1	Supplementary information of "Significant production of CINO ₂ and possible source of
2	Cl ₂ from N ₂ O ₅ uptake at a rural site in eastern China"
3	Men Xia ^a , Xiang Peng ^a , Weihao Wang ^a , Chuan Yu ^a , Peng Sun ^b , Yuanyuan Li ^b , Yuliang Liu ^b ,
4	Zhengning Xu ^b , Zhe Wang ^{a, c} , Zheng Xu ^b , Wei Nie ^b , Aijun Ding ^b , and Tao Wang ^{a,*}
5	^a Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University,
6	Hong Kong, China
7	^b Joint International Research Laboratory of Atmospheric and Earth System Sciences, School
8	of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
9	° Now at Division of Environment and Sustainability, Hong Kong University of Science and
10	Technology, Hong Kong, China
11	
12	* Correspondence to: Tao Wang (<u>cetwang@polyu.edu.hk</u>)
13	
14	Table of Contents
15	Text S1: CIMS calibration and data validation
16	S1.1. Dependence of the N_2O_5 sensitivity on RH
17	S1.2. Isotopic analysis of $CINO_2$ and Cl_2
18	S1.3. Potential interference from the inlet
19	
20	Table captions
21	Table S1. Auxiliary measurements
22	Table S2. Summary of N_2O_5 uptake and CINO ₂ yield
23	Table S3. Uncertainty analysis of the measured and deducted parameters
24 25	Figure contions
20	Figure captions Figure S1. Comparison of Ω_0 at the SORDES site and the SAS site
20	Figure S1. Comparison of O3 at the SORT E5 site and the SAS site
28	Figure S2. Dependence of the N_2O_5 sensitivity on RH
29	Figure S4. Comparison of ACSM and MARGA data
30	Figure S5. An example showing the calculation of $\gamma(N_2O_5)$ and $\varphi(ClNO_2)$
31	Figure S6. Dependence of $\gamma(N_2O_5)$ on [H ₂ O]
32	Figure S7. Investigation of the potential of sulfate and total aerosol organics to consume NO_2^+
33	
34	References
35	
36	Text S1: CIMS calibrations and data validation
37	S1.1. Dependence of the N_2O_5 sensitivity on RH

38 In the ion molecular reaction (IMR) chamber, the reagent ion I⁻ reacts with H_2O to form the 39 iodide water cluster, $I^{-}(H_2O)$ which also reacts with N₂O₅ to produce IN₂O₅⁻ (Kercher et al., 2009). Also, N_2O_5 may undergo hydrolysis in the sampling system. Thus, the sensitivity of N_2O_5 40 depends on the RH. In this study, the N_2O_5 signal was normalized to the I(H₂O)⁻ signal (Hz 145) 41 to account for the change of primary ions. During the field measurements, we monitored the 42 RH at the indoor inlet of CIMS. When conducting calibrations, we tested the relationship 43 between the normalized N₂O₅ sensitivity and RH (Fig. S3). A quadratic relationship in Fig. S3 44 $(y=-3.78\times10^{-9}x^2+1.69\times10^{-7}x+1.72\times10^{-5})$ was used to correct the RH effect on the ambient N₂O₅ 45 data. 46

- 47
- 48 **S1.2.** Isotopic analysis of ClNO₂ and Cl₂

The ClNO₂ signals were recorded at mass 208 and 210 amu, representing ³⁵ClNO₂ and 49 37 ClNO₂, respectively. The relationship between the 208 signals and the 210 signals was 50 examined (Fig. S2). During ambient samplings, the slope of the Hz 210-Hz 208 plot was 0.3135 51 52 with $R^2=0.998$ (Fig. S2a). And the slope was 0.3154 with $R^2=0.999$ (Fig. S2a) during calibrations. The isotopic analysis was also performed for Cl₂. The correlations between mass 53 197 amu (³⁵Cl³⁵Cl) and 199 amu (³⁵Cl³⁷Cl) were excellent with R²=0.999 for calibration data 54 and $R^2=0.965$ for the ambient data (Fig. S2b). The slope of the plot was 0.599 and 0.558 for the 55 56 ambient data and calibration data, respectively, which is similar to previous studies (Liao et al., 2014). These results confirmed the identity of ClNO₂ and Cl₂ and indicated virtually no 57 interference for ClNO₂ and negligible interference for Cl₂. 58

59

60 **S1.3** Potential artifact of the inlet

61 When sampling ambient air, ambient particles gradually deposit on the inner wall of the 62 sampling tubing. After a period of time, N_2O_5 in the ambient air reacts with the deposited particles, resulting in N₂O₅ loss and ClNO₂ formation. This inlet chemistry may cause 63 64 underestimation of N₂O₅ and overestimation of CINO₂. To minimize the interference from the 65 sampling inlet, we adopted a virtual impactor design and a by-pass flow. The inlet design ensured that larger particles were mostly pumped through the by-pass flow. And the increased 66 total flow (10 Lpm) reduced the residence time of N_2O_5 on the inlet. The sampling line was 67 replaced daily by a cleansed one just before dusk to achieve minimum artifact on nighttime 68 69 measurements.

70 We

We quantified the percentage of N₂O₅ loss and ClNO₂ formation in the inlet under different

71	RH. After sampling for 24 hours, the used sampling line was taken indoor and connected to a
72	zero-air generator with a flow rate of 10 Lpm. Then, we injected N ₂ O ₅ at one end of the
73	sampling line and measured the outflow at the other end in CIMS. The injected mixing ratios
74	of N ₂ O ₅ was determined by introducing N ₂ O ₅ directly into the CIMS without passing the
75	sampling line. The CIMS only inhaled ~1.5 Lpm airflow while the remaining ~8.5 Lpm airflow
76	was discarded as a by-pass flow. The percentage of N_2O_5 loss and $CINO_2$ yield ($CINO_2$
77	production divided by N_2O_5 loss) increased with RH. When $RH = 40$ %, the N_2O_5 loss was
78	16.6 %. Thus, we assumed that the inlet artifact caused up to 16.6 % uncertainties for the
79	ambient measurement of N2O5 and ClNO2. 40 % RH was selected because the average RH
80	recorded at the inlet of the CIMS was 40 % during the whole campaign. Cl ₂ formation on the
81	sampling tube was negligible in the wall-loss testing.

Table S1. Measuring technique, detection limit and time resolution of the instruments in the
 field study. Detection limits were determined by 3σ of the noise level in 10 min.

Measured species	Techniques	Detection limits	Time resolution
N ₂ O ₅ , ClNO ₂ , Cl ₂ , HOCl, BrCl	Q-CIMS	5~8 pptv	10 s
NO, NO ₂	Chemiluminescence with photolycial converter	0.06 ppbv	1 min
NOy	Chemiluminescence with MoO converter	0.1 ppbv	1 min
CO	Infrared photometry	4 ppbv	1 min
SO_2	Pulsed ultraviolet fluorescence	0.1 ppbv	1 min
O ₃	Ultraviolet photometry	0.5 ppbv	1 min
HONO	LOPAP	5 pptv	1 min
HNO ₃	ion chromatography	0.05 ppbv	1 hour
PM _{2.5}	TEOM	$1 \ \mu g/m^3$	1 min
NH4 ⁺ , Cl ⁻ , NO ₃ ⁻ , SO ₄ ²⁻	ToF-ACSM	$0.01 \sim 0.06 \ \mu g/m^3$	10 min
jNO ₂	Filter radiometer	4×10 ⁻⁵ s ⁻¹	10 s
VOCs	PTR-TOF-MS	10 pptv	10 min

Table S2. Summary of $\gamma(N_2O_5)$, $\varphi(CINO_2)$, and $\varphi(Cl_2)$ (where applicable) in the selected 15

0	O
О	О

nighttime cases.						
plume	start	end	$\gamma(N_2O_5)$	φ(ClNO ₂)	φ(Cl ₂)	
1	4/12/18 2:10	4/12/18 3:00	0.0043	0.885	$0.037{\pm}0.004$	
2	4/12/18 3:10	4/12/18 3:40	0.0068	0.716	$0.021{\pm}0.003$	
3	4/12/18 21:40	4/13/18 0:40	0.0061	0.853	$0.036 {\pm} 0.004$	
4	4/16/18 19:50	4/16/18 20:30	0.0031	0.378	$0.013 {\pm} 0.000$	

5	4/16/18 20:40	4/16/18 21:20	0.0033	0.541	0.012 ± 0.001
6	4/17/18 22:20	4/17/18 23:40	0.0058	0.521	0.010 ± 0.001
7	4/18/18 3:00	4/18/18 3:50	0.0135	0.483	-
8	4/18/18 4:10	4/18/18 4:40	0.0139	0.187	-
9	4/19/18 0:00	4/19/18 0:40	0.0055	0.280	0.014 ± 0.001
10	4/19/18 0:40	4/19/18 1:40	0.0041	0.523	$0.018 {\pm} 0.002$
11	4/19/18 2:00	4/19/18 3:00	0.0091	0.769	0.006 ± 0.001
12	4/20/18 1:00	4/20/18 2:00	0.0084	0.641	0.013 ± 0.001
13	4/20/18 2:10	4/20/18 2:50	0.0074	0.647	0.013 ± 0.000
14	4/26/18 1:20	4/26/18 2:00	0.0136	0.468	0.006 ± 0.001
15	4/26/18 2:30	4/26/18 3:20	0.0125	0.533	0.013 ± 0.002
Average \pm standard deviation			0.008 ± 0.004	0.562 ± 0.197	0.016 ± 0.010

Table S3. Uncertainty analysis of the measured and deducted parameters. The uncertainty of

 Cl^{-} , NO_{3}^{-} , SO_{4}^{2-} , and S_{a} were referred to previous studies (Tham et al., 2016;Tham et al., 2018).

Parameter	sources	of uncertainty	Propagated error	Reference	
	Signal	calibration	inlet	18.8 %	This study
N ₂ O ₅ , ClNO ₂	precision		interference		
	3.0 %	8.3 %	16.6 %	_	
	Signal	alibration	inlet		
Cl_2	precision	calibration	interference	10.4 %	This study
	3.0 %	10.0 %	neglected		
[Cl ⁻], [NO ₃ ⁻],	ACSI	N	E-AIM model	10.00/ This study	
$[H_2O]$	10.0 %		15 % (assumed)	18.0 %	This study
ГТТ+1	Cl ⁻ , NO ₃ ⁻ , SO	4 ²⁻ , NH4 ⁺	E-AIM model	25.0.0/	This starder
[H]	10 %, 10 %, 10 %, 10 %		15 % (assumed)	25.0 %	This study
$(\mathbf{N} \mathbf{O})$	N ₂ O ₅ , ClNO ₂	NO ₃ -	$\mathbf{S}_{\mathbf{a}}$	34.2 %	This study
$\gamma(1N_2O_5)$	18.8 %, 18.8 %	10.0 %	19.0 %		
$\alpha(CINO)$	ClNO ₂	NO ₃ -		21.3 %	This study
$\varphi(CINO_2)$	18.8 %	10.0 %			
	$\gamma(N_2O_5)$	N_2O_5 , Cl_2	$\mathbf{S}_{\mathbf{a}}$	-	
φ(Cl ₂)	24.2.0/	18.8 %,	19.0 %	44.6 %	This study
	54.2 70	10.4 %			
Cl ⁻ , NO ₃ ⁻ ,				10.0.0/	Tham et al.
H_2O				10.0 %	2016
S_a				19.0 %	Tham et al. 2018

94 Figure S1. Comparison of O₃ measurements at the SORPES site and the SAS site.

Figure S2. Isotopic analysis of (a) ClNO₂ and (b) Cl₂. The red dots and corresponding fitting
lines represent calibration data, while the black crosses "+" denote ambient data.

99

101 **Figure S3.** Dependence of the N₂O₅ sensitivity on RH. The normalized sensitivity of N₂O₅ (y 102 axis) was fitted as a quadratic function of RH (x axis), which is $y=-3.78\times10^{-9}x^2+1.69\times10^{-1}$ 103 $^{7}x+1.72\times10^{-5}$ (R²=1).

105

Figure S4. Comparison of ACSM and MARGA data. (a), (b), (c), and (d) showed the comparison of Cl⁻, NO₃⁻, SO₄²⁻, and NH₄⁺ during the whole campaign, respectively. Since the resolution of the MARGA data was 1 hour, the ACSM data was averaged to 1 hour. Units of the ions are all μ g/m³.

110

Figure S5. An example showing the calculation of $\gamma(N_2O_5)$ and $\varphi(CINO_2)$. (a) and (b) show the increasing rate of CINO₂ and total nitrate observed on the night of Apr 17. (c) displays the relationship between CINO₂ and total nitrate shown in (a) and (b).

115

111

118

121 (a) and (b) represent sulfate and total organic aerosols, respectively.

122

123 References

124 Kercher, J., Riedel, T., and Thornton, J.: Chlorine activation by N 2 O 5: simultaneous, in situ

- 125 detection of CINO 2 and N 2 O 5 by chemical ionization mass spectrometry, Atmospheric Measurement Techniques, 2, 193-204, 2009. 126
- Liao, J., Huey, L. G., Liu, Z., Tanner, D. J., Cantrell, C. A., Orlando, J. J., Flocke, F. M., Shepson, 127
- P. B., Weinheimer, A. J., and Hall, S. R.: High levels of molecular chlorine in the Arctic 128
- 129 atmosphere, Nature Geoscience, 7, 91, 2014.
- 130 Tham, Y. J., Wang, Z., Li, Q., Yun, H., Wang, W., Wang, X., Xue, L., Lu, K., Ma, N., Bohn, B.,
- Li, X., Kecorius, S., Größ, J., Shao, M., Wiedensohler, A., Zhang, Y., and Wang, T.: Significant 131

- 132 concentrations of nitryl chloride sustained in the morning: investigations of the causes and
- 133 impacts on ozone production in a polluted region of northern China, Atmospheric Chemistry
- 134 and Physics, 16, 14959-14977, 10.5194/acp-16-14959-2016, 2016.
- 135 Tham, Y. J., Wang, Z., Li, Q., Wang, W., Wang, X., Lu, K., Ma, N., Yan, C., Kecorius, S., and
- 136 Wiedensohler, A.: Heterogeneous N2O5 uptake coefficient and production yield of ClNO2 in
- 137 polluted northern China: Roles of aerosol water content and chemical composition, 2018.
- 138