on eastern China with a horizontal resolution of 30 km. The model has 33 vertical layers, with

the lowest layer ~29 m above the surface, and the highest at 50 hPa (~19.6 km).


http://beijingair.sinaapp.com/
https://cd.epic.epd.gov.hk/EPICDI/air/station/
https://taqm.epa.gov.tw/taqm/en/YearlyDataDownload.aspx

European Centre for Medium Range Weather Forecasts (ECMWF) ERA-Interim fields were used to provide meteorological
boundary and initial conditions, as well as to nudge the model temperature, winds and humidity above the boundary layer
every 6 hours. Restricting nudging to above the boundary layer, allowed a more realistic representation of vertical mixing
(Otte et al., 2012). Chemical boundary and initial conditions were provided by global fields from the Model for Ozone and
Related Chemical Tracers version 4 (MOZART-4) chemical transport model (Emmons et al., 2010).

Anthropogenic emissions were from the Multi-resolution Emission Inventory for China (MEIC; www.meicmodel.org). MEIC

estimates emissions using a database of activity rates across residential, industrial, electricity generation, transportation and
agricultural emission sectors combined with China-specific emission factors (Hong et al., 2017). We used the 2015 MEIC
dataset, then used sector-specific and species-specific scaling for 2016 and 2017 based on the emission totals estimated in B.
Zheng et al. (2018). Table 1 shows emission totals for 2015, 2016 and 2017. Over the 2015 to 2017 period, Chinese emissions
decreased by 38% for SO, 16% for PM.s and 8% for NOx. For regions outside the MEIC dataset, we used anthropogenic
emissions from the EDGAR-HTAPv2.2 emission inventory for 2010.

Biogenic emissions were generated online by the Model of Emissions of Gases and Aerosol from Nature (MEGAN) (Guenther
et al., 2000). Biomass burning emissions were provided by the Fire Inventory from NCAR (FINN) version 1.5 (Wiedinmyer
et al., 2011), which uses satellite fire observations of fires and land cover to estimate daily 1 km? emissions. Dust emissions
were generated online the Georgia Institute of Technology-Goddard Global Ozone Chemistry Aerosol Radiation and Transport
(GOCART) model with Air Force Weather Agency (AFWA) modifications (LeGrand et al., 2019).

Gas-phase chemistry is simulated using the MOZART-4 scheme and aerosol is treated by the Model for Simulating Aerosol
Interactions and Chemistry (MOSAIC; Zaveri et al., 2008) scheme, including grid-scale aqueous chemistry and an extended
treatment of organic aerosol (Hodzic and Jimenez, 2011; Hodzic and Knote, 2014). Four discrete size bins were used within
MOSAIC (0.039-0.156 um, 0.156-0.625 pm, 0.625-2.5 pum, 2.5-10 um) to represent the aerosol size distribution.

2.3 Model and measurement trend estimation



https://www.spartan-network.org/beijing-china
https://www.spartan-network.org/beijing-china

To separate the influence of changing anthropogenic emissions from interannual variability in meteorology, we conducted two

3-year simulations, both for 2015-2017. The first simulation (Control) included interannual variability in both anthropogenic
emissions and meteorology. The second simulation (Fixed emissions) included interannual variability in meteorology, but with
anthropogenic emissions fixed at 2015 levels. Both simulations include interannual variability in biogenic and biomass burning
emissions, allowing us to isolate the impacts of changing anthropogenic emissions.

Trends in the model data were calculated using the same method as the measurement data (Silver et al., 2018). The hourly data
are averaged to monthly means, which are then deseasonalised using locally weighted scatterplot smoothing. The magnitude
and direction of linear trends were calculated using the Theil-Sen estimator, a non-parametric method that is resistant to outliers
(Carslaw, 2015). The Mann-Kendall test was used to assess the significance of trends, using a threshold of p < 0.05. This stage

of the analysis was performed using the R package ‘openair’ (Carslaw and Ropkins, 2012).

2.4 Health impact estimation

Health impacts are estimated for ambient PM2s using the Global Exposure Mortality Model (GEMM) (Burnett et al., 2018),
which uses cohort studies to estimate health risks integrated over a range of PM_ s concentrations. GEMM applies a supralinear
association between exposure and risk at lower concentrations and then a near-linear association at higher concentrations. We
used the GEMM for non—accidental mortality (non—communicable disease, NCD, plus lower respiratory infections, LRI),
using parameters including the China cohort (GBD 2017 Risk Factor Collaborators, 2018). For ambient Os, we used the
methodology of the Global Burden of Disease (GBD) study for 2017 (GBD 2017 Risk Factor Collaborators et al., 2018) to
estimate the mortality caused by chronic obstructive pulmonary disease, which is based on exposure and risk information from
five epidemiological cohorts. It estimates a near-linear relationship between exposure and risk at lower concentrations of Os,
and a sub-linear association at higher concentrations. The United Nations adjusted population count dataset for 2015 at 0.05°
x 0.05° resolution was obtained from the Gridded Population of the World, Version 4, along with population age distribution
from GBD2017. Health impacts depend on population count, population age, and baseline mortality rates which have changed
over the period studied (Butt et al., 2017). To isolate the impacts of changing air pollution, other variables were kept constant
for 2015-2017.

3 Measured and modelled trends comparison

3.1 Model evaluation

For comparison with the measurements, we sampled the model at the station locations using linear interpolation. Over 2015-
2017, the model well simulated PM> s (normalised mean bias (NMB) = 0.45), O3 (NMB=-0.13) and SO, (NMB=0.07), while




overestimating NO, concentrations by a factor of around 2 (NMB=1.17). Model biases were similar to previous model studies
in China (Supplementary Table 1). We also evaluated the model against speciated aerosol measurements from the Surface
PARTiculate mAtter Network (SPARTAN) (Snider et al., 2015, 2016) site in Beijing (https://www.spartan-

network.org/beijing-china, last accessed: 2nd July 2020) (Fig S4), as well as Zhou et al. (2019) (Figure S5) and from across
China (Li et al., 2017b) (Fig S6). Measurements reported by Li et al. (2017b) were made from various years spanning 2006

to 2013 and do not match the years simulated by the model. Comparison against these data show that the model underestimates
the sulfate fraction in PM, s, while overestimating the nitrate fraction. Underestimation of sulfate in comparison to Li et al.,

(2017b) will partly be caused by the large decline in SO, emissions that has occurred in the last decade (Zheng et al., 2018).

Underestimate of sulfate, particularly in winter, and overestimation of nitrate are consistent with previous modelling studies

(Shao et al., 2019) including those using WRF-chem (Zhou et al., 2019). Newly proposed mechanisms to explain the rapid
sulfate formation in China’s winter haze (Gen et al., 2019; Shao et al., 2019; Xue et al., 2014; Zhang et al., 2019) need to be
included and evaluated in models.

3.21 Varying emissions scenario

Figure 1 and 2 compare measured and simulated air quality trends over China during 2015 to 2017. The measurements show
widespread decline in PMz5 and SO, concentrations, widespread increase in OsMDAS, and spatially variable trends in NO;
concentrations, as reported previously (Silver et al., 2018). The model (Control simulation) simulates the widespread decline
in PM_ 5 concentrations, with the median measured trend across China (-3.4 pg m year?*) well simulated by the model (-3.5

nug m year?). However, as the above comparisons with speciated aerosol measurements show, the underlying trends in

individual aerosol species may contain inaccuracies that affect the overall PM; s trend. -In the measurements, 90% of significant

trends are negative and 10% of significant trends are positive, with positive trends mostly being in the Fenwei Plain region,
Jiangxi and Anhui. No significant positive trends are simulated by the model, possibly due to coarse resolution of the model
and the simplified scaling we apply to emissions for 2016 and 2017.

WRF-Chem captures the widespread increase in OsMDABS, but underestimates the magnitude of the trend by a factor 2 (2.7
ug m2 year! in the measurements, versus 1.3 pug m year?! simulated by WRF-Chem). WRF-Chem simulates negative
O3MDABS trends in the Sichuan Basin and Taiwan, whereas in the measured data, all regions have positive median trends.
The measurements show zero overall median trend in NO; concentrations, with 46% of sites with significant trends being
negative and 54% positive. In contrast, WRF-Chem simulates widespread reductions in NO, concentrations, with 100% of
significant sites exhibiting negative trends and a negative nationwide median trend of -2.2 pg m3 year™. The 7.0 % nationwide
median decline in simulated NO; concentrations over 2015-2017, matches the 7.6 % decline in Chinese NOx emissions in the
MEIC.

The measurements show a widespread decline in SO, concentrations, with a median nationwide trend of -1.9 pg m3 year™.
WRF-Chem captures the direction of the trend, but the magnitude of the trend is overestimated by a factor 2. The 32.5 %


https://www.spartan-network.org/beijing-china
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decline in simulated nationwide median SO2 concentrations over 2015-2017, matches the 37.8 % decline in SO, emissions in
the MEIC.

3.32 Fixed emissions scenario

The model simulation where anthropogenic emissions in China were fixed at 2015 levels has a weak negative PM;s trend (-
0.6 ug m3 year?), a factor of six smaller than either the control simulation or the measurements (Figure 3). This suggests that
the measured negative PM_5 trend has largely been driven by decreased anthropogenic emissions, with limited impact from
interannual variability in meteorology. Chen et al. (2019) also concluded that emission reductions were the primary cause of
reduced wintertime PMgs across China during 2015-2017. Cheng et al., (2019) found that local and regional reductions in
anthropogenic emissions were the dominant cause of reduced PM2 s concentrations in Beijing between 2013 and 2017.

The median OsMDAS trend in the fixed emission simulation is 0.0 pg m™ year. This suggests that interannual meteorological
variation had little influence on Os trends at the China-wide scale during 2015-2017, which were largely driven by changing
emissions. However, meteorological variability did drive regional changes in Os. For example, in Guizhou province, a trend
of -2.5 ug m3 year! was calculated in the fixed emissions simulation. Li et al. (2019a) also report that the positive ozone trend
over 2013 to 2017 is due to changes in anthropogenic emissions, and the magnitude of their estimated trend of 1-3 ppbv year
! (approximately 2-6 ug m= year?) is comparable to the 2.6 ug m year™ trend found in this study. Lu et al. (2019) analysed
changes in Os; between 2016 and 2017 and concluded that hotter and drier conditions in 2017 contributed to higher O3
concentrations in that year. Liu and Wang (2020) reported a complex Oz response during 2013 to 2017, with changing
anthropogenic emission increasing OsMDAB8 in urban areas and decreasing it in rural areas, whereas meteorological changes
drove regionally contrasting changes in OsMDAS through changes in cloud cover, wind, and temperature and through driving
changes in biogenic emissions.

The fixed emission simulation also has a smaller NO; trend (-0.5 ug m3) compared to the control simulation (-2.2 pg m™ year-
1), demonstrating emission reductions that are estimated in the MEIC are also the main reason for the negative simulated NO,
trend. However, unlike PM.5 and Os, the NO; trend calculated from the fixed emission simulation more closely matches
measured trend. This may suggest that MEIC has overestimated the NO, emission reductions during 2015-2017. This
suggestion is supported by recent satellite studies which found a slowing down or even reversal of NO; reductions during
2016-2019 (Li et al., 2019c), no significant trend in NO, during 2013-2017 (Huang et al., 2018), and increases in NO;
concentration in the YRD, PRD and FWP regions during 2015-2017 (Feng et al., 2019). If NO, emissions decline too strongly
in MEIC, this may contribute to the simulated underestimate of the positive observed OsMDAS trend in areas of China with a
NOy limited or mixed Ozone regimes that cover the majority of China (Jin and Holloway, 2015). Other work has suggested
that increased O3 concentrations are possibly linked to the rapid decline in aerosol (Li et al., 2019b). Liu and Wang (2020b)
found that the reasons for increased O3 concentrations during 2013-2017 were regionally dependent and that anthropogenic

VOC emission reductions of 16-24% would have been needed to avoid increased concentrations.



Table 2 compares the control and fixed emission simulations against PM; s, O3 and SO, and NO, measurements in 2015, 2016
and 2017. In the control simulation model biases remain similar during 2015-2017. In the fixed emission simulation, model
biases for PM.s, Oz and SO, increase between 2015 and 2017. This further suggests that changing anthropogenic emissions
during 2015-2017 have been the dominant cause of changing concentrations.

An important future step is to understand how changing anthropogenic emissions, in terms of emission species or emission
sectors, have contributed to observed trends in pollutant concentrations. Residential and industrial emissions are dominant
causes of PM s concentrations across much of China (Reddington et al., 2019), but it is not clear which emission sectors have
contributed most to observed PM; s trends. Cheng et al. (2019) suggests that emission controls in the residential and industrial
sectors were the dominant causes for reduced PM; s in Beijing between 2014 and 2017. Measurements of aerosol composition
(Li et al., 2017b; Weagle et al., 2018) add confidence to model simulations and can inform our understanding of how aerosol
chemistry responds to emission changes. However, except for Beijing, there is insufficient measurement data of how aerosol
composition has changed across China in recent years. Li et al. (2019a) found large declines in wintertime organics and sulfate
and smaller declines in nitrate and ammonium in Beijing between 2014 and 2017. Zhou et al. (2019) also analysed aerosol
composition data from Beijing and found large declines in all aerosol components except nitrate between 2011-12 and 2017-
18. Continuous measurements of aerosol composition across China are required to determine how different aerosol components

are contributing to the observed PM2 s trend and to evaluate simulated responses to emission changes.

4 Health impacts of changes to PM2s and Os concentrations
4.1 PM2s health impacts

The control run simulated nation-wide population-weighted mean PM,s concentration decreased by 12.8 % (10.1 pug m3),
from 79.2 pug m= in 2015 to 69.1 pug m= in 2017. Greater decreases were simulated in more polluted and highly populated
regions such as Beijing (-15.3 pg m), Tianjin (-19.4 ug m3), Chongging (province) (-14.2 ug m) and Henan (-22.3 pug m3).
Using the methodology of Burnett et al., (2018), we estimate that mortality due to exposure to PM.s decreased from 2 800
000 (CI: 2 299 000 — 3 302 000) premature mortalities in 2015, to 2 650 000 premature mortalities in 2017. The simulated
reduction in PM2s concentrations therefore reduced the number of premature mortalities attributable to PM s exposure by 150
000 (CI: 129 000 — 170 000) annual premature mortalities across China. The 12.8% reduction in PM2 exposure only led to a
5% reduction in attributable mortality due to the non-linearity of the exposure-response function, which is less sensitive at
higher exposure ranges (Conibear et al., 2018). The largest absolute reductions in premature mortality occur in Henan (15 000
deaths year), Sichuan, Hebei and Tianjin (11 000 deaths year™) (Figure 4). The decline in PM,s exposure also led to reduced
morbidity with the Disability Adjusted Life Years (DALYS) rate per 100,000 population reduced from 159 to 150, with the
largest changes occurring in central provinces such as (Supplementary Figure S3). Our results are comparable to Zheng et al.,
(2017), who found that population weighted annual mean PM, s concentrations decreased 21.5% during 2013 — 2015, resulting
in a premature mortality decrease of 120 000 deaths year. Ding et al., (2019) estimated that during 2013-2017, a nationwide



PM.s decrease of 9 ug m year! caused premature mortalities pear year to decrease by 287 000, using the methodology from
the GBD 2015 study, which estimates health impacts as having a weaker and less linear relationship to PM s concentrations.
Yue et al. (2020) estimated that the annual number of mortalities in China attributable to PM, s decreased by 64 000 (7%) from
2013 to 2017. Zhang et al. (2019) reported a 32% decline in population-weighted PM2 s concentration during 2013 to 2017,

largely due to strengthened industrial emission standards and cleaner residential fuels.

4.2 Os health impacts

Increasing O3 concentrations will result in an increase in health impacts that will act to offset some of the health benefits from
declining PMzs concentrations. WRF-Chem simulated Oz concentrations across China during 2015-2017 to within 15%
(NMB=-0.13), which is consistent with previous studies, but underestimated the magnitude of the observed Os trend. To
provide an estimate of the health impacts due to exposure to O3 we used simulated concentrations to estimate average exposure
to O3 over the 2015-2017 period. We estimate that exposure to O3z caused an average of 143 000 (CI: 106 000 — 193 000)
premature mortalities each year over 2015-2017. Applying the simulated change in O3 concentrations would underestimate the
change in exposure that has occurred, Instead, we estimated the impacts of increased Oz by multiplying the average health
impacts over 2015-2017 by the measured relative change in OsMDAS8. Assuming linear behaviour, the 15% measured increase
in OsMDAS8 would result in an increase of 21 000 premature mortalities per year. The exposure-outcome function is in reality
sub-linear, so this is likely to be an overestimate. Regardless, this is substantially smaller than the 150 000 reduction in annual
premature mortality due to reduced PM,s. We therefore suggest that changes in Chinese air pollution over 2015-2017 have
likely had an overall beneficial impact on human health. The dominance of the PMs reduction over the Os increase on health
impacts is also found in Dang and Liao (2019) who reported a 21% reduction in PM2s and 12% increase in Oz concentrations

between 2012 and 2017 resulted in 268 000 fewer annual mortalities overall.

5 Conclusions

We used the WRF-Chem model to explore the drivers and impacts of changing air pollution across China during 2015-2017.
A simulation with annually updated emissions was able to reproduce the measured negative trends in PM2s concentrations
over China during 2015 — 2017, while overestimating the negative trend in SO, and NO2, and underestimating the positive
trend in Oz. By comparing this with a simulation where emissions are held constant at 2015 levels, but meteorological forcing
was updated, we show that interannual meteorological variation was not the main driver of the substantial trends in air
pollutants that were observed across China during 2015 — 2017. Our work shows that reduced anthropogenic emissions are the
main cause of reduced PM. s concentrations across China, suggesting that the Chinese government’s ‘Air Pollution Prevention
and Control Action Plan’ has been effective at starting to control particulate pollution. We estimate that the 12.8% reduction
in population-weighted PM s concentrations that occurred during 2015-2017 has reduced premature mortality due to exposure

to PM2s by 5.3%, preventing 150 000 premature mortalities across China annually. Despite these substantial reductions, PM2s



concentrations still exceed air quality guidelines and cause negative impacts on human health. We estimate that exposure to
O3 during 2015-2017 causes on average 143 000 premature mortalities across China each year. Increases in O3 concentration
over 2015-2017, may have increased this annual mortality by about 20 000 premature mortalities per year, substantially less
than the reduction in premature mortality due to declining particulate pollution. Changes in air pollution across China during
2015-2017 are therefore likely to have led to overall positive benefits to human health, amounting to a ~5 % reduction of the
ambient air pollution disease burden. However, to achieve larger reductions in the disease burden, further reductions in PM2s

concentrations are required, and pollution controls need to be designed that simultaneously reduce PM2 s and O3 concentrations.
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