1 Quantifying the nitrogen isotope effects during photochemical 2 equilibrium between NO and NO₂: Implications for δ^{15} N in 3 tropospheric reactive nitrogen

4 Jianghanyang Li¹, Xuan Zhang², John Orlando², Geoffrey Tyndall² and Greg Michalski^{1,3}

- ^{2.} Atmospheric Chemistry Observations and Modeling Lab, National Center for Atmospheric
 8 Research, Boulder, CO, 80301
- 9 ^{3.} Department of Chemistry, Purdue University, West Lafayette, IN, 47907
- 10 *Correspondence to*: Jianghanyang Li (li2502@purdue.edu)

Abstract. Nitrogen isotope fractionations between nitrogen oxides (NO and NO_2) play a 11 significant role in determining the nitrogen isotopic compositions ($\delta^{15}N$) of atmospheric reactive 12 13 nitrogen. Both the equilibrium isotopic exchange between NO and NO₂ molecules and the isotope 14 effects occurring during the NO_x photochemical cycle are important, but both are poorly constrained. The nighttime and daytime isotopic fractionations between NO and NO₂ in an 15 16 atmospheric simulation chamber at atmospherically relevant NO_x levels were measured. Then, the impact of NO_x level and NO₂ photolysis rate to the combined isotopic fractionation (equilibrium 17 18 isotopic exchange and photochemical cycle) between NO and NO₂ were calculated. It was found that the isotope effects occurring during the NO_x photochemical cycle can be described using a 19 single fractionation factor, designated the Leighton Cycle Isotope Effect (LCIE). The results 20 21 showed that at room temperature, the fractionation factor of nitrogen isotope exchange is 22 1.0275±0.0012, and the fractionation factor of LCIE (when O₃ solely controls the oxidation from NO to NO₂) is 0.990±0.005. The measured LCIE factor showed good agreement with previous 23 24 field measurements, suggesting that it could be applied in ambient environment, although future 25 work is needed to assess the isotopic fractionation factors of NO + RO₂/HO₂ \rightarrow NO₂. The results were used to model the NO-NO₂ isotopic fractionations under several NO_x conditions. The model 26 27 suggested that isotopic exchange was the dominate factor when $NO_x > 20$ nmol mol⁻¹, while LCIE was more important at low NO_x concentrations (<1 nmol mol⁻¹) and high rates of NO₂ photolysis. 28 29 These findings provided a useful tool to quantify the isotopic fractionations between tropospheric 30 NO and NO₂, which can be applied in future field observations and atmospheric chemistry models.

31

32

 ^{1.} Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette,
 IN, 47907

The nitrogen isotopic composition ($\delta^{15}N$) of reactive nitrogen compounds in the 34 atmosphere is an important tool in understanding the sources and chemistry of atmospheric NO_x 35 (NO+NO₂). It has been suggested that the δ^{15} N value of atmospheric nitrate (HNO₃, nitrate 36 aerosols and nitrate ions in the precipitation and snow) imprints the $\delta^{15}N$ value of NO_x sources 37 (Elliott et al., 2009; Kendall et al., 2007) thus many studies have used the $\delta^{15}N$ values of 38 39 atmospheric nitrate to investigate NO_x sources (Chang et al., 2018; Felix et al., 2012; Felix & Elliott, 2014; Gobel et al., 2013; Hastings et al., 2004, 2009; Morin et al., 2009; Park et al., 2018; 40 41 Walters et al., 2015, 2018). However, there remain questions about how isotopic fractionations 42 that may occur during photochemical cycling of NO_x could alter the δ^{15} N values as it partitions into NO_v (NO_v = atmospheric nitrate, NO₃, N₂O₅, HONO, etc., Chang et al., 2018; Freyer, 1991; 43 44 Hastings et al., 2004; Jarvis et al., 2008; Michalski et al., 2005; Morin et al., 2009; Zong et al., 45 2017). Similarly, other complex reactive nitrogen chemistry, such as nitrate photolysis and redeposition in ice and snow (Frey et al., 2009), may impact the δ^{15} N of NO_v and atmospheric nitrate. 46 The fractionation between NO and NO₂ via isotope exchange has been suggested to be the 47 48 dominant factor in determining the δ^{15} N of NO₂ and ultimately atmospheric nitrate (Freyer, 1991; Freyer et al., 1993; Savarino et al., 2013; Walters et al., 2016). However, isotopic fractionations 49 occur in most, if not all, NO_x and NO_y reactions, while most of these are still unknown or, if 50 51 calculated (Walters and Michalski, 2015), unverified by experiment. Since the atmospheric 52 chemistry of NO_v varies significantly in different environments (e.g., polluted vs. pristine, night vs. day), the isotopic fractionations associated with NO_v chemistry are also likely to vary in 53 54 different environments. These unknowns could potentially bias conclusions about NO_x source 55 apportionment reached when using nitrogen isotopes. Therefore, understanding the isotopic 56 fractionations between NO and NO₂ during photochemical cycling could improve our 57 understanding of the relative role of source versus chemistry for controlling the δ^{15} N variations of 58 atmospheric NO₂ and nitrate.

59 In general, there are three types of isotope fractionation effects associated with NO_x chemistry. The first type is the equilibrium isotopic effect (EIE), i.e., isotope exchange between 60 61 two compounds without forming new molecules (Urey, 1947, Bigeleisen and Mayer, 1947), which for nitrogen isotopes in the NO_x system is the ${}^{15}NO + {}^{14}NO_2 \leftrightarrow {}^{14}NO + {}^{15}NO_2$ exchange reaction 62 (Begun and Melton, 1956, Walters et al., 2016). The second type is the kinetic isotopic effect (KIE) 63 64 associated with difference in isotopologue rate coefficients during unidirectional reactions (Bigeleisen & Wolfsberg, 1957). In the NO_x system this KIE would be manifest in the oxidation 65 of NO into NO₂ by O₃/HO₂/RO₂. The third type is the photochemical isotope fractionation effect 66 (PHIFE, Miller & Yung, 2000), which for NO_x is the isotopic fractionation associated with NO₂ 67 photolysis. All three fractionations could impact the $\delta^{15}N$ value of NO₂, and consequently 68 atmospheric nitrate, but the relative importance of each may vary. 69

The limited number of studies on the EIE in the NO_x cycle have significant uncertainties. 70 Discrepancies in the EIE for ${}^{15}NO + {}^{14}NO_2 \leftrightarrow {}^{14}NO + {}^{15}NO_2$ have been noted in several studies. 71 72 Theoretical calculations predicted isotope fractionation factors (α) ranging from 1.035 to 1.042 at 73 room temperature (Begun & Fletcher, 1960; Monse et al., 1969; Walters & Michalski, 2015) due 74 to the different apporximations used to calculate harmonic frequencies in each study. Likewise, two separate experiments measured different room temperature fractionation factors of 75 1.028±0.002 (Begun & Melton, 1956) and 1.0356±0.0015 (Walters et al., 2016). A concern in both 76 77 experiments is that they were conducted in small chambers with high NO_x concentrations 78 (hundreds of μ mol mol⁻¹), significantly higher than typical ambient atmospheric NO_x levels (usually less than 0.1 μ mol mol⁻¹). Whether the isotopic fractionation factors determined by these experiments are applicable in the ambient environment is uncertain because of possible wall effects and formation of higher oxides, notable N₂O₄ and N₂O₃ at these high NO_x concentrations.

82 Even less research has examined the KIE and PHIFE occurring during NO_x cycling. The KIE of NO + O₃ has been theoretically calculated (Walters and Michalski, 2016) but has not been 83 84 experimentally verified. The NO₂ PHIFE has not been experimentally determined or theoretically 85 calculated. As a result, field observation studies often overlook the effects of PHIFE and KIE. 86 Freyer et al. (1993) measured NO_x concentrations and the δ^{15} N values of NO₂ over a 1-year period 87 at Julich, Germany and inferred a combined NO_x isotope fractionation factor (EIE+KIE+PHIFE) 88 of 1.018±0.001. Freyer et al. (1993) suggested that the NO_x photochemical cycle (KIE and PHIFE) tends to diminish the equilibrium isotopic fractionation (EIE) between NO and NO₂. Even if this 89 90 approach were valid, applying this single fractionation factor elsewhere, where NO_x, O₃ 91 concentrations and actinic fluxes are different, would be tenuous given that these factors may influence the relative importance of EIE, KIE and PHIFE (Hastings et al., 2004; Walters et al., 92 93 2016). Therefore, to quantify the overall isotopic fractionations between NO and NO_2 at various tropospheric conditions, it is crucial to know 1) isotopic fractionation factors of EIE, KIE and 94 PHIFE individually and 2) the relative importance of each factor under various conditions. 95

In this work, we aim to quantify the nitrogen isotope fractionation factors between NO and NO₂ at photochemical equilibrium. First, we measured the N isotope fractionations between NO and NO₂ in an atmospheric simulation chamber at atmospherically relevant NO_x levels. Then, we provide mathematical solutions to assess the impact of NO_x level and NO₂ photolysis rate (j(NO₂)) to the relative importance of EIE, KIE and PHIFE. Subsequently we use the solutions and chamber measurements to calculate the isotopic fractionation factors of EIE, KIE and PHIFE. Lastly, using 102 the calculated fractionation factors and the equations, we modeled the NO-NO₂ isotopic 103 fractionations at several sites to illustrate the behavior of δ^{15} N values of NO_x in the ambient 104 environment.

105

106 2. Methods

The experiments were conducted using a 10 m³ Atmospheric Simulation Chamber at the 107 National Center for Atmospheric Research (see descriptions in supplementary material and Zhang 108 109 et al. (2018)). A set of mass flow controllers was used to inject NO and O₃ into the chamber. NO 110 was injected at 1 L min⁻¹ from an in-house NO/N₂ cylinder (133.16 µmol mol⁻¹ NO in ultra-pure N₂), and O₃ was generated by flowing 5 L min⁻¹ zero-air through a flow tube equipped with a UV 111 Pen-Ray lamp (UVP LLC., CA) into the chamber. NO and NO₂ concentrations were monitored in 112 real time by chemiluminescence with a detection limit of 0.5 ppb (model CLD 88Y, Eco Physics, 113 MI) as were O₃ concentrations using an UV absorption spectroscopy with a detection limit of 0.5 114 115 ppb (model 49, Thermo Scientific, CO). In each experiment, the actual amounts of NO and O₃ 116 injected were calculated using measured NO_x and O₃ concentrations after steady state was reached 117 (usually within 1 h). The wall loss rate of NO₂ was tested by monitoring O₃ (29 nmol mol⁻¹) and NO_x (62 nmol mol⁻¹) over a 4-hour period. After the NO and NO₂ concentrations reached steady 118 119 state, no decrease in NO₂ concentrations was observed showing that chamber wall loss was 120 negligible.

Two sets of experiments were conducted to separately investigate the EIE, KIE and PHIFE. The first set of experiments was conducted in the dark. In each of these dark experiments, a range of NO and O₃ ($[O_3] < [NO]$) was injected into the chamber to produce NO-NO₂ mixtures with $[NO]/[NO_2]$ ratios ranged from 0.43 to 1.17. The N isotopes of these mixtures were used to 125 investigate the EIE between NO and NO₂. The second set of experiments was conducted under irradiation of UV lights (300-500 nm, see supplementary material for irradiation spectrum). Under 126 127 such conditions, NO, NO2 and O3 reached photochemical steady state, which combined the isotopic effects of EIE, KIE and PHIFE. In addition, three experiments were conducted to measure 128 129 the δ^{15} N value of the tank NO. In each of these experiments, a certain amount of O₃ was first 130 injected into the chamber, then approximately the same amount of NO was injected into the chamber to ensure 100% of the NO_x was in the form of NO₂ with little O₃ (<3 nmol mol⁻¹) 131 132 remaining in the chamber, such that the O₃+NO₂ reaction was negligible. The NO₂ in the chamber was then collected and its δ^{15} N value measured, which equates to the δ^{15} N value of the tank NO. 133 In all experiments, the concentrations of NO, NO₂ and O₃ were allowed to reach steady 134 state, and the product NO₂ was collected from the chamber using a honeycomb denuder tube. The 135 136 glass denuder tubes (Chemcomb 3500, Thermo Fisher Scientific) were coated with a solution of 10% KOH and 25% guaiacol in methanol and then dried by flowing N_2 gas through the denuder 137 tube for 15 seconds (Williams and Grosjean, 1990, Walters et al., 2016). The NO₂ reacts with 138 139 guaiacol coating and is converted into NO₂⁻ that is retained on the denuder tube wall (Williams and Grosjean, 1990). NO is inert to the denuder tube coating: a control experiment sampled pure 140 141 NO using the denuder tubes, which did not show any measurable NO₂⁻. The NO₂ collection 142 efficiency of a single honeycomb denuder tube was tested in another control experiment: air containing 66 nmol mol⁻¹ of NO₂ was drawn out of the chamber through a denuder tube, and the 143 144 NO₂ concentration at the exit of the tube holder was measured and found to be below the detection limit (<1 nmol mol⁻¹), suggesting the collection efficiency was nearly 100% when [NO₂] <66 nmol 145 mol⁻¹. Furthermore, when the denuder system consisted of two denuder tubes in series and NO₂⁻ in 146

147 the second denuder was below the detection limit indicating trivial break NO₂ breakthrough. The

148 NO_2 was leached from each denuder tube by rinsing thoroughly with 10 ml deionized water into a clean polypropylene container and stored frozen until isotopic analysis. Isotopic analysis was 149 150 conducted at Purdue Stable Isotope Laboratory. For each sample, approximately 50 nmol of the 151 NO₂⁻ extract was mixed with 2 M sodium azide solution in acetic acid buffer in an air-tight glass 152 vial, then shaken overnight to completely reduce all the NO_2^- to $N_2O_{(g)}$ (Casciotti & McIlvin, 2007; McIlvin & Altabet, 2005). The product N₂O was directed into a Thermo GasBench equipped with 153 cryo-trap, then the $\delta^{15}N$ of the N₂O was measured using a Delta-V Isotope Ratios Mass 154 155 Spectrometer. Six coated denuders tubes that did not get exposed to NO₂ were also analyzed using 156 the same chemical procedure, which did not show any measurable signal on the IRMS, suggesting 157 the blank from both sampling process and the chemical conversion process was negligible. The overall analytical uncertainty for δ^{15} N analysis was $\pm 0.5 \%$ (1 σ) based on replicate analysis of in 158 159 house NO₂⁻ standards.

160

161 **3. Results and Discussions**

162 **3.1. Equilibrium Isotopic Fractionation between NO and NO₂**

163 The equilibrium isotope fractionation factor, α (NO₂-NO), is the ¹⁵N enrichment in NO₂ 164 relative to NO, and is expressed as the ratio of rate constants k_2 / k_1 of two reactions:

165
$${}^{15}NO_2 + {}^{14}NO \rightarrow {}^{15}NO + {}^{14}NO_2$$
 R1, rate constant = k_1

166
$${}^{15}\text{NO}+{}^{14}\text{NO}_2 \rightarrow {}^{15}\text{NO}_2+{}^{14}\text{NO}$$
 R2, rate constant = $k_2 = k_1 \times \alpha(\text{NO}_2-\text{NO})$

where k_1 is the rate constant of the isotopic exchange, which was previously determined to be 8.14×10⁻¹⁴ cm³ s⁻¹ (Sharma et al., 1970). The reaction time required for NO-NO₂ to reach isotopic equilibrium was estimated using the exchange rate constants in a simple kinetics box model (BOXMOX, Knote et al., 2015). The model predicts that at typical NO_x concentrations used during the chamber experiments (7.7-62.4 nmol mol⁻¹), isotopic equilibrium would be reached within 15
minutes (see supplementary information). Since the sample collection usually started 1 hour after
NO_x was well mixed in the chamber, there was sufficient time to reach full isotope equilibrium.
The isotope equilibrium fractionation factor is then calculated to be:

175
$$\alpha(NO_2 - NO) = \frac{[{}^{15}NO_2] \times [{}^{14}NO]}{[{}^{14}NO_2] \times [{}^{15}NO]} = \frac{R(NO_2)}{R(NO)}$$
Eq. (1)

176 where R(NO, NO₂) are the ${}^{15}N/{}^{14}N$ ratios of NO and NO₂. By definition, the 177 $\delta^{15}N(NO)=(R(NO)/R(reference) - 1) \times 1000\%$ and $\delta^{15}N(NO_2)=(R(NO_2)/R(reference) - 1) \times 1000\%$, 178 but hereafter, the $\delta^{15}N$ values of NO, NO₂ and NO_x will be referred as $\delta(NO)$, $\delta(NO_2)$ and $\delta(NO_x)$, 179 respectively. Eq. (1) leads to:

180
$$\delta(NO_2) - \delta(NO) = (\alpha(NO_2 - NO) - 1) \times 1000 \% \times (1 + \delta(NO))$$

181 $= \epsilon(NO_2 - NO) \times (1 + \delta(NO))$ Eq. (2)

where $\varepsilon(NO_2-NO)$ is the isotope enrichment factor $\varepsilon(NO_2-NO) = (\alpha(NO_2-NO)-1)\times 1000\%$, (Hoefs, 2009). Using Eq. (2) and applying NO_x isotopic mass balance $(\delta(NO_x)=f(NO_2)\times\delta(NO_2)+(1$ $f(NO_2))\times\delta(NO)$, $f(NO_2)=[NO_2]/([NO]+[NO_2]))$ yields:

185
$$\delta(NO_2) - \delta(NO_x) = \varepsilon(NO_2 - NO) \times (1 + \varepsilon(NO_2 - NO)) \times (1 + \delta(NO_2)) \times (1 - f(NO_2))$$
 Eq. (3)

Here, $\delta(NO_x)$ equals to the $\delta^{15}N$ value of the cylinder NO and $f(NO_2)$ is the molar fraction of NO₂ with respect to total NO_x. Three experiments (see descriptions in method section) that measured $\delta(NO_x)$ showed consistent $\delta(NO_x)$ values of -58.7 ± 0.8 ‰ (n = 3), indicating $\delta(NO_x)$ remained unchanged throughout the experiments (as expected for isotope mass balance). Thus, the $\delta(NO_x)$ can be treated as a constant in Eq. (3), and the slope of a linear regression of ($\delta(NO_2)$ - $\delta(NO_x)/(1+\delta(NO_2))$ versus $1-f(NO_2)$ yields $\epsilon(NO_2-NO)/(1+\epsilon(NO_2-NO))$.

192	The plot of $(\delta(NO_2)-\delta(NO_x))/(1+\delta(NO_2))$ as a function of $1-f(NO_2)$ values from five
193	experiments yielded an ϵ (NO ₂ -NO) value of 27.5 \pm 1.2 ‰ at room temperature. This fractionation
194	factor is comparable to previously measured values but with some differences. Our result agrees
195	well with the α (NO ₂ -NO) value of 1.028±0.002 obtained by Begun and Melton (1956) at room
196	temperature. However, Walters et al., (2016) determined the α (NO ₂ -NO) values of NO-NO ₂
197	exchange in a 1-liter reaction vessel, which showed a slightly higher $\alpha(NO_2-NO)$ value of 1.035.
198	This discrepancy might originate from rapid heterogeneous reactions on the wall of the reaction
199	vessel at high NO_x concentrations and the small chamber size used by Walters et al. (2016). They
200	used a reaction vessel made of Pyrex, which is known to absorb water (Do Remus et al., 1983;
201	Takei et al., 1997) that can react with NO ₂ forming HONO, HNO ₃ and other N compounds.
202	Additionally, previous studies have suggested that Pyrex walls enhance the formation rate of N_2O_4
203	by over an order of magnitude (Barney & Finlayson-Pitts, 2000; Saliba et al., 2001), which at
204	isotopic equilibrium is enriched in ¹⁵ N compared to NO and NO ₂ (Walters & Michalski, 2015).
205	Therefore, their measured α (NO ₂ -NO) might be slightly higher than the actual α (NO ₂ -NO) value.
206	In this work, the 10 m ³ chamber has a much smaller surface to volume ratio relative to Walters et
207	al. (2016) which minimizes wall effects, and the walls were made of Teflon that minimize NO_2
208	surface reactivity, which was evidenced by the NO2 wall loss control experiment. Furthermore,
209	the low NO _x mixing ratios in our experiments minimized N_2O_4 and N_2O_3 formation. At NO and
210	NO_2 concentrations of 50 nmol mol^-1 the steady state concentrations of N_2O_4 and N_2O_3 were
211	calculated to be 0.014 and 0.001 pmol mol ⁻¹ , respectively (Atkinson et al., 2004). Therefore, we
212	suggest our measured α (NO ₂ -NO) value (1.0275±0.0012) may better reflect the room temperature
213	(298 K) NO-NO ₂ EIE in the ambient environment.

214 Unfortunately, the chamber temperature could not be controlled so we were not able to 215 investigate the temperature dependence of the EIE. Hence, we speculate that the $\alpha(NO_2-NO)$ 216 follows a similar temperature dependence pattern calculated in Walters et al. (2016). Walters et al. 217 (2016) suggested that, the ε (NO₂-NO) value would be 4.7 % higher at 273 K and 2.0 % lower at 218 310 K, relative to room temperature (298 K). Using this pattern and our experimentally determined 219 data, we suggest the α(NO₂-NO) values at 273 K, 298 K and 310 K are 32.2±1.2 ‰, 27.5±1.2 ‰ and 25.5±1.2 ‰, respectively. This 6.7‰ variation at least partially contribute to the daily and 220 seasonal variations of δ^{15} N values of NO₂ and nitrate in some areas (e.g., polar regions with strong 221 222 seasonal temperature variation). Thus, future investigations should be conducted to verify the EIE 223 temperature dependence.

224

3.2. Kinetic isotopic fractionation of Leighton Cycle

The photochemical reactions of NO_x will compete with the isotope exchange fractionations 226 227 between NO and NO₂. The NO-NO₂ photochemical cycle in the chamber was controlled by the 228 Leighton cycle: NO_2 photolysis and the $NO + O_3$ reaction. This is because there were no VOCs in 229 the chamber so no RO_2 was produced, which excludes the NO + RO_2 reaction. Likewise, the low 230 water vapor content (RH<10%) and the minor flux of photons < 310 nm results in minimal OH production and hence little HO₂ formation and subsequently trivial amount of NO₂ would be 231 232 formed by $NO + HO_2$. Applying these limiting assumptions, the EIE between NO and NO_2 (R1-233 R2) were only competing with the KIE (R3-R4) and the PHIFE in R5-R6:

234	$^{14}NO_2 \rightarrow ^{14}NO+O$	R3, rate constant= $j(NO_2)$
235	$^{15}NO_2 \rightarrow ^{15}NO+O$	R4, rate constant= $j(NO_2) \times \alpha_1$
236	$^{14}NO+O_3 \rightarrow ^{14}NO_2+O_2$	R5, rate constant= k_5

237 ${}^{15}NO+O_3 \rightarrow {}^{15}NO_2+O_2$ R6, rate constant= $k_5 \times \alpha_2$

In which $j(NO_2)$ is the NO₂ photolysis rate (1.4×10⁻³ s⁻¹ in these experiments), k_5 is the rate constant for the NO+O₃ reaction (1.73×10⁻¹⁴ cm³ s⁻¹, Atkinson et al., 2004), and $\alpha_{1,2}$ are isotopic fractionation factors for the two reactions. Previous studies (Freyer et al., 1993; Walters et al., 2016) have attempted to assess the competition between EIE (R1-R2), KIE and PHIFE (R3-R6), but none of them quantified the relative importance of the two processes, nor were α_1 or α_2 values experimentally determined. Here we provide the mathematical solution of EIE, KIE and PHIFE to illustrate how R1-R6 affect the isotopic fractionations between NO and NO₂.

First, the NO₂ lifetime with respect to isotopic exchange with NO ($\tau_{exchange}$) and photolysis (τ_{photo}) was determined:

247
$$\tau_{\text{exchange}} = \frac{1}{k_1 \times [NO]}$$
 Eq. (4)

248
$$\tau_{\text{photo}} = \frac{1}{j(\text{NO}_2)}$$
 Eq. (5)

249 We then define an A factor:

250
$$A = \begin{cases} \frac{\tau_{\text{exchange}}}{\tau_{\text{photo}}} & \text{when } j(\text{NO}_2) \neq 0\\ 0 & \text{when } j(\text{NO}_2) = 0 \end{cases}$$
 Eq. (6)

Using R1-R6 and Eq. (1)-(6), we solved steady-state $\delta(NO_2)$ and $\delta(NO)$ values (see calculations in supplementary material). Our calculations show that the $\delta(NO_2)$ - $\delta(NO)$ and $\delta(NO_2)$ - $\delta(NO_x)$ values at steady state can be expressed as functions of α_1 , α_2 , $\alpha(NO_2$ -NO) and A:

254
$$\delta(NO_2) - \delta(NO) (\%_0) = \frac{(\alpha_2 - \alpha_1) \times A + (\alpha(NO_2 - NO) - 1)}{A + 1} \times 1000 \%_0$$
 Eq. (7)

255
$$\delta(\text{NO}_2) - \delta(\text{NO}_x) (\%_0) = \frac{(\alpha_2 - \alpha_1) \times A + (\alpha(\text{NO}_2 - \text{NO}) - 1)}{A + 1} \times (1 - f(\text{NO}_2)) \times 1000 \%$$
Eq. (8)

Equation (7) shows the isotopic fractionation between NO and NO₂ (δ (NO₂)- δ (NO)) is largely determined by A, the EIE factor (α (NO₂-NO)-1) and the (α_2 - α_1) factor. This (α_2 - α_1) represents a combination of KIE and PHIFE, suggesting they act together as one factor; therefore, we name the (α_2 - α_1) factor Leighton Cycle Isotopic Effect, i.e., LCIE. Using measured $\delta(NO_2)$ - $\delta(NO)$ values, A values, and the previously determined EIE factor, we calculated that the best fit for the LCIE factor was -10±5 ‰ (r = 0.52, Fig. 1B). The uncertainties in the LCIE factor are relatively higher than that of the EIE factor, mainly because of the accumulated analytical uncertainties at low NO_x and O₃ concentrations, and low A values (0.10-0.28) due to the relatively low *j*(NO₂) value (1.4×10⁻³ s⁻¹) under the chamber irradiation conditions.

This LCIE factor determined in our experiments is in good agreement with theoretical 265 266 calculations. Walters and Michalski (2016) previously used an *ab initio* approach to determine an α_2 value of 0.9933 at room temperature, 0.9943 at 237 K and 0.9929 at 310 K. The variation of α_2 267 268 values from 273 K to 310 K is only ± 0.7 %, significantly smaller than our experimental uncertainty. The α_1 value was calculated using a ZPE shift model (Miller & Yung, 2000) to calculate the 269 270 isotopic fractionation of NO₂ by photolysis. Briefly, this model assumes both isotopologues have the same quantum yield function and the PHIFE was only caused by the differences in the ¹⁵NO₂ 271 and ¹⁴NO₂ absorption cross-section as a function of wavelength, thus α_1 values do not vary by 272 273 temperature. The ¹⁵NO₂ absorption cross-section was calculated by shifting the ¹⁴NO₂ absorption cross-section by the ¹⁵NO₂ zero-point energy (Michalski et al., 2004). When the ZPE shift model 274 275 was used with the irradiation spectrum of the chamber lights, the resulting α_1 value was 1.0023. 276 Therefore, the theoretically predicted α_2 - α_1 value should be -0.0090, i.e., -9.0 \pm 0.7 ‰ when temperature ranges from 273 K to 310 K. This result shows excellent agreement with our 277 278 experimentally determined room temperature α_2 - α_1 value of -10±5 ‰.

279 This model was then used to evaluate the variations of α_1 value to different lighting 280 conditions. The TUV model (TUV5.3.2, Madronich & Flocke, 1999) was used to calculate the 281 solar wavelength spectrum at three different conditions: early morning/late afternoon (solar zenith 282 angle=85 degree), mid-morning/afternoon (solar zenith angle=45 degree), noon (solar zenith 283 angle=0 degree). These spectrums were used in the ZPE shift model to calculate the α_1 values, 284 which are 1.0025, 1.0028, and 1.0029 at solar zenith angles of 85, 45 and 0 degree, respectively. 285 These values, along with the predicted α_1 value in the chamber, showed a total span of 0.6% 286 (1.0026 ± 0.0003) , which is again significantly smaller than our measured uncertainty. Therefore, 287 we suggest that our experimentally determined LCIE factor $(-10\pm5 \text{ }\%)$ can be used in most 288 tropospheric solar irradiation spectrums.

289 The equations can also be applied in tropospheric environments to calculate the combined isotopic fractionations of EIE and LCIE for NO and NO₂. First, the NO₂ sink reactions (mainly 290 291 NO₂+OH in the daytime) are at least 2-3 orders of magnitude slower than the Leighton cycle and 292 the NO-NO₂ isotope exchange reactions (Walters et al., 2016), therefore their effects on the $\delta(NO_2)$ 293 should be minor. Second, although the conversion of NO into NO₂ in the ambient environment is also controlled by NO + RO₂ and HO₂ in addition to NO+O₃ (e.g., King et al., 2001), Eq. (7) still 294 295 showed good agreement with field observations in previous studies. Freyer et al. (1993) determined the annual average daytime $\delta(NO_2)$ - $\delta(NO)$ at Julich, Germany along with average 296 daytime NO concentration (9 nmol mol⁻¹, similar to our experimental conditions) to be 297 +18.03 \pm 0.98 ‰. Using Eq. (7), assuming the daytime average *j*(NO₂) value throughout the year 298 was $5.0\pm1.0\times10^{-3}$, and a calculated A value from measured NO_x concentration ranged from 0.22-299 300 0.33, the average NO-NO₂ fractionation factor was calculated to be $+18.8\pm1.4$ ‰ (Fig. 1B), in 301 excellent agreement with the measurements in the present study. This agreement suggests the 302 NO+RO₂/HO₂ reactions might have similar fractionation factors as NO+O₃. Therefore, we suggest Eq. (7) and (8) can be used to estimate the isotopic fractionations between NO and NO₂ in the
troposphere (Fig. 1C).

305

306 3.3 Calculating nitrogen isotopic fractionations of NO-NO₂

307 First, Eq. (7) was used to calculate the $\Delta(NO_2-NO) = \delta(NO_2)-\delta(NO)$ at a wide range of NO_x concentrations, $f(NO_2)$ and $j(NO_2)$ values (Fig. 2A-D). $j(NO_2)$ values of 0 s⁻¹ (Fig. 2A), 308 1.4×10⁻³ s⁻¹ (Fig. 2B), 5×10⁻³ s⁻¹ (Fig. 2C) and 1×10⁻² s⁻¹ (Fig. 2D) were selected to represent 309 310 nighttime, dawn (as well as the laboratory conditions of our experiments), daytime average and noon, respectively. Each panel represented a fixed $i(NO_2)$ value, and the $\Delta(NO_2-NO)$ values were 311 calculated as a function of the A value, which was derived from NO_x concentration and $f(NO_2)$. 312 The A values have a large span, from 0 to 500, depending on the $j(NO_2)$ value and the NO 313 concentration. When A=0 ($i(NO_2)=0$) and $f(NO_2)<1$ (meaning NO-NO₂ coexist and [O₃]=0), Eq. 314 (7) and (8) become Eq. (2) and (3), showing the EIE was the sole factor, the Δ (NO₂-NO) values 315 were solely controlled by EIE which has a constant value of +27.5 ‰ at 298K (Fig. 2A). When 316 317 $j(NO_2) > 0$, the calculated $\Delta(NO_2-NO)$ values showed a wide range from -10.0 % (controlled by LCIE factor: α_2 - α_1 =-10 ‰) to +27.5 ‰ (controlled by EIE factor: α (NO₂-NO)-1 = +27.5 ‰). Fig. 318 2B-D display the transition from a LCIE-dominated regime to an EIE-dominated regime. The 319 LCIE-dominated regime is characterized by low $[NO_x]$ (<50 pmol mol⁻¹), representing remote 320 321 ocean areas and polar regions (Beine et al., 2002; Custard et al., 2015). At this range the A value can be greater than 200, thus Eq. (7) can be simplified as: $\Delta(NO_2-NO) = (\alpha_2-\alpha_1) \times 1000 \%$, 322 suggesting the LCIE almost exclusively controls the NO-NO₂ isotopic fractionation. The Δ (NO₂-323 324 NO) values of these regions are predicted to be <0 % during most time of the day and <-5 % at 325 noon. On the other hand, the EIE-dominated regime was characterized by high [NO_x] (>20 nmol mol⁻¹) and low $f(NO_2)$ (< 0.6), representative of regions with intensive NO emissions, e.g., near roadside or stack plumes (Clapp & Jenkin, 2001; Kimbrough et al., 2017). In this case, the $\tau_{exchange}$ are relatively short (10-50 s) compared to the τ_{photo} (approximately 100 s at noon and 1000 s at dawn), therefore the A values are small (0.01-0.5). The EIE factor in this regime thus is much more important than the LCIE factor, resulting in high $\Delta(NO_2-NO)$ values (>20 ‰). Between the two regimes, both EIE and LCIE are competitive and therefore it is necessary to use Eq. (7) to quantify the $\Delta(NO_2-NO)$ values.

Fig. 2 also implies that changes in the $j(NO_2)$ value can cause the diurnal variations in $\Delta(NO_2-NO)$ values. Changing $j(NO_2)$ would affect the value of A and consequently the NO-NO₂ isotopic fractionations in two ways: 1) changes in $j(NO_2)$ value would change the photolysis intensity, therefore the τ_{photo} value; 2) in addition, changes in $j(NO_2)$ value would also alter the steady state NO concentration, therefore changing the $\tau_{exchange}$ (Fig. 2C). The combined effect of these two factors on the A value varies along with the atmospheric conditions, and thus needs to be carefully calculated using NO_x concentration data and atmospheric chemistry models.

We then calculated the differences of δ^{15} N values between NO₂ and total NO_x, e.g. Δ (NO₂-340 NO_x) = $\delta(NO_2)$ - $\delta(NO_x)$ in Fig. 2E-H. Since $\Delta(NO_2-NO_x)$ are connected through the observed $\delta^{15}N$ 341 of NO₂ (or nitrate) to the δ^{15} N of NO_x sources, this term might be useful in field studies (e.g., 342 Chang et al., 2018; Zong et al., 2017). The calculated Δ (NO₂-NO_x) values (Fig. 2E-H) also showed 343 a LCIE-dominated regime at low $[NO_x]$ and an EIE-dominated regime at high $[NO_x]$. The $\Delta(NO_2$ -344 345 NO_x) values were dampened by the 1- $f(NO_2)$ factor comparing to $\Delta(NO_2-NO)$, as shown in Eq. 346 (3) and (8): $\Delta(NO_2-NO_x) = \Delta(NO_2-NO) \times (1-f(NO_2))$. At high $f(NO_2)$ values (>0.8), the differences between $\delta(NO_2)$ and $\delta(NO_x)$ were less than 5 %, thus the measured $\delta(NO_2)$ values were similar to 347 $\delta(NO_x)$, although the isotopic fractionation between NO and NO₂ could be noteworthy. Some 348

349 ambient environments with significant NO emissions or high NO₂ photolysis rates usually have $f(NO_2)$ values between 0.4-0.8 (Mazzeo et al., 2005; Vicars et al., 2013). In this scenario, the 350 Δ (NO₂-NO_x) values in Fig. 2F-H showed wide ranges of -4.8 % to +15.6 %, -6.0 % to +15.0 %, 351 and -6.3 % to +14.2 % at $i(NO_2)=1.4\times10^{-3} \text{ s}^{-1}$, $5\times10^{-3} \text{ s}^{-1}$, $1\times10^{-2} \text{ s}^{-1}$, respectively. These significant 352 353 differences again highlighted the importance of both LCIE and EIE (Eq. (7) and (8)) in calculating 354 the $\Delta(NO_2-NO_x)$. In the following discussion, we assume 1) the α_1 value remain constant (see 355 discussion above), 2) the NO+RO₂/HO₂ reactions have the same fractionation factors (α_2) as NO+O₃, and 3) both EIE and LCIE do not display significant temperature dependence, then use 356 357 Equations (7) and (8) and this laboratory determined LCIE factor (-10 ‰) to calculate the nitrogen 358 isotopic fractionation between NO and NO₂ at various tropospheric atmospheric conditions.

359

360 4. Implications

The daily variations of $\Delta(NO_2-NO_x)$ values at two roadside NO_x monitoring sites were 361 predicted to demonstrate the effects of NO_x concentrations to the NO-NO₂ isotopic fractionations. 362 Hourly NO and NO₂ concentrations were acquired from a roadside site at Anaheim, CA 363 (https://www.arb.ca.gov) and an urban site at Evansville, IN (http://idem.tx.sutron.com) on July 364 365 25, 2018. The hourly $j(NO_2)$ values output from the TUV model (Madronich & Flocke, 1999) at 366 these locations was used to calculate the daily variations of $\Delta(NO_2-NO_x)$ values (Fig. 3A, B) by applying Eq. (8). Hourly NO_x concentrations were 12-51 nmol mol⁻¹ at Anaheim and 9-38 nmol 367 368 mol⁻¹ at Evansville and the $f(NO_2)$ values at both sites did not show significant daily variations 369 $(0.45\pm0.07 \text{ at Anaheim and } 0.65\pm0.08 \text{ at Evansville})$, likely because the NO_x concentrations were 370 controlled by the high NO emissions from the road (Gao, 2007). The calculated Δ (NO₂-NO_x) 371 values using Eq. (8) showed significant diurnal variations. During the nighttime, the isotopic

fractionations were solely controlled by the EIE, the predicted $\Delta(NO_2-NO_x)$ values were 372 373 +14.5±2.0 ‰ and +8.7±2.1 ‰ at Anaheim and Evansville, respectively. During the daytime, the existence of LCIE lowered the predicted $\Delta(NO_2-NO_x)$ values to +9.8±1.7 ‰ at Anaheim and 374 $+3.1\pm1.5$ ‰ at Evansville while the $f(NO_2)$ values at both sites remained similar. The lowest 375 Δ (NO₂-NO_x) values for both sites (+7.0 ‰ and +1.7 ‰) occurred around noon when the NO_x 376 377 photolysis was the most intense. In contrast, if one neglects the LCIE factor in the daytime, the Δ (NO₂-NO_x) values would be +12.9±1.5 ‰ and +10.0±1.6 ‰ respectively, an overestimation of 378 3.1 ‰ and 6.9 ‰. These discrepancies suggested that the LCIE played an important role in the 379 380 NO-NO₂ isotopic fractionations and neglecting it could bias the NO_x source apportionment using δ^{15} N of NO₂ or nitrate. 381

382 The role of LCIE was more important in less polluted sites. The $\Delta(NO_2-NO_x)$ values 383 calculated for a suburban site near San Diego, CA, USA, again using the hourly NO_x concentrations (https://www.arb.ca.gov, Fig. 3C) and *j*(NO₂) values calculated from the TUV 384 model. NO_x concentrations at this site varied from 1 to 9 nmol mol⁻¹. During the nighttime, NO_x 385 386 was in the form of NO₂ ($f(NO_2) = 1$) because O₃ concentrations were higher than NO_x, thus the $\delta(NO_2)$ values should be identical to $\delta(NO_x)$ ($\Delta(NO_2-NO_x) = 0$). In the daytime a certain amount 387 of NO was produced by direct NO emission and NO₂ photolysis but the $f(NO_2)$ was still high 388 389 (0.73 ± 0.08) . Our calculation suggested the daytime $\Delta(NO_2-NO_x)$ values should be only +1.3±3.2 ‰ 390 with a lowest value of -1.3 ∞ . These $\Delta(NO_2-NO_x)$ values were similar to the observed and modeled 391 summer daytime $\delta(NO_2)$ values in West Lafayette, IN (Walters et al., 2018), which suggest the average daytime $\Delta(NO_2-NO_x)$ values at $NO_x = 3.9 \pm 1.2$ nmol mol⁻¹ should range from +0.1 % to 392 +2.4 %. In this regime, we suggest the $\Delta(NO_2-NO_x)$ values were generally small due to the 393 394 significant contribution of LCIE and high *f*(NO₂).

395 The LCIE should be the dominant factor controlling the NO-NO₂ isotopic fractionation at 396 remote regions, resulting in a completely different diurnal pattern of Δ (NO₂-NO_x) compared with 397 the urban-suburban area. Direct hourly measurements of NO_x at remote sites are rare, thus we used total NO_x concentration of 50 pmol mol⁻¹, daily O₃ concentration of 20 nmol mol⁻¹ at Summit, 398 399 Greenland (Dibb et al., 2002; Hastings et al., 2004; Honrath et al., 1999; Yang et al., 2002), and 400 assumed the conversion of NO to NO₂ was completely controlled by O₃ to calculate the NO/NO₂ ratios. Here the isotopes of NO_x were almost exclusively controlled by the LCIE due to the high 401 A values (>110). The Δ (NO₂-NO_x) values displayed a clear diurnal pattern (Fig. 3D) with highest 402 403 value of -0.3 ‰ in the "nighttime" (solar zenith angle >85 degree) and lowest value of -5.0 ‰ in the mid-day. This suggest that the isotopic fractionations between NO and NO₂ were almost 404 completely controlled by LCIE at remote regions, when NO_x concentrations were <0.1 nmol mol⁻ 405 406 ¹. However, since the isotopic fractionation factors of nitrate-formation reactions (NO₂+OH, NO_3+HC , $N_2O_5+H_2O$) are still unknown, more studies are needed to fully explain the daily and 407 seasonal variations of $\delta(NO_3^-)$ at remote regions. 408

409 Nevertheless, our results have a few limitations. First, currently there are very few field observations that can be used to evaluate our model, therefore, future field observations that 410 measure the δ^{15} N values of ambient NO and NO₂ should be carried out to test our model. Second, 411 more work, including theoretical and experimental studies, is needed to investigate the isotope 412 fractionation factors occurring during the conversion from NO_x to NO_y and nitrate: in the NO_y 413 414 cycle, EIE (isotopic exchange between NO₂, NO₃ and N₂O₅), KIE (formation of NO₃, N₂O₅ and 415 nitrate) and PHIFE (photolysis of NO₃, N₂O₅, HONO and sometimes nitrate) may also exist and 416 be relevant for the δ^{15} N of HNO₃ and HONO. In particular, the N isotope fractionation occurring during the NO₂ + OH \rightarrow HNO₃ reaction needs investigation. Such studies could help us modeling 417

418 the isotopic fractionation between NO_x emission and nitrate, and eventually enable us to analyze the $\delta^{15}N$ value of NO_x emission by measuring the $\delta^{15}N$ values of nitrate aerosols. Third, our 419 420 discussion only focuses on the reactive nitrogen chemistry in the troposphere, however, the 421 nitrogen chemistry in the stratosphere is drastically different from the tropospheric chemistry, thus 422 future studies are also needed to investigate the isotopic fractionations in the stratospheric nitrogen 423 chemistry. Last, the temperature dependence of both EIE and LCIE needs to be carefully 424 investigated because of the wide range of temperature in both troposphere and stratosphere, and 425 the temperature dependence could also contribute to the seasonality of isotopic fractionations 426 between NO_x and NO_y molecules.

427

428 5. Conclusions

The effect of NO_x photochemistry on the nitrogen isotopic fractionations between NO and 429 430 NO₂ was investigated. We first measured the isotopic fractionations between NO and NO₂ and 431 provided mathematical solutions to assess the impact of NO_x level and NO₂ photolysis rate ($i(NO_2)$) 432 to the relative importance of EIE and LCIE. The EIE and LCIE isotope fractionation factors, at 433 room temperature, were determined to be 1.0275±0.0012 and 0.990±0.005, respectively. These calculations and measurements can be used to determine the steady state $\Delta(NO_2-NO)$ and $\Delta(NO_2-NO)$ 434 435 NO_x) values at room temperature. Subsequently we applied our equations to polluted, clean and 436 remote sites to model the daily variations of $\Delta(NO_2-NO_x)$ values. We found that the $\Delta(NO_2-NO_x)$ values could vary from over +20 ‰ to less than -5 ‰ depending on the environment: in general, 437 438 the role of LCIE becoming more important at low NOx concentrations, which tend to decrease the 439 Δ (NO₂-NO_x) values. Our work provided a mathematical approach to quantify the nitrogen isotopic

440	fractionations between NO and NO_2 that can be applied to many tropospheric environments, which
441	could help interpret the measured $\delta^{15}N$ values of NO ₂ and nitrate in field observation studies.
442	
443	Acknowledgement
444	We thank NCAR's Advanced Study Program granted to Jianghanyang Li. The National
445	Center for Atmospheric Research is operated by the University Corporation for Atmospheric
446	Research, under the sponsorship of the National Science Foundation. We also thank funding
447	support from Purdue Climate Change Research Center and A. H. Ismail Interdisciplinary Program
448	Doctoral Research Travel Award granted by Purdue University.
449	Data Availability
450	Data acquired from this study was deposited at Open Sciences Framework (Li, 2019,
451	DOI 10.17605/OSF.IO/JW8HU).
452	Author contribution
453	J. Li and G. Michalski designed the experiments, X. Zhang and J. Li conducted the
454	experiments. X. Zhang, G. Michalski, J. Orlando and G. Tyndall helped J. Li in interpreting the
455	results. The manuscript was written by J. Li and all the authors have contributed during the revision
456	of this manuscript.
457	Competing interest
458	The authors declare no competing interest.
459	
460	References:
461 462 463 464 465	Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., et al. (2004). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I-gas phase reactions of O_x , HO_x , NO_x and SO_x species. Atmospheric Chemistry and Physics, 4(6), 1461–1738.

- Barney, W. S., & Finlayson-Pitts, B. J. (2000). Enhancement of N₂O₄ on porous glass at room 466 temperature: A key intermediate in the heterogeneous hydrolysis of NO₂? The Journal of Physical
- 467
 - Chemistry A, 104(2), 171–175. 468 469
 - 470 Begun, G. M., & Fletcher, W. H. (1960). Partition function ratios for molecules containing nitrogen isotopes. The Journal of Chemical Physics, 33(4), 1083-1085. 471
 - 472 473 Begun, G. M., & Melton, C. E. (1956). Nitrogen isotopic fractionation between NO and NO₂ and mass discrimination in mass analysis of NO₂. The Journal of Chemical Physics, 25(6), 1292–1293. 474
 - 475 476 Beine, H. J., Honrath, R. E., Dominé, F., Simpson, W. R., & Fuentes, J. D. (2002). NO_x during 477 background and ozone depletion periods at Alert: Fluxes above the snow surface. Journal of 478 Geophysical Research: Atmospheres, 107(D21), ACH-7.
 - 480 Bigeleisen, J., & Mayer, M. G. (1947). Calculation of equilibrium constants for isotopic exchange reactions. The Journal of Chemical Physics, 15(5), 261-267. 481
 - 482

483 Bigeleisen, J., & Wolfsberg, M. (1957). Theoretical and experimental aspects of isotope effects in 484 chemical kinetics. Advances in Chemical Physics, 15-76. 485

- 486 Casciotti, K. L., & McIlvin, M. R. (2007). Isotopic analyses of nitrate and nitrite from reference mixtures and application to Eastern Tropical North Pacific waters. Marine Chemistry, 107(2), 184-487 488 201. 489
- 490 Chang, Y., Zhang, Y., Tian, C., Zhang, S., Ma, X., Cao, F., et al. (2018). Nitrogen isotope 491 fractionation during gas-to-particle conversion of NO_x to NO_3^- in the atmosphere–implications for 492 isotope-based NO_x source apportionment. Atmospheric Chemistry and Physics, 18(16), 11647-493 11661.
- 494 495 Clapp, L. J., & Jenkin, M. E. (2001). Analysis of the relationship between ambient levels of O₃, 496 NO_2 and NO as a function of NO_x in the UK. Atmospheric Environment, 35(36), 6391–6405.
- 497
- 498 Custard, K. D., Thompson, C. R., Pratt, K. A., Shepson, P. B., Liao, J., Huey, L. G., et al. (2015). 499 The NO_x dependence of bromine chemistry in the Arctic atmospheric boundary layer. Atmospheric Chemistry and Physics, 15(18), 10799–10809. 500
- 501
- 502 Dibb, J. E., Arsenault, M., Peterson, M. C., & Honrath, R. E. (2002). Fast nitrogen oxide photochemistry in Summit, Greenland snow. Atmospheric Environment, 36(15-16), 2501-2511. 503
- 504 505 Do Remus, R. H., Mehrotra, Y., Lanford, W. A., & Burman, C. (1983). Reaction of water with 506 glass: influence of a transformed surface layer. Journal of Materials Science, 18(2), 612–622.
- 507 508 Elliott, E. M., Kendall, C., Boyer, E. W., Burns, D. A., Lear, G. G., Golden, H. E., et al. (2009).
 - 509 Dual nitrate isotopes in dry deposition: Utility for partitioning NO_x source contributions to
 - 510 landscape nitrogen deposition. Journal of Geophysical Research: Biogeosciences, 114(G4), 511 G04020. https://doi.org/10.1029/2008JG000889

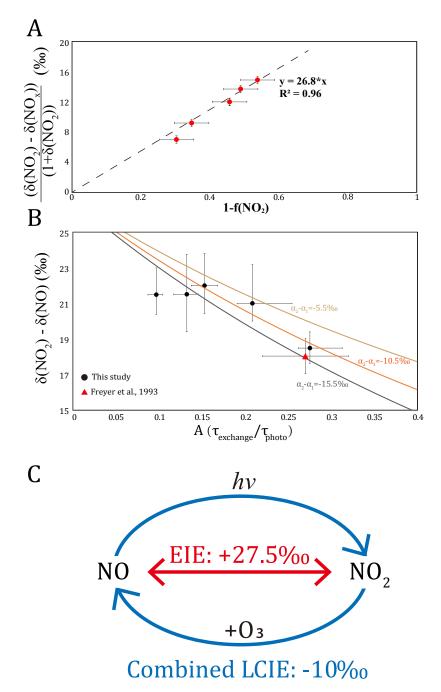
- 512
- Felix, J. D., & Elliott, E. M. (2014). Isotopic composition of passively collected nitrogen dioxide
 emissions: Vehicle, soil and livestock source signatures. Atmospheric Environment, 92, 359–366.
- Felix, J. D., Elliott, E. M., & Shaw, S. L. (2012). Nitrogen isotopic composition of coal-fired power
 plant NO_x: influence of emission controls and implications for global emission inventories.
 Environmental Science & Technology, 46(6), 3528–3535.
- 519
- Frey, M. M., Savarino, J., Morin, S., Erbland, J., & Martins, J. M. F. (2009). Photolysis imprint in
 the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for
- 522 reactive nitrogen cycling. Atmos. Chem. Phys, 9, 8681-8696.
- 523
- 524 Freyer, H. D. (1991). Seasonal variation of ${}^{15}N/{}^{14}N$ ratios in atmospheric nitrate species. Tellus B, 525 43(1), 30–44. <u>https://doi.org/10.1034/j.1600-0889.1991.00003.x</u>
- 526
- Freyer, H. D., Kley, D., Volz-Thomas, A., & Kobel, K. (1993). On the interaction of isotopic
 exchange processes with photochemical reactions in atmospheric oxides of nitrogen. Journal of
 Geophysical Research: Atmospheres, 98(D8), 14791–14796.
- 530
- Gao, H. O. (2007). Day of week effects on diurnal ozone/NO_x cycles and transportation emissions
 in Southern California. Transportation Research Part D: Transport and Environment, 12(4), 292–
 305.
- 534
 535 Gobel, A. R., Altieri, K. E., Peters, A. J., Hastings, M. G., & Sigman, D. M. (2013). Insights into
 536 anthropogenic nitrogen deposition to the North Atlantic investigated using the isotopic
 537 composition of aerosol and rainwater nitrate. Geophysical Research Letters, 40(22), 5977–5982.
- 538 <u>https://doi.org/10.1002/2013GL058167</u>
- 539
- Hastings, M G, Jarvis, J. C., & Steig, E. J. (2009). Anthropogenic impacts on nitrogen isotopes of
 ice-core nitrate. Science, 324(5932), 1288.
- 542
- Hastings, M G, Steig, E. J., & Sigman, D. M. (2004). Seasonal variations in N and O isotopes of
 nitrate in snow at Summit, Greenland: Implications for the study of nitrate in snow and ice cores.
 Journal of Geophysical Research: Atmospheres, 109(D20).
- 546
- 547 Hoefs, J. (2009). Stable isotope geochemistry (Vol. 285). Springer.
- 548
- Honrath, R. E., Peterson, M. C., Guo, S., Dibb, J. E., Shepson, P. B., & Campbell, B. (1999).
 Evidence of NO_x production within or upon ice particles in the Greenland snowpack. Geophysical
 Research Letters, 26(6), 695–698.
- 552
- 553 Jarvis, J. C., Steig, E. J., Hastings, M. G., & Kunasek, S. A. (2008). Influence of local
- 554 photochemistry on isotopes of nitrate in Greenland snow. Geophysical Research Letters, 35(21).
- Kendall, C., Elliott, E. M., & Wankel, S. D. (2007). Tracing anthropogenic inputs of nitrogen to
 ecosystems. Stable Isotopes in Ecology and Environmental Science, 2, 375–449.
- 557

- 558 Kimbrough, S., Owen, R. C., Snyder, M., & Richmond-Bryant, J. (2017). NO to NO₂ conversion 559 rate analysis and implications for dispersion model chemistry methods using Las Vegas, Nevada
- near-road field measurements. Atmospheric Environment, 165, 23–34.
- King, Martin D., Carlos E. Canosa-Mas, and Richard P. Wayne. "Gas-phase reactions between
 RO₂ and NO, HO₂ or CH₃O₂: correlations between rate constants and the SOMO energy of the
 peroxy (RO₂) radical." Atmospheric Environment 35.12 (2001): 2081-2088.
- 565
- 566 Knote, Christoph, et al. "Influence of the choice of gas-phase mechanism on predictions of key
 567 gaseous pollutants during the AQMEII phase-2 intercomparison." Atmospheric Environment 115
 568 (2015): 553-568.
- 569
- Li, J. (2019). Quantifying the nitrogen equilibrium and photochemistry-induced kinetic isotopic
 effects between NO and NO₂. Retrieved from osf.io/jw8hu
- 573 Madronich, S., & Flocke, S. (1999). The role of solar radiation in atmospheric chemistry. In
 574 Environmental photochemistry (pp. 1–26). Springer.
- 575

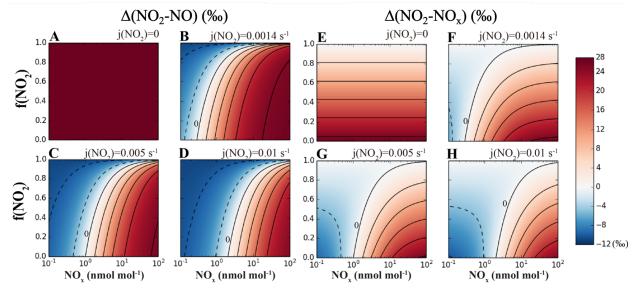
Mazzeo, N. A., Venegas, L. E., & Choren, H. (2005). Analysis of NO, NO₂, O₃ and NO_x
concentrations measured at a green area of Buenos Aires City during wintertime. Atmospheric
Environment, 39(17), 3055–3068.

- 579
- McIlvin, M. R., & Altabet, M. A. (2005). Chemical conversion of nitrate and nitrite to nitrous
 oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Analytical Chemistry,
 77(17), 5589–5595.
- 583
- Michalski, G., Jost, R., Sugny, D., Joyeux, M., & Thiemens, M. (2004). Dissociation energies of
 six NO₂ isotopologues by laser induced fluorescence spectroscopy and zero-point energy of some
 triatomic molecules. The Journal of Chemical Physics, 121(15), 7153–7161.
- 587
- 588 Michalski, G., Bockheim, J. G., Kendall, C., & Thiemens, M. (2005). Isotopic composition of
 589 Antarctic Dry Valley nitrate: Implications for NO_y sources and cycling in Antarctica. Geophysical
 590 Research Letters, 32(13).
- 591
- 592 Miller, C. E., & Yung, Y. L. (2000). Photo-induced isotopic fractionation. Journal of Geophysical
 593 Research: Atmospheres, 105(D23), 29039–29051.
- 594
- Monse, E. U., Spindel, W., & Stern, M. J. (1969). Analysis of isotope-effect calculations illustrated
 with exchange equilibria among oxynitrogen compounds. Rutgers-The State Univ., Newark, NJ.
- 598 Morin, S., Savarino, J., Frey, M. M., Domine, F., Jacobi, H.-W., Kaleschke, L., & Martins, J. M.
- 599 F. (2009). Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean
- 600 boundary layer from 65°S to 79°N. J. Geophys. Res, 114. <u>https://doi.org/10.1029/2008JD010696</u>
- 601

- Park, Y.-M., Park, K.-S., Kim, H., Yu, S.-M., Noh, S., Kim, M.-S., et al. (2018). Characterizing
- isotopic compositions of TC-C, NO₃⁻-N, and NH₄⁺-N in PM2.5 in South Korea: Impact of China's
 winter heating. <u>https://doi.org/10.1016/j.envpol.2017.10.072</u>
- Saliba, N. A., Yang, H., & Finlayson-Pitts, B. J. (2001). Reaction of gaseous nitric oxide with
 nitric acid on silica surfaces in the presence of water at room temperature. The Journal of Physical
 Chemistry A, 105(45), 10339–10346.
- 609
- 610 Savarino, J., Morin, S., Erbland, J., Grannec, F., Patey, M. D., Vicars, W., et al. (2013). Isotopic
- 611 composition of atmospheric nitrate in a tropical marine boundary layer. Proceedings of the
 612 National Academy of Sciences, 110(44), 17668–17673. https://doi.org/10.1073/pnas.1216639110
- 613
- Sharma, H. D., Jervis, R. E., & Wong, K. Y. (1970). Isotopic exchange reactions in nitrogen oxides.
 The Journal of Physical Chemistry, 74(4), 923–933.
- 616
- Takei, T., Yamazaki, A., Watanabe, T., & Chikazawa, M. (1997). Water adsorption properties on
 porous silica glass surface modified by trimethylsilyl groups. Journal of Colloid and Interface
 Science, 188(2), 409–414.
- 621 Urey, H. C. (1947). The thermodynamic properties of isotopic substances. Journal of the Chemical
 622 Society (Resumed), 562-581.
- 623


Vicars, W. C., Morin, S., Savarino, J., Wagner, N. L., Erbland, J., Vince, E., et al. (2013). Spatial
and diurnal variability in reactive nitrogen oxide chemistry as reflected in the isotopic composition
of atmospheric nitrate: Results from the CalNex 2010 field study. Journal of Geophysical Research:
Atmospheres, 118(18), 10–567.

628


Walters, W. W., & Michalski, G. (2015). Theoretical calculation of nitrogen isotope equilibrium
exchange fractionation factors for various NO_y molecules. Geochimica et Cosmochimica Acta,
164, 284–297.

- 632
- 635
 636 Walters, W. W., & Michalski, G. (2016). Ab initio study of nitrogen and position-specific oxygen
 637 kinetic isotope effects in the NO+O₃ reaction. The Journal of chemical physics, 145(22), 224311.
- 638
 639 Walters, W. W., Simonini, D. S., & Michalski, G. (2016). Nitrogen isotope exchange between NO
 640 and NO₂ and its implications for δ¹⁵N variations in tropospheric NO_x and atmospheric nitrate.
- 641 Geophysical Research Letters, 43(1), 440–448.
- 642
- Walters, W. W., Fang, H., & Michalski, G. (2018). Summertime diurnal variations in the isotopic
 composition of atmospheric nitrogen dioxide at a small midwestern United States city.
 Atmospheric Environment, 179, 1–11.
- 646

- 647 Williams, E. L., & Grosjean, D. (1990). Removal of atmospheric oxidants with annular denuders.
 648 Environmental Science & Technology, 24(6), 811–814.
- 649
- 450 Yang, J., Honrath, R. E., Peterson, M. C., Dibb, J. E., Sumner, A. L., Shepson, P. B., et al. (2002).
- 651 Impacts of snowpack emissions on deduced levels of OH and peroxy radicals at Summit,
- 652 Greenland. Atmospheric Environment, 36(15–16), 2523–2534.
- 653
- 54 Zhang, X., Ortega, J., Huang, Y., Shertz, S., Tyndall, G. S., & Orlando, J. J. (2018). A steady-state
- 655 continuous flow chamber for the study of daytime and nighttime chemistry under atmospherically
- relevant NO levels. Atmospheric Measurement Techniques, 11(5), 2537–2551.
- 657
- 658 Zong, Z., Wang, X., Tian, C., Chen, Y., Fang, Y., Zhang, F., et al. (2017). First assessment of NO_x
- 559 sources at a regional background site in North China using isotopic analysis linked with modeling.
- 660 Environmental Science & Technology, 51(11), 5923–5931.

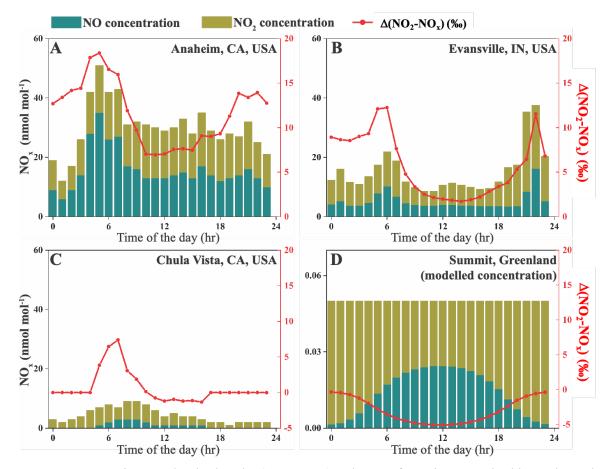


Fig. 1 δ¹⁵N of NO₂ collected in dark and UV irradiation experiments. **A.** Results from five dark experiments yielded a line with ϵ (NO₂-NO)/(1+ ϵ (NO₂-NO)) value of 26.8 ‰ and ϵ (NO₂-NO) value of 27.5 ‰; **B.** Results from five UV irradiation experiments (black points) and a previous field study (red triangle). The three lines represent different (α_2 - α_1) values: the (α_2 - α_1)=-10 ‰ line showed the best fit to our experimental data as well as the previous field observation; **C.** a sketch of the isotopic fractionation processes between NO and NO₂.

Fig. 2 Calculating isotopic fractionation values between NO-NO₂ (Δ (NO₂-NO), **A-D**) and NO_x-

671 NO₂ (Δ (NO₂-NO_x), **E-H**) at various *j*(NO₂), NO_x level and *f*(NO₂) using Eq. (7) and (8). Each 672 panel represents a fixed *j*(NO₂) value (showing on the upper right side of each panel), and the 673 fractionation values are shown by color. Lines are contours with the same fractionation values, at 674 an interval of 5‰, the contour line representing 0‰ was marked on each panel except for A and 675 E.

Fig. 3 NO_x concentrations and calculated Δ (NO₂-NO_x) values at four sites. Stacked bars show the NO and NO₂ concentrations extracted from monitoring sites (A-C) or calculated using 0-D box

679 model (D); the red lines are $\Delta(NO_2-NO_x)$ values at each site.