1 Quantifying the nitrogen isotope effects during photochemical 2 equilibrium between NO and NO₂: implications for δ^{15} N in 3 tropospheric reactive nitrogen

4 Jianghanyang Li¹, Xuan Zhang², John Orlando², Geoffrey Tyndall² and Greg Michalski^{1,3}

- ^{2.} Atmospheric Chemistry Observations and Modeling Lab, National Center for Atmospheric
 Research, Boulder, CO, 80301
- ³ Department of Chemistry, Purdue University, West Lafayette, IN, 47907
- 10 Correspondence to: Jianghanyang Li (li2502@purdue.edu)

11 Abstract. Nitrogen isotope fractionations between nitrogen oxides (NO and NO_2) play a significant role in determining the nitrogen isotopic compositions ($\delta^{15}N$) of atmospheric reactive 12 13 nitrogen. Both the equilibrium isotopic exchange between NO and NO₂ molecules and the isotope 14 effects occurring during the NO_x photochemical cycle are important, but both are not well 15 constrained. The nighttime and daytime isotopic fractionations between NO and NO₂ in an 16 atmospheric simulation chamber at atmospherically relevant NO_x levels were measured. Then, the 17 impact of NO_x level and NO₂ photolysis rate to the combined isotopic fractionation (equilibrium 18 isotopic exchange and photochemical cycle) between NO and NO₂ were calculated. It was found 19 that the isotope effects occurring during the NO_x photochemical cycle can be described using a 20 single fractionation factor, designated the Leighton Cycle Isotope Effect (LCIE). The results 21 showed that at room temperature, the fractionation factor of nitrogen isotopic exchange is 22 1.0289±0.0019, and the fractionation factor of LCIE (when O₃ solely controls the oxidation from 23 NO to NO₂) is 0.990±0.005. The measured LCIE factor showed good agreement with previous 24 field measurements, suggesting that it could be applied in ambient environment, although future 25 work is needed to assess the isotopic fractionation factors of NO + RO₂/HO₂ \rightarrow NO₂. The results 26 were used to model the NO-NO₂ isotopic fractionations under several NO_x conditions. The model 27 suggested that isotopic exchange was the dominate factor when $NO_x > 20$ nmol mol⁻¹, while LCIE 28 was more important at low NO_x concentrations (<1 nmol mol⁻¹) and high rates of NO₂ photolysis. 29 These findings provided a useful tool to quantify the isotopic fractionations between tropospheric 30 NO and NO₂, which can be applied in future field observations and atmospheric chemistry models.

- 31
- 32

 ^{1.} Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette,
 IN, 47907

The nitrogen isotopic composition ($\delta^{15}N$) of reactive nitrogen compounds in the 34 atmosphere is an important tool in understanding the sources and chemistry of atmospheric NO_x 35 (NO+NO₂). It has been suggested that the δ^{15} N value of atmospheric nitrate (HNO₃, nitrate 36 aerosols and nitrate ions in the precipitation and snow) imprints the $\delta^{15}N$ value of NO_x sources 37 (Elliott et al., 2009; Kendall et al., 2007) thus many studies have used the $\delta^{15}N$ values of 38 39 atmospheric nitrate to investigate NO_x sources (Chang et al., 2018; Felix et al., 2012; Felix & 40 Elliott, 2014; Gobel et al., 2013; Hastings et al., 2004, 2009; Morin et al., 2009; Park et al., 2018; 41 Walters et al., 2015, 2018). However, there remain questions about how isotopic fractionations 42 that may occur during photochemical cycling of NO_x could alter the δ^{15} N values as it partitions 43 into NO_v (NO_v = atmospheric nitrate, NO₃, N₂O₅, HONO, etc., Chang et al., 2018; Freyer, 1991; 44 Hastings et al., 2004; Jarvis et al., 2008; Michalski et al., 2005; Morin et al., 2009; Zong et al., 45 2017). Similarly, other complex reactive nitrogen chemistry, such as nitrate photolysis and redeposition in ice and snow (Frey et al., 2009), may impact the δ^{15} N of NO_v and atmospheric nitrate. 46 47 The fractionation between NO and NO_2 via isotope exchange has been suggested to be the 48 dominant factor in determining the δ^{15} N of NO₂ and ultimately atmospheric nitrate (Freyer, 1991; 49 Frever et al., 1993; Savarino et al., 2013; Walters et al., 2016). However, isotopic fractionations 50 occur in most, if not all, NO_x and NO_y reactions, while most of these are still unknown or, if 51 calculated (Walters and Michalski, 2015), unverified by experiments. Since the atmospheric 52 chemistry of NO_v varies significantly in different environments (e.g., polluted vs. pristine, night 53 vs. day), the isotopic fractionations associated with NO_v chemistry are also likely to vary in 54 different environments. These unknowns could potentially bias conclusions about NO_x source 55 apportionment reached when using nitrogen isotopes. Therefore, understanding the isotopic fractionations between NO and NO₂ during photochemical cycling could improve our understanding of the relative role of sources versus chemistry for controlling the δ^{15} N variations of atmospheric NO₂ and nitrate.

59 In general, there are three types of isotopic fractionation effects associated with NO_x 60 chemistry (Fig. 1A). The first type is the equilibrium isotopic effect (EIE), i.e., isotope exchange 61 between two compounds without forming new molecules (Urey, 1947, Bigeleisen and Mayer, 1947), which for nitrogen isotopes in the NO_x system is the ${}^{15}NO + {}^{14}NO_2 \leftrightarrow {}^{14}NO + {}^{15}NO_2$ 62 exchange reaction (Begun and Melton, 1956, Walters et al., 2016). The second type is the kinetic 63 64 isotopic effect (KIE) associated with difference in isotopologue rate coefficients during 65 unidirectional reactions (Bigeleisen & Wolfsberg, 1957). In the NO_x system this KIE would manifest in the oxidation of NO into NO₂ by O₃/HO₂/RO₂. The third type is the photochemical 66 isotope fractionation effect (PHIFE, Miller & Yung, 2000), which for NO_x is the isotopic 67 68 fractionation associated with NO₂ photolysis. All three fractionations could impact the δ^{15} N value 69 of NO₂, and consequently atmospheric nitrate, but the relative importance of each may vary.

70 The limited number of studies on the EIE in the NO_x cycle have significant uncertainties. Discrepancies in the EIE for ${}^{15}NO + {}^{14}NO_2 \leftrightarrow {}^{14}NO + {}^{15}NO_2$ have been noted in several studies. 71 72 Theoretical calculations predicted isotope fractionation factors (α) ranging from 1.035 to 1.042 at 73 room temperature (Begun & Fletcher, 1960; Monse et al., 1969; Walters & Michalski, 2015) due 74 to the different approximations used to calculate harmonic frequencies in each study. Likewise, 75 two separate experiments measured different room temperature fractionation factors of 76 1.028±0.002 (Begun & Melton, 1956) and 1.0356±0.0015 (Walters et al., 2016). A concern in both 77 experiments is that they were conducted in small chambers with high NO_x concentrations 78 (hundreds of μ mol mol⁻¹), significantly higher than typical ambient atmospheric NO_x levels (usually less than 0.1 μ mol mol⁻¹). Whether the isotopic fractionation factors determined by these experiments are applicable in the ambient environment is uncertain because of possible wall effects and formation of higher oxides, notably N₂O₄ and N₂O₃ at these high NO_x concentrations.

82 Even less research has examined the KIE and PHIFE occurring during NO_x cycling. The 83 KIE of NO + O_3 has been theoretically calculated (Walters and Michalski, 2016) but has not been 84 experimentally verified. The NO₂ PHIFE has not been experimentally determined or theoretically 85 calculated. As a result, field observation studies often overlook the effects of PHIFE and KIE. 86 Freyer et al. (1993) measured NO_x concentrations and the δ^{15} N values of NO₂ over a 1-year period 87 at Julich, Germany and inferred a combined NO_x isotope fractionation factor (EIE+KIE+PHIFE) 88 of 1.018±0.001. Freyer et al. (1993) suggested that the NO_x photochemical cycle (KIE and PHIFE) 89 tends to diminish the equilibrium isotopic fractionation (EIE) between NO and NO₂. Even if this 90 approach were valid, applying this single fractionation factor elsewhere, where NO_x, O₃ 91 concentrations and actinic fluxes are different, would be tenuous given that these factors may 92 influence the relative importance of EIE, KIE and PHIFE (Hastings et al., 2004; Walters et al., 93 2016). Therefore, to quantify the overall isotopic fractionations between NO and NO_2 at various 94 tropospheric conditions, it is crucial to know 1) isotopic fractionation factors of EIE, KIE and PHIFE individually and 2) the relative importance of each factor under various conditions. 95

In this work, we aim to quantify the nitrogen isotope fractionation factors between NO and NO₂ at photochemical equilibrium. First, we measure the N isotope fractionations between NO and NO₂ in an atmospheric simulation chamber at atmospherically relevant NO_x levels. Then, we provide mathematical solutions to assess the impact of NO_x level and NO₂ photolysis rate (j(NO₂)) to the relative importance of EIE, KIE and PHIFE. Subsequently we use the solutions and chamber measurements to calculate the isotopic fractionation factors of EIE, KIE and PHIFE. Lastly, using 102 the calculated fractionation factors and the equations, we model the NO-NO₂ isotopic 103 fractionations at several sites to illustrate the behavior of δ^{15} N values of NO_x in the ambient 104 environment.

105

106 **2. Methods**

The experiments were conducted using a 10 m³ Atmospheric Simulation Chamber at the 107 108 National Center for Atmospheric Research (see descriptions in Appendix A and Zhang et al. 109 (2018)). A set of mass flow controllers was used to inject NO and O₃ into the chamber. NO was 110 injected at 1 L min⁻¹ from an in-house NO/N₂ cylinder (133.16 µmol mol⁻¹ NO in ultra-pure N₂), and O₃ was generated by flowing 5 L min⁻¹ zero-air through a flow tube equipped with a UV Pen-111 112 Ray lamp (UVP LLC., CA) into the chamber. NO and NO₂ concentrations were monitored in real 113 time by chemiluminescence with a detection limit of 0.5 nmol mol⁻¹ (model CLD 88Y, Eco Physics, 114 MI) as were O₃ concentrations using an UV absorption spectroscopy with a detection limit of 0.5 nmol mol⁻¹ (model 49, Thermo Scientific, CO). In each experiment, the actual amounts of NO and 115 116 O_3 injected were calculated using measured NO_x and O_3 concentrations after steady state was 117 reached (usually within 1 h). The wall loss rate of NO₂ was tested by monitoring O₃ (29 nmol mol⁻ ¹) and NO_x (62 nmol mol⁻¹) over a 4-hour period. After the NO and NO₂ concentrations reached 118 119 steady state, no decrease in NO₂ concentrations was observed showing that chamber wall loss was 120 negligible.

121 Three experiments were conducted to measure the $\delta^{15}N$ value of the tank NO (i.e., the $\delta^{15}N$ 122 value of total NO_x). In each of these experiments, a certain amount of O₃ was first injected into the 123 chamber, then approximately the same amount of NO was injected into the chamber to ensure 100% 124 of the NO_x was in the form of NO₂ with little O₃ (<15 nmol mol⁻¹) remaining in the chamber, such 125 that the O_3 +NO₂ reaction was negligible. The NO₂ in the chamber was then collected and its $\delta^{15}N$ 126 value measured, which equates to the $\delta^{15}N$ value of the tank NO.

127 Two sets of experiments were conducted to separately investigate the EIE, KIE and PHIFE. 128 The first set of experiments was conducted in the dark. In each of these dark experiments, a range 129 of NO and O₃ ([O₃]<[NO]) was injected into the chamber to produce NO-NO₂ mixtures with 130 [NO]/[NO₂] ratios ranging from 0.43 to 1.17. The N isotopes of these mixtures were used to 131 investigate the EIE between NO and NO₂. The second set of experiments was conducted under 132 irradiation of UV lights (300-500 nm, see Appendix A for irradiation spectrum). Under such 133 conditions, NO, NO₂ and O_3 reached photochemical steady state, which combined the isotopic 134 effects of EIE, KIE and PHIFE.

135 In all experiments, the concentrations of NO, NO₂ and O₃ were allowed to reach steady 136 state, and the product NO₂ was collected from the chamber using a honeycomb denuder tube. After 137 the NO, NO₂ and O₃ concentrations reached steady-state, well-mixed chamber air was drawn out 138 through a 40 cm long Norprene Thermoplastic tubing at 10 L min⁻¹ and passed through a 139 honeycomb denuder system (Chemcomb 3500, Thermo Scientific). Based on flow rate, the NO2 140 residence time in the was less than 0.5 second, thus in the light-on experiments where NO and O₃ coexisted, the NO₂ produced inside the transfer tube through NO+O₃ reactions should be <0.03 141 142 nmol mol⁻¹ (using the upper limit of NO and O₃ concentrations in our experiments). The 143 honeycomb denuder system consisted of two honeycomb denuder tubes connected in series. Each 144 honeycomb denuder tube is a glass cylinder of 38 mm long, 47 mm in diameter, and consist of 212 145 hexagonal tubes with inner diameters of 2 mm. Before collecting samples, each denuder tube was 146 coated with a solution of 10% KOH and 25% guaiacol in methanol and then dried by flowing N₂ 147 gas through the denuder tube for 15 seconds (Williams and Grosjean, 1990, Walters et al., 2016).

148 The NO₂ reacted with guaiacol coating and was converted into NO_2^- that was retained on the 149 denuder tube wall (Williams and Grosjean, 1990). NO was inert to the denuder tube coating: a 150 control experiment sampled pure NO using the denuder tubes, which did not show any measurable 151 NO₂⁻. The NO₂ collection efficiency of a single honeycomb denuder tube was tested in another control experiment: air containing 66 nmol mol⁻¹ of NO₂ was drawn out of the chamber through a 152 153 denuder tube, and the NO₂ concentration at the exit of the tube holder was measured and found to 154 be below the detection limit (<1 nmol mol⁻¹), suggesting the collection efficiency was nearly 100% 155 when [NO₂] <66 nmol mol⁻¹. Furthermore, when the denuder system consisted of two denuder 156 tubes in series and NO_2 in the second denuder was below the detection limit indicating trivial NO_2 157 breakthrough. Each NO₂ collection lasted for 0.5-3 hours in order to collect enough NO₂⁻ for 158 isotopic analysis (at least 300 nmol). After collection, the NO₂⁻ was leached from each denuder 159 tube by rinsing thoroughly with 10 ml deionized water into a clean polypropylene container and 160 stored frozen until isotopic analysis. Isotopic analysis was conducted at Purdue Stable Isotope 161 Laboratory. For each sample, approximately 50 nmol of the NO_2^- extract was mixed with 2 M 162 sodium azide solution in acetic acid buffer in an air-tight glass vial, then shaken overnight to 163 completely reduce all the NO₂⁻ to N₂O_(g) (Casciotti & McIlvin, 2007; McIlvin & Altabet, 2005). 164 The product N₂O was directed into a Thermo GasBench equipped with cryo-trap, then the δ^{15} N of 165 the N₂O was measured using a Delta-V Isotope Ratios Mass Spectrometer. Six coated denuders 166 tubes that did not get exposed to NO₂ were also analyzed using the same chemical procedure, 167 which did not show any measurable signal on the IRMS, suggesting the blank from both sampling 168 process and the chemical conversion process was negligible. The overall analytical uncertainty for δ^{15} N analysis was 0.5 ‰ (1 σ) based on replicate analysis of in house NO₂⁻ standards. 169

171 **3. Results and Discussions**

172 **3.1. Equilibrium Isotopic Fractionation between NO and NO₂**

173 The equilibrium isotope fractionation factor, α (NO₂-NO), is the ¹⁵N enrichment in NO₂ 174 relative to NO, and is expressed as the ratio of rate constants k_2/k_1 of two reactions:

175
$${}^{15}\text{NO}_2 + {}^{14}\text{NO} \rightarrow {}^{15}\text{NO} + {}^{14}\text{NO}_2$$
 R1, rate constant = k_1

176
$${}^{15}\text{NO}+{}^{14}\text{NO}_2 \rightarrow {}^{15}\text{NO}_2+{}^{14}\text{NO}$$
 R2, rate constant = $k_2 = k_1 \alpha(\text{NO}_2-\text{NO})$

where k_1 is the rate constant of the isotopic exchange, which was previously determined to be 177 8.14×10⁻¹⁴ cm³ s⁻¹ (Sharma et al., 1970). The reaction time required for NO-NO₂ to reach isotopic 178 179 equilibrium was estimated using the exchange rate constants in a simple kinetics box model 180 (BOXMOX, Knote et al., 2015). The model predicts that at typical NO_x concentrations used during 181 the chamber experiments (7.7-62.4 nmol mol⁻¹), isotopic equilibrium would be reached within 15 182 minutes (see Appendix B). Since the sample collection usually started 1 hour after NO_x was well 183 mixed in the chamber, there was sufficient time to reach full isotope equilibrium. The isotope 184 equilibrium fractionation factor (α (NO₂-NO)) is then calculated to be:

185
$$\alpha(NO_2 - NO) = \frac{[{}^{15}NO_2][{}^{14}NO]}{[{}^{14}NO_2][{}^{15}NO]} = \frac{R(NO_2)}{R(NO)}$$
Eq. (1)

186 where R(NO, NO₂) are the ¹⁵N/¹⁴N ratios of NO and NO₂. By definition, the 187 $\delta^{15}N(NO)=(R(NO)/R(reference)-1)\times1000$ ‰ and $\delta^{15}N(NO_2)=(R(NO_2)/R(reference)-1)\times1000$ ‰, 188 but hereafter, the $\delta^{15}N$ values of NO, NO₂ and NO_x will be referred as $\delta(NO)$, $\delta(NO_2)$ and $\delta(NO_x)$, 189 respectively. Eq. (1) leads to:

190
$$\delta(NO_2) - \delta(NO) = (\alpha(NO_2 - NO) - 1) (1 + \delta(NO))$$
 Eq. (2)

191 Using Eq. (2) and applying NO_x isotopic mass balance $(\delta(NO_x)=f(NO_2)\delta(NO_2)+(1-f(NO_2))\delta(NO))$,

192
$$f(NO_2) = [NO_2]/([NO] + [NO_2]))$$
 yields:

193
$$\frac{\delta(NO_2) - \delta(NO_x)}{1 + \delta(NO_2)} = \frac{\alpha(NO_2 - NO) - 1}{\alpha(NO_2 - NO)} \left(1 - f(NO_2) \right)$$
Eq. (3)

Here, $\delta(NO_x)$ equals to the $\delta^{15}N$ value of the cylinder NO and $f(NO_2)$ is the molar fraction of NO₂ with respect to total NO_x. Three experiments (Table 1) that measured $\delta(NO_x)$ showed consistent $\delta(NO_x)$ values of (-58.7±0.8) ‰ (n = 3), indicating $\delta(NO_x)$ remained unchanged throughout the experiments (as expected for isotope mass balance). Thus, the $\delta(NO_x)$ can be treated as a constant in Eq. (3), and the linear regression of $(\delta(NO_2)-\delta(NO_x))/(1+\delta(NO_2))$ versus 1- $f(NO_2)$ should have an intercept of 0 and a slope of $(\alpha(NO_2-NO)-1)/\alpha(NO_2-NO)$.

200 The plot of $(\delta(NO_2)-\delta(NO_x))/(1+\delta(NO_2))$ as a function of $1-f(NO_2)$ values from five 201 experiments yields an α (NO₂-NO) value of 1.0289±0.0019 at room temperature (Fig. 1B and Table 202 1). This fractionation factor is comparable to previously measured values but with some 203 differences. Our result agrees well with the α (NO₂-NO) value of 1.028±0.002 obtained by Begun 204 and Melton (1956) at room temperature. However, Walters et al., (2016) determined the α (NO₂-205 NO) values of NO-NO₂ exchange in a 1-liter reaction vessel, which showed a slightly higher 206 α (NO₂-NO) value of 1.035. This discrepancy might originate from rapid heterogeneous reactions 207 on the wall of the reaction vessel at high NO_x concentrations and the small chamber size used by 208 Walters et al. (2016). They used a reaction vessel made of Pyrex, which is known to absorb water 209 (Do Remus et al., 1983; Takei et al., 1997) that can react with NO₂ forming HONO, HNO₃ and 210 other N compounds. Additionally, previous studies have suggested that Pyrex walls enhance the 211 formation rate of N₂O₄ by over an order of magnitude (Barney & Finlayson-Pitts, 2000; Saliba et al., 2001), which at isotopic equilibrium is enriched in ¹⁵N compared to NO and NO₂ (Walters & 212 213 Michalski, 2015). Therefore, their measured α (NO₂-NO) might be slightly higher than the actual 214 α (NO₂-NO) value. In this work, the 10 m³ chamber has a much smaller surface to volume ratio 215 relative to Walters et al. (2016) which minimizes wall effects, and the walls were made of Teflon 216 that minimize NO₂ surface reactivity, which was evidenced by the NO₂ wall loss control experiment. Furthermore, the low NO_x mixing ratios in our experiments minimized N₂O₄ and N₂O₃ formation. At NO and NO₂ concentrations of 50 nmol mol⁻¹ the steady state concentrations of N₂O₄ and N₂O₃ were calculated to be 0.014 and 0.001 pmol mol⁻¹, respectively (Atkinson et al., 2004). Therefore, we suggest our measured α (NO₂-NO) value (1.0289±0.0019) may better reflect the room temperature (298 K) NO-NO₂ EIE in the ambient environment.

222 Unfortunately, the chamber temperature could not be controlled so we were not able to 223 investigate the temperature dependence of the EIE. Hence, we speculate that the α (NO₂-NO) 224 follows a similar temperature dependence pattern calculated in Walters et al. (2016). Walters et al. 225 (2016) suggested that, the α (NO₂-NO) value would be 0.0047 higher at 273 K and 0.002 lower at 226 310 K, relative to room temperature (298 K). Using this pattern and our experimentally determined data, we suggest the α(NO₂-NO) values at 273 K, 298 K and 310 K are 1.0336±0.0019, 227 228 1.0289±0.0019 and 1.0269±0.0019, respectively. This 0.0067 variation at least partially contribute to the daily and seasonal variations of δ^{15} N values of NO₂ and nitrate in some areas (e.g., polar 229 230 regions with strong seasonal temperature variation). Thus, future investigations should be 231 conducted to verify the EIE temperature dependence.

232

3.2. Kinetic isotopic fractionation of Leighton Cycle

The photochemical reactions of NO_x will compete with the isotope exchange fractionations between NO and NO₂. The NO-NO₂ photochemical cycle in the chamber was controlled by the Leighton cycle: NO₂ photolysis and the NO + O₃ reaction. This is because there were no VOCs in the chamber so no RO₂ was produced, which excludes the NO + RO₂ reaction. Likewise, the low water vapor content (RH<10%) and the minor flux of photons < 310 nm results in minimal OH production and hence little HO₂ formation and subsequently trivial amount of NO₂ would be formed by NO + HO₂. Applying these limiting assumptions, the EIE between NO and NO₂ (R1-R2) were only competing with the KIE (R3-R4) and the PHIFE in R5-R6:

242	$^{14}NO_2 \rightarrow ^{14}NO+O$	R3, rate constant= $j(NO_2)$
243	$^{15}NO_2 \rightarrow ^{15}NO+O$	R4, rate constant= $j(NO_2) \alpha_1$
244	$^{14}NO+O_3 \rightarrow ^{14}NO_2+O_2$	R5, rate constant= k_5
245	$^{15}NO+O_3 \rightarrow ^{15}NO_2+O_2$	R6, rate constant= $k_5 \alpha_2$

In which $j(NO_2)$ is the NO₂ photolysis rate (1.4×10⁻³ s⁻¹ in these experiments), k_3 is the rate constant for the NO+O₃ reaction (1.73×10⁻¹⁴ cm³ s⁻¹, Atkinson et al., 2004), and $\alpha_{1,2}$ are isotopic fractionation factors for the two reactions. Previous studies (Freyer et al., 1993; Walters et al., 2016) have attempted to assess the competition between EIE (R1-R2), KIE and PHIFE (R3-R6), but none of them quantified the relative importance of the two processes, nor were α_1 or α_2 values experimentally determined. Here we provide the mathematical solution of EIE, KIE and PHIFE to illustrate how R1-R6 affect the isotopic fractionations between NO and NO₂.

253 First, the NO₂ lifetime with respect to isotopic exchange with NO ($\tau_{exchange}$) and photolysis 254 (τ_{photo}) was determined:

255
$$\tau_{\text{exchange}} = \frac{1}{k_1 [\text{NO}]}$$
 Eq. (4)

256
$$\tau_{\text{photo}} = \frac{1}{j(NO_2)}$$
 Eq. (5)

257 We then define an A factor:

258
$$A = \begin{cases} \frac{\tau_{\text{exchange}}}{\tau_{\text{photo}}} & \text{when } j(\text{NO}_2) \neq 0\\ 0 & \text{when } j(\text{NO}_2) = 0 \end{cases}$$
 Eq. (6)

Using R1-R6 and Eq. (1)-(6), we solved steady-state $\delta(NO_2)$ and $\delta(NO)$ values (see calculations

260 in Appendix C). Our calculations show that the $\delta(NO_2)-\delta(NO)$ and $\delta(NO_2)-\delta(NO_x)$ values at steady

261 state can be expressed as functions of α_1 , α_2 , α (NO₂-NO) and A:

262
$$\delta(\mathrm{NO}_2) - \delta(\mathrm{NO}) = \frac{(\alpha_2 - \alpha_1) \mathrm{A} + (\alpha(\mathrm{NO}_2 - \mathrm{NO}) - 1)}{\alpha_2 \mathrm{A} + \alpha(\mathrm{NO}_2 - \mathrm{NO})} (1 + \delta(\mathrm{NO}_2))$$

263
$$\approx \frac{(\alpha_2 - \alpha_1) \operatorname{A} + (\alpha(\operatorname{NO}_2 - \operatorname{NO}) - 1)}{\operatorname{A} + 1} (1 + \delta(\operatorname{NO}_2))$$
 Eq. (7)

264
$$\delta(NO_2) - \delta(NO_x) = \frac{(\alpha_2 - \alpha_1) A + (\alpha(NO_2 - NO) - 1)}{\alpha_2 A + \alpha(NO_2 - NO)} (1 + \delta(NO_2))(1 - f(NO_2))$$

265
$$\approx \frac{(\alpha_2 - \alpha_1) A + (\alpha(NO_2 - NO) - 1)}{A + 1} (1 + \delta(NO_2)) (1 - f(NO_2))$$
 Eq. (8)

266 Equation (7) shows the isotopic fractionation between NO and NO₂ (δ (NO₂)- δ (NO)) is mainly determined by A, the EIE factor (α (NO₂-NO)-1) and the (α_2 - α_1) factor assuming (1+ δ (NO₂)) is 267 268 close to 1. This $(\alpha_2 - \alpha_1)$ represents a combination of KIE and PHIFE, suggesting they act together 269 as one factor; therefore, we name the $(\alpha_2 - \alpha_1)$ factor Leighton Cycle Isotopic Effect, i.e., LCIE. 270 Using measured $\delta(NO_2)$, $\delta(NO_x)$ values, A values (Table 1), and the previously determined $\alpha(NO_2)$ -NO) value, We plot $\frac{\delta(NO_2) - \delta(NO_x)}{(1 + \delta(NO_2))(1 - f(NO_2))}$ (equals to $\frac{\delta(NO_2) - \delta(NO)}{(1 + \delta(NO_2))}$) against A value and use Equations 271 272 (7) and (8) to estimate the $(\alpha_2 - \alpha_1)$ value (Fig. 1C). The plot shows that the best fit for the LCIE factor is (-10±5) ‰ (Rooted Mean Square Error, RMSE, was lowest when α_2 - α_1 =-10‰). The 273 274 uncertainties in the LCIE factor are relatively higher than that of the EIE factor, mainly because 275 of the accumulated analytical uncertainties at low NO_x and O₃ concentrations, and low A values (0.10-0.28) due to the relatively low $j(NO_2)$ value (1.4×10⁻³ s⁻¹) under the chamber irradiation 276 277 conditions.

This LCIE factor determined in our experiments is in good agreement with theoretical calculations. Walters and Michalski (2016) previously used an *ab initio* approach to determine an

280 α_2 value of 0.9933 at room temperature, 0.9943 at 237 K and 0.9929 at 310 K. The total variation 281 of a₂ values from 273 K to 310 K is only 1.4 ‰, significantly smaller than our experimental 282 uncertainty (± 5 %). The α_1 value was calculated using a ZPE shift model (Miller & Yung, 2000) 283 to calculate the isotopic fractionation of NO₂ by photolysis. Briefly, this model assumes both 284 isotopologues have the same quantum yield function and the PHIFE was only caused by the differences in the ¹⁵NO₂ and ¹⁴NO₂ absorption cross-section as a function of wavelength, thus α_1 285 286 values do not vary by temperature. The ¹⁵NO₂ absorption cross-section was calculated by shifting 287 the ¹⁴NO₂ absorption cross-section by the ¹⁵NO₂ zero-point energy (Michalski et al., 2004). When 288 the ZPE shift model was used with the irradiation spectrum of the chamber lights, the resulting α_1 289 value was 1.0023. Therefore, the theoretically predicted α_2 - α_1 value should be -0.0090, i.e., (-290 9.0±0.7) ‰ when temperature ranges from 273 K to 310 K. This result shows excellent agreement 291 with our experimentally determined room temperature α_2 - α_1 value of (-10±5) ‰.

292 This model was then used to evaluate the variations of α_1 value to different lighting 293 conditions. The TUV model (TUV5.3.2, Madronich & Flocke, 1999) was used to calculate the 294 solar wavelength spectrum at three different conditions: early morning/late afternoon (solar zenith 295 angle=85 degree), mid-morning/afternoon (solar zenith angle=45 degree), noon (solar zenith 296 angle=0 degree). These spectrums were used in the ZPE shift model to calculate the α_1 values, 297 which are 1.0025, 1.0028, and 1.0029 at solar zenith angles of 85, 45 and 0 degree, respectively. 298 These values, along with the predicted α_1 value in the chamber, showed a total span of 0.6% 299 (1.0026±0.0003), which is again significantly smaller than our measured uncertainty. Therefore, 300 we suggest that our experimentally determined LCIE factor $((-10\pm5) \text{ }\%)$ can be used in most 301 tropospheric solar irradiation spectrums.

302 The equations can also be applied in tropospheric environments to calculate the combined 303 isotopic fractionations of EIE and LCIE for NO and NO₂. First, the NO₂ sink reactions (mainly 304 NO₂+OH in the daytime) are at least 2-3 orders of magnitude slower than the Leighton cycle and 305 the NO-NO₂ isotope exchange reactions (Walters et al., 2016), therefore their effects on the $\delta(NO_2)$ 306 should be minor. Second, although the conversion of NO into NO₂ in the ambient environment is 307 also controlled by NO + RO₂ and HO₂ in addition to NO+O₃ (e.g., King et al., 2001), Eq. (7) still 308 showed good agreement with field observations in previous studies. Freyer et al. (1993) 309 determined the annual average daytime $\delta(NO_2)$ - $\delta(NO)$ at Julich, Germany along with average 310 daytime NO concentration (9 nmol mol⁻¹, similar to our experimental conditions) to be 311 $(+18.03\pm0.98)$ %. Using Eq. (7), assuming the daytime average $i(NO_2)$ value throughout the year was $(5.0\pm1.0)\times10^{-3}$, and a calculated A value from measured NO_x concentration ranged from 0.22-312 313 0.33, the average NO-NO₂ fractionation factor was calculated to be $(+19.8\pm1.4)$ ‰ (Fig. 1C), in 314 excellent agreement with the measurements in the present study. This agreement suggests the 315 NO+RO₂/HO₂ reactions might have similar fractionation factors as NO+O₃. Therefore, we suggest 316 Eq. (7) and (8) can be used to estimate the isotopic fractionations between NO and NO₂ in the 317 troposphere.

318

319 **3.3** Calculating nitrogen isotopic fractionations of NO-NO₂

First, Eq. (7) was used to calculate the $\Delta(NO_2-NO) = \delta(NO_2)-\delta(NO)$ at a wide range of NO_x concentrations, $f(NO_2)$ and $j(NO_2)$ values (Fig. 2A-D), assuming $(1+\delta(NO_2)) \approx 1. j(NO_2)$ values of 0 s⁻¹ (Fig. 2A), 1.4×10^{-3} s⁻¹ (Fig. 2B), 5×10^{-3} s⁻¹ (Fig. 2C) and 1×10^{-2} s⁻¹ (Fig. 2D) were selected to represent nighttime, dawn (as well as the laboratory conditions of our experiments), daytime average and noon, respectively. Each panel represented a fixed $j(NO_2)$ value, and the 325 Δ (NO₂-NO) values were calculated as a function of the A value, which was derived from NO_x 326 concentration and $f(NO_2)$. The A values have a large span, from 0 to 500, depending on the $i(NO_2)$ 327 value and the NO concentration. When A=0 ($j(NO_2)=0$) and $f(NO_2)<1$ (meaning NO-NO₂ coexist 328 and [O₃]=0), Eq. (7) and (8) become Eq. (2) and (3), showing the EIE was the sole factor, the 329 Δ (NO₂-NO) values were solely controlled by EIE which has a constant value of +28.9 ‰ at 298K 330 (Fig. 2A). When $i(NO_2) > 0$, the calculated $\Delta(NO_2-NO)$ values showed a wide range from -10.0 ‰ 331 (controlled by LCIE factor: $\alpha_2 - \alpha_1 = -10$ ‰) to +28.9 ‰ (controlled by EIE factor: $\alpha(NO_2 - NO) - 1 = -10$ 332 +28.9 ‰). Fig. 2B-D display the transition from a LCIE-dominated regime to an EIE-dominated 333 regime. The LCIE-dominated regime is characterized by low [NO_x] (<50 pmol mol⁻¹), representing 334 remote ocean areas and polar regions (Beine et al., 2002; Custard et al., 2015). At this range the A 335 value can be greater than 200, thus Eq. (7) can be simplified as: $\Delta(NO_2-NO) = \alpha_2-\alpha_1$, suggesting 336 the LCIE almost exclusively controls the NO-NO₂ isotopic fractionation. The Δ (NO₂-NO) values 337 of these regions are predicted to be <0 % during most time of the day and < -5 % at noon. On the 338 other hand, the EIE-dominated regime was characterized by high $[NO_x]$ (>20 nmol mol⁻¹) and low 339 $f(NO_2)$ (< 0.6), representative of regions with intensive NO emissions, e.g., near roadside or stack 340 plumes (Clapp & Jenkin, 2001; Kimbrough et al., 2017). In this case, the $\tau_{exchange}$ are relatively 341 short (10-50 s) compared to the τ_{photo} (approximately 100 s at noon and 1000 s at dawn), therefore 342 the A values are small (0.01-0.5). The EIE factor in this regime thus is much more important than 343 the LCIE factor, resulting in high Δ (NO₂-NO) values (>20 ‰). Between the two regimes, both 344 EIE and LCIE are competitive and therefore it is necessary to use Eq. (7) to quantify the Δ (NO₂-345 NO) values.

Fig. 2 also implies that changes in the $j(NO_2)$ value can cause the diurnal variations in $\Delta(NO_2-NO)$ values. Changing $j(NO_2)$ would affect the value of A and consequently the NO-NO₂ isotopic fractionations in two ways: 1) changes in $j(NO_2)$ value would change the photolysis intensity, therefore the τ_{photo} value; 2) in addition, changes in $j(NO_2)$ value would also alter the steady state NO concentration, therefore changing the $\tau_{exchange}$ (Fig. 2C). The combined effect of these two factors on the A value varies along with the atmospheric conditions, and thus needs to be carefully calculated using NO_x concentration data and atmospheric chemistry models.

We then calculated the differences of δ^{15} N values between NO₂ and total NO_x, e.g. Δ (NO₂-353 354 NO_x = $\delta(NO_2)$ - $\delta(NO_x)$ in Fig. 2E-H. Since $\Delta(NO_2-NO_x)$ are connected through the observed $\delta^{15}N$ 355 of NO₂ (or nitrate) to the δ^{15} N of NO_x sources, this term might be useful in field studies (e.g., 356 Chang et al., 2018; Zong et al., 2017). The calculated Δ (NO₂-NO_x) values (Fig. 2E-H) also showed 357 a LCIE-dominated regime at low $[NO_x]$ and an EIE-dominated regime at high $[NO_x]$. The $\Delta(NO_2$ -358 NO_x) values were dampened by the 1- $f(NO_2)$ factor comparing to $\Delta(NO_2-NO)$, as shown in Eq. 359 (3) and (8): $\Delta(NO_2-NO_x) = \Delta(NO_2-NO) (1-f(NO_2))$. At high $f(NO_2)$ values (>0.8), the differences 360 between $\delta(NO_2)$ and $\delta(NO_x)$ were less than 5 %, thus the measured $\delta(NO_2)$ values were similar to 361 $\delta(NO_x)$, although the isotopic fractionation between NO and NO₂ could be noteworthy. Some 362 ambient environments with significant NO emissions or high NO₂ photolysis rates usually have 363 $f(NO_2)$ values between 0.4-0.8 (Mazzeo et al., 2005; Vicars et al., 2013). In this scenario, the 364 Δ (NO₂-NO_x) values in Fig. 2F-H showed wide ranges of -4.8 ‰ to +15.6 ‰, -6.0 ‰ to +15.0 ‰, 365 and -6.3 % to +14.2 % at $i(NO_2)=1.4\times10^{-3} \text{ s}^{-1}$, $5\times10^{-3} \text{ s}^{-1}$, $1\times10^{-2} \text{ s}^{-1}$, respectively. These significant 366 differences again highlighted the importance of both LCIE and EIE (Eq. (7) and (8)) in calculating 367 the $\Delta(NO_2-NO_x)$. In the following discussion, we assume 1) the α_1 value remain constant (see 368 discussion above), 2) the NO+RO₂/HO₂ reactions have the same fractionation factors (α_2) as 369 NO+O₃, and 3) both EIE and LCIE do not display significant temperature dependence, then use

Equations (7) and (8) and this laboratory determined LCIE factor (-10 ‰) to calculate the nitrogen
isotopic fractionation between NO and NO₂ at various tropospheric atmospheric conditions.

372

373 4. Implications

374 The daily variations of $\Delta(NO_2-NO_x)$ values at two roadside NO_x monitoring sites were predicted to demonstrate the effects of NO_x concentrations to the NO-NO₂ isotopic fractionations. 375 376 Hourly NO and NO₂ concentrations were acquired from a roadside site at Anaheim, CA 377 (https://www.arb.ca.gov) and an urban site at Evansville, IN (http://idem.tx.sutron.com) on July 378 25, 2018. The hourly $i(NO_2)$ values output from the TUV model (Madronich & Flocke, 1999) at 379 these locations was used to calculate the daily variations of $\Delta(NO_2-NO_x)$ values (Fig. 3A, B) by 380 applying Eq. (8) and assuming $(1+\delta(NO_2)) \approx 1$. Hourly NO_x concentrations were 12-51 nmol mol⁻ 381 ¹ at Anaheim and 9-38 nmol mol⁻¹ at Evansville and the $f(NO_2)$ values at both sites did not show significant daily variations (0.45±0.07 at Anaheim and 0.65±0.08 at Evansville), likely because 382 383 the NO_x concentrations were controlled by the high NO emissions from the road (Gao, 2007). The 384 calculated $\Delta(NO_2-NO_x)$ values using Eq. (8) showed significant diurnal variations. During the 385 nighttime, the isotopic fractionations were solely controlled by the EIE, the predicted Δ (NO₂-NO_x) 386 values were (+14.5±2.0) ‰ and (+8.7±2.1) ‰ at Anaheim and Evansville, respectively. During 387 the daytime, the existence of LCIE lowered the predicted $\Delta(NO_2-NO_x)$ values to (+9.8±1.7) ‰ at 388 Anaheim and $(+3.1\pm1.5)$ ‰ at Evansville while the $f(NO_2)$ values at both sites remained similar. 389 The lowest $\Delta(NO_2-NO_x)$ values for both sites (+7.0 ‰ and +1.7 ‰) occurred around noon when 390 the NO_x photolysis was the most intense. In contrast, if one neglects the LCIE factor in the daytime, 391 the $\Delta(NO_2-NO_x)$ values would be (+12.9±1.5) ‰ and (+10.0±1.6) ‰ respectively, an 392 overestimation of 3.1 ‰ and 6.9 ‰. These discrepancies suggested that the LCIE played an important role in the NO-NO₂ isotopic fractionations and neglecting it could bias the NO_x source apportionment using δ^{15} N of NO₂ or nitrate.

395 The role of LCIE was more important in less polluted sites. The $\Delta(NO_2-NO_x)$ values 396 calculated for a suburban site near San Diego, CA, USA, again using the hourly NO_x 397 concentrations (https://www.arb.ca.gov, Fig. 3C) and j(NO₂) values calculated from the TUV model. NO_x concentrations at this site varied from 1 to 9 nmol mol⁻¹ and assuming $(1+\delta(NO_2)) \approx 1$. 398 399 During the nighttime, NO_x was in the form of NO₂ ($f(NO_2) = 1$) because O₃ concentrations were 400 higher than NO_x, thus the $\delta(NO_2)$ values should be identical to $\delta(NO_x)$ ($\Delta(NO_2-NO_x) = 0$). In the 401 daytime a certain amount of NO was produced by direct NO emission and NO₂ photolysis but the 402 $f(NO_2)$ was still high (0.73±0.08). Our calculation suggested the daytime $\Delta(NO_2-NO_x)$ values 403 should be only (+1.3±3.2) ‰ with a lowest value of -1.3 ‰. These $\Delta(NO_2-NO_x)$ values were 404 similar to the observed and modeled summer daytime $\delta(NO_2)$ values in West Lafayette, IN 405 (Walters et al., 2018), which suggest the average daytime Δ (NO₂-NO_x) values at NO_x = (3.9±1.2) 406 nmol mol⁻¹ should range from +0.1 % to +2.4 %. In this regime, we suggest the $\Delta(NO_2-NO_x)$ 407 values were generally small due to the significant contribution of LCIE and high $f(NO_2)$.

408 The LCIE should be the dominant factor controlling the NO-NO₂ isotopic fractionation at 409 remote regions, resulting in a completely different diurnal pattern of $\Delta(NO_2-NO_x)$ compared with 410 the urban-suburban area. Direct hourly measurements of NO_x at remote sites are rare, thus we used 411 total NO_x concentration of 50 pmol mol⁻¹, daily O₃ concentration of 20 nmol mol⁻¹ at Summit, 412 Greenland (Dibb et al., 2002; Hastings et al., 2004; Honrath et al., 1999; Yang et al., 2002), and 413 assumed $(1+\delta(NO_2)) \approx 1$ and the conversion of NO to NO₂ was completely controlled by O₃ to 414 calculate the NO/NO₂ ratios. Here the isotopes of NO_x were almost exclusively controlled by the LCIE due to the high A values (>110). The Δ (NO₂-NO_x) values displayed a clear diurnal pattern 415

416 (Fig. 3D) with highest value of -0.3 ‰ in the "nighttime" (solar zenith angle >85 degree) and 417 lowest value of -5.0 ‰ in the mid-day. This suggest that the isotopic fractionations between NO 418 and NO₂ were almost completely controlled by LCIE at remote regions, when NO_x concentrations 419 were <0.1 nmol mol⁻¹. However, since the isotopic fractionation factors of nitrate-formation 420 reactions (NO₂+OH, NO₃+HC, N₂O₅+H₂O) are still unknown, more studies are needed to fully 421 explain the daily and seasonal variations of δ (NO₃⁻) at remote regions.

422 Nevertheless, our results have a few limitations. First, currently there are very few field 423 observations that can be used to evaluate our model, therefore, future field observations that measure the δ^{15} N values of ambient NO and NO₂ should be carried out to test our model. Second, 424 425 more work, including theoretical and experimental studies, is needed to investigate the isotope 426 fractionation factors occurring during the conversion from NO_x to NO_y and nitrate: in the NO_y 427 cycle, EIE (isotopic exchange between NO₂, NO₃ and N₂O₅), KIE (formation of NO₃, N₂O₅ and 428 nitrate) and PHIFE (photolysis of NO₃, N₂O₅, HONO and sometimes nitrate) may also exist and 429 be relevant for the δ^{15} N of HNO₃ and HONO. In particular, the N isotope fractionation occurring 430 during the NO₂ + OH \rightarrow HNO₃ reaction needs investigation. Such studies could help us modeling 431 the isotopic fractionation between NO_x emission and nitrate, and eventually enable us to analyze 432 the δ^{15} N value of NO_x emission by measuring the δ^{15} N values of nitrate aerosols and nitrate in wet 433 depositions. Third, our discussion only focuses on the reactive nitrogen chemistry in the 434 troposphere, however, the nitrogen chemistry in the stratosphere is drastically different from the 435 tropospheric chemistry, thus future studies are also needed to investigate the isotopic fractionations 436 in the stratospheric nitrogen chemistry. Last, the temperature dependence of both EIE and LCIE 437 needs to be carefully investigated, because of the wide range of temperature in both troposphere 438 and stratosphere. Changes in temperature could alter the isotopic fractionation factors of both EIE and LCIE, as well as contribute to the seasonality of isotopic fractionations between NO_x and NO_y
 molecules.

441

442 **5.** Conclusions

443 The effect of NO_x photochemistry on the nitrogen isotopic fractionations between NO and 444 NO₂ was investigated. We first measured the isotopic fractionations between NO and NO₂ and 445 provided mathematical solutions to assess the impact of NO_x level and NO_2 photolysis rate ($i(NO_2)$) 446 to the relative importance of EIE and LCIE. The EIE and LCIE isotope fractionation factors, at 447 room temperature, were determined to be 1.0289 ± 0.0019 and 0.990 ± 0.005 , respectively. These 448 calculations and measurements can be used to determine the steady state $\Delta(NO_2-NO)$ and $\Delta(NO_2-NO)$ 449 NO_x) values at room temperature. Subsequently we applied our equations to polluted, clean and 450 remote sites to model the daily variations of $\Delta(NO_2-NO_x)$ values. We found that the $\Delta(NO_2-NO_x)$ 451 values could vary from over +20 ‰ to less than -5 ‰ depending on the environment: in general, 452 the role of LCIE becoming more important at low NO_x concentrations, which tend to decrease the 453 Δ (NO₂-NO_x) values. Our work provided a mathematical approach to quantify the nitrogen isotopic 454 fractionations between NO and NO₂ that can be applied to many tropospheric environments, which 455 could help interpret the measured δ^{15} N values of NO₂ and nitrate in field observation studies.

456

457 Acknowledgement

We thank NCAR's Advanced Study Program granted to Jianghanyang Li. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research, under the sponsorship of the National Science Foundation. We also thank funding

- 461 support from Purdue Climate Change Research Center and A. H. Ismail Interdisciplinary Program
- 462 Doctoral Research Travel Award granted by Purdue University.

463 Data Availability

- 464 Data acquired from this study was deposited at Open Sciences Framework (Li, 2019,
- 465 DOI 10.17605/OSF.IO/JW8HU).

466 Author contribution

- 467 J. Li and G. Michalski designed the experiments, X. Zhang and J. Li conducted the
- 468 experiments. X. Zhang, G. Michalski, J. Orlando and G. Tyndall helped J. Li in interpreting the
- 469 results. The manuscript was written by J. Li and all the authors have contributed during the revision
- 470 of this manuscript.

471 **Competing interest**

- 472 The authors declare no competing interest.
- 473

474 **References:**

- 475
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M.
 E., Rossi, M. J., and Troe, J. (2004). Evaluated kinetic and photochemical data for atmospheric
 chemistry: Volume I-gas phase reactions of O_x, HO_x, NO_x and SO_x. Atmospheric chemistry and
 physics, 4(6), 1461-1738. https://doi.org/10.5194/acp-4-1461-2004, 2004.
- 480
- Barney, W. S., & Finlayson-Pitts, B. J. (2000). Enhancement of N₂O₄ on porous glass at room
 temperature: A key intermediate in the heterogeneous hydrolysis of NO₂? The Journal of Physical
 Chemistry A, 104(2), 171–175. https://doi.org/10.1021/jp993169b
- 484
- Begun, G. M., & Fletcher, W. H. (1960). Partition function ratios for molecules containing
 nitrogen isotopes. The Journal of Chemical Physics, 33(4), 1083–1085.
 https://doi.org/10.1063/1.1731338
- 488
- Begun, G. M., & Melton, C. E. (1956). Nitrogen isotopic fractionation between NO and NO₂ and
- 490 mass discrimination in mass analysis of NO₂. The Journal of Chemical Physics, 25(6), 1292–1293.
- 491 https://doi.org/10.1063/1.1743215
- 492

- Beine, H. J., Honrath, R. E., Dominé, F., Simpson, W. R., & Fuentes, J. D. (2002). NO_x during
 background and ozone depletion periods at Alert: Fluxes above the snow surface. Journal of
 Geophysical Research: Atmospheres, 107(D21), ACH-7. https://doi.org/10.1029/2002JD002082
- 496
 497 Bigeleisen, J., & Mayer, M. G. (1947). Calculation of equilibrium constants for isotopic exchange
 498 reactions. The Journal of Chemical Physics, 15(5), 261-267. https://doi.org/10.1063/1.1746492
- 499
- Bigeleisen, J., & Wolfsberg, M. (1957). Theoretical and experimental aspects of isotope effects in
 chemical kinetics. Advances in Chemical Physics, 15–76.
 https://doi.org/10.1002/9780470143476.ch2
- 503
- Casciotti, K. L., & McIlvin, M. R. (2007). Isotopic analyses of nitrate and nitrite from reference
 mixtures and application to Eastern Tropical North Pacific waters. Marine Chemistry, 107(2), 184–
 201. https://doi.org/10.1016/j.marchem.2007.06.021
- 507
- 508 Chang, Y., Zhang, Y., Tian, C., Zhang, S., Ma, X., Cao, F., et al. (2018). Nitrogen isotope 509 fractionation during gas-to-particle conversion of NO_x to NO_3^- in the atmosphere–implications for 510 isotope-based NO_x source apportionment. Atmospheric Chemistry and Physics, 18(16), 11647– 511 11661. https://doi.org/10.5194/acp-18-11647-2018, 2018.
- 512
- Clapp, L. J., & Jenkin, M. E. (2001). Analysis of the relationship between ambient levels of O₃,
 NO₂ and NO as a function of NO_x in the UK. Atmospheric Environment, 35(36), 6391–6405.
 https://doi.org/10.1016/S1352-2310(01)00378-8
- 516
- Custard, K. D., Thompson, C. R., Pratt, K. A., Shepson, P. B., Liao, J., Huey, L. G., Orlando, J. J.,
 Weinheimer, A. J., Apel, E., Hall, S. R., Flocke, F., Mauldin, L., Hornbrook, R. S., Pöhler, D.,
 General, S., Zielcke, J., Simpson, W. R., Platt, U., Fried, A., Weibring, P., Sive, B. C., Ullmann,
 K., Cantrell, C., Knapp, D. J., and Montzka, D. D.: The NOx dependence of bromine chemistry in
 the Arctic atmospheric boundary layer, Atmos. Chem. Phys., 15, 10799–10809,
 https://doi.org/10.5194/acp-15-10799-2015, 2015.
- 523
- 524 Dibb, J. E., Arsenault, M., Peterson, M. C., & Honrath, R. E. (2002). Fast nitrogen oxide 525 photochemistry in Summit, Greenland snow. Atmospheric Environment, 36(15–16), 2501–2511.
- 526 https://doi.org/10.1016/S1352-2310(02)00130-9
- 527
- Do Remus, R. H., Mehrotra, Y., Lanford, W. A., & Burman, C. (1983). Reaction of water with
 glass: influence of a transformed surface layer. Journal of Materials Science, 18(2), 612–622.
 <u>https://doi.org/10.1007/BF00560651</u>
- 531
- 532 Elliott, E. M., Kendall, C., Boyer, E. W., Burns, D. A., Lear, G. G., Golden, H. E., Harlin, K.,
- 533 Bytnerowicz, A., Butler, T. J., and Glatz, R. (2009). Dual nitrate isotopes in dry deposition: Utility
- 534 for partitioning NO_x source contributions to landscape nitrogen deposition. Journal of Geophysical
- 535 Research: Biogeosciences, 114(G4), G04020. <u>https://doi.org/10.1029/2008JG000889</u>
- 536

- Felix, J. D., & Elliott, E. M. (2014). Isotopic composition of passively collected nitrogen dioxide
 emissions: Vehicle, soil and livestock source signatures. Atmospheric Environment, 92, 359–366.
 https://doi.org/10.1016/j.atmosenv.2014.04.005
- 540
- Felix, J. D., Elliott, E. M., & Shaw, S. L. (2012). Nitrogen isotopic composition of coal-fired power
 plant NO_x: influence of emission controls and implications for global emission inventories.
 Environmental Science & Technology, 46(6), 3528–3535. https://doi.org/10.1021/es203355v
- 544
- Frey, M. M., Savarino, J., Morin, S., Erbland, J., & Martins, J. M. F. (2009). Photolysis imprint in
 the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for
 reactive nitrogen cycling. Atmos. Chem. Phys, 9, 8681-8696. https://doi.org/10.5194/acp-9-86812009, 2009.
- 549 550 Freyer, H. D. (1991). Seasonal variation of ${}^{15}N/{}^{14}N$ ratios in atmospheric nitrate species. Tellus B, 551 43(1), 30–44. <u>https://doi.org/10.1034/j.1600-0889.1991.00003.x</u>
- 552
- 553 Freyer, H. D., Kley, D., Volz-Thomas, A., & Kobel, K. (1993). On the interaction of isotopic 554 exchange processes with photochemical reactions in atmospheric oxides of nitrogen. Journal of 555 Geophysical Research: Atmospheres, 98(D8), 14791–14796. https://doi.org/10.1029/93JD00874
- Gao, H. O. (2007). Day of week effects on diurnal ozone/NO_x cycles and transportation emissions
 in Southern California. Transportation Research Part D: Transport and Environment, 12(4), 292–
 305. https://doi.org/10.1016/j.trd.2007.03.004
- 560
- Gobel, A. R., Altieri, K. E., Peters, A. J., Hastings, M. G., & Sigman, D. M. (2013). Insights into
 anthropogenic nitrogen deposition to the North Atlantic investigated using the isotopic
 composition of aerosol and rainwater nitrate. Geophysical Research Letters, 40(22), 5977–5982.
 <u>https://doi.org/10.1002/2013GL058167</u>
- 565
- Hastings, M G, Jarvis, J. C., & Steig, E. J. (2009). Anthropogenic impacts on nitrogen isotopes of
 ice-core nitrate. Science, 324(5932), 1288. DOI: 10.1126/science.1170510
- Hastings, M G, Steig, E. J., & Sigman, D. M. (2004). Seasonal variations in N and O isotopes of
 nitrate in snow at Summit, Greenland: Implications for the study of nitrate in snow and ice cores.
 Journal of Geophysical Research: Atmospheres, 109(D20).
 https://doi.org/10.1029/2004JD004991
- 573
- Honrath, R. E., Peterson, M. C., Guo, S., Dibb, J. E., Shepson, P. B., & Campbell, B. (1999).
 Evidence of NO_x production within or upon ice particles in the Greenland snowpack. Geophysical
- 5/5 Evidence of NO_x production within or upon ice particles in the Greenland snov 576 Research Letters, 26(6), 695–698. https://doi.org/10.1029/1999GL900077
- 577
- Jarvis, J. C., Steig, E. J., Hastings, M. G., & Kunasek, S. A. (2008). Influence of local
 photochemistry on isotopes of nitrate in Greenland snow. Geophysical Research Letters, 35(21).
 https://doi.org/10.1029/2008GL035551
- 581

Kendall, C., Elliott, E. M., & Wankel, S. D. (2007). Tracing anthropogenic inputs of nitrogen to
ecosystems. Stable Isotopes in Ecology and Environmental Science, 2, 375–449.
https://doi.org/10.1002/9780470691854.ch12

585

Kimbrough, S., Owen, R. C., Snyder, M., & Richmond-Bryant, J. (2017). NO to NO₂ conversion
rate analysis and implications for dispersion model chemistry methods using Las Vegas, Nevada
near-road field measurements. Atmospheric Environment, 165, 23–34.
https://doi.org/10.1016/j.atmosenv.2017.06.027

590

King, M. D., Canosa-Mas, C. E. and Wayne R. P. (2001). Gas-phase reactions between RO₂ and
NO, HO₂ or CH₃O₂: correlations between rate constants and the SOMO energy of the peroxy (RO₂)
radical. Atmospheric Environment 35.12 (2001): 2081-2088. https://doi.org/10.1016/S13522310(00)00501-X

595

Knote, C., Tuccella, P., Curci, G., Emmons, L., Orlando, J. J. Madronich, S., Baró, R., JiménezGuerrero, P., Luecken, D., Hogrefe, C., Forkel, R., Werhahn, J., Hirtl, M., Pérez, J. L., San José,
R., Giordano, L., Brunner, D., Yahya, K., Zhang, Y., Influence of the choice of gas-phase
mechanism on predictions of key gaseous pollutants during the AQMEII phase-2 intercomparison.
Atmospheric Environment 115 (2015): 553-568. https://doi.org/10.1016/j.atmosenv.2014.11.066.

601

Li, J. (2019). Quantifying the nitrogen equilibrium and photochemistry-induced kinetic isotopic
 effects between NO and NO₂. Retrieved from osf.io/jw8hu

604

Madronich, S., & Flocke, S. (1999). The role of solar radiation in atmospheric chemistry. In
Environmental photochemistry (pp. 1–26). The Handbook of Environmental Chemistry (Reactions
and Processes), vol 2 / 2L. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-690443_1

610 Mazzeo, N. A., Venegas, L. E., & Choren, H. (2005). Analysis of NO, NO₂, O₃ and NO_x 611 concentrations measured at a green area of Buenos Aires City during wintertime. Atmospheric 612 Environment, 39(17), 3055–3068. https://doi.org/10.1016/j.atmosenv.2005.01.029

613

McIlvin, M. R., & Altabet, M. A. (2005). Chemical conversion of nitrate and nitrite to nitrous
oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Analytical Chemistry,
77(17), 5589–5595. <u>https://doi.org/10.1021/ac050528s</u>

617

618 Michalski, G., Jost, R., Sugny, D., Joyeux, M., & Thiemens, M. (2004). Dissociation energies of 619 six NO₂ isotopologues by laser induced fluorescence spectroscopy and zero-point energy of some 620 triatomic molecules. The Journal of Chemical Physics, 121(15), 7153-7161. 621 https://doi.org/10.1063/1.1792233

622

623 Michalski, G., Bockheim, J. G., Kendall, C., & Thiemens, M. (2005). Isotopic composition of

- 624 Antarctic Dry Valley nitrate: Implications for NO_y sources and cycling in Antarctica. Geophysical
- 625 Research Letters, 32(13). https://doi.org/10.1029/2004GL022121
- 626

- 627 Miller, C. E., & Yung, Y. L. (2000). Photo-induced isotopic fractionation. Journal of Geophysical
- 628 Research: Atmospheres, 105(D23), 29039–29051. https://doi.org/10.1029/2000JD900388
- 629
- Monse, E. U., Spindel, W., & Stern, M. J. (1969). Analysis of isotope-effect calculations illustrated
 with exchange equilibria among oxynitrogen compounds. Rutgers-The State Univ., Newark, NJ.
 DOI: 10.1021/ba-1969-0089.ch009
- 633
- Morin, S., Savarino, J., Frey, M. M., Domine, F., Jacobi, H.-W., Kaleschke, L., & Martins, J. M.
 F. (2009). Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean
 boundary layer from 65°S to 79°N. J. Geophys. Res, 114. <u>https://doi.org/10.1029/2008JD010696</u>
- 637
- Park, Y.-M., Park, K.-S., Kim, H., Yu, S.-M., Noh, S., Kim, M.-S., Kim, J.-Y., Ahn, J.-Y., Lee,
 M.-D., Seok, K.-S., Kin, Y.-H., (2018). Characterizing isotopic compositions of TC-C, NO₃⁻-N,
 and NH₄⁺-N in PM2.5 in South Korea: Impact of China's winter heating.
 <u>https://doi.org/10.1016/j.envpol.2017.10.072</u>
- 642
- Saliba, N. A., Yang, H., & Finlayson-Pitts, B. J. (2001). Reaction of gaseous nitric oxide with
 nitric acid on silica surfaces in the presence of water at room temperature. The Journal of Physical
 Chemistry A, 105(45), 10339–10346. https://doi.org/10.1021/jp012330r
- 646
 647 Savarino, J., Morin, S., Erbland, J., Grannec, F., Patey, M. D., Vicars, W., Alexander, B.,
 648 Achterberg, E. P., (2013). Isotopic composition of atmospheric nitrate in a tropical marine
 649 boundary layer. Proceedings of the National Academy of Sciences, 110(44), 17668–17673.
 650 https://doi.org/10.1073/pnas.1216639110
- 651
- Sharma, H. D., Jervis, R. E., & Wong, K. Y. (1970). Isotopic exchange reactions in nitrogen oxides.
 The Journal of Physical Chemistry, 74(4), 923–933. https://doi.org/10.1021/j100699a044
- 654
- Takei, T., Yamazaki, A., Watanabe, T., & Chikazawa, M. (1997). Water adsorption properties on
 porous silica glass surface modified by trimethylsilyl groups. Journal of Colloid and Interface
 Science, 188(2), 409–414. https://doi.org/10.1006/jcis.1997.4777
- 658
- Urey, H. C. (1947). The thermodynamic properties of isotopic substances. Journal of the Chemical
 Society (Resumed), 562-581. https://doi.org/10.1039/JR9470000562
- 661
- Vicars, W. C., Morin, S., Savarino, J., Wagner, N. L., Erbland, J., Vince, E., Martins, J. M. F.,
 Lerner, B. M., Quinn, P. K., Coffman, D. J., Williams, E. J., Brown, S. S., (2013). Spatial and
 diurnal variability in reactive nitrogen oxide chemistry as reflected in the isotopic composition of
 atmospheric nitrate: Results from the CalNex 2010 field study. Journal of Geophysical Research:
 Atmospheres, 118(18), 10–567. https://doi.org/10.1002/jgrd.50680
- 667
- Walters, W. W., & Michalski, G. (2015). Theoretical calculation of nitrogen isotope equilibrium
 exchange fractionation factors for various NO_y molecules. Geochimica et Cosmochimica Acta,
 164, 284–297. https://doi.org/10.1016/j.gca.2015.05.029
- 671

- 672 Walters, W. W., Goodwin, S. R., & Michalski, G. (2015). Nitrogen stable isotope composition
- $(\delta^{15}N)$ of vehicle-emitted NO_x. Environmental Science & Technology, 49(4), 2278–2285. https://doi.org/10.1021/es505580v
- 675
- 676 Walters, W. W., & Michalski, G. (2016). Ab initio study of nitrogen and position-specific oxygen
- kinetic isotope effects in the NO+O₃ reaction. The Journal of chemical physics, 145(22), 224311.
 https://doi.org/10.1063/1.4968562
- 678 nuj 679
- 680 Walters, W. W., Simonini, D. S., & Michalski, G. (2016). Nitrogen isotope exchange between NO
- and NO₂ and its implications for δ^{15} N variations in tropospheric NO_x and atmospheric nitrate. Geophysical Research Letters, 43(1), 440–448. https://doi.org/10.1002/2015GL066438
- 683
- 684 Walters, W. W., Fang, H., & Michalski, G. (2018). Summertime diurnal variations in the isotopic 685 composition of atmospheric nitrogen dioxide at a small midwestern United States city.
- 686 Atmospheric Environment, 179, 1–11. https://doi.org/10.1016/j.atmosenv.2018.01.047
- 687
- Williams, E. L., & Grosjean, D. (1990). Removal of atmospheric oxidants with annular denuders.
 Environmental Science & Technology, 24(6), 811–814. https://doi.org/10.1021/es00076a002
- 690

691 Yang, J., Honrath, R. E., Peterson, M. C., Dibb, J. E., Sumner, A. L., Shepson, P. B., Frey, M.,

- Jacobi, H.-W., Swanson, A., Blake, N., (2002). Impacts of snowpack emissions on deduced levels
- 693 of OH and peroxy radicals at Summit, Greenland. Atmospheric Environment, 36(15–16), 2523–
- 694 2534. https://doi.org/10.1016/S1352-2310(02)00128-0 695
- Zhang, X., Ortega, J., Huang, Y., Shertz, S., Tyndall, G. S., & Orlando, J. J. (2018). A steady-state
 continuous flow chamber for the study of daytime and nighttime chemistry under atmospherically
 relevant NO levels. Atmospheric Measurement Techniques, 11(5), 2537–2551.
 https://doi.org/10.5194/amt-11-2537-2018
- 700
- Zong, Z., Wang, X., Tian, C., Chen, Y., Fang, Y., Zhang, F., Li, C., Sun, J., Li, J., Zhang, G.,
 (2017). First assessment of NO_x sources at a regional background site in North China using
 isotopic analysis linked with modeling. Environmental Science & Technology, 51(11), 5923–5931.
- 704 https://doi.org/10.1021/acs.est.6b06316

706 Fig. 1 A. a sketch of the isotopic fractionation processes between NO and NO₂, both fractionation 707 factors are determined in this work. B. Results from five dark experiments (red circles) yielded a 708 line with slope of 28.1‰ and an α (NO₂-NO) value of 1.0289, while the results from five UV 709 irradiation experiments (blue squares) showed a smaller slope; C. Results from five UV irradiation 710 experiments (blue squares) and a previous field study (purple triangle), comparing to the dark 711 experiments (red circle). The three lines represent different $(\alpha_2 - \alpha_1)$ values: the $(\alpha_2 - \alpha_1) = -10$ ‰ line 712 showed the lowest RMSE to our experimental data as well as the previous field observations. The 713 error bars in panels B and C represented the combined uncertainties of NO_x concentration 714 measurements and isotopic analysis.

Fig. 2 Calculating isotopic fractionation values between NO-NO₂ (Δ (NO₂-NO), A-D) and NO_x-

718 NO₂ (Δ (NO₂-NO_x), **E-H**) at various *j*(NO₂), NO_x level and *f*(NO₂) using Eq. (7) and (8). Each

- panel represents a fixed $j(NO_2)$ value (showing on the upper right side of each panel), and the fractionation values are shown by color. Lines are contours with the same fractionation values, at
- an interval of 5‰, the contour line representing 0‰ was marked on each panel except for A and
- 722 E.

Fig. 3 NO_x concentrations and calculated Δ (NO₂-NO_x) values at four sites. Stacked bars show the NO and NO₂ concentrations extracted from monitoring sites (A-C) or calculated using 0-D box

model (D); the red lines are $\Delta(NO_2-NO_x)$ values at each site. Note that the NO_x concentration (lefty) axis on panel D is different from the rest.

Experiment	Number	NO conc. (ppb)	NO ₂ conc. (ppb)	O ₃ conc. (ppb)	δ(NO ₂) (‰)	f(NO ₂)
	1	0.0	17.8	13.4	-59.5	1.00
Determining δ(NO _x)	2	0.0	61.3	0.5	-58.9	1.00
$O(NO_X)$	3	0.0	18.9	10.7	-58.0	1.00
	1	16.0	36.8	0.0	-51.8	0.70
	2	33.6	28.8	0.0	-43.9	0.46
Dark experiments	3	6.7	12.6	0.0	-49.6	0.65
	4	16.2	16.9	0.0	-45.1	0.51
	5	20.4	24.2	0.0	-46.8	0.54
	1	7.1	6.4	2.8	-47.5	0.47
T 1' .'	2	4.5	5.3	4.5	-48.7	0.54
Irradiation experiments	3	3.3	4.4	4.2	-49.8	0.57
experiments	4	2.5	8.5	10.7	-54.6	0.77
	5	5.2	18.1	11.0	-54.0	0.78

Table 1. Experimental conditions, concentrations of NO, NO2 and O3 at steady state, and measured 729

730 731 $\delta(NO_2)$ values.

732 Appendix A. Chamber descriptions

733 The chamber is a 10 m³ Teflon bag equipped with several standard instruments including 734 temperature and humidity probe, NO_x monitor and O₃ monitor. 128 wall-mounted blacklight tubes 735 surrounded the chamber to mimic tropospheric photochemistry and the photolysis rate of NO₂ $(i(NO_2))$ when all lights are on have been previously determined to be 1.4×10^{-3} s⁻¹, similar to a 736 737 j(NO₂) coefficient at an 81-degree solar zenith angle. The irradiation spectrum of the blacklights 738 are shown in Figure A1. The chamber was kept at room temperature and one atmospheric pressure. 739 Before each experiment, the chamber was flushed with zero air at 40 L min⁻¹ for at least 12 hours 740 to ensure the background NO_x, O₃ and other trace gases were below detection limit.

741

Figure A1 Spectral actinic flux versus wavelengths of the UV light source used in our experiments.

Appendix B. Box model assessing the time needed for NO-NO₂ to reach isotopic equilibrium

The time needed to reach NO-NO₂ isotopic equilibrium during light-off experiments were

747 assessed using a 0-D box model. This box model contains only two reactions:

748
$${}^{15}NO_2 + {}^{14}NO \rightarrow {}^{15}NO + {}^{14}NO_2$$
 k=8.14000 × 10⁻¹⁴ cm³ s⁻¹

749
$${}^{15}NO+{}^{14}NO_2 \rightarrow {}^{15}NO_2+{}^{14}NO$$
 k'=8.37525 × 10⁻¹⁴ cm³ s⁻¹

Where k and k' are rate constants of the reactions. The differences in rate constants were calculated by assuming an α (NO₂-NO) value of 1.0289. Six simulations were conducted at various initial NO (with $\delta^{15}N=0\%$) and O₃ levels that were similar to our experiment. Then the $\delta^{15}N$ values of NO and NO₂ during the simulation were calculated from the model and were shown in Figure B1, suggesting that in our experimental condition, all systems should reach isotopic equilibrium within 1 hr.

Figure B1 Simulated NO-NO₂ isotopic equilibrium process in the chamber at various NO and O₃
concentrations.

Appendix C. Deriving Equations 7 and 8 761 When the system (R1-R6) reaches steady-state, we have: $d[^{15}NO_2]/dt=0$ 762 Eq. (C1) 763 Therefore, using R1-R6: $k_1 [^{15}NO_2] [^{14}NO] + i(NO_2)\alpha_1 [^{15}NO_2] =$ 764 $k_5\alpha_2[^{15}NO][O_3] + k_1\alpha(NO_2-NO)[^{15}NO][^{14}NO_2]$ 765 Eq. (C2) From here we refer ¹⁴NO₂ and ¹⁴NO as NO₂ and NO for convenience, rearrange the above equation, 766 767 we get: $\frac{[{}^{15}NO_2]}{[{}^{15}NO]} = \frac{k_5\alpha_2[O_3] + k_1\alpha(NO_2 - NO) [NO_2]}{j_{NO2}\alpha_1 + k_1[NO]}$ 768 Eq. (C3) 769 Meantime, since the Leighton cycle reaction still holds for the majority isotopes (NO and NO₂), 770 we have: 771 $j_{NO2}[NO_2] = k_5[NO][O_3]$ Eq. (C4) 772 Thus, $\frac{[\mathrm{NO}_2]}{[\mathrm{NO}]} = \frac{\mathrm{k}_5 \times [\mathrm{O}_3]}{\mathrm{i}_{\mathrm{NO}2}}$ 773 Eq. (C5) 774 From the text, when $j_{NO2}>0$, we defined $A=\tau_{exchange}/\tau_{photo}=j_{NO2}/(k_1\times[NO])$. Using the above 775 equations, we know: $\frac{j_{NO2}}{[NO]} = \frac{k_5[O_3]}{[NO_2]} = Ak_1$ 776 Eq. (C6) $\frac{j_{NO2}}{k_1[NO]} = \frac{k_5[O_3]}{k_1[NO_2]} = A$ 777 Eq. (C7) 778 Next, to calculate $\delta(NO_2)$ - $\delta(NO)$, we use the definition of delta notation: 779 $\delta(\text{NO}_2) - \delta(\text{NO}) = R_{\text{NO}2}/R_{\text{std}} - R_{\text{NO}}/R_{\text{std}} = (R_{\text{NO}2}/R_{\text{NO}} - 1)(1 + \delta(\text{NO}))$ Eq. (C8)

780

781
$$\frac{R_{NO2}}{R_{NO}} = \frac{{\binom{15}{NO_2}}[NO]}{{\binom{15}{NO}}[NO_2]} = \frac{k_5\alpha_2[O_3][NO] + k_1\alpha(NO_2 - NO)[NO_2][NO]}{j_{NO2}\alpha_1[NO_2] + k_1[NO][NO_2]}$$
Eq. (C9)

782 Divide both side by $k_1[NO][NO_2]$:

783
$$\frac{R_{NO2}}{R_{NO}} = \frac{\frac{k_5 \alpha_2 [O_3]}{k_1 [NO_2]} + \alpha (NO_2 - NO)}{\frac{j_{NO2} \alpha_1}{k_1 [NO]} + 1}$$
Eq. (C10)

784 Rearrange and substitute
$$\frac{k_5[O_3]}{k_1[NO_2]}$$
 and $\frac{j_{NO_2}}{k_1[NO]}$ with A:

785
$$\frac{R_{NO2}}{R_{NO}} = \frac{\alpha_2 A + \alpha (NO_2 - NO)}{\alpha_1 A + 1}$$
 Eq. (C11)

786
$$\frac{R_{NO}}{R_{NO2}} = \frac{\alpha_1 A + 1}{\alpha_2 A + \alpha(NO_2 - NO)}$$
 Eq. (C12)

787
$$\frac{R_{NO}}{R_{NO2}} - 1 = \frac{(\alpha_1 - \alpha_2)A - (\alpha(NO_2 - NO) - 1)}{\alpha_1 A + \alpha(NO_2 - NO)}$$
Eq. (C13)

788 Thus,

789
$$\delta(NO_2) - \delta(NO) = \frac{(\alpha_2 - \alpha_1)A + (\alpha(NO_2 - NO) - 1)}{\alpha_1 A + \alpha(NO_2 - NO)} (1 + \delta(NO_2))$$
 Eq. (C14)

790 Then, using mass balance:

791
$$\delta(\text{NO}_2) f(\text{NO}_2) + \delta(\text{NO})(1 - f(\text{NO}_2)) = \delta(\text{NO}_x) \qquad \text{Eq. (C15)}$$

We can derive Eq. 8:

793
$$\delta(\text{NO}_2) - \delta(\text{NO}_x) = \frac{(\alpha_2 - \alpha_1) \times A + \alpha(\text{NO}_2 - \text{NO}) - 1)}{\alpha_1 A + \alpha(\text{NO}_2 - \text{NO})} (1 + \delta(\text{NO}_2)) (1 - f(\text{NO}_2)) \quad \text{Eq. (C16)}$$