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Abstract  30 

China is one of the largest agricultural countries in the world. The NH3 emissions from agricultural activities 31 

in China significantly affect regional air quality and horizontal visibility. To reliably estimate the influence 32 

of NH3 on agriculture, a high-resolution agricultural NH3 emissions inventory, compiled with a 1 km × 1 33 

km horizontal resolution, was applied to calculate the NH3 mass burden in China. The key emission factors 34 

of this inventory were enhanced by considering the results of many native experiments, and the activity 35 

data of spatial and temporal information were updated using statistical data from 2015. Fertilizer and 36 

husbandry, as well as farmland ecosystems, livestock waste, crop residue burning, fuel wood combustion, 37 

and other NH3 emission sources were included in the inventory. Furthermore, a source apportionment tool, 38 

ISAM (Integrated Source Apportionment Method), coupled with the air quality modeling system RAMS-39 

CMAQ (Regional Atmospheric Modeling System and Community Multiscale Air Quality), was applied to 40 

capture the contribution of NH3 emitted from total agriculture (Tagr) in China. The aerosol mass 41 

concentration in 2015 was simulated, and the results showed that a high mass concentration of NH3, which 42 

exceeded 10 μg m-3, appeared mainly in the North China Plain (NCP), Central China (CNC), the Yangtz 43 

River Delta (YRD), and the Sichan Basin (SCB), and the annual average contribution of Tagr NH3 to PM2.5 44 

mass burden in China was 14-18%. Specific to the PM2.5 components, Tagr NH3 provided a major 45 

contribution to ammonium formation (87.6%) but a tiny contribution to sulfate (2.2%). In addition, several 46 

brute-force sensitivity tests were conducted to estimate the impact of Tagr NH3 emissions reduction on the 47 

PM2.5 mass burden. Compared with the results of ISAM, it was found that even though the Tagr NH3 only 48 

contributed 10.1% of nitrate under current emissions scenarios, the reduction of nitrate could reach 98.8% 49 

upon removal of the Tagr NH3 emissions. The main reason for this deviation could be that the NH3 50 

contribution to nitrate is small under "rich NH3" conditions and large in "poor NH3" environments. Thus, 51 

the influence of NH3 on nitrate formation could be enhanced with the decrease of ambient NH3 mass 52 

concentration. 53 

 54 

 55 

 56 

 57 

 58 

 59 
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1. Introduction 60 

Ammonia (NH3) is an important pollution species which principal neutralizing agent for the acid 61 

aerosols, SO�
�� and NO�

� formed from the SO2 and NOx (Chang, 1989; McMurry et al.; 1983). In addition, 62 

NH3 also influences the rate of particle nucleation (Ball et al.; 1999; Kulmala et al.; 2002) and enhances 63 

secondary organic aerosols (SOA) yields (Babar et al.; 2017). The widespread haze events have frequently 64 

occurred in most regions of eastern China in recent years, and several studies have reported that the 65 

secondary inorganic salts, including sulfate, nitrate, and ammonium, were the majorities of the total aerosols 66 

in the urban and rural regions (Tao et al.; 2014; Wang et al.; 2016; Zhang et al.; 2012; Lai et al.; 2016; 67 

Zhang et al.; 2018). Therefore, besides the heavy emissions of SO2 and NO2, NH3 emissions from the 68 

agriculture activities are also non-negligible. 69 

China is one of the largest agricultural countries in the world. Even though the annual emissions budget 70 

of NH3 decreased from 2006 to 2012, the emissions were still high and reached 9.7-12 Tg (Kang et al., 71 

2016; Xu et al., 2016; Zhou et al., 2015), leading to high ambient NH3 concentrations. These massive NH3 72 

levels significantly affect regional air quality and horizontal visibility. Firstly, the major PM2.5 components, 73 

(NH4)2SO4, (NH4)3H(SO4)2, NH4HSO4, and NH4NO3 were partially or fully produced from the 74 

neutralization of H2SO4 and HNO3 by the reaction with NH3 (Tanner et al.; 1981; Brost et al.; 1988; Quan 75 

et al.; 2014; Zhao et al.; 2013; Zhang et al.; 2014). Studies also showed that NH3 improves the H2SO4 76 

nucleation by 1-10 times (Benson et al.; 2011), and provides sufficient new particle to alter the number and 77 

size distributions. Thus, the NH3 and its secondary product NH�
� play an important role in the formation 78 

of air pollution and haze days. Research has shown that approximately 80% of total anthropogenic NH3 79 

emissions derived from agricultural sources and livestock manure provided a greater contribution than 80 

synthetic fertilizer (Kang et al., 2016; Zhou et al., 2016). The Chinese government has undertaken several 81 

control strategies to reduce particulate pollution and its precursors, such as catalytic reduction systems in 82 

the power sector (Xia et al., 2016), measures to change coal to gas for residential life and heating (Ren et 83 

al., 2014), etc. Related observations have shown that the mass burdens of SO2 and NOx have decreased 84 

distinctly in recent years (De Foy et al., 2016; Wang et al., 2015; Zheng et al., 2018). However, no specific 85 

measures for agricultural NH3 emissions control have been implemented to date, and the total agricultural 86 

NH3 emissions budget did not change substantially from 2010 to 2017 (Zheng et al., 2018). 87 

In addition, accurate information on agricultural NH3 emissions is also important for estimating the 88 

NH3 mass burden and its environmental effect. There have been several studies focusing on NH3 emissions 89 
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from agricultural activities in China or East Asia. REAS (Regional Emission inventory in Asia) version 2 90 

established an anthropogenic emissions inventory that included the source of agricultural NH3 (fertilizer 91 

application and livestock) (Kurokawa et al.; 2013). This inventory, targeting years from 2000 to 2008, has 92 

a 0.25° × 0.25° spatial resolution with monthly variation. MASAGE_NH3 (Magnitude and Seasonality of 93 

Agricultural Emissions model for NH3) was used to develop a bottom-up NH3 emissions inventory by using 94 

the adjoint of the GEOS-Chem chemical transport model (Paulot et al.; 2014). The inverse of the network 95 

data for NH4
+ wet deposition fluxes from 2005-2008 was used to optimize the NH3 emissions in China in 96 

this inventory. Fu et al. (2015) used the CMAQ (Community Multiscale Air Quality) model coupled to an 97 

agro-ecosystem, which could obtain hourly emissions features by online model calculation, to estimate NH3 98 

emissions in 2011 with high spatial and temporal resolution. These NH3 emissions inventories provided 99 

very useful datasets for understanding the distribution features of the NH3 mass burden in China. However, 100 

with population migration, economic growth, and the increased consumption of agricultural products, the 101 

spatial distribution and strength of agricultural NH3 emissions has significantly changed in China during 102 

the last decade (Xu et al., 2017), so that reliable emissions information based on recent years is also 103 

necessary for estimating the NH3 mass burden. 104 

Previous studies have investigated the influence of NH3 emissions on aerosol loading in several typical 105 

areas of China. Wu et al. (2008) conducted sensitivity studies to assess the impact of livestock-produced 106 

NH3 emissions on PM2.5 mass concentration in North China by using the MM5/CMAQ modeling system. 107 

The results showed that the livestock-produced NH3 provided >20% contributions to nitrate and ammonium, 108 

but provided only a small contribution to sulfate. Wang et al. (2011) used the response surface modeling 109 

technique to estimate the contribution of NH3 emissions in East China and found that total NH3 emissions 110 

contributed 8-11% to PM2.5 concentration, and the nonlinear effects were significant while the transition 111 

between NH3 rich and poor conditions. Fu et al. (2017) and Zhao et al. (2017) also investigated the impact 112 

of NH3 emissions on PM2.5 in East China and the Hai River Basin. However, the related studies were few 113 

and focused mainly on local regions; furthermore, most of them generally used the brute-force sensitivity 114 

method to estimate the NH3 impact based on the chemistry model, which reflected the change in particulate 115 

concentration with emissions reduction (Koo et al., 2009). 116 

PKU-NH3, a comprehensive high-resolution NH3 emissions inventory based on the year 2015, was 117 

applied in this study to capture the agricultural NH3 mass concentration in China, and the contribution to 118 

PM2.5 particles was estimated with an RAMS-CMAQ air quality modeling system, coupled with the online 119 
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source tagged module ISAM. Compared with previous studies, this high-resolution agricultural NH3 120 

emissions inventory was more accurate and reflected the latest spatial and temporal distribution features 121 

(Liu et al.; 2019). The major trace gases and aerosol species in 2015 were simulated by the modeling system 122 

and evaluated by several observational data. The contribution to the pollutant concentrations was tagged 123 

and quantified by RAMS-CMAQ-ISAM under the current scenario (Wang et al., 2009). Then, several brute-124 

force sensitivity tests were conducted to estimate the effect of reducing agricultural NH3 emissions on the 125 

PM2.5 mass burden. The results from the source apportionment simulation and brute-force sensitivity tests 126 

in January, April, July, and October are presented here, and the detailed features over seven major populated 127 

areas of China (as shown in Figure 1) are discussed. 128 

 129 

2. Methodology 130 

The emissions inventory can be described as follows: First, the NH3 emissions data in China were 131 

provided by the PKU-NH3 emissions inventory (Kang et al., 2016; Zhang et al., 2018). This inventory was 132 

developed on the basis of previous studies (Huang et al., 2012) and improved the horizontal resolution and 133 

accuracy. It was compiled at a 1 km × 1 km horizontal resolution, with monthly statistical data from 2015. 134 

Some of the most uncertain parameters, the emission factors applied in this inventory, were enhanced by 135 

considering as many native experiment results as possible, with ambient temperature, soil acidity, and 136 

changes in other factors. In addition, this inventory not only included fertilizer and husbandry emissions 137 

from agricultural activities but also collected the emissions data of farmland ecosystems, livestock waste, 138 

biomass burning (forest and grassland fires, crop residue burning, and fuel wood combustion), and other 139 

sources (excrement waste from rural populations, the chemical industry, waste disposal, NH3 escape from 140 

thermal power plants, and traffic sources). Second, the anthropogenic emissions of primary aerosols and 141 

their precursors were obtained from the MIX Asian emission inventory (base year 2012), prepared by the 142 

Model Inter-Comparison Study for Asia (MICS-ASIA III) (Lu et al., 2011; Lei et al., 2011). The 143 

anthropogenic emissions sources of SO2, NOx, volatile organic compounds (VOCs), black carbon (BC), 144 

organic carbon (OC), primary PM2.5, and PM10 were obtained from the monthly MIX inventory, with a 0.25° 145 

× 0.25° spatial resolution. The REAS (Regional Emission Inventory in Asia; Version 2; Kurokawa et al., 146 

2013) and GFED (Global Fire Emissions Database; Version 3; van der Werf et al., 2010) were used to 147 

provide the VOCs, and nitrogen oxides from flight exhaust, lightning, paint, wildfires, savanna burning, 148 

and slash-and-burn agriculture. 149 
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The RAMS-CMAQ modeling system was applied to simulate the transformation and transport of 150 

pollutants in the atmosphere. The CMAQ regional air quality model (version 5.0.2) released by the US 151 

Environmental Protection Agency (Eder et al., 2009; Mathur et al., 2008) was a major component of the 152 

RAMS-CMAQ modeling system. In this model, the CB05 (version CB05tucl) chemical mechanism 153 

(Whitten, 2010) and the sixth-generation CMAQ aerosol model (AERO6) were used to treat the gas-phase 154 

chemical mechanism and the formation and dynamic processes of aerosols. The ISORROPIA model 155 

(version 2.1) (Fountoukis and Nenes, 2007) was used to describe the thermodynamic equilibrium of gas-156 

particle transformation. The highly versatile RAMS numerical model, which can well capture the boundary 157 

layer and the underlying surface, was applied to provide the meteorological fields for CMAQ (Cotton et al., 158 

2003). The European Centre for Medium-Range Weather Forecasts reanalysis datasets (1° × 1° spatial 159 

resolution) were used to supply the background fields and sea surface temperatures. The model domain 160 

(Figure 1) was 6654 km × 5440 km, with 64 km2 fixed-grid cells, and a rotated polar stereographic map 161 

projection covering the entire mainland of China and its surrounding regions was used. The model had 15 162 

vertical layers, and half of them were located in the lowest 2 km to provide a more precise simulation of 163 

the atmospheric boundary layer. Several previous studies have demonstrated that the modeling system 164 

performs well when simulating the spatial and temporal distribution of China’s major aerosol components 165 

(Han et al., 2013, 2014, 2016). 166 

The ISAM is a flexible and efficient online source apportionment implementation, which was used to 167 

track multiple pollutants emitted from different geographic regions and source types. Compared with its 168 

previous version TSSA (Tagged Species Source Apportionment), the processes of tracking tagged tracer 169 

transport and precursor reactions were optimized for balancing the computational requirements and reliable 170 

representation of the physical and chemical evolution. To reduce the nonlinear effect during phase 171 

transformation and relative chemical interactions, a standalone subroutine “wrapper” approach was applied 172 

to the ISAM model to apportion the secondary PM species and their precursor gases during the 173 

thermodynamic equilibrium simulation; a hybrid approach, which employed the LU decomposition 174 

triangular matrices (Yang et al., 1997), was also developed for describing the gas-phase chemical 175 

interactions. In this study, ISAM was coupled with RAMS-CMAQ and was set to trace the transport and 176 

chemical reactions of NH3 from fertilizer and husbandry emissions sectors to quantitatively estimate the 177 

contribution of agricultural NH3 emissions to the PM2.5 mass concentration in China. 178 

 179 
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3. Model evaluation 180 

To evaluate the model performances, several observation data were compared with the simulation 181 

results. The meteorological factors are important to capture the formation processes and transport of 182 

secondary aerosols. Thus, in this paper, the observed meteorological data from surface stations of the 183 

Chinese National Meteorological Center are collected to evaluate the performance of the model. The detail 184 

information is described in Appendix A. Furthermore, the observed SO2, NO2, and PM2.5 released from the 185 

Ministry of Environmental Protection of China were applied to evaluate the modeled mass concentration 186 

of these pollutants. The observation data at 416 stations, located in 101 model grids (distributed in Beijing, 187 

Tianjin, Hebei, Shandong, Shanxi, Henan, Jiangsu, and Anhui), were collected, and the values in same grid 188 

were averaged. The scatter plots of comparison are shown in Figure 2, and the statistical parameters 189 

between the observations and simulations are listed in Table 1. It can be seen that most of the scatter points 190 

broadly gather around the 1:1 solid line. The correlation coefficients in this table are all higher than 0.5, 191 

which indicates that the model can capture the regional variation in the measurements. The standard 192 

deviations between the observations and simulations were similar in most cases, except for SO2 in January. 193 

The largest deviation of the modeled mean, which was higher than that of the observation, was also between 194 

the observed and modeled SO2 in January. However, the correlation coefficients reached 0.71 in January, 195 

and the performance of the model in other months was relatively good, as shown in Table 1. It can be 196 

deduced that the obvious deviation may be a systemic underestimation due to the lack of emission intensity 197 

in this month. 198 

The horizontal distributions of modeled monthly NH3 mass concentration in January, April, July, and 199 

October in 2015 are shown in Figure 3. Pan et al. (2018) provided the distributions of satellite NH3 total 200 

column distribution and the surface NH3 concentrations at several observation sites (as shown in Figure 1 201 

in the aforementioned study). As shown from their results, the highest mass burden was concentrated 202 

mainly in the North China Plain (NCP), Central China (CNC), the Yangtz River Delta (YRD), and the 203 

Sichan Basin (SCB). The simulation results in this study broadly reflected these distribution features. The 204 

NH3 concentrations in these regions reached 10-25 μg m3 in Pan et al. (2018), which also coincided well 205 

with the simulation results. However, some obvious deviations appeared in the eastern part of Gansu 206 

province. The modeled NH3 in these regions was slightly higher than that of the observations in Pan et al. 207 

(2018). Zhang et al. (2018) also showed the NH3 mass concentration in four seasons over China from 208 

simulation (horizontal distribution) and ground-based measurements (point values) in Figure 9 of their 209 
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study. Aside from the regions mentioned in Pan et al. (2018), the high mass burden of NH3 also appeared 210 

in the NEC, as shown by both simulation and observation results in Zhang et al. (2018). Generally, this 211 

distribution feature should be reasonable because the Three River Plain located in NEC is an important 212 

agriculture base in China, and the NH3 emissions in this region can be strong during spring and summer. 213 

The simulation results in this study also supported the seasonal variation of the NH3 mass burden shown in 214 

Zhang et al. (2018), which was higher in summer and lower in winter, and the magnitudes of the two were 215 

close. Thus, it can be seen that the NH3 concentration modeled by RAMS-CMAQ was reliable and can be 216 

applied to the analysis in this study. 217 

 218 

4. Results and discussions 219 

The horizontal distributions of modeled monthly PM2.5 mass concentrations in January, April, July, 220 

and October 2015 are shown in Figure 4. Over the eastern part of China, the heavy PM2.5 pollution occurred 221 

in January, and the relatively better air quality appeared in July. The large PM2.5 mass burden, exceeding 222 

200 μg m3 in January, was mainly concentrated in the NCP, the Yangtze River Valley of CNC, and the SCB, 223 

which broadly coincided with the regions covered by a high mass burden of NH3, as shown in Figure 3. In 224 

addition, the PM2.5 mass burden (50-150 μg m-3) was obviously lower in July than in the other months. 225 

Since NH3 concerns mainly with secondary inorganic aerosols: sulfate, nitrate, and ammonium (SNA) 226 

formation, the analysis hereafter will mainly focus on the SNA. Figure 5 presents the modeled monthly 227 

SNA mass concentrations in January, April, July, and October 2015. The mass loading of SNA generally 228 

contributed 40-60% of the total PM2.5 in the eastern part of China, which was comparable with previous 229 

studies (Cao et al., 2017; Chen et al., 2016; Lai et al., 2016; Wang et al., 2016). The distribution pattern and 230 

seasonal variation of SNA also followed the features of PM2.5, and the high mass concentration of SNA 231 

exceeded 100 μg m-3 in January. 232 

Then, the contributions of NH3 from multiple agricultural emissions (including fertilizer, husbandry, 233 

farmland ecosystems, livestock waste, crop residue burning, and excrement waste from rural populations) 234 

to aerosols were calculated using RAMS-CMAQ-ISAM; the monthly average contribution percentage of 235 

total agriculture activities (Tagr) in January, April, July, and October are shown in Figure 6. Generally, Tagr 236 

NH3 provided a 30-50% contribution to the SNA over most of eastern China in January and October, and a 237 

20-40% contribution in April and July. The relatively lower value appeared mainly in April. The regional 238 

and annual average percent contributions of Tagr to sulfate, nitrate, ammonium, SNA, and PM2.5 are shown 239 
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in Table 2. As shown in this table, Tagr NH3 provided the major contribution to ammonium, which reached 240 

approximately 90%, and a relatively small contribution to nitrate mass burden, which was 5-10%. However, 241 

the contribution to sulfate was tiny, and the main reason is that there are various methods of sulfate 242 

formation from SO2 other than neutralization by NH3, such as oxidation by H2O2, O3, or peroxyaceticn acid. 243 

Tagr NH3 provided a 28-37% contribution to the SNA mass concentration, and the spatial features of the 244 

Tagr NH3 contribution to the PM2.5 mass concentration were similar to the features of SNA. Generally, it 245 

provided an approximately 14-18% contribution to the total PM2.5 mass concentration in these places, and 246 

the largest annual average contribution appeared in CNC (17.5%). 247 

In addition, the brute-force method (zero-out sensitivity test), which can capture the effect of emissions 248 

changes on aerosol mass burden, was applied to investigate the impact of the removal of Tagr NH3 249 

emissions. Unlike online source apportionment, the brute-force method mainly reflects the disparity of the 250 

chemical balance caused by the emissions change, which could significantly alter secondary pollutant 251 

formation. Several sensitivity tests were conducted, and the results are shown in Figure 7 and Table 3. 252 

Figure 7 presents the mass burden variation of SNA associated with Tagr NH3 removal. From Figure 7, it 253 

can be seen that the reduction patterns of the aerosol broadly followed those of their mass burden. The 254 

significant reduction of SNA mainly appeared in the high concentration regions, and generally exceeded 255 

25 μg m-3. Table 3 shows the percentage of the variation of sulfate, nitrate, ammonium, SNA, and PM2.5. 256 

Compared with Table 2, it can be seen that the variation percent of SNA and PM2.5, which reached 40-51% 257 

and 23-35%, respectively, were approximately two times higher than those of the contribution percent, and 258 

this significant distinction was mainly caused by the variation of nitrate: the contribution of Tagr NH3 to 259 

nitrate was generally below 10%, as shown in Table 2, but the reduction of nitrate associated with removing 260 

Tagr NH3 emissions could exceed 95%, as shown in Table 3. This difference between the results of ISAM 261 

and brute-force was expected as a result of high nonlinearity in the NOx chemistry. The nitrate formation 262 

could become more sensitive when the “rich NH3” environment shifts to a “poor NH3” environment, which 263 

means the decrease of the nitrate mass burden would accelerate with the NH3 emissions reduction. 264 

Therefore, it can be deduced that the contribution of NH3 to nitrate should be significantly lower under a 265 

“rich NH3” environment than that under a “poor NH3” environment. A similar phenomenon was also 266 

reported in previous studies (Wang et al., 2011; Xu et al., 2016). To prove this point, further brute-force 267 

sensitivity tests were conducted. The variations of sulfate, nitrate, ammonium, and SNA mass burden 268 

associated with the reduction of NH3 emissions (80%, 50%, 40%, 30%, 20%, and 10% TA NH3 emission, 269 
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respectively) is shown in Figure 8. It can be seen that the decrease in nitrate mass concentration was more 270 

rapid than that of ammonium, and the trend became slightly faster with the reduction of NH3 emissions 271 

(signifying the transition from a “rich NH3” to a “poor NH3” environment) in the regions with a high mass 272 

burden of NH3: BTH, NEC, SCB, and SDP. Furthermore, this acceleration stopped while 20% of NH3 273 

emissions remained. 274 

 275 

5. Conclusions 276 

The emission budget of agriculture NH3 was huge and played an important role on the regional particle 277 

pollution in China. As a precursor of the secondary aerosol, reasonably estimate the nonlinear processes of 278 

secondary aerosol formation should be the key point for capturing the contribution of NH3 to particle 279 

pollution. In this study, the air quality modeling system RAMS-CMAQ was applied to simulate spatial-280 

temporal distribution of trace gas and aerosols in 2015. In addition, the PKU-NH3 emission inventory which 281 

compiled on 1km×1km horizontal resolution with monthly based data was applied to accurately capture 282 

the agriculture NH3 emission features in China. Then, the source apportionment module ISAM was coupled 283 

into this modeling system to quantitatively estimate the contribution of agriculture NH3 to PM2.5 mass 284 

burden. The brute-force sensitivity tests were also conducted for discussing the impact of the agriculture 285 

NH3 emission reduction. The meteorological factors and mass concentration of NH3, SO2, NO2, and PM2.5 286 

from simulation were evaluated and showed well agreement with the observation data. Some interesting 287 

results were explored and summarized as follow: 288 

(1) The high mass burden of NH3 could exceeded 10 μg m-3, and mainly appeared in the NCP, CNC, 289 

YRD, and SCB. These regions were highly coincidence with the regions that heavy particle pollution 290 

covered in China. Therefore, it can be deduced that the influence of agriculture NH3 on the PM2.5 mass 291 

concentration should be significant. 292 

(2) The results from ISAM simulation shows that the Tagr NH3 provided 14-18% contribution to the 293 

PM2.5 in the most part of east China, and the largest annual average contribution appeared in CNC (17.5%). 294 

Specific to the SNA components, the annually and regional average contribution of Tagr NH3 to ammonium, 295 

nitrate, sulfate was 87.6%, 10.1%, and 2.2% in China. The agriculture NH3 emission provided major 296 

contribution to the ammonium formation, but tiny contribution to the sulfate due to the various other ways 297 

of sulfate formation. 298 

(3) The brute-force sensitive test could reflect the effect of changing Tagr NH3 emission on PM2.5 mass 299 
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burden. The results indicated that the reduction percent of PM2.5 mass burden due to removal Tagr NH3 300 

emission could reach 23-35% in the most part of east China, which was approximately two times higher 301 

than the contribution. The reduction percent of nitrate that reached exceed 95% was the main reason caused 302 

this significant different. In addition, the further analysis proved that the ambient NH3 mass burden could 303 

obviously affects its contribution to the SNA formation: the NH3 contribution to nitrate should be lower 304 

under "rich NH3" and higher under "poor NH3". Therefore, the influence of NH3 would enhance with the 305 

decreasing of ambient NH3 mass concentration. 306 

It is suggested that the influence of NH3 on the PM2.5 mass burden is complex because of the 307 

nonlinearity of secondary aerosol formation. Significant deviation exists between the results from ISAM 308 

and the brute-force method; therefore, these two kinds of results should be distinguished and applied to 309 

explain different issues: the contribution under the current scenario and the effect due to emissions reduction, 310 

respectively. The modeling system is a versatile tool that allows us to investigate this valuable information 311 

to choose more efficient strategies for reducing the impact of agricultural NH3 and improving air quality. 312 
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Appendix A 330 

The daily average temperature, relative humidity, wind speed and maximum wind direction in January 331 

and July 2015 were compared with the surface shared data from the Chinese National Meteorological 332 

Center (http://data.cma.cn/) in 9 stations. The comparison results are shown in Figure A1-A4. These stations 333 

are located in the East China where the high NH3 emission regions. Generally, the modeled temperature 334 

was in good agreement with the observed data, and can reflect the large fluctuation and seasonal variation 335 

of relative humidity as well, except that some of the extreme high or low values appeared abruptly. As 336 

shown in Figure A3, most of the daily average wind speed was lower than 3 m s-1 at Zhengzhou, Jinan, 337 

Miyun, and Baoding station (all located in the North China Plain), which means the diffusion condition was 338 

not good due to the stable weather. Otherwise, the relatively strong wind appeared at Nanjing, Chaoyang, 339 

Nanning, and Tianjin. The modeled wind speed generally reproduced all these features. The direct 340 

comparison between observed and modeled wind direction which can be easily influenced by the 341 

surrounding surface features is difficult. Nevertheless, the prevailing wind direction in different seasons 342 

can be captured by the simulation results for all stations. 343 

 344 

 345 

 346 
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 527 

Figure 1. Model domain used in this study and the geographic locations of Northeast China, Beijing-Tianjin-Hebei, 528 

Shandong Province, Yangtze River Delta, Central China, Sichuan Basin, and Pearl River Delta. The location of 529 

observation data was also shown in the model domain. 530 
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 556 

Figure 2. The scatter plots between the modeled and the observed monthly SO2, NO2, and PM2.5 in 2015. The solid lines 557 

are 1:1 and the dashed lines are 2:1 or 1:2. 558 

 559 

 560 

 561 

 562 

 563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

https://doi.org/10.5194/acp-2019-1128
Preprint. Discussion started: 16 March 2020
c© Author(s) 2020. CC BY 4.0 License.



19 
 

 577 

Figure 3. The horizontal distributions of the modeled monthly NH3 mass concentration in January, April, July, and 578 

October in 2015. 579 
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 600 

Figure 4. The horizontal distributions of the modeled monthly PM2.5 mass concentration in January, April, July, and 601 

October in 2015. 602 
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 623 

Figure 5. The horizontal distributions of the modeled monthly SNA mass concentration in January, April, July, and 624 

October in 2015. 625 
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 644 

Figure 6. The horizontal distributions of the contribution percentage of NH3 emissions to SNA mass concentration (%) in 645 

January and July. 646 
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 668 

Figure 7. The horizontal distributions of SNA mass concentration (μg m-3) variation associated with agriculture NH3 669 

removal in January and July. 670 
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 692 
Figure 8. The variation (%) of sulfate, nitrate, ammonium, and SNA mass burden associated with the NH3 emission 693 

reduction (%). 694 
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 713 

Figure A1. Observed and modeled daily average temperatures (K) in January and July 2015. 714 
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 737 

Figure A2. Same as Figure A1 but for relative humidity (%) 738 
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 761 

Figure A3. Same as Figure A1 but for wind speed (m s-1) 762 
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 785 

Figure A4. Same as Figure A1 but for daily maximum wind direction (degree) 786 
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Table 1. Statistical summary of the comparisons of the monthly average PM2.5 between simulation and observation 802 

  Na Mb Oc m
d o

e Rf FBg NMBh 

PM2.5 

Jan 101 128.3 100.1 34.9 28.3 0.60 0.2 28.2 

Apr 101 74.9 58.4 15.4 15.2 0.67 0.3 28.3 

Jul 100 58.6 50.3 17.6 16.0 0.52 0.1 16.6 

Oct 100 81.0 54.8 23.1 19.7 0.52 0.4 47.9 

NO2 

Jan 101 42.5 51.7 19.4 16.2 0.65 -0.2 -17.8 

Apr 101 27.8 35.0 15.7 11.5 0.57 -0.3 -20.5 

Jul 100 24.3 26.5 13.2 9.2 0.50 -0.2 -8.4 

Oct 100 33.2 42.0 16.4 14.9 0.53 -0.3 -20.9 

SO2 

Jan 101 39.9 69.1 18.7 42.4 0.71 -0.5 -42.2 

Apr 101 22.9 31.2 10.1 12.7 0.51 -0.3 -26.6 

Jul 100 17.8 20.3 10.9 10.4 0.46 -0.2 -12.5 

Oct 100 27.0 31.5 12.3 16.7 0.63 -0.1 -14.4 
a Number of samples 803 
b Total mean of observation 804 
c Total mean of simulation 805 
d Standard deviation of observation 806 
e Standard deviation of simulation 807 
f Correlation coefficient between daily observation and simulation 808 
g Fractional Bias 809 
h Nmalized Mean Bias 810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 

 831 

 832 

https://doi.org/10.5194/acp-2019-1128
Preprint. Discussion started: 16 March 2020
c© Author(s) 2020. CC BY 4.0 License.



30 
 

Table 2. The regional percent (%) of T contribution to sulfate, nitrate, ammonium, and SNA mass concentration.  833 

 Sulfate Nitrate Ammonium SNA PM2.5 

BTH 1.1  8.0  83.3 31.9 15.5 

NEC 1.0  5.6  83.7 28.1 14.3 

YRD 1.0  7.4  85.7 29.2 15.3 

PRD 0.9  5.8  90.6 33.5 14.2 

SCB 0.7  5.1  93.9 32.6 13.0 

CNC 0.9  6.0  92.8 36.6 17.5 

SDP 0.9  7.1  80.5 30.1 15.1 

China 2.2  10.1  87.6 29.0 16.0 
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Table 3. The variation percent (%) of sulfate, nitrate, ammonium, and SNA mass concentration associated with 868 

agriculture NH3 removal. 869 

 Sulfate Nitrate Ammonium SNA PM2.5 

BTH 0.7 99.8 94.7 49.4 34.4 

NEC 0.7 96.9 92.5 48.9 31.1 

YRD 5.0 99.2 96.1 48.8 31.6 

PRD 2.0 99.2 97.2 40.3 23.4 

SCB 2.6 96.7 85.9 49.8 25.9 

CNC 1.9 99.2 92.3 50.9 32.3 

SDP 2.7 99.5 93.4 46.6 34.0 

China 1.6 98.8 93.8 45.7 25.2 
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