Supplementary material for

Quantifying the nitrogen equilibrium and photochemistry-induced kinetic isotopic effects between NO and NO₂

Jianghanyang Li¹, Xuan Zhang², Greg Michalski^{1,3}, John Orlando², and Geoffrey Tyndall²

^{1.} Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, IN, 47907

^{2.} Atmospheric Chemistry Observations and Modelling Lab, National Center for Atmospheric Research, Boulder, CO, 80301

^{3.} Department of Chemistry, Purdue University, West Lafayette, IN, 47907

1. Chamber description, experimental setup, and control experiments

The chamber is a 10 m³ Teflon bag equipped with several standard instruments including temperature and humidity probe, NO_x monitor and O₃ monitor. 128 wall-mounted blacklight tubes surrounded the chamber to mimic tropospheric photochemistry and the photolysis rate of NO₂ ($j(NO_2)$) when all lights are on have been previously determined to be 1.4×10^{-3} s⁻¹ (Zhang et al., 2018), similar to a $j(NO_2)$ coefficient at an 81-degree solar zenith angle. The chamber was kept at room temperature and one atmospheric pressure. Before each experiment, the chamber was flushed with zero air at 40 L min⁻¹ for at least 12 hours to ensure the background NO_x, O₃ and other trace gases were below detection limit.

The rate of NO₂ wall loss and the effect of NO₂+O₂ reaction were determined by conducting control experiments: 62 nmol mol⁻¹ NO and 29 nmol mol⁻¹ O₃ was injected into the

chamber and NO, NO_2 and total NO_x concentrations were monitored. No significant decay of NO_x was and observed over a 4-hour period.

During each experiment, after the NO, NO₂ and O₃ concentrations reached steady-state, well-mixed chamber air was drawn out through a Norprene Thermoplastic tubing ~40 cm at 10 L min⁻¹ and passed through a honeycomb denuder system (Chemcomb 3500, Thermo Scientific). Based on flow rate, the NO₂ reside time in the was less than 0.5 second, thus in the light-on experiments where NO and O₃ coexisted, the NO₂ produced inside the transfer tube through NO+O₃ reactions should be <0.03 ppb (using the upper limit of NO and O₃ concentrations in our experiments). The honeycomb denuder system consisted of two honeycomb denuder tubes connected in series. Each honeycomb denuder tube is a glass cylinder of 38 mm long, 47 mm in diameter, and consist of 212 hexagonal tubes with inner diameters of 2 mm. Before collecting sample, each denuder tube was coated with methanol solutions containing 10% KOH and 25% guaiacol, then immediately dried by passing high-purity N₂ through the denuder tube for 10 seconds. The coating on the denuder tube surface reacts with NO₂ forming NO₂⁻ (Williams & Grosjean, 1990). Each NO₂ collection lasted for 0.5-3 hours in order to collect enough NO₂⁻ for isotopic analysis (~300 nmol).

The NO₂ collection efficiency of a single honeycomb denuder tube was tested in a control experiment: air containing 66 nmol mol⁻¹ of NO₂ was drawn out of the chamber through a denuder tube, and the NO₂ concentration at the exit was measured to be low than the detection limit (<1 nmol mol⁻¹), suggesting the collection efficiency was nearly 100% when [NO₂] <66 nmol mol⁻¹. Furthermore, since each denuder system consisted of two denuder tubes, we tested the NO₂⁻ collected at the second denuder, none of them showed any measurable NO₂⁻.

2. Box model assessing the time needed for NO-NO₂ to reach isotopic equilibrium

The time needed to reach NO-NO₂ isotopic equilibrium during light-off experiments were assessed using a 0-D box model. This box model contains only two reactions:

$$k=8.140000 \times 10^{-14} \text{ cm}^3/\text{molecules/s}$$

$$k'=8.354896 \times 10^{-14} \text{ cm}^3/\text{molecules/s}$$

$$k'=8.354896 \times 10^{-14} \text{ cm}^3/\text{molecules/s}$$

Where k and k' are rate constants of the reactions. The differences in rate constants were calculated by assuming an α (NO₂-NO) value of 1.0268. Six simulations were conducted at various initial NO (with δ^{15} N=0‰) and O₃ levels that were similar to our experiment. Then the δ^{15} N values of NO and NO₂ during the simulation were calculated from the model and were shown in Fig. S1, suggesting that in our experimental condition, all systems should reach isotopic equilibrium within 1 hr.

Fig. S1 Simulated NO-NO₂ isotopic equilibrium process in the chamber at various NO and O_3 concentrations.

3. Deriving Equations 7 and 8

We have 6 reactions in the system:

$$^{15}NO_2+^{14}NO \rightarrow ^{15}NO+^{14}NO_2$$
R1, rate constant=k1 $^{15}NO+^{14}NO_2 \rightarrow ^{15}NO_2+^{14}NO$ R2, rate constant=k1× α (NO2-NO) $^{14}NO_2 \rightarrow ^{14}NO+O$ R3, rate constant=j(NO2) $^{15}NO_2 \rightarrow ^{15}NO+O$ R4, rate constant=j(NO2)× α_1 $^{14}NO+O_3 \rightarrow ^{14}NO_2+O_2$ R5, rate constant=k5 $^{15}NO+O_3 \rightarrow ^{15}NO_2+O_2$ R6, rate constant=k5× α_2

At steady state:

$$d[^{15}NO_2]/dt=0$$

Therefore:

$$k_1 \times [^{15}NO_2][^{14}NO] + j_{NO2} \times \alpha_1 \times [^{15}NO_2] = k_5 \times \alpha_2 \times [^{15}NO] \times [O_3] + k_1 \times \alpha_{NO2-NO} \times [^{15}NO] \times [^{14}NO_2] = k_5 \times \alpha_2 \times [^{15}NO_2] = k_5 \times \alpha_2 \times [^{15}NO_2] + k_1 \times \alpha_{NO2-NO} \times [^{15}NO_2] = k_5 \times \alpha_2 \times [^{15}NO_2] = k_5$$

From here we refer ¹⁴NO₂ and ¹⁴NO as NO₂ and NO for convenience, rearrange the above equation, we get:

$$\frac{[^{15}NO_2]}{[^{15}NO]} = \frac{\mathbf{k}_5 \times \mathbf{\alpha}_2 \times [O_3] + \mathbf{k}_1 \times \mathbf{\alpha}_{NO2-NO} \times [NO_2]}{\mathbf{j}_{NO2} \times \mathbf{\alpha}_1 + \mathbf{k}_1 \times [NO]}$$

Meantime, since the Leighton cycle reaction still holds for the majority isotopes (NO and NO₂), we have:

$$j_{NO2} \times [NO_2] = k_5 \times [NO] \times [O_3]$$

Thus,

$$\frac{[\text{NO}_2]}{[\text{NO}]} = \frac{\text{k}_5 \times [\text{O}_3]}{\text{j}_{\text{NO}2}}$$

From the text, when $j_{NO2}>0$, we defined A= $\tau_{exchange}/\tau_{photo}=j_{NO2}/(k_1\times[NO])$. using the above equation, we know:

$$\frac{j_{NO2}}{[NO]} = \frac{k_5 \times [O_3]}{[NO_2]} = A \times k_1$$
$$\frac{j_{NO2}}{k_1 \times [NO]} = \frac{k_5 \times [O_3]}{k_1 \times [NO_2]} = A$$

Next, in order to calculate $\delta(NO_2)$ - $\delta(NO)$, we use the definition of delta notation:

 $\delta(NO_2)-\delta(NO)=(R_{NO2}/R_{std}-1)\times 1000\%-(R_{NO}/R_{std}-1)\times 1000\%;$

Where $R_{NO1,2} = [15NO_{1,2}]/[NO_{1,2}]$. Thus,

 $(\delta(NO_2)-\delta(NO))/1000$ = R_{NO2}/R_{std} - $R_{NO}/R_{std} \approx R_{NO2}/R_{NO}-1$

$$\frac{R_{NO2}}{R_{NO}} = \frac{\begin{bmatrix} 1^5 NO_2 \end{bmatrix} \times \begin{bmatrix} NO \end{bmatrix}}{\begin{bmatrix} 1^5 NO \end{bmatrix} \times \begin{bmatrix} NO_2 \end{bmatrix}} = \frac{k_5 \times \alpha_2 \times \begin{bmatrix} O_3 \end{bmatrix} \times \begin{bmatrix} NO \end{bmatrix} + k_1 \times \alpha(NO_2 - NO) \times \begin{bmatrix} NO_2 \end{bmatrix} \times \begin{bmatrix} NO \end{bmatrix}}{j_{NO2} \times \alpha_1 \times \begin{bmatrix} NO_2 \end{bmatrix} + k_1 \times \begin{bmatrix} NO \end{bmatrix} \times \begin{bmatrix} NO_2 \end{bmatrix}}$$

Divide both side by $k_1 \times [NO] \times [NO_2]$:

$$\frac{R_{NO2}}{R_{NO}} = \frac{\frac{k_5 \times \alpha_2 \times [O_3]}{k_1 \times [NO_2]} + \alpha(NO_2 - NO)}{\frac{j_{NO2} \times \alpha_1}{k_1 \times [NO]} + 1}$$

Rearrange and substitute $\frac{k_5 \times [O_3]}{k_1 \times [NO_2]}$ and $\frac{j_{NO2}}{k_1 \times [NO]}$ with A:

$$\frac{R_{NO2}}{R_{NO}} = \frac{\alpha_2 \times A + \alpha(NO_2 - NO)}{\alpha_1 \times A + 1}$$

$$\frac{R_{NO2}}{R_{NO}} - 1 = \frac{(\alpha_2 - \alpha_1) \times A + (\alpha(NO_2 - NO) - 1)}{\alpha_1 \times A + 1}$$

Thus,

$$\delta^{15}N_{NO2} - \delta^{15}N_{NO} = \frac{(\alpha_2 - \alpha_1) \times A + (\alpha(NO_2 - NO) - 1)}{\alpha_1 \times A + 1} \times 1000\%$$

Since $\alpha_1 \approx 1$, $\alpha_1 \times A + 1 \approx 1 + A$ this equation can be further simplified to Eq. 7:

 $\delta(\text{NO}_2) \text{-} \delta(\text{NO}) = \frac{(\alpha_2 - \alpha_1) \text{+} \text{A} + (\alpha_{\text{NO}2 - \text{NO}} - 1)}{\text{A} + 1} \times 1000\%$

Then, using mass balance:

 $\delta(NO_2) \times f(NO_2) + \delta(NO) \times (1 - f(NO_2)) = \delta(NO_x)$

We can derive Eq. 8:

$$\delta(\text{NO}_2) - \delta(\text{NO}_x) = \frac{(\alpha_2 - \alpha_1) \times A + (\alpha_{\text{NO}2 - \text{NO}} - 1)}{A + 1} \times (1 - f(\text{NO}_2)) \times 1000\%$$

References:

- Williams, E. L., & Grosjean, D. (1990). Removal of atmospheric oxidants with annular denuders. *Environmental Science & Technology*, 24(6), 811–814.
- Zhang, X., Ortega, J., Huang, Y., Shertz, S., Tyndall, G. S., & Orlando, J. J. (2018). A steady-state continuous flow chamber for the study of daytime and nighttime chemistry under atmospherically relevant NO levels. *Atmospheric Measurement Techniques*, 11(5), 2537– 2551.