
Authors Response to Reviewer Comments on ‘Pollutant emission reductions deliver decreased 

PM2.5-caused mortality across China during 2015–2017’ 

 

Response to Anonymous Referee #1 

Summary: 

In this work, the authors use a chemical transport model (WRF-Chem) to demonstrate that emission 

controls rather than meteorology have been driving the air-quality improvement in China in recent 

years. Additionally, the authors calculate the number of lives saved from China’s ‘Air Pollution 

Prevention and Control Action Plan’ between 2015 and 2017. This manuscript is of good scientific and 

presentation quality and in a highly-relevant area of research. However, there have already been 

several articles published on (1) whether meteorology or emissions are driving air quality changes in 

China and (2) the health impacts of the stringent emissions controls in China. Overall, a better case 

for the novelty of this work needs to be made in the motivation/introduction of the paper (see overall 

comment below). Additionally, there are several places where more detail and/or discussion is 

needed (see Line-by-line comments below). 

General Comments: 

There have already been several articles evaluating the impacts of meteorology vs emissions on 

changes of PM2.5 in China (e.g., https://doi.org/10.5194/acp-19- 7409-2019, 

https://doi.org/10.1289/EHP4157) and several papers that calculated the health effects of the 

stringent emissions controls in China in recent years (e.g., https://doi.org/10.1289/EHP4157, 

https://doi.org/10.1088/1748-9326/aa8a32). Many of these papers were mentioned in the 

results/discussion section of this work. In the introduction, the authors should mention some of this 

closely-related previous work and discuss what distinguishes this work from previous studies. 

We thank the reviewer for their comment. We have added a paragraph (on lines 69-74) which 

mentions similar papers, and discusses the distinguishing features of our study: 

“There are a limited number of modelling studies that attempt to separate the influence of 

meteorology and emissions changes on recent air quality trends in China. Chen et al. (2019) use 

WRF-Chem with 2010 emissions to examine the drivers of trends in wintertime PM. Ding et al. 

(2019) use WRF-CMAQ to evaluate importance of emissions, meteorology and demographic changes 

on PM2.5 related mortality during 2013-2017. Our paper adds to these previous studies by evaluating 

the ability of WRF-Chem to simulate trends in NO2, O3 and SO2 as well as PM, using the most recent 

emissions and evaluated against a comprehensive measurement dataset.” 

Specific Comments: 

Line 75: What was done to clean the dataset? Please provide more information. 

We already included some brief details in our manuscript and a full description is given in Silver et al. 

(2018). As suggested by the referee we provide more information (now on line 85-87) to further 

describe the data cleaning procedure, through the text:  

‘We conducted quality control on the measured data following the methods outlined in Silver et al. 

(2018), which include excluding data with a high proportion of repeated measurements and periods 

of low variability’.  

https://doi.org/10.5194/acp-19-


Line 106-108: Suggest providing context for these NMB. For example, how do they compare to 

previous work? How will they impact air pollution-mortality estimates? 

We have added a table of NMB statistics from previous studies to the supplement (Table S1). We 

included studies that also use WRF-Chem in China, and have a similar model setup. 

 PM2.5 PM10 O3 NO2 SO2 CO 

Zhang et al. 
(2016) (Hong 
Kong) 

 -0.47 to 
-0.07 

0.88 to 1.6 -0.88 to  
-0.83 

-0.84 to  
-0.59 

-0.72 to  
-0.55 

Zhang et al. 
(2016) (China) 

 -0.38 to 
-0.03 

  -0.8 to 
-0.72 

 

(Wang et al., 
2016) (N 
China, 
January) 

0.28 to  
0.47 

0.00 to 0.08  0.09 to 0.27 0.33 to 0.91 0.01 to 0.12 

Zhou et al. 
(2017) 
(forecast) 

 -0.36  -0.05 -0.18 -0.4 

This paper 0.49 -0.09 -0.15 1.2 0.09 -0.35 

 

We add the following text to the main paper (Line 117-118): 

“Model biases were similar to previous model studies in China (Supplementary Table 1).” 

Are these NMB calculated using the “control” simulation? Is the NMB greater if the measurements 

are compared with the “fixed emissions” simulation? 

This is a good suggestion. Yes, the NMB is further from zero in the fixed emissions scenario. We 

include the table below in the main paper (Table 2): 

 PM2.5 O3 NO2 SO2 

Control     

2015-2017 0.49 -0.15 1.2 0.09 

2015 0.5 -0.12 1.32 0.17 

2016 0.47 -0.14 1.20 0.05 

2017 0.5 -0.21 1.10 0.04 

Fixed emissions     

2015-2017 0.57 -0.18 1.26 0.35 

2015 0.50 -0.12 1.32 0.17 

2016 0.56 -0.16 1.28 0.31 

2017 0.66 -0.24 1.20 0.65 
Table 2.  Model evaluation shown as a normalised mean bias (NMB). Evaluation is shown separately for the control 

and fixed emission simulations. The NMB for 2015-2017 is compared to individual years.  

Line 109-112: What was the measurement/simulation bias for each year? If it does not change 

substantially, this would help validate the methodology used here for decoupling the impacts of 

emissions and meteorology on PM2.5 and O3 levels. 

This was a useful suggestion, and the information has been included in Table 2 (see above), which 

has been added to the manuscript. We also added these sentences (lines 204-207): 



“Table 2 compares the control and fixed emission simulations against PM2.5, O3 and SO2 and NO2 

measurements in 2015, 2016 and 2017. In the control simulation model biases remain similar during 

2015-2017. In the fixed emission simulation, model biases for PM2.5, O3 and SO2 increase between 

2015 and 2017. This further suggests that changing anthropogenic emissions during 2015-2017 have 

been the dominant cause of changing concentrations.” 

Line 113-117: Please provide more information here. What is meant by “interpolated model data”? 

Did the authors look only at the model estimates that coincided with the measurements? Please 

provide some information about the method that was used for the measurements data, so the reader 

doesn’t need to look at the Silver et al, 2018, unless they are interested in a high level of detail of the 

methods. What method was used to deseasonalize the data? 

We explain what we mean by interpolated model data on line 115: 

“For comparison with the measurements, we sampled the model at the station locations using linear 

interpolation.” 

We have amended the text (lines 134-135) to explain how we deseasonalise the data. For clarity, we 

remove mention of interpolated data here 

“Trends in the model data were calculated using the same method as the measurement data (Silver 

et al., 2018). The hourly data are averaged to monthly means, which are then deseasonalised using 

locally weighted scatterplot smoothing.” 

When evaluating model trends (Section 3) we match the model to the measurements. When 

exploring changes in exposure and impacts on health (Section 4) we calculate population-weighted 

exposure.  

Line 125: It’s useful to calculate the changes in mortality based on exposure alone, but I also suggest 

calculating the number of PM2.5 and O3 mortalities with population/age/baseline mortality data 

from 2017 to provide more realistic mortality estimates for 2017. It would be useful to see if the air 

pollution reductions in 2017 have increased benefits due to the increased population from 2015, for 

example. 

We thank the reviewer for their suggestion and agree that it can be interesting to compare the 

effects of exposure and demography air pollution health impact. However, in the context of this 

study, which focusses on distinguishing the emissions and meteorological effects on air quality, we 

believe that including mortality changes due to changing age distribution, population and baseline 

mortality is outside the scope of the current study. We isolated the health impacts of the change in 

exposure by keeping the time frame constant thereby removing the influence of the confounding 

variations in population ageing, population size, and baseline disease levels. As the reviewer points 

out, health impact assessments are sensitive to the underlying epidemiological data and have rapidly 

developing methodologies. We now explain our approach more clearly (Line 150-152): 

“Health impacts depend on population count, population age, and baseline mortality rates which 

have changed over the period studied (Butt et al., 2017). To isolate the impacts of changing air 

pollution, other variables were kept constant for 2015-2017.” 

Line 153: How did the Chen et al, 2019 trends compare and how did their emissions scaling compare? 

Chen et al. (2019) did not scale emissions. They use 2010 emissions, which led to a ‘severe 

overestimation’ in PM, due to the decline in emissions that has occurred since 2010. Chen et al. 



(2019) focused on wintertime (January). They also suggested that reductions in emissions had 

contributed to reduced wintertime PM2.5 concentrations (see Line 178-179): 

“Chen et al. (2019) also concluded that emission reductions were the primary cause of reduced 

wintertime PM2.5 across China during 2015-2017.” 

Line 157: Please provide more information on Guizhou and Li et al, 2018. Why do they see different 

trends? Did they use different emissions scaling? Did they look at different regions of China? 

The reference to “Guizhou” is to the trend in the province of Guizhou in the fixed emissions run. The 

text has been amended to “Guizhou province” make this clear. For Li et al (2019a) [corrected], their 

trend estimate has been added in lines 184-186:  

“Li et al. (2019a) also report that the positive ozone trend over 2013 to 2017 is due to changes in 

anthropogenic emissions, and the magnitude of their estimated trend of 1-3 ppbv year-1 

(approximately 2-6 μg m-3 year-1)  is comparable to the 2.6 μg m-3 year-1 trend found in this study.” 

Line 190-191: Suggest that the authors provide more context for what is meant by a “reasonable” 

NMB. 

This word reasonable has been removed to remove subjectivity around the NMB. Additionally, a 

table has been added to the supplement (Table S1) that contains NMB recorded in other papers that 

have a similar WRF-Chem model setup. 

Figure 2: Which color represents which region mentioned in the figure caption. 

This has been added to the figure caption. 

Figure 2: Suggest making the dots that don’t have significant trends (i.e., the gray dots) a lighter blue 

or red color. Even if the trends are statistically significant the direction of the trend will still provide 

information. 

Thank you for your suggestion, the figure caption has been updated to include the colour for each 

region, which corresponds to the legend in Figure 1. 

Figure 4: I find this color scale to interpret because the mid-range yellows and greens all look similar. 

I suggest binning the color scale to make it easier to see how many lives are saved in each province. 

Thank you for your suggestion, this has been changed to a binned colour scale. 

Technical Corrections: 

Line 157: Missing year of Guizhou. I also couldn’t find this reference in the reference list. 

Guizhou refers to the province of Guizhou, the text has been amended to make this clearer 

Line 185: Should be “per year”. 

This has been corrected 

Line 247: The first two papers in the reference section don’t seem to be in alphabetical order 

These papers are ordered by “A” of “van der A”. We will check with the journal editorial team to 

ensure we are following journal guidelines. 

 



Response to Anonymous Referee #2  

The manuscript presents a study on estimating the changes of mortality due to air pollutants in China 

in 2015-2017 and explaining the causes of it using WRF-Chem simulations. For this, modeled trends 

are compared with observed ones to provide reliability in the model estimates. This study represents 

good contributions to the field and it’s within the scope of ACP. I think the paper needs a bit more 

work before it’s ready for publication based on the comments below. My main comment is the 

following. Given the issues in the modelled trends of the PM2.5 precursors (SO2, NOx), getting the 

right trend for PM2.5 could be do to a cancellation of errors, so you might be getting the right trend 

for the wrong reasons. I would like to encourage the authors to look into more details on this topic. 

For instance, analyze the model results by aerosol composition and how are the trends of each specie 

to assess the role of each of them. I would also encourage the authors to collaborate with other 

researchers that maintain sites where this speciation is observed and so the speciated comparison 

can be done as well. An example is the Beijing site from the Spartan network (https://www.spartan-

network.org/beijing-china), but I’m sure there are many more. Even if a few sites are included this 

could provide useful information 

We thank the reviewer for their comment, and agree that it is useful to evaluate simulated aerosol 

speciation by comparison with measurements. Unfortunately there is insufficient data to carefully 

evaluate the trend in aerosol speciation across China during the period analysed.  

As suggested, we compare the model with the Beijing SPARTAN data (Snider et al., 2015, 2016). The 

model underestimates sulfate and overestimates nitrate at this particular site. The results of the 

comparison have been added to the supplement (Figure S4). We also compare to another set of 

measurements from Beijing that were reported by Zhou et al. (2019) (Figure S5), which point to an 

underestimate of sulfate, nitrate and ammonium in winter, but reasonable estimations in other 

seasons. 

To extend the evaluation beyond Beijing, we also use a dataset of speciated aerosol data from 

different field campaigns compiled by Li et al. (2017) (Figure S6). Data spans multiple years from 

2006-2013, so the comparison is complicated by comparing the model for 2015 against years of 

different meteorology and emissions. For this reason, we only compare means values across the 

campaign which will reduce the impacts of different meteorological conditions between the 

measurement and model. Nevertheless, this comparison also suggests the model underestimates 

sulfate and overestimate nitrate. The large changes in emissions (in particular the large decline in 

SO2 emissions) over this period is likely to cause at least some of the underestimate in sulfate. The 

results of this comparison are added to the Supplement (Fig. S6). We add the following text to the 

paper on lines (118-128): 

“We also evaluated the model against speciated aerosol measurements from the Surface 

PARTiculate mAtter Network (SPARTAN) (Snider et al., 2015, 2016) site in Beijing 

(https://www.spartan-network.org/beijing-china, last accessed: 2nd July 2020) (Fig S4),  Aerosol 

Chemical Speciation Monitor measurements from Beijing (Zhou et al. (2019)) (Figure S5) and Aerosol 

Mass Spectrometer measurements from across China (Li et al., 2017)  (Fig S6). Measurements 

reported by  Li et al. (2017b) were made from various years spanning 2006 to 2013 and do not 

match the years simulated by the model. Comparison against these data show that the model 

underestimates the sulfate fraction in PM2.5, while overestimating the nitrate fraction. 

Underestimation of sulfate in comparison to  Li et al., (2017b) will partly be caused by the large 

decline in SO2 emissions that has occurred in the last decade (Zheng et al., 2018). Underestimate of 

sulfate, particularly in winter, and overestimation of nitrate are consistent with previous modelling 

https://www.spartan-network.org/beijing-china


studies (Shao et al., 2019)   including those using WRF-chem (Zhou et al., 2019). Newly proposed 

mechanisms to explain the rapid sulfate formation in China’s winter haze (Gen et al., 2019; Shao et 

al., 2019; Xue et al., 2014; Zhang et al., 2019) need to be included and evaluated in models.” 

There is insufficient data to evaluate the trends in aerosol speciation over the 2015 to 2017 period. 

We add the following text to the paper (Line 208-19): 

“An important future step is to understand how changing anthropogenic emissions, in terms of 

emission species or emission sectors, have contributed to observed trends in pollutant 

concentrations. Residential and industrial emissions are dominant causes of PM2.5 concentrations 

across much of China (Reddington et al., 2019), but it is not clear which emission sectors have 

contributed most to observed PM2.5 trends. Cheng et al. (2019) suggests that emission controls in 

the residential and industrial sectors were the dominant causes for reduced PM2.5 in Beijing between 

2014 and 2017. Measurements of aerosol composition (Li et al., 2017; Weagle et al., 2018) add 

confidence to model simulations and can inform our understanding of how aerosol chemistry 

responds to emission changes. However, except for Beijing, there is insufficient measurement data 

of how aerosol composition has changed across China in recent years. Li et al. (2019a) found large 

declines in wintertime organics and sulfate and smaller declines in nitrate and ammonium in Beijing 

between 2014 and 2017. Zhou et al. (2019) also analysed aerosol composition data from Beijing and 

found large declines in all aerosol components except nitrate between 2011-12 and 2017-18. 

Continuous measurements of aerosol composition across China are required to determine how 

different aerosol components are contributing to the observed PM2.5 trend and to evaluate 

simulated responses to emission changes.”  

Comments by line: 

66-70. Please list some references on the second approach. 

Two references, Ansari et al. (2019) and Xing et al. (2011) have been added as examples of this 

approach on line 68. 

79. Please briefly summarize the quality control process 

A brief summary of the quality control process has been added on lines 86-87: ‘…which include 

excluding data with a high proportion of repeated measurements and periods of low variability’ 

Section 2.2. Any previous work where you have used this or similar configuration with positive results 

in terms of meteorology, PM2.5 and O3? In this work you are not much model evaluation other than 

the evaluation of the trends and brief statistics in sections 

Further detail of the model evaluation has been added in Table 2 (see comments to Referee #1). 

Previous studies using a similar model set-up that demonstrate the model’s ability to capture PM 

include Reddington et al. (2019). A table (Table S1) has been added to the supplementary showing 

the comparable NMB statistics of published research that use a similar WRF-Chem setup to simulate 

air pollution in China. 

2.3. Adding evaluation on the ability of this model configuration to capture aerosol speciation would 

also be desirable. 

Two plots that show the ability of the model to capture aerosol speciation, Figures S4 and S5, have 

been added to the supplement. We have also added text to the manuscript (see response to Referee 

#1).  



103 Hodzic and Jimenez, and Knote et al. papers described two very different SOA schemes, please 

specify which one you are using. 

We use the scheme described in Hodzic and Jimenez. The second reference on line 112 has been 

corrected to Hodzic and Knote (2014). 

Section 2.4. Can you briefly describe the exposure response functions used for PM2.5 and O3? 

We have added more information to the paper on the shape of the exposure-response functions. 

For PM2.5 on lines 140-142: 

“Health impacts are estimated for ambient PM2.5 using the Global Exposure Mortality Model 

(GEMM) (Burnett et al., 2018), which uses cohort studies to estimate health risks integrated over a 

range of PM2.5 concentrations. GEMM applies a supralinear association between exposure and risk at 

lower concentrations and then a near-linear association at higher concentrations.” 

And for O3 on lines 144-148: 

For ambient O3, we used the methodology of the Global Burden of Disease (GBD) study for 2017 

(GBD 2017 Risk Factor Collaborators et al., 2018) to estimate the mortality caused by chronic 

obstructive pulmonary disease, which is based on exposure and risk information from five 

epidemiological cohorts. It estimates a near-linear relationship between exposure and risk at lower 

concentrations of O3, and a sub-linear association at higher concentrations.  

129. After reading section 3.1, I don’t think the trends compare largely well as stated in this sentence. 

You could make this point for PM2.5, but for the others, although the sign is generally correct, the 

magnitudes tends to be off by at least factor of 2. For the case of NO2 the sign of the trend is not 

even well captured. Please revise to better represent the actual results 

We have changed this sentence to remove the statement that all the trends compare well. The 

sentence now reads (line 155): 

“Figure 1 and 2 compare measured and simulated air quality trends over China during 2015 to 2017” 

129-136. Can you add additional analysis in whether the model captures the regions with more 

negative (and more positive) trends? I see this info in the plots but it’s not discussed. 

The regional distribution of trends for PM are discussed in lines 160-161 and for O3 in lines 163-164. 

Line 166-167 mentions the fact that the model does not capture the regional distribution of trends 

for NO2. 

150. Is clear to me that natural emissions remained equal in the two emission scenarios, but what did 

the authors do for biomass burning emissions? 

Biomass burning emissions are from the FINN inventory in both scenarios. We now clarify this in the 

manuscript (Line 132-133): 

“Both simulations include interannual variability in biogenic and biomass burning emissions, allowing 

us to isolate the impacts of changing anthropogenic emissions.”  

153-154. Chen et al. (2019) also found that there were periods where meteorology did play a role, 

can you compare your results to theirs? 

We add the following sentence to our manuscript (line 178-179): 



Chen et al. (2019) also concluded that emission reductions were the primary cause of reduced 

wintertime PM2.5 across China during 2015-2017 

155-156. I would say “little influence” rather than “no influence” as you are basing your analysis in a 

model that contains uncertainties. 

This has been corrected in the text. 

166-167. This statement depends if the region is NOx or VOC limited. Might be good to include these 

indicators from the model perspective to shows that this is what’s actually happening in the model. 

We agree with the reviewer that this statement depends on the ozone regime, and we have added a 

reference to a satellite study which finds that a NOx limited or mixed regime dominates across China. 

We amended the sentence (lines 198-200): 

“If NOx emissions decline too strongly in MEIC, this may contribute to the simulated underestimate 

of the positive observed O3MDA8 trend in areas of China with a NOx limited or mixed Ozone regimes 

that cover the majority of China (Jin and Holloway, 2015).” 

168. The Li et al. (2019a) study blames heterogeneous chemistry happening in declining particles for 

the negative trend. Is this process included in this WRF-Chem configuration and how this influences 

your results? An attempt to compute similar metrics as in the Li study might be good to intercompare 

results. 

In our version of WRF-Chem, the heteorogenous HO2 uptake process is not included. Li et al. (2019b) 

conclude that this process is the main driver for the positive O3 trend across China, which has been 

disputed in Tan et al. (2020), who find that this process was not significant in the NCP region. The 

main aim of our study was to compare the importance of meteorology and emissions in driving 

trends of major air pollutants. Therefore, we believe that performing additional model runs to 

specifically examine the chemistry driving the O3 trend is beyond the scope of this study. 

191-196. Is not clear in this paragraph where you consider the model issues on O3 trends. 

In this paragraph, we acknowledge the underestimation of the positive O3 trend, which is why we do 

not use the modelled trends to estimate the change in O3 caused mortality. We instead apply the 

measured trend to the 2015 model fields. We have clarified this in the paper. 

Minor Edits 

75. I believe ACP policy is to not use links but references, please check. 

We have seen these data sources hyperlinked in other ACP articles, and will verify this is acceptable 

during the editing process. 

124. Fix issue with the symbol after 0.05 

This has been corrected 

329. Should this be 2019b? 

The references have been checked to ensure they correspond to the correct paper. 

  



List of major changes 

• Added a paragraph in Section 1.2 to better define the scope of the article with reference to 

recent similar articles 

• Extended Section 2.3 by adding detail of comparison of our simulated aerosol with speciated 

aerosol measurement datasets. The comparisons are shown in the newly added figures to 

the supplement, as Figures S4-6. 

• Added a new table (Table 2) that gives more detail of the model biases and is referenced in 

Section 3.2. 

• Added a paragraph to the end of Section 3.2 that identifies areas for future research into 

how changing emissions are driving trends in particulate matter species. 

  



Marked-up manuscript  

Pollutant emission reductions deliver decreased PM2.5-caused 

mortality across China during 2015-2017 

Ben Silver1, Luke Conibear1, Carly L. Reddington1, Christoph Knote2, Steve R. Arnold1 

and Dominick V. Spracklen1  

1 School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK 
2 Meteorological Institute, Ludwig-Maximilians-University Munich, Theresienstr. 37, Munich, 80333, Germany 

Correspondence to: Ben Silver (eebjs@leeds.ac.uk) 

Abstract. Air pollution is a serious environmental issue and leading contributor to the disease burden 

in China. Rapid reductions in fine particulate matter (PM2.5) concentrations and increased ozone 

concentrations have occurred across China, during 2015 to 2017. We used measurements of 

particulate matter with a diameter < 2.5 µm (PM2.5) and Ozone (O3) from >1000 stations across China 

along with Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) regional 

air quality simulations, to explore the drivers and impacts of observed trends. The measured 

nationwide median PM2.5 trend of -3.4 µg m-3 year-1, was well simulated by the model (-3.5 µg m-3 

year-1). With anthropogenic emissions fixed at 2015-levels, the simulated trend was much weaker (-

0.6 µg m-3 year-1), demonstrating interannual variability in meteorology played a minor role in the 

observed PM2.5 trend. The model simulated increased ozone concentrations in line with the 

measurements, but underestimated the magnitude of the observed absolute trend by a factor of 2. We 

combined simulated trends in PM2.5 concentrations with an exposure-response function to estimate 

that reductions in PM2.5 concentrations over this period have reduced PM2.5-attribrutable premature 

morality across China by 150 000 deaths year-1.  

1 Introduction 

Concentrations of particulate matter and ozone across China largely exceed international air quality 

standards (Reddington et al., 2019; Silver et al., 2018). This poor air quality is estimated to hasten the 

deaths of 870 000 - 2 470 000 people across China each year (Apte et al., 2015; Burnett et al., 2018; 

Cohen et al., 2017; Gu and Yim, 2016; Lelieveld et al., 2015). The Chinese government’s efforts to 

improve air quality began in the 1990s, but emissions of pollutants continued to increase into the 21st 

century and air pollution worsened (Krotkov et al., 2016; Streets et al., 2008; Zhang et al., 2012). In 

2013, China experienced episodes of severe particulate matter pollution (Zhang et al., 2016). In 

response, the Chinese government announced the Action Plan on the Prevention and Control of Air 

Pollution which focused on the reduction of fine particulate matter (PM2.5) through stringent emission 

controls during 2012-2017 (Zheng et al., 2017).  

1.1 Previous studies of trends in China’s air quality 

Satellite remote sensing studies have been used to show large changes in air pollution across China in 

recent decades, with positive trends in Nitrogen Dioxide (NO2) (Van der A et al., 2006), Sulfur 

Dioxide (SO2) (Zhang et al., 2017) and PM2.5 (Ma et al., 2016) during the 1990s and early 2000s. 

Trends in aerosol optical depth have been used to estimate changes in PM2.5, which peaked around 

2011 (Ma et al., 2016). NO2 across China peaked around 2011 (De Foy et al., 2016; Irie et al., 2016), 

although concentrations in the Pearl River Delta (PRD) peaked earlier and western regions may have 

peaked later (Cui et al., 2016). Several remote sensing studies show that SO2 concentrations in China 

peaked around 2006 (Van Der A et al., 2017; Krotkov et al., 2016; Zhang et al., 2017), matching the 



period of maximum emissions (Duan et al., 2016; Li et al., 2017a; Zheng et al., 2018). Analysis of 

measurements from the Acid Deposition Monitoring Network in East Asia (EANET) shows a 

negative pH trend (i.e., becoming more acidic) from 1999 until a reversal occurs in 2006, matching 

peak SO2 emissions and concentrations (Duan et al., 2016). Measurements of O3 concentrations at 

background monitoring sites indicate positive trends in western China during 1994-2013 (Xu et al., 

2016), and Taiwan during 1994-2003 (Chang and Lee, 2007), suggesting that O3 has been increasing 

across China during the past two decades. More recently, measurements at urban sites, also show 

positive O3  trends during 2005-2011 (Zhang et al., 2014). 

The establishment of China’s air pollution monitoring network, operated by the China National 

Environmental Monitoring Centre (CNEMC) (Wang et al., 2015), which includes measurements from 

over 1600 locations, has enabled more detailed analysis of recent air pollution changes (Silver et al., 

2018; Zhai et al., 2019). Between 2015 and 2017, PM2.5 concentrations across China decreased by 

28% (Silver et al., 2018). Zhai et al., (2019) reported a 30-40% decrease in PM2.5 concentrations 

during 2013-2017. In contrast O3 concentrations have increased, with median concentration of O3 

across 74 key cities increasing from 141 μg m-3 in 2013 to 164 μg m-3 in 2017 (Huang et al., 2018). 

Silver et al. (2018) found that O3 maximum 8 h mean concentrations (O3MDA8) increased by 4.6 % 

year-1 over 2015-2017. Lu et al., (2020) reported positive trends in April-September O3MDA8 at 90% 

of sites during 2013 to 2019. Positive regional O3 trends remain even after meteorological variability 

has been removed (Li et al., 2019b). Trends in NO2 are more variable, with a negative trend reported 

in eastern China and positive trends in western areas (Li and Bai, 2019). Silver et al., (2018) found 

that NO2 had negative trends in Hong Kong and North China Plain regions, but positive trends in the 

Yangtze River Delta (YRD), Sichuan Basin (SCB) and PRD, and no overall trend at the national 

scale. 

1.2 Identifying drivers of recent trends 

Changes in the concentrations of air pollutants may be caused by changing emissions or by 

interannual variability of meteorology. Stringent emission controls have started to reduce emissions of 

various pollutants across China. Between 2013 and 2017, emissions of PM2.5, SO2 and NOx (NO2 + 

Nitrogen Oxide) declined whereas emissions of Ammonia (NH3) and Non-Methane Volatile Organic 

Compounds (NMVOCs) remained fairly constant (Zheng et al., 2018). B. Zheng et al. (2018) also 

demonstrate that emission reductions were primarily driven by pollution controls, rather than 

decreasing activity rates. Meteorological variability alters atmospheric mixing, deposition and 

transport, all of which can influence the concentration of pollutants. Separating the influence of 

meteorology and emissions on air pollutant concentrations is difficult, due to the interlinked nature of 

the chemistry-climate system (Jacob and Winner, 2009). However, to assess the efficacy of China’s 

emissions reductions, it is necessary to separate these two factors. 

There are two commonly used approaches to separate the influences of meteorology and emissions on 

variability in atmospheric pollutant abundances. The first approach uses statistical models, such as 

multi-linear regression, to control for the influence of meteorology and allowing the proportion of air 

pollutant concentration variability that can be explained by meteorological variables to be calculated 

(Tai et al., 2010). The second approach is to use an atmospheric chemistry transport model to simulate 

pollutant concentrations (Ansari et al., 2019; Xing et al., 2011). 

There are a limited number of modelling studies that attempt to separate the influence of meteorology 

and emissions changes on recent air quality trends in China. Chen et al. (2019) use WRF-Chem with 

2010 emissions to examine the drivers of trends in wintertime PM. Ding et al. (2019) use WRF-

CMAQ to evaluate importance of emissions, meteorology and demographic changes on PM2.5 related 

mortality during 2013-2017. Our paper adds to these previous studies by evaluating the ability of a 



online-coupled model (WRF-Chem) to capture trends in NO2, O3 and SO2 as well as PM, using the 

most recent emissions and evaluated against a comprehensive measurement dataset.  

Through a comparison of multiple simulations, where either annual variability in emissions or 

meteorology are held constant, the relative influence of the two factors can be estimated. Here we 

analyse measurements and a regional air quality model to explore the role of changing anthropogenic 

emissions on air pollutant concentrations and human health across China during 2015 to 2017. 

2 Materials and Methods 

2.1 Measurement dataset 

We used hourly measurements from the CNEMC monitoring network (Wang et al., 2015) of PM2.5, 

O3, NO2, and SO2 for the period 2015-2017, which includes data from over 1600 monitoring stations 

across mainland China and is available to download from http://beijingair.sinaapp.com/. This was 

combined with data from the Hong Kong Environmental Protection Department 

(https://cd.epic.epd.gov.hk/EPICDI/air/station/) and Taiwan’s Environmental Protection 

Administration (https://taqm.epa.gov.tw/taqm/en/YearlyDataDownload.aspx). We conducted quality 

control on the measured data following the methods outlined in Silver et al. (2018), which include 

excluding data with a high proportion of repeated measurements and periods of low variability. The 

cleaned dataset included measurements from 1155 sites. 

2.2 WRF-Chem model setup 

We used the Weather Research and Forecasting model with Chemistry (WRF-Chem) version 3.7.1 

(Grell et al., 2005) to simulate trace gas and particulate pollution over China for 2015 to 2017. The 

model domain uses a Lambert Conformal grid (11-48 °N, 93-128 °E) centred on eastern China with a 

horizontal resolution of 30 km.  The model has 33 vertical layers, with the lowest layer ~29 m above 

the surface, and the highest at 50 hPa (~19.6 km). 

European Centre for Medium Range Weather Forecasts (ECMWF) ERA-Interim fields were used to 

provide meteorological boundary and initial conditions, as well as to nudge the model temperature, 

winds and humidity above the boundary layer every 6 hours. Restricting nudging to above the 

boundary layer, allowed a more realistic representation of vertical mixing (Otte et al., 2012). 

Chemical boundary and initial conditions were provided by global fields from the Model for Ozone 

and Related Chemical Tracers version 4 (MOZART-4) chemical transport model (Emmons et al., 

2010). 

Anthropogenic emissions were from the Multi-resolution Emission Inventory for China (MEIC; 

www.meicmodel.org). MEIC estimates emissions using a database of activity rates across residential, 

industrial, electricity generation, transportation and agricultural emission sectors combined with 

China-specific emission factors (Hong et al., 2017). We used the 2015 MEIC dataset, then used 

sector-specific and species-specific scaling for 2016 and 2017 based on the emission totals estimated 

in B. Zheng et al. (2018). Table 1 shows emission totals for 2015, 2016 and 2017. Over the 2015 to 

2017 period, Chinese emissions decreased by 38% for SO2, 16% for PM2.5 and 8% for NOx. For 

regions outside the MEIC dataset, we used anthropogenic emissions from the EDGAR-HTAPv2.2 

emission inventory for 2010. 

Biogenic emissions were generated online by the Model of Emissions of Gases and Aerosol from 

Nature (MEGAN) (Guenther et al., 2000). Biomass burning emissions were provided by the Fire 

Inventory from NCAR (FINN) version 1.5 (Wiedinmyer et al., 2011), which uses satellite fire 

observations of fires and land cover to estimate daily 1 km2 emissions. Dust emissions were generated 

online the Georgia Institute of Technology-Goddard Global Ozone Chemistry Aerosol Radiation and 

http://beijingair.sinaapp.com/
https://cd.epic.epd.gov.hk/EPICDI/air/station/
https://taqm.epa.gov.tw/taqm/en/YearlyDataDownload.aspx


Transport (GOCART) model with Air Force Weather Agency (AFWA) modifications (LeGrand et al., 

2019). 

Gas-phase chemistry is simulated using the MOZART-4 scheme and aerosol is treated by the Model 

for Simulating Aerosol Interactions and Chemistry (MOSAIC; Zaveri et al., 2008) scheme, including 

grid-scale aqueous chemistry and an extended treatment of organic aerosol (Hodzic and Jimenez, 

2011; Knote et al., 2014).(Hodzic and Jimenez, 2011; Hodzic and Knote, 2014). Four discrete size 

bins were used within MOSAIC (0.039–0.156 μm, 0.156–0.625 μm, 0.625–2.5 μm, 2.5–10 μm) to 

represent the aerosol size distribution. 

2.3 Model and measurement trend estimation 

For comparison with the measurements, we sampled the model at the station locations using linear 

interpolation. Over 2015-2017, the model well simulated PM2.5 (normalised mean bias (NMB) = 

0.45), O3 (NMB=-0.13) and SO2 (NMB=0.07), while overestimating NO2 concentrations by a factor 

of around 2 (NMB=1.17). Model biases were similar to previous model studies in China 

(Supplementary Table 1). We also evaluated the model against speciated aerosol measurements from 

the Surface PARTiculate mAtter Network (SPARTAN) (Snider et al., 2015, 2016) site in Beijing 

(https://www.spartan-network.org/beijing-china, last accessed: 2nd July 2020) (Fig S4), as well as 

Zhou et al. (2019) (Figure S5) and from across China (Li et al., 2017b)  (Fig S6). Measurements 

reported by  Li et al. (2017b) were made from various years spanning 2006 to 2013 and do not match 

the years simulated by the model. Comparison against these data show that the model underestimates 

the sulfate fraction in PM2.5, while overestimating the nitrate fraction. Underestimation of sulfate in 

comparison to  Li et al., (2017b) will partly be caused by the large decline in SO2 emissions that has 

occurred in the last decade (Zheng et al., 2018). Underestimate of sulfate, particularly in winter, and 

overestimation of nitrate are consistent with previous modelling studies (Shao et al., 2019)   including 

those using WRF-chem (Zhou et al., 2019). Newly proposed mechanisms to explain the rapid sulfate 

formation in China’s winter haze (Gen et al., 2019; Shao et al., 2019; Xue et al., 2014; Zhang et al., 

2019) need to be included and evaluated in models. 

To separate the influence of changing anthropogenic emissions from interannual variability in 

meteorology, we conducted two 3-year simulations, both for 2015-2017. The first simulation 

(Control) included interannual variability in both anthropogenic emissions and meteorology. The 

second simulation (Fixed emissions) included interannual variability in meteorology, but with 

anthropogenic emissions fixed at 2015 levels. Both simulations include interannual variability in 

biogenic and biomass burning emissions, allowing us to isolate the impacts of changing 

anthropogenic emissions. 

Trends in the model data were calculated using the same method as the measurement data (Silver et 

al., 2018). The hourly data are averaged to monthly means, which are then deseasonalised using 

locally weighted scatterplot smoothing. The magnitude and direction of linear trends were calculated 

using the Theil-Sen estimator, a non-parametric method that is resistant to outliers (Carslaw, 2015). 

The Mann-Kendall test was used to assess the significance of trends, using a threshold of p < 0.05. 

This stage of the analysis was performed using the R package ‘openair’ (Carslaw and Ropkins, 2012). 

2.4 Health impact estimation 

Health impacts are estimated for ambient PM2.5 using the Global Exposure Mortality Model (GEMM) 

(Burnett et al., 2018)., which uses cohort studies to estimate health risks integrated over a range of 

PM2.5 concentrations. GEMM applies a supralinear association between exposure and risk at lower 

concentrations and then a near-linear association at higher concentrations. We used the GEMM for 

non–accidental mortality (non–communicable disease, NCD, plus lower respiratory infections, LRI), 

using parameters including the China cohort (GBD 2017 Risk Factor Collaborators, 2018). For 

https://www.spartan-network.org/beijing-china


ambient O3, we used the methodology of the Global Burden of Disease (GBD) study for 2017 (GBD 

2017 Risk Factor Collaborators et al., 2018) to estimate the mortality caused by chronic obstructive 

pulmonary disease, which is based on exposure and risk information from five epidemiological 

cohorts. It estimates a near-linear relationship between exposure and risk at lower concentrations of 

O3, and a sub-linear association at higher concentrations. The United Nations adjusted population 

count dataset for 2015 at 0.05° × 0.05° resolution was obtained from the Gridded Population of the 

World, Version 4, along with population age distribution from GBD2017. Health impacts depend on 

population count, population age, and baseline mortality rates which have changed over the period 

studied (Butt et al., 2017). To isolate the impacts of changing air pollution, other variables were kept 

constant for 2015-2017.  

3 Measured and modelled trends comparison 

3.1 Varying emissions scenario 

MeasuredFigure 1 and 2 compare measured and simulated air quality trends over China during 2015 

to 2017 largely compare well, and are shown in Figure 1 and 2. The measurements show widespread 

decline in PM2.5 and SO2 concentrations, widespread increase in O3MDA8, and spatially variable 

trends in NO2 concentrations, as reported previously (Silver et al., 2018). The model (Control 

simulation) simulates the widespread decline in PM2.5 concentrations, with the median measured trend 

across China (-3.4 μg m-3 year-1) well simulated by the model (-3.5 μg m-3 year-1). In the 

measurements, 90% of significant trends are negative and 10% of significant trends are positive, with 

positive trends mostly being in the Fenwei Plain region, Jiangxi and Anhui. No significant positive 

trends are simulated by the model, possibly due to coarse resolution of the model and the simplified 

scaling we apply to emissions for 2016 and 2017. 

WRF-Chem captures the widespread increase in O3MDA8, but underestimates the magnitude of the 

trend by a factor 2 (2.7 μg m-3 year-1 in the measurements, versus 1.3 μg m-3 year-1 simulated by WRF-

Chem). WRF-Chem simulates negative O3MDA8 trends in the Sichuan Basin and Taiwan, whereas in 

the measured data, all regions have positive median trends.  

The measurements show zero overall median trend in NO2 concentrations, with 46% of sites with 

significant trends being negative and 54% positive. In contrast, WRF-Chem simulates widespread 

reductions in NO2 concentrations, with 100% of significant sites exhibiting negative trends and a 

negative nationwide median trend of -2.2 μg m-3 year-1. The 7.0 % nationwide median decline in 

simulated NO2 concentrations over 2015-2017, matches the 7.6 % decline in Chinese NOx emissions 

in the MEIC.  

The measurements show a widespread decline in SO2 concentrations, with a median nationwide trend 

of -1.9 μg m-3 year-1. WRF-Chem captures the direction of the trend, but the magnitude of the trend is 

overestimated by a factor 2. The 32.5 % decline in simulated nationwide median SO2 concentrations 

over 2015-2017, matches the 37.8 % decline in SO2 emissions in the MEIC. 

3.2 Fixed emissions scenario 

The model simulation where anthropogenic emissions in China were fixed at 2015 levels has a weak 

negative PM2.5 trend (-0.6 μg m-3 year-1), a factor of six smaller than either the control simulation or 

the measurements (Figure 3). This suggests that the measured negative PM2.5 trend has largely been 

driven by decreased anthropogenic emissions, with limited impact from interannual variability in 

meteorology. Chen et al. (2019) also concluded that emission reductions were the primary cause of 

reduced wintertime PM2.5 across China during 2015-2017. Cheng et al., (2019) found that local and 



regional reductions in anthropogenic emissions were the dominant cause of reduced PM2.5 

concentrations in Beijing between 2013 and 2017.  

The median O3MDA8 trend in the fixed emission simulation is 0.0 μg m-3 year-1. This suggests that 

interannual meteorological variation had little influence on O3 trends at the China-wide scale during 

2015-2017, which were largely driven by changing emissions. However, meteorological variability 

did drive regional changes in O3. For example, in Guizhou province, a trend of -2.5 μg m-3 year-1 was 

calculated in the fixed emissions simulation. Li et al. (2019a) also report that the positive ozone trend 

over 2013 to 2017 is due to changes in anthropogenic emissions, and the magnitude of their estimated 

trend of 1-3 ppbv year-1 (approximately 2-6 μg m-3 year-1)  is comparable to the 2.6 μg m-3 year-1 trend 

found in this study. Lu et al. (2019) analysed changes in O3 between 2016 and 2017 and concluded 

that hotter and drier conditions in 2017 contributed to higher O3 concentrations in that year. Liu and 

Wang (2020) reported a complex O3 response during 2013 to 2017, with changing anthropogenic 

emission increasing O3MDA8 in urban areas and decreasing it in rural areas, whereas meteorological 

changes drove regionally contrasting changes in O3MDA8 through changes in cloud cover, wind, and 

temperature and through driving changes in biogenic emissions.   

The fixed emission simulation also has a smaller NO2 trend (-0.5 μg m-3) compared to the control 

simulation (-2.2 μg m-3 year-1), demonstrating emission reductions that are estimated in the MEIC are 

also the main reason for the negative simulated NO2 trend. However, unlike PM2.5 and O3, the NO2 

trend calculated byfrom the fixed emission simulation more closely matches measured trend. This 

may suggest that MEIC has overestimated the NO2 emission reductions during 2015-2017. This 

suggestion is supported by recent satellite studies which found a slowing down or even reversal of 

NO2 reductions during 2016-2019 (Li et al., 2019c), no significant trend in NO2 during 2013-2017 

(Huang et al., 2018), and increases in NO2 concentration in the YRD, PRD and FWP regions during 

2015-2017 (Feng et al., 2019). If NOx emissions decline too strongly in MEIC, this may contribute to 

the simulated underestimate of the positive observed O3MDA8 trend. in areas of China with a NOx 

limited or mixed Ozone regimes that cover the majority of China (Jin and Holloway, 2015). Other 

work has suggested that increased O3 concentrations are possibly linked to the rapid decline in aerosol 

(Li et al., 2019b). Liu and Wang (2020b) found that the reasons for increased O3 concentrations 

during 2013-2017 were regionally dependent and that anthropogenic VOC emission reductions of 16-

24% would have been needed to avoid increased concentrations.    

Table 2 compares the control and fixed emission simulations against PM2.5, O3 and SO2 and NO2 

measurements in 2015, 2016 and 2017. In the control simulation model biases remain similar during 

2015-2017. In the fixed emission simulation, model biases for PM2.5, O3 and SO2 increase between 

2015 and 2017. This further suggests that changing anthropogenic emissions during 2015-2017 have 

been the dominant cause of changing concentrations. 

An important future step is to understand how changing anthropogenic emissions, in terms of 

emission species or emission sectors, have contributed to observed trends in pollutant concentrations. 

Residential and industrial emissions are dominant causes of PM2.5 concentrations across much of 

China (Reddington et al., 2019), but it is not clear which emission sectors have contributed most to 

observed PM2.5 trends. Cheng et al. (2019) suggests that emission controls in the residential and 

industrial sectors were the dominant causes for reduced PM2.5 in Beijing between 2014 and 2017. 

Measurements of aerosol composition (Li et al., 2017b; Weagle et al., 2018) add confidence to model 

simulations and can inform our understanding of how aerosol chemistry responds to emission 

changes. However, except for Beijing, there is insufficient measurement data of how aerosol 

composition has changed across China in recent years. Li et al. (2019a) found large declines in 

wintertime organics and sulfate and smaller declines in nitrate and ammonium in Beijing between 

2014 and 2017. Zhou et al. (2019) also analysed aerosol composition data from Beijing and found 

large declines in all aerosol components except nitrate between 2011-12 and 2017-18. Continuous 



measurements of aerosol composition across China are required to determine how different aerosol 

components are contributing to the observed PM2.5 trend and to evaluate simulated responses to 

emission changes.  

4 Health impacts of changes to PM2.5 and O3 concentrations 

4.1 PM2.5 health impacts 

The control run simulated nation-wide population-weighted mean PM2.5 concentration decreased by 

12.8 % (10.1 µg m-3), from 79.2 µg m-3 in 2015 to 69.1 µg m-3 in 2017. Greater decreases were 

simulated in more polluted and highly populated regions such as Beijing (-15.3 µg m-3), Tianjin (-19.4 

µg m-3), Chongqing (province) (-14.2 µg m-3) and Henan (-22.3 µg m-3). Using the methodology of 

Burnett et al., (2018), we estimate that mortality due to exposure to PM2.5 decreased from 2 800 000 

(CI: 2 299 000 – 3 302 000) premature mortalities in 2015, to 2 650 000 premature mortalities in 

2017. The simulated reduction in PM2.5 concentrations therefore reduced the number of premature 

mortalities attributable to PM2.5 exposure by 150 000 (CI: 129 000 – 170 000) annual premature 

mortalities across China. The 12.8% reduction in PM2.5 exposure only led to a 5% reduction in 

attributable mortality due to the non-linearity of the exposure-response function, which is less 

sensitive at higher exposure ranges (Conibear et al., 2018). The largest absolute reductions in 

premature mortality occur in Henan (15 000 deaths year-1), Sichuan, Hebei and Tianjin (11 000 deaths 

year-1) (Figure 4). The decline in PM2.5 exposure also led to reduced morbidity with the Disability 

Adjusted Life Years (DALYs) rate per 100,000 population reduced from 159 to 150, with the largest 

changes occurring in central provinces such as (Supplementary Figure S3). Our results are 

comparable to Zheng et al., (2017), who found that population weighted annual mean PM2.5 

concentrations decreased 21.5 % during 2013 – 2015, resulting in a premature mortality decrease of 

120 000 deaths year-1. Ding et al., (2019) estimated that during 2013-2017, a nationwide PM2.5 

decrease of 9 µg m-3 year-1 caused premature mortalities pear year to decrease by 287 000, using the 

methodology from the GBD 2015 study, which estimates health impacts as having a weaker and less 

linear relationship to PM2.5 concentrations. Yue et al. (2020) estimated that the annual number of 

mortalities in China attributable to PM2.5 decreased by 64 000 (7%) from 2013 to 2017. Zhang et al. 

(2019) reported a 32% decline in population-weighted PM2.5 concentration during 2013 to 2017, 

largely due to strengthened industrial emission standards and cleaner residential fuels.  

4.2 O3 health impacts 

Increasing O3 concentrations will result in an increase in health impacts that will act to offset some of 

the health benefits from declining PM2.5 concentrations. WRF-Chem underestimated the observed 

magnitude of the O3MDA8 trend during 2015-2017, so the simulated change in health impacts would 

also be underestimated. However, our model bias in O3 O3 concentrations across China during 2015-

2017 was reasonableto within 15% (NMB=-0.13).), which is consistent with previous studies, but 

underestimated the magnitude of the observed O3 trend. To provide an estimate of the change in 

health impacts due to increasingexposure to O3 concentrations we used simulated concentrations to 

estimate average health impacts due to exposure to O3 over the 2015-2017 period, and then multiplied 

by the measured relative change in O3MDA8. We estimate that exposure to O3 caused an average of 

143 000 (CI: 106 000 – 193 000) premature mortalities each year over 2015-2017. Applying the 

simulated change in O3 concentrations would underestimate the change in exposure that has occurred, 

Instead, we estimated the impacts of increased O3 by multiplying the average health impacts over 

2015-2017 by the measured relative change in O3MDA8. Assuming linear behaviour, the 15% 

measured increase in O3MDA8 would result in an increase of 21 000 premature mortalities per year. 

The exposure-outcome function is in reality sub-linear, so this is likely to be an overestimate. 

Regardless, this is substantially smaller than the 150 000 reduction in annual premature mortality due 



to reduced PM2.5. We therefore suggest that changes in Chinese air pollution over 2015-2017 have 

likely had an overall beneficial impact on human health. The dominance of the PM2.5 reduction over 

the O3 increase on health impacts is also found in Dang and Liao (2019) who reported a 21% 

reduction in PM2.5 and 12% increase in O3 concentrations between 2012 and 2017 resulted in 268 000 

fewer annual mortalities overall. 

5 Conclusions 

We used the WRF-Chem model to explore the drivers and impacts of changing air pollution across 

China during 2015-2017. A simulation with annually updated emissions was able to reproduce the 

measured negative trends in PM2.5 concentrations over China during 2015 – 2017, while 

overestimating the negative trend in SO2 and NO2, and underestimating the positive trend in O3. By 

comparing this with a simulation where emissions are held constant at 2015 levels, but meteorological 

forcing was updated, we show that interannual meteorological variation was not the main driver of the 

substantial trends in air pollutants that were observed across China during 2015 – 2017. Our work 

shows that reduced anthropogenic emissions are the main cause of reduced PM2.5 concentrations 

across China, suggesting that the Chinese government’s ‘Air Pollution Prevention and Control Action 

Plan’ has been effective at starting to control particulate pollution. We estimate that the 12.8% 

reduction in population-weighted PM2.5 concentrations that occurred during 2015-2017 has reduced 

premature mortality due to exposure to PM2.5 by 5.3%, preventing 150 000 premature mortalities 

across China annually. Despite these substantial reductions, PM2.5 concentrations still exceed air 

quality guidelines and cause negative impacts on human health. We estimate that exposure to O3 

during 2015-2017 causes on average 143 000 premature mortalities across China each year. Increases 

in O3 concentration over 2015-2017, may have increased this annual mortality by about 20 000 

premature mortalities per year, substantially less than the reduction in premature mortality due to 

declining particulate pollution. Changes in air pollution across China during 2015-2017 are therefore 

likely to have led to overall positive benefits to human health, amounting to a ~5 % reduction of the 

ambient air pollution disease burden. However, to achieve larger reductions in the disease burden, 

further reductions in PM2.5 concentrations are required, and pollution controls need to be designed that 

simultaneously reduce PM2.5 and O3 concentrations. 
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