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Abstract. Information on the exchange of energy, momentum and mass (H2O, CO2, CH4, etc.) over complex topography is 

critical for determining the development of the boundary layer, carbon and water cycles, weather and climate. This 

information can also improve the numerical modelling of physical atmosphere-land processes. Based on a 12-year (2007–10 

2018) eddy covariance dataset over the Dali agricultural field in the southeastern Tibetan Plateau, we analysed the diurnal, 

seasonal and inter-annual changes in sensible heat flux (Hs), latent heat flux (LE) and CO2 flux (Fc) and their meteorological 

controls on multiple timescales (half-hourly, daily, monthly, and yearly). The results show that both Hs and LE have similar 

diurnal and seasonal variations, but the amplitude of LE is obviously larger than that of Hs throughout the year, which 

indicates that the LE plays a dominant role in surface heat exchange. The Fc has a noticeable diurnal cycle, reaching its 15 

minimum around noon, and clear seasonal variations, reaching its minimum in the summer. The annual average Hs increased 

from approximately 6 W m–2 during 2007–2012 to 19 W m–2 during 2013–2018, while the LE decreased from approximately 

110 W m–2 during 2007–2013 to 79 W m–2 during 2014–2018. The Dali observational area is a carbon sink in all years, 

while the magnitude of net uptake decreases significantly from approximately 739 g C m–2 yr–1 during 2007–2013 to 218 g C 

m–2 yr–1 during 2014–2018. The results also show that wind speed (WS) is the major control of Hs, while the product of WS 20 

and vapour pressure deficit (VPD) is the main driver of LE on different timescales. The net radiation (Rn) and soil 

temperature (Ts) have the largest effects on Fc from the daily to monthly timescales, while the WS has the largest impact on 

annual total Fc. 

1 Introduction 

The Tibetan Plateau (TP), known as the “Roof of the World”, stretches approximately 2500 km in the longitudinal direction 25 

and 1000 km in the latitudinal direction, and its average elevation exceeds 4 km above sea level (Fig. 1a), entering into the 

mid-level troposphere. Owing to its special atmosphere-land interactions, along with mechanical and thermodynamic effects, 

the TP exerts significant impacts on the evolution of atmospheric circulation, climate change and extreme weather events 

(Ye et al. 1957; Flohn 1957; Hahn and Manabe 1975; Liu and Chen 2000; Xu et al. 2008a). To understand the scientific 

processes on the TP, such as atmosphere-land exchange processes and its weather and climate effects, a series of field 30 
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campaigns have been conducted over the TP and its surrounding areas since the 1970s (Duan et al. 2012; Li et al. 2015; Zhao 

et al. 2019). For instance, the first Qinghai-Xizang Plateau Meteorological Experiment (QXPMEX) was conducted from 

May to August 1979 (Tao et al. 1986), the second atmospheric Tibetan Plateau Field Experiment (TIPEX) was implemented 

in 1998 (Zhou et al. 2000) and a new integrated observational network was supported by the Japan International Cooperation 

Agency Project (JICA/Tibet Project) during 2005–2009 (Xu et al. 2008b; Zhang et al. 2012). The Third Tibetan Plateau 35 

Atmospheric Scientific Experiment (TIPEX-III) was jointly initiated in 2013 and formally launched in 2014, with an 8–10 

year implementation plan (Zhao et al. 2018, 2019). According to in situ observation data, many studies have reported the 

characteristics of surface water vapour, heat energy and CO2 fluxes. However, the above field experiments were carried out 

in the main body of the TP, and most investigations focused on summer and were limited by observation parameters. There 

is little information on the turbulent exchange over the southeastern TP. 40 

The southeastern TP belongs to the transitional zone between the TP and Yunnan-Guizhou Plateau and is also located in a 

major water vapour path and a confluence zone between the South Asian monsoon and East Asian monsoon (Li et al. 2011). 

This area has complex topography with mountains, lakes, rivers, basins, meadows, forests, farmlands, wetlands, etc. Due to 

the unique location, complex terrain and a lack of in situ observation data in this area, the results of some atmospheric 

general circulation models show obvious deviations (Yu et al. 2000). Moreover, basic information on the land surface and 45 

atmosphere in this region plays an important role in the evolution of atmospheric circulation over East Asia as well as 

weather and climate change in the Yangtze River basin and southwestern China (Hua et al. 2008; Liu et al. 2009). Therefore, 

revealing the characteristics of the local weather and climate in this region is of great importance, and quantification of 

atmosphere-land interaction parameters will improve the numerical models and parameterization schemes of the atmospheric 

boundary layer in southwest China and even the East Asia region. 50 

Under the support of the JICA/Tibet Project (Xu et al. 2008b; Zhang et al. 2012), we built a planetary boundary layer 

(PBL) site (Fig. 1c) in December 2006 to continuously observe the micrometeorology and energy exchange. The aims of this 

study are to characterize the diurnal, seasonal and inter-annual variations in energy and CO2 fluxes and their meteorological 

controlling factors over the southeast extension of the TP. 

2 Materials and methods 55 

2.1 Study site description 

The PBL site (100°10′36″ E, 25°42′28″ N, 1977.7 m above sea level) lies in Dali Bai Autonomous Prefecture, Yunnan 

Province, China. The site is surrounded by open and flat farmland (Fig. 1b-c), where broad beans are mainly planted in the 

dry season (November to April of the next year) and rice is mainly planted in the wet season (May to October). The 

maximum broad bean height at peak growth can reach up to 1.0 m, and the rice height can reach up to 1.2 m. The climate at 60 

the measurement site features a monsoon climate of the low latitude plateau. Based on the observational data from 1951 to 

2018 at an automatic weather station (AWS) located approximately 220 m southwest of the study site, the annual average air 
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temperature is 15.1 °C, and the annual total precipitation is 1053.4 mm, with nearly 85% of precipitation falling in the wet 

season. The annual average wind speed is 2.4 m s–1, and the strongest wind speed is 40.8 m s–1, with gale commonly 

experienced from the winter season through the spring season. There are two types of prevailing winds with east-65 

southeasterly winds in the daytime and west-northwesterly winds occurring at night. 

2.2 Measurement setup 

A 20-m tower was set up to acquire air temperature (Ta), relative humidity (RH), wind speed (WS) and wind direction (WD) 

profiles along with sensible heat flux (Hs), latent heat flux (LE), and CO2 flux (Fc) in the near-surface layer. Sensors 

recording Ta, RH (HMP45C, Vaisala), WS and WD (034B, Met One) were mounted at heights of 2, 4, 10, and 20 m on the 70 

tower. Ta, LE, and Fc were directly determined by an eddy covariance (EC) system containing a three-dimensional sonic 

anemometer (CSAT3, Campbell) and an open-path CO2/H2O infrared gas analyser (LI-7500, LI-COR). The distance 

between the two sensor heads was 18 cm. Both instruments were operated at a height of 5 m on the tower with a sampling 

frequency of 10 Hz. Net radiation flux (Rn) was measured at 1.5 m above the surface with a four-component net radiometer 

(CNR1, Kipp & Zonen). Soil temperature (Ts) and soil water content (SWC) at depths of 4, 10, 20, 60, and 100 cm were 75 

measured with temperature probes (Model 107, Campbell) and water content reflectometers (CS616, Campbell), respectively. 

Soil heat flux (Gs) at depths of 4, 10, and 20 cm was measured by soil heat flux plates (HFP01, Hukseflux). High-frequency 

10-Hz raw data were gathered using a data logger (CR3000, Campbell) with a 1 GB CF card, and low-frequency 10-min raw 

data were collected using a data logger with a 64 MB CF card. 

2.3 Data processing 80 

To obtain 30-min eddy covariance flux data, the 10-Hz raw data were done using EddyPro (version 6.2.1, LI-COR). The 

processing steps used here included spike removal (Vickers and Mahrt 1997), double rotation for tilt correction (Kaimal and 

Finnigan 1994), spectral corrections (Moncrieff et al. 1997, 2004) and Webb-Pearman-Leuning (WPL) corrections (Webb et 

al. 1980). In addition, a quality check of the 30-min fluxes was performed using the steps proposed by Foken et al. (2004), 

including the steady state test and the well-developed turbulence test. Gap filling fluxes were performed with the REddyPro 85 

package (https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWebRPackage) in the cross-platform language R 

(Wutzler et al. 2018). 

3 Results 

3.1 Meteorological conditions 

The meteorological parameters, such as daily integrated global solar radiation (Rg), daily average Ta, RH, WS, Ts, SWC and 90 

daily total precipitation (PPT), all display a clear dry and wet seasonal variation (Fig. 2). The daily integrated Rg ranges from 
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0.66 to 31.57 MJ m–2 d–1, with a 12-year average value of 17.35 MJ m–2. The annual integrated Rg ranges from 5066.1 to 

6702.7 MJ m–2 yr–1, with an average value of 6154.1 MJ m–2 and a standard deviation of 450.2 MJ m–2 (Table 1). 

The Ta at different heights of the near-surface layer in the wet season are higher than those in the dry season. For monthly 

average Ta, the fastest increase period occurs between March and April, whereas a decrease period occurs between October 95 

and November. The daily average Ta values at heights of 2, 4, 10, and 20 m range from 0.4 to 24.7, 0.6 to 24.3, 0.3 to 24.2, 

and 0.4 to 24.4 °C, with 12-year average values of 16.1, 16.1, 16.2, and 16.5 °C, respectively. The maximum and minimum 

daily average Ta values are recorded in June 2014 and December 2013. 

The RH of the near-surface layer usually decreases with measurement height, and in the wet season, it is higher than in the 

dry season. The monthly average RH reaches the highest in August and the lowest in February. The daily average RH values 100 

at heights of 2, 4, 10, and 20 m range from 14.5 % to 100 %, 13.4 % to 99.5 %, 12.4 % to 95.4 %, and 11.8 % to 96.3 %, 

with 12-year average values of 64.6 %, 62.3 %, 57.2 %, and 56.8 %. 

The WS of the near-surface layer commonly increases with measurement height, and in the wet season, it is weaker than 

that in the dry season. The monthly average WS reaches the strongest in February and the weakest in September. The 

maximum daily average WS values at heights of 2, 4, 10, and 20 m are observed in January 2008 (7.1, 8.4, 9.9, and 11.1 m s–105 
1). The 12-year average WS values at heights of 2, 4, 10, and 20 m are 1.4, 1.7, 2.4, and 2.8 m s–1, respectively. 

Local complicated terrain often affects air flow within the atmospheric boundary layer, which not only changes wind 

speed but also changes wind direction. In the study area, the predominant wind direction is easterly and east-southeasterly 

throughout the year (Fig. 3). The prevailing and sub-prevailing winds at a height of 10-m display a clear diurnal cycle, with 

east-southeasterly and easterly winds during the daytime and westerly and static winds at night (Fig. 4). The time when the 110 

prevailing winds switch exhibits good correspondence with the sunrise and sunset (solar radiation heating effect). This result 

may be chiefly caused by the shapes of the Diancangshan Mountains and Erhai Lake, which extends from northwest to 

southeast. 

The Ts values at different soil depths in the wet season are higher than those in the dry season. The monthly average Ts 

reaches the highest in July and the lowest in January. The Ts values in the shallow soil layer are higher than those in the deep 115 

soil layer in the wet season; conversely, Ts in the shallow soil layer is lower than that in the deep soil layer in the wet season. 

The daily average Ts values at depths of 4, 10, 20, 60, and 100 cm range from 4.2 to 27.3, 4.9 to 25.3, 7.1 to 26.8, 10.1 to 

23.4, and 11.5 to 21.9 °C, with 12-year average values of 16.4, 16.1, 16.5, 16.6, and 16.6 °C. 

The maximum daily total PPT value is observed in October 2015 (121.0 mm d–1), and the maximum monthly total PPT is 

observed in June 2008 (336.7 mm month–1). The annual total PPT fluctuates from 732.9 mm yr–1 (2013) to 1322.8 mm yr–1 120 

(2008), with an average value of 962.1 mm and a standard deviation of 179.3 mm (Table 1). The PPT during the wet season 

ranges from 643.2 to 1171.9 mm, accounting for 75.9 % to 93.6 % of the annual total PPT. Because of the frequent drought 

influence, the PPT is below the 12-year average value for five consecutive years from 2010 to 2014. 

The SWC values at different depths in the wet season are larger than those in the dry season, and their values also respond 

significantly to PPT. With the start of the rainy season (commonly occurring from late May to early June), the SWC rapidly 125 
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increases and reaches its maximum. The daily average SWC values at depths of 4, 10, 20, 60, and 100 cm range from 0.07 to 

0.73, 0.08 to 0.70, 0.19 to 0.59, 0.27 to 0.48, and 0.35 to 0.46 m–3 m–3, with 12-year average values of 0.37, 0.38, 0.42, 0.40, 

and 0.42 m–3 m–3, respectively. 

3.2 Diurnal, seasonal and inter-annual variations in energy fluxes 

The monthly average diurnal variations in the energy balance components from 2007 to 2018 are shown in Fig. 5a. For each 130 

month, the Rn, Hs, LE and Gs all have clear, similar diurnal courses. The Rn remains positive during the day, reaching its peak 

at approximately 13:30, and negative values occur at night, reaching its valley at approximately 20:30. The half-hourly Rn 

values range from –100 to 1076 W m–2. The monthly valleys and peaks of Rn vary from –67 to –32 W m–2 and from 418 to 

513 W m–2, respectively. The Hs value gradually increase after sunrise, becoming positive at approximately 09:00, and reach 

a maximum at approximately 13:30. Then, the Hs values decrease and become negative after sunset, reaching a minimum of 135 

approximately 20:30. The monthly maximal and minimal Hs values range from 66 to 127 W m–2 and from –52 to –7 W m–2, 

respectively. The LE remains positive throughout the day and reaches its maximum at approximately 14:00. The monthly 

maximal and minimal LE values range from 205 to 337 W m–2 and 3 to 20 W m–2, respectively. The diurnal average Gs is 

very low throughout the year, with the valley occurring in November (–25 W m–2) and the peak occurring in June (47 W m–

2). 140 

The seasonal and inter-annual variations in the daily and monthly average energy balance components from 2007 to 2018 

are shown in Fig. 6a-d and Fig. 7a-d, respectively. For each year, the Rn, Hs, LE and Gs values are all larger in the wet season 

than in the dry season. The daily and monthly average Rn values vary from –88 to 1005 W m–2 and –59 to 365 W m–2, with a 

12-year average value of 112.8 W m–2. The daily and monthly average Hs values range from –38 to 73 W m–2 and –25 to 34 

W m–2, with a 12-year average value of 12.7 W m–2. The daily and monthly average LE ranges from 10 to 255 W m–2 and 41 145 

to 161 W m–2, with a 12-year average value of 96.8 W m–2. The daily and monthly average Gs values range from –24 to 26 

W m–2 and –7 to 8 W m–2, with a 12-year average value of –0.4 W m–2. 

3.3 Diurnal, seasonal and inter-annual variations in CO2 flux 

The monthly average diurnal variations in Fc from 2007 to 2018 are shown in Fig. 5b. For each month, the Fc has a 

noticeable diurnal cycle with positive values at night reaching their maximum at approximately 07:00 and negative values 150 

during the day reaching their minimum at approximately 13:00. This finding indicates that the study area acts as a weak 

carbon source at night and a carbon sink during the day. The monthly maximal CO2 release and uptake rates range from 1.46 

to 4.54 μmol m–2 s–1 and from 2.59 to 16.62 μmol m–2 s–1. 

The seasonal and inter-annual variations in the daily and monthly average Fc values from 2007 to 2018 are shown in Fig. 

6e and Fig. 7e, respectively. For each year, the Fc is higher during the transitional periods (between April and May, between 155 

October and November) than that at the other times. The daily and monthly average Fc values range from –11.59 to 4.13 
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μmol m–2 s–1 and –7.79 to 1.67 μmol m–2 s–1. The annual total Fc varies widely from –966.9 to –75.6 g C m–2 yr–1, with an 

average value of -522.0 g C m–2 and a standard deviation of 295.7 g C m–2 (Table 1). 

4 Discussion 

4.1 Controlling factors in Hs 160 

The correlation matrices of Hs and meteorological factors over different temporal scales are shown in Fig. 8–11. Compared 

to other meteorological factors, the correlation coefficients between Hs and Rn, WS, as well as the product of WS and VPD 

are highest on half-hourly scales, with values of 0.47, –0.35, and –0.35. On daily scales, the correlation coefficients between 

Hs and WS, Rn, as well as the product of WS and ΔT are highest, with values of –0.56, 0.53, and –0.33. On monthly scales, 

the correlation coefficients between Hs and WS as well as the product of WS and ΔT, WS and VPD are highest, with values 165 

of –0.75, –0.48, and –0.58. On yearly scales, the correlation coefficients between Hs and WS, Rn, as well as the product of 

WS and VPD are highest, with values of –0.96, –0.39, and –0.65. These results mean that WS is the main meteorological 

factor controlling Hs on different timescales. 

4.2 Controlling factors in LE 

The correlation matrices of LE and its environmental controls over different temporal scales are shown in Fig. 8–11. Relative 170 

to other environmental variables, the correlation coefficients between LE and VPD, Rn, as well as the product of WS and 

VPD are highest on half-hourly scales, with values of 0.43, –0.42, and –0.41. On daily scales, the correlation coefficients 

between LE and Gs, Rn, Ta, Ts as well as VPD are highest, with values of 0.62, 0.61, 0.54, 0.43, and 0.41. On monthly scales, 

the correlation coefficients between LE and Gs, Ta, Rn, VPD as well as the product of WS and VPD are highest, with values 

of 0.71, 0.57, 0.51, 0.43, and 0.46. On yearly scales, the correlation coefficients between LE and Fc, WS, as well as the 175 

product of WS and VPD are highest, with values of –0.91, 0.88, and 0.57. The above results indicate that the product of WS 

and VPD is the main environmental variable controlling LE on different timescales. 

4.3 Controlling factors in CO2 flux 

The correlation matrices of Fc and its drivers over different temporal scales are shown in Fig. 8–11. On half-hourly scales, 

the correlation coefficients between Fc and its drivers are relatively low. The highest correlation coefficient is found for the 180 

relationships between Fc and both Rn and Gs (with a value of –0.14). Compared to other drivers, the correlation coefficients 

between Fc and Rn, Ts as well as RH are highest on the daily scales with values of –0.41, –0.33, and 0.30. On monthly scales, 

the correlation coefficients between Fc and Ts, Rn, Ta, RH, PPT as well as ΔT are highest, with values of –0.40, –0.38, –0.35, 

–0.34, –0.32, and –0.33. On yearly scales, the correlation coefficients between Fc and WS, Gs Rn, SWC, as well as the 

product of WS and VPD are highest, with values of –0.92, –0.53, 0.40, –0.40, and –0.64. 185 
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5 Conclusions 

In this study, we report the variations in energy and CO2 fluxes and their meteorological drivers at various temporal scales 

from 2007 to 2018 at the Dali observational site over the southeast extension of the Tibetan Plateau. The Rn, Hs, LE and Gs 

all have similar diurnal courses, reaching their maximum values around noon and attaining their minimum values around 190 

early evening. Moreover, these factors present obvious seasonal changes with larger values in the wet season than in the dry 

season. The averages and standard deviations of Rn, Hs, LE and Gs for 12 years are 112.8±12.9, 12.7±7.1, 96.8±16.4, and –

0.4±0.5 W m–2, respectively. The Fc has a noticeable diurnal cycle with positive values at night and negative values during 

the daytime, and it also exhibits clear seasonal changes with the highest values during the transitional periods between the 

dry and wet seasons. The annual total Fc values fluctuate from –966.9 to –75.6 g C m–2 yr–1, with an average value of –522.0 195 

g C m–2. This result suggests that the study area acts as a weak carbon source at night and a carbon sink during the day, 

whereas it acts as an overall carbon sink over all years. Each meteorological driver has a distinct effect on Hs, LE, and Fc at 

different temporal scales. WS shows a decreasing trend according to the correlation coefficients for Hs, while the product of 

WS and VPD made a high contribution to LE from the half-hourly to yearly timescales. For Fc, both Rn and Ts have high 

contributions at the daily to monthly timescales, but the WS is the most important at the yearly timescale. 200 

Competing interest 

The authors declare that they have no conflict of interest. 

ACKNOWLEDGEMENTS 

This study was supported by the National （Natural Science Foundation of China Nos. 91637210, 41875123, and 91737306) 

and Jiangsu Collaborative Innovation Center for Climate Change. 205 

References 

Duan, A. M., Wu, G. X., Liu, Y. M., Ma, Y. M., and Zhao, P.: Weather and climate effects of the Tibetan Plateau, Adv. 

Atmos. Sci., 29, 978–992, https://doi.org/10.1007/s00376-012-1220-y, 2012. 

Flohn H.: Large-scale aspects of the “summer monsoon” in the South and East Asia, J. Meteor. Soc. Japan., 75, 180–186, 

1957. 210 

Foken, T., GÖckede, M., Mauder, M., Mahrt, L., Amiro, B., and Munger. W.: Post-field data quality control, in: Handbook 

of micrometeorology: A guide for surface flux measurements and analysis, edited by: Lee, X., Massman, W., and Law, B., 

Kluwer Academic publishers, New York, Boston, Dordrecht, London, Moscow, 181–208, 2004. 

https://doi.org/10.5194/acp-2019-1131
Preprint. Discussion started: 3 February 2020
c© Author(s) 2020. CC BY 4.0 License.



8 
 

Hahn, D. G., and Manabe, S.: The role of mountains in the south Asian monsoon circulation, J. Atmos. Sci., 32, 1515–1541, 

https://doi.org/10.1175/1520-0469(1975)032<1515:TROMIT>2.0.CO;2, 1975. 215 

Hua, W., Fan, G. Z., Li, H. Q., and Zhou, D. W.: Analysis of NDVI variation features over southwest China during last 21 

years, J. Chengdu Univ. Inf. Technol., (in Chinese), 23, 91–97, 2008. 

Kaimal, J. C., and Finnigan, J. J. (Eds.): Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford 

University Press, New York, 1994. 

Li, J., Yu, R. C., Yuan, W. H., and Chen, H. M.: Early spring dry spell in the southeastern margin of the Tibetan Plateau, J. 220 

Meteor. Soc. Japan, 89, 1–13, https://doi.org/10.2151/jmsj.2011-101, 2011. 

Li, M. S., Babel, W., Chen, X. L., Zhang L., Sun, F. L., Wang, B. B., Ma, Y. M., Hu, Z. Y., and Foken, T.: A 3-year dataset 

of sensible and latent heat fluxes from the Tibetan Plateau, derived using eddy covariance measurements, Theor. Appl. 

Climatol., 122, 457–469, https://doi.org/10.1007/s00704-014-1302-0, 2015. 

Liu, B. Q., He, J. H., and Wang, L. J.: Characteristics of the south Asia high establishment processes above the Indo-China 225 

Peninsula from April to May and their possible mechanism, Chinese J. Atmos. Sci., (in Chinese), 336, 1319–1332, 

https://doi.org/10.3878/j.issn.1006-9895.2009.06.17, 2009. 

Liu, X. D., and Chen, B. D.: Climatic warming in the Tibetan Plateau during recent decades, Int. J. Climatol., 20: 1729–1742, 

https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y, 2000. 

Moncrieff, J. B., Massheder, J. M., Bruin, H. D., Elbers, J., Friborg, T., Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., 230 

and Verhoef, A.: A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide, J. 

Hydrol., 188–189, 589–611, https://doi.org/10.1016/S0022-1694(96)03194-0, 1997. 

Moncrieff, J., Clement, R., Finnigan, J., and Meyers, T.: Averaging, detrending, and filtering of eddy covariance time series, 

in: Handbook of micrometeorology: A guide for surface flux measurements and analysis, edited by: Lee, X., Massman, W., 

and Law, B., Kluwer Academic publishers, New York, Boston, Dordrecht, London, Moscow, 7–31, 2004. 235 

Tao, S. Y., Luo, S. W., and Zhang, H. C.: The Qinghai-Xizang Plateau Meteorological Experiment (QXPMEX) May-August 

1979, in: Proceedings of international symposium on the Qinghai-Xizang Plateau and Mountain Meteorology, edited by: Xu, 

Y. G., Science Press, Beijing, American Meteorological Society, Boston, 3–13, 1986. 

Vickers, D., and Mahrt, L.: Quality control and flux sampling problems for tower and aircraft data, J. Atmos. Oceanic 

Technol., 14, 512–526, https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2, 1997. 240 

Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of the flux measurements for density effects due to heat and water 

vapour transfer, Quart. J. Roy. Meteor. Soc., 106, 85–100, https://doi.org/10.1002/qj.49710644707, 1980. 

Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Sigut, L., Menzer, O., and Reichstein, M.: Basic and 

extensible post-processing of eddy covariance flux data with REddyProc, Biogeosciences, 15, 5015–5030, 

https://doi.org/10.5194/bg-15-5015-2018, 2018. 245 

Xu, X. D., Lu, C. G., Shi, X. H., and Gao, S. T.: World water tower: An atmospheric perspective. Geophys. Res. Lett., 35, 

L20815, https://doi.org/10.1029/2008GL035867, 2008a. 

https://doi.org/10.5194/acp-2019-1131
Preprint. Discussion started: 3 February 2020
c© Author(s) 2020. CC BY 4.0 License.



9 
 

Xu, X. D., Zhang, R. H., Koike, T., Lu, C. G., Shi, X. H., Zhang, S. J., Bian, L. G., Cheng, X. H., Li, P. Y., and Ding G. A: 

A new integrated observational system over the Tibetan Plateau, Bull. Amer. Meteor. Soc., 89, 1492–1496, 

https://doi.org/10.1175/2008BAMS2557.1, 2008b. 250 

Ye, D. Z., Luo, S. W., and Zhu, B. Z.: The wind structure and heat balance in the lower troposphere over Tibetan Plateau and 

its surrounding, Acta. Meteor. Sinica, (in Chinese), 28, 108–121, https://doi.org/10.11676/qxxb1957.010, 1957. 

Yu, R. C., Li, W., Zhang, X. H., Liu, Y. M., Yu, Y. Q., Liu, H. L., and Zhou, T. J.: Climatic features related to eastern China 

Summer rainfalls in the NCAR CCM3, Adv. Atmos. Sci., 17, 503–518, https://doi.org/10.1007/s00376-000-0014-9, 2000. 

Zhang, R. H., Koike, T., Xu, X. D., Ma, Y. M., and Yang, K.: A China-Japan cooperative JICA atmospheric observing 255 

network over the Tibetan Plateau (JICA/Tibet Project): An Overviews, J. Meteor. Soc. Japan, 90C, 1–16, 

https://doi.org/10.2151/jmsj.2012-C01, 2012. 

Zhao, P., Xu, X. D., Chen, F., Guo, X. L., Zheng, X. D., Liu, L. P., Hong, Y., Li, Y. Q., La, Z., Peng, H., Zhong, L. Z., Ma, 

Y. M., Tang, S. H., Liu, Y. M., Liu, H. Z., Li, Y. H., Zhang, Q., Hu, Z. Y., Sun, J. H., Zhang, S. J., Dong, L. X., Zhang, H. 

Z., Zhao, Y., Yan, X. L., Xiao, A., Wan, W., Liu, Y., Chen, J. M., Liu, G., Zhaxi, Y. Z., and Zhou, X. J.: The third 260 

atmospheric scientific experiment for understanding the earth-atmosphere coupled system over the Tibetan Plateau and its 

effects, Bull. Amer. Meteor. Soc., 99, 757–776, https://doi.org/10.1175/BAMS-D-16-0050.1, 2018. 

Zhao, P., Li, Y. Q., Guo, X. L., Xu, X. D., Liu, Y. M., Tang, S. H., Xiao, W. M., Shi, C. X., Ma, Y. M., Yu, X., Liu, H. Z., 

Jia, L., Chen, Y., Liu, Y. J., Li, J., Luo, D. B., Cao, Y. C., Zheng, X. D., Chen, J. M., Xiao, A., Yuan, F., Chen, D. H., Pang, 

Y., Hu, Z. Q., Zhang, S. J., Dong, L. X., Hu, J. Y., Han, S., and Zhou, X. J.: The Tibetan Plateau surface-atmosphere 265 

coupling system and its weather and climate effects: The Third Tibetan Plateau Atmospheric Science Experiment. J. Meteor. 

Res., 33, 375–399, https://doi.org/10.1007/s13351-019-8602-3, 2019. 

Zhou, M. Y., Xu, X. D., Bian, L. G., Chen, J. Y., Liu, H. Z., Zhang, H. S., Li, S. M., and Zhao Y. J. (Eds.): Observational 

analysis and dynamic study of atmospheric boundary layer on Tibetan Plateau: Tibetan Plateau Experiment of Atmospheric 

Sciences, (TIPEX) 1998, China Meteorological Press, Beijing, 2000. 270 

 

https://doi.org/10.5194/acp-2019-1131
Preprint. Discussion started: 3 February 2020
c© Author(s) 2020. CC BY 4.0 License.



10 
 

Table 1: Annual average wind speed (WS, m s–1) at a height of 10 m, air temperature (Ta, °C), relative humidity (RH, %) and 

vapour pressure deficit (VPD, kPa) at a height of 4 m, soil temperature (Ts, °C) and soil water content (SWC, m–3 m–3) at a soil 

depth of 4 cm, net radiation (Rn, W m–2), albedo, sensible heat flux (Hs, W m–2), latent heat flux (LE, W m–2), Bowen ratio (β), and 

soil heat flux (Gs, W m–2) at a soil depth of 4 cm; and annual total global solar radiation (Rg, MJ m–2), CO2 flux (Fc, g C m–2), 275 

precipitation (PPT, mm), evapotranspiration (E, mm) at the Dali site from 2007 to 2018 

Year WS Ta RH VPD Ts SWC Rn Albedo Hs LE β Gs Rg Fc PPT E 

2007 2.6 16.6 68.0 0.66 18.0 0.320 113.3 0.180 3.4 106.2 0.03 –0.1 5066.1 –625.9 1139.8 2847.9 

2008 2.5 15.8 68.3 0.62 18.4 0.381 146.7 0.183 7.6 109.0 0.07 0.1 5659.3 –792.3 1322.8 2988.3 

2009 2.7 16.4 62.1 0.76 17.3 0.352 114.8 0.169 7.4 114.5 0.06 0.4 6702.7 –737.1 1031.2 3090.7 

2010 2.8 16.3 62.6 0.74 16.4 0.394 128.1 0.187 3.3 113.8 0.03 –0.1 6043.6 –966.9 863.8 3169.8 

2011 2.5 15.7 62.4 0.72 15.9 0.426 102.7 0.199 9.2 109.5 0.08 –0.4 6126.7 –788.3 740.1 3028.3 

2012 2.7 16.4 57.7 0.83 15.8 0.422 101.4 0.215 6.8 113.4 0.06 –0.5 6120.7 –634.5 853.2 3238.1 

2013 2.4 15.9 57.6 0.84 16.1 0.423 104.1 0.201 15.9 100.5 0.16 –0.1 6154.7 –627.0 732.9 2788.3 

2014 2.4 16.5 58.0 0.85 15.9 0.332 109.4 0.194 17.1 84.6 0.20 –0.2 6687.1 –305.2 812.9 2339.9 

2015 2.0 16.1 61.0 0.81 15.9 0.326 102.7 0.186 18.1 81.5 0.22 –1.1 6440.7 –412.8 984.9 2276.8 

2016 1.9 15.9 64.8 0.70 15.3 0.374 109.5 0.165 19.8 75.4 0.26 –1.2 6069.8 –187.6 1153.6 2184.9 

2017 2.0 16.1 63.6 0.73 16.4 0.381 110.1 0.176 20.6 79.5 0.26 –0.4 6356.9 –75.6 909.8 2297.2 

2018 1.9 15.5 63.0 0.72 16.9 0.344 110.5 0.187 23.0 73.7 0.31 –0.5 6421.6 –110.9 1000.7 2162.2 

Average 2.4 16.1 62.4 0.75 16.5 0.373 112.8 0.187 12.7 96.8 0.15 –0.4 6154.1 –522.0 962.1 2701.0 

SD 0.3 0.3 3.6 0.07 0.9 0.038 12.9 0.014 7.1 16.4 0.10 0.5 450.2 295.7 179.3 416.6 
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Figure 1: Topographic map of the Tibetan Plateau (a), location of the study area (map from © Google Earth) (b) and picture of 

the Dali planetary boundary layer site (c). 
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Figure 2: Daily integrated global solar radiation (Rg), daily average air temperature (Ta), relative humidity (RH), wind speed (WS), 285 

soil temperature (Ts), soil water content (SWC) and daily total precipitation (PPT) from 2007 to 2018. 
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Figure 3: Wind rose at a height of 10 m from 2007 to 2018. 

 

Figure 4: Diurnal variations in prevailing wind frequency at a height of 10 m from 2007 to 2018. Ellipses indicate the times of 290 

sunrise and sunset. 
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Figure 5: Monthly average diurnal variations in energy balance components, including net radiation (Rn), sensible heat flux (Hs), 

latent heat flux (LE), soil heat flux (Gs), and CO2 flux (Fc) from 2007 to 2018. 
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 295 

Figure 6: Seasonal and inter-annual variations in daily average energy balance components, including net radiation (Rn), sensible 

heat flux (Hs), latent heat flux (LE), soil heat flux (Gs), and CO2 flux (Fc) from 2007 to 2018. 
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Figure 7: Seasonal and inter-annual variations in monthly average energy balance components, including net radiation (Rn), 

sensible heat flux (Hs), latent heat flux (LE), soil heat flux (Gs), and CO2 flux (Fc) from 2007 to 2018. 300 
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Figure 8: Correlation matrix of turbulent fluxes including half-hourly sensible heat (Hs), latent heat (LE) and CO2 flux (Fc) and 

meteorological factors including half-hourly net radiation (Rn), wind speed (WS), air temperature (Ta), relative humidity (RH), 

water vapour pressure deficit (VPD) at a height of 4 m, temperature difference between the soil surface and atmosphere (ΔT), the 

product of WS and ΔT (WS*ΔT), the product of WS and VPD (WS*VPD), soil temperature (Ts), soil heat flux (Gs) and soil water 305 

content (SWC) at a soil depth of 4 cm, and precipitation (PPT) from 2007 to 2018. 
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Figure 9: Same as Figure 8, but for the daily average values of turbulent fluxes and meteorological factors other than precipitation, 

while precipitation is the daily total value. 
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Figure 10: Same as Figure 8, but for the monthly average values of turbulent fluxes and meteorological factors other than 

precipitation, while precipitation is the monthly total value. 
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Figure 11: Same as Figure 8, but for the annual average values of turbulent fluxes and meteorological factors other than 

precipitation and CO2 flux, while precipitation and CO2 flux are the annual total values. 315 
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