Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Preprints
https://doi.org/10.5194/acp-2019-1128
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2019-1128
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  16 Mar 2020

16 Mar 2020

Review status
A revised version of this preprint was accepted for the journal ACP and is expected to appear here in due course.

Numerical analysis of the impact of agricultural emissions on PM2.5 in China using a high-resolution ammonia emissions inventory

Xiao Han1,2, Lingyun Zhu5, Mingxu Liu4, Yu Song4, and Meigen Zhang1,2,3 Xiao Han et al.
  • 1State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
  • 2College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
  • 4State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing 100871, China
  • 5Shanxi Province Institute of Meteorological Sciences, Taiyuan 030002, China

Abstract. China is one of the largest agricultural countries in the world. The NH3 emissions from agricultural activities in China significantly affect regional air quality and horizontal visibility. To reliably estimate the influence of NH3 on agriculture, a high-resolution agricultural NH3 emissions inventory, compiled with a 1 km × 1 km horizontal resolution, was applied to calculate the NH3 mass burden in China. The key emission factors of this inventory were enhanced by considering the results of many native experiments, and the activity data of spatial and temporal information were updated using statistical data from 2015. Fertilizer and husbandry, as well as farmland ecosystems, livestock waste, crop residue burning, fuel wood combustion, and other NH3 emission sources were included in the inventory. Furthermore, a source apportionment tool, ISAM (Integrated Source Apportionment Method), coupled with the air quality modeling system RAMS-CMAQ (Regional Atmospheric Modeling System and Community Multiscale Air Quality), was applied to capture the contribution of NH3 emitted from total agriculture (Tagr) in China. The aerosol mass concentration in 2015 was simulated, and the results showed that a high mass concentration of NH3, which exceeded 10 μg m−3, appeared mainly in the North China Plain (NCP), Central China (CNC), the Yangtz River Delta (YRD), and the Sichan Basin (SCB), and the annual average contribution of Tagr NH3 to PM2.5 mass burden in China was 14–18 %. Specific to the PM2.5 components, Tagr NH3 provided a major contribution to ammonium formation (87.6 %) but a tiny contribution to sulfate (2.2 %). In addition, several brute-force sensitivity tests were conducted to estimate the impact of Tagr NH3 emissions reduction on the PM2.5 mass burden. Compared with the results of ISAM, it was found that even though the Tagr NH3 only contributed 10.1 % of nitrate under current emissions scenarios, the reduction of nitrate could reach 98.8 % upon removal of the Tagr NH3 emissions. The main reason for this deviation could be that the NH3 contribution to nitrate is small under rich NH3 conditions and large in poor NH3 environments. Thus, the influence of NH3 on nitrate formation could be enhanced with the decrease of ambient NH3 mass concentration.

Xiao Han et al.

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Xiao Han et al.

Xiao Han et al.

Viewed

Total article views: 257 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
192 58 7 257 8 7
  • HTML: 192
  • PDF: 58
  • XML: 7
  • Total: 257
  • BibTeX: 8
  • EndNote: 7
Views and downloads (calculated since 16 Mar 2020)
Cumulative views and downloads (calculated since 16 Mar 2020)

Viewed (geographical distribution)

Total article views: 275 (including HTML, PDF, and XML) Thereof 274 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 07 Aug 2020
Publications Copernicus
Download
Short summary
China is one of the largest agricultural countries in the world. Some of the major PM2.5 particles which cause the atmospheric haze and impact the climate change were converted from the agricultural NH3 emission. This paper applied the numerical modeling system coupled with a high-resolution agricultural NH3 emissions inventory to investigate the contribution of agricultural NH3 to PM2.5 mass burden in China and obtained some interesting results.
China is one of the largest agricultural countries in the world. Some of the major PM2.5...
Citation