## **Response to editor comments**

## Dear Dr. Kaiser,

Thank you for your valuable input to this manuscript. Your suggestions significantly enhanced the overall quality of our paper. Please see below for a detailed point-by-point response.

1) Please integrate the supplement into the main text as appendix or appendices. The ACP manuscript guidelines require that "Supplementary material is reserved for items that cannot reasonably be included in the main text or as appendices. These may include short videos, very large images, maps, CIF files, as well as short computer codes such as matlab or python script. [...] Normal size figures, tables, as well as technical or theoretical developments that do not need to be included in the main text should be included as appendices."

Thanks for pointing this out. We moved the supplementary material into appendices and main text, now as Appendix A, B and C. We also numbered the figures and equations according to the format guideline.

2) Please remove the unnecessary approximations made in deriving equations 7 and 8, and make them consistent with Eq. 3. I have included the final steps of the calculation without approximation here (using the same  $\delta$  and  $\varepsilon$  symbols as in the calculation I sent you during the discussion stage). Obviously, your steps up to the ratio  $R/R_2$  are fine (except that I have used the inverse ratio, to simplify the final step of the calculation): Setting A = 0 (very fast isotope exchange) immediately reproduces Eq. 3 for verification.

Thanks for this advice and we agree removing the approximations will making Eq. 2 & 3 consistent with Eq. 7 & 8. In Eq. 7 & 8, we get rid of the approximation that assuming  $\delta(NO_2)$ - $\delta(NO)=R(NO_2)/R(NO)$ . The non-approximated equation became:

$$\delta(\text{NO}_2) - \delta(\text{NO}) = \frac{(\alpha_2 - \alpha_1) \times \text{A} + (\alpha(\text{NO}_2 - \text{NO}) - 1)}{\alpha_1 \text{A} + 1} (1 + \delta(\text{NO}))$$

Here, when A=0, Eq. 7 become Eq. 2, therefore the two sets of equations are consistent.

However, we suggest the approximation that  $\alpha_1 * A+1=A+1$  can still be applied since it introduces very little error and will greatly simplify the equation by reducing the number of unknowns. We calculated the  $\delta(NO_2)-\delta(NO)$  values before and after this approximation by assuming  $\alpha_1=1.005$ , which is an overestimation because our theoretical calculations show that it should only range from 1.0025 to 1.0029. Even under this assumption, we can calculate that the differences between approximation vs. non-approximation was less than 0.05‰ (with A ranging from 0.001 to 500). This difference is much smaller than the analytical uncertainty in many labs so it can be neglected. In the meantime, if we use this assumption ( $\alpha_1 * A=A$ ), we can mathematically reduce the number of unknowns from two ( $\alpha_2-\alpha_1$  and  $\alpha_1$ ) to one (treating  $\alpha_2-\alpha_1$  as one number). This approximation emphasized that the  $\alpha_2-\alpha_1$  value, or the LCIE factor, acted as one important factor. Therefore, we suggest applying this approximation can simplify our model without bringing much uncertainty. 3) There is no need to repeat the reaction equations (R1 to R6, p. 5 of current supplement) or the definition of delta values (p. 6 of current supplement, lines from "Next, to calculate ..." to " $R_{NO2}/R_{NO} - 1$ ") in the Appendix.

In the appendix, we removed R1-R6 and referred the reactions to the main text. We also removed the delta definition equations.

4) Please remove unnecessary factors ("1000 ‰") from your mathematical equations (e.g. l. 180 and 182).

# Revised as suggested.

5) Please also remove the unnecessary multiplication symbols (×). These make the equations unnecessarily difficult to read. Such multiplication symbols are rarely required outside scientific notation, e.g.  $8 \times 10^{-14}$  cm<sup>3</sup> s<sup>-1</sup>.

# Revised as suggested.

6) L. 182: The quantity with the symbol  $\varepsilon$  should not be called "isotope enrichment factor" (which is a different kind of quantity). Please use the term "equilibrium isotopic fractionation" instead (as you do on l. 89 and elsewhere).

Thanks for pointing this out. In the text, we replaced all  $\varepsilon$  symbols with  $\alpha$ -1 since we do not really need this extra symbol. Then, we name  $\alpha$  "equilibrium fractionation factor"

7) L. 188 & 193: The quantities should be enclosed in parentheses so that the unit applies to value and uncertainty, e.g. " $(-58.7\pm0.8)$  %"

Revised as suggested.

# List of changes

1. The supplementary material now is merged into the main text or as appendices.

2. A more precise equation 7 is used in the main text.

3. Improvement was made in mathematical expressions, such as removing "1000‰", "×", and including uncertainties in brackets.

4. Replaced symbol " $\varepsilon$ " with " $\alpha$ " to represent the equilibrium fractionation factor.

5. Reference list was updated to match the formatting requirement.

- 1 Quantifying the nitrogen isotope effects during photochemical 2 equilibrium between NO and NO<sub>2</sub>: implications for  $\delta^{15}$ N in
- **3 tropospheric reactive nitrogen**
- 4 Jianghanyang Li<sup>1</sup>, Xuan Zhang<sup>2</sup>, John Orlando<sup>2</sup>, Geoffrey Tyndall<sup>2</sup> and Greg Michalski<sup>1,3</sup>
- <sup>1.</sup> Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette,
   IN, 47907
- <sup>7</sup> <sup>2</sup> Atmospheric Chemistry Observations and Modeling Lab, National Center for Atmospheric
   <sup>8</sup> Research, Boulder, CO, 80301
- 9 <sup>3.</sup> Department of Chemistry, Purdue University, West Lafayette, IN, 47907
- 10 Correspondence to: Jianghanyang Li (li2502@purdue.edu)

11 Abstract. Nitrogen isotope fractionations between nitrogen oxides (NO and NO<sub>2</sub>) play a significant role in determining the nitrogen isotopic compositions ( $\delta^{15}N$ ) of atmospheric reactive 12 nitrogen. Both the equilibrium isotopic exchange between NO and NO<sub>2</sub> molecules and the isotope 13 14 effects occurring during the NO<sub>x</sub> photochemical cycle are important, but both are not well constrained. The nighttime and daytime isotopic fractionations between NO and NO2 in an 15 atmospheric simulation chamber at atmospherically relevant NOx levels were measured. Then, the 16 impact of NO<sub>x</sub> level and NO<sub>2</sub> photolysis rate to the combined isotopic fractionation (equilibrium 17 isotopic exchange and photochemical cycle) between NO and NO<sub>2</sub> were calculated. It was found 18 19 that the isotope effects occurring during the NO<sub>x</sub> photochemical cycle can be described using a single fractionation factor, designated the Leighton Cycle Isotope Effect (LCIE). The results 20 showed that at room temperature, the fractionation factor of nitrogen isotopic exchange is 21 22 1.0275±0.0012, and the fractionation factor of LCIE (when O3 solely controls the oxidation from NO to NO<sub>2</sub>) is 0.990±0.005. The measured LCIE factor showed good agreement with previous 23 24 field measurements, suggesting that it could be applied in ambient environment, although future work is needed to assess the isotopic fractionation factors of NO + RO<sub>2</sub>/HO<sub>2</sub>  $\rightarrow$  NO<sub>2</sub>. The results 25 26 were used to model the NO-NO<sub>2</sub> isotopic fractionations under several NO<sub>x</sub> conditions. The model suggested that isotopic exchange was the dominate factor when  $NO_x > 20$  nmol mol<sup>-1</sup>, while LCIE 27 was more important at low NO<sub>x</sub> concentrations (<1 nmol mol<sup>-1</sup>) and high rates of NO<sub>2</sub> photolysis. 28 These findings provided a useful tool to quantify the isotopic fractionations between tropospheric 29 NO and NO<sub>2</sub>, which can be applied in future field observations and atmospheric chemistry models. 30 31

32

### 33 1. Introduction

The nitrogen isotopic composition ( $\delta^{15}N$ ) of reactive nitrogen compounds in the 34 35 atmosphere is an important tool in understanding the sources and chemistry of atmospheric NOx (NO+NO<sub>2</sub>). It has been suggested that the  $\delta^{15}$ N value of atmospheric nitrate (HNO<sub>3</sub>, nitrate 36 aerosols and nitrate ions in the precipitation and snow) imprints the  $\delta^{15}N$  value of NO<sub>x</sub> sources 37 38 (Elliott et al., 2009; Kendall et al., 2007) thus many studies have used the  $\delta^{15}N$  values of atmospheric nitrate to investigate NOx sources (Chang et al., 2018; Felix et al., 2012; Felix & 39 Elliott, 2014; Gobel et al., 2013; Hastings et al., 2004, 2009; Morin et al., 2009; Park et al., 2018; 40 41 Walters et al., 2015, 2018). However, there remain questions about how isotopic fractionations that may occur during photochemical cycling of NO<sub>x</sub> could alter the  $\delta^{15}$ N values as it partitions 42 into NO<sub>y</sub> (NO<sub>y</sub> = atmospheric nitrate, NO<sub>3</sub>, N<sub>2</sub>O<sub>5</sub>, HONO, etc., Chang et al., 2018; Freyer, 1991; 43 Hastings et al., 2004; Jarvis et al., 2008; Michalski et al., 2005; Morin et al., 2009; Zong et al., 44 45 2017). Similarly, other complex reactive nitrogen chemistry, such as nitrate photolysis and redeposition in ice and snow (Frey et al., 2009), may impact the  $\delta^{15}$ N of NO<sub>y</sub> and atmospheric nitrate. 46 The fractionation between NO and NO2 via isotope exchange has been suggested to be the 47 dominant factor in determining the  $\delta^{15}$ N of NO<sub>2</sub> and ultimately atmospheric nitrate (Freyer, 1991; 48 49 Freyer et al., 1993; Savarino et al., 2013; Walters et al., 2016). However, isotopic fractionations occur in most, if not all, NOx and NOy reactions, while most of these are still unknown or, if 50 calculated (Walters and Michalski, 2015), unverified by experiments. Since the atmospheric 51 52 chemistry of NO<sub>y</sub> varies significantly in different environments (e.g., polluted vs. pristine, night vs. day), the isotopic fractionations associated with NOy chemistry are also likely to vary in 53 different environments. These unknowns could potentially bias conclusions about NOx source 54 apportionment reached when using nitrogen isotopes. Therefore, understanding the isotopic 55

fractionations between NO and NO<sub>2</sub> during photochemical cycling could improve our understanding of the relative role of sources versus chemistry for controlling the  $\delta^{15}$ N variations of atmospheric NO<sub>2</sub> and nitrate.

In general, there are three types of isotopic fractionation effects associated with NO<sub>x</sub> 59 60 chemistry (Fig. 1A). The first type is the equilibrium isotopic effect (EIE), i.e., isotope exchange between two compounds without forming new molecules (Urey, 1947, Bigeleisen and Mayer, 61 1947), which for nitrogen isotopes in the NO<sub>x</sub> system is the  ${}^{15}NO + {}^{14}NO_2 \leftrightarrow {}^{14}NO + {}^{15}NO_2$ 62 63 exchange reaction (Begun and Melton, 1956, Walters et al., 2016). The second type is the kinetic 64 isotopic effect (KIE) associated with difference in isotopologue rate coefficients during unidirectional reactions (Bigeleisen & Wolfsberg, 1957). In the NOx system this KIE would 65 manifest in the oxidation of NO into NO2 by O3/HO2/RO2. The third type is the photochemical 66 67 isotope fractionation effect (PHIFE, Miller & Yung, 2000), which for NOx is the isotopic fractionation associated with NO<sub>2</sub> photolysis. All three fractionations could impact the  $\delta^{15}$ N value 68 of NO<sub>2</sub>, and consequently atmospheric nitrate, but the relative importance of each may vary. 69

70 The limited number of studies on the EIE in the NOx cycle have significant uncertainties. Discrepancies in the EIE for  ${}^{15}NO + {}^{14}NO_2 \leftrightarrow {}^{14}NO + {}^{15}NO_2$  have been noted in several studies. 71 72 Theoretical calculations predicted isotope fractionation factors ( $\alpha$ ) ranging from 1.035 to 1.042 at room temperature (Begun & Fletcher, 1960; Monse et al., 1969; Walters & Michalski, 2015) due 73 74 to the different approximations used to calculate harmonic frequencies in each study. Likewise, 75 two separate experiments measured different room temperature fractionation factors of 76 1.028±0.002 (Begun & Melton, 1956) and 1.0356±0.0015 (Walters et al., 2016). A concern in both experiments is that they were conducted in small chambers with high NOx concentrations 77 78 (hundreds of µmol mol<sup>-1</sup>), significantly higher than typical ambient atmospheric NO<sub>x</sub> levels (usually less than 0.1 µmol mol<sup>-1</sup>). Whether the isotopic fractionation factors determined by these
experiments are applicable in the ambient environment is uncertain because of possible wall effects
and formation of higher oxides, notably N<sub>2</sub>O<sub>4</sub> and N<sub>2</sub>O<sub>3</sub> at these high NO<sub>x</sub> concentrations.

82 Even less research has examined the KIE and PHIFE occurring during NOx cycling. The KIE of NO + O3 has been theoretically calculated (Walters and Michalski, 2016) but has not been 83 experimentally verified. The NO<sub>2</sub> PHIFE has not been experimentally determined or theoretically 84 calculated. As a result, field observation studies often overlook the effects of PHIFE and KIE. 85 Freyer et al. (1993) measured NO<sub>x</sub> concentrations and the  $\delta^{15}$ N values of NO<sub>2</sub> over a 1-year period 86 at Julich, Germany and inferred a combined NO<sub>x</sub> isotope fractionation factor (EIE+KIE+PHIFE) 87 of 1.018±0.001. Frever et al. (1993) suggested that the NOx photochemical cycle (KIE and PHIFE) 88 tends to diminish the equilibrium isotopic fractionation (EIE) between NO and NO<sub>2</sub>. Even if this 89 approach were valid, applying this single fractionation factor elsewhere, where NO<sub>x</sub>, O<sub>3</sub> 90 91 concentrations and actinic fluxes are different, would be tenuous given that these factors may influence the relative importance of EIE, KIE and PHIFE (Hastings et al., 2004; Walters et al., 92 93 2016). Therefore, to quantify the overall isotopic fractionations between NO and NO2 at various 94 tropospheric conditions, it is crucial to know 1) isotopic fractionation factors of EIE, KIE and PHIFE individually and 2) the relative importance of each factor under various conditions. 95

96 In this work, we aim to quantify the nitrogen isotope fractionation factors between NO and 97 NO<sub>2</sub> at photochemical equilibrium. First, we measure the N isotope fractionations between NO 98 and NO<sub>2</sub> in an atmospheric simulation chamber at atmospherically relevant NO<sub>x</sub> levels. Then, we 99 provide mathematical solutions to assess the impact of NO<sub>x</sub> level and NO<sub>2</sub> photolysis rate (j(NO<sub>2</sub>)) 100 to the relative importance of EIE, KIE and PHIFE. Subsequently we use the solutions and chamber 101 measurements to calculate the isotopic fractionation factors of EIE, KIE and PHIFE. Lastly, using 102 the calculated fractionation factors and the equations, we model the NO-NO<sub>2</sub> isotopic 103 fractionations at several sites to illustrate the behavior of  $\delta^{15}N$  values of NO<sub>x</sub> in the ambient 104 environment.

105

123

### 106 2. Methods

107 The experiments were conducted using a 10 m<sup>3</sup> Atmospheric Simulation Chamber at the 108 National Center for Atmospheric Research (see descriptions in Appendix A and Zhang et al. (2018)). A set of mass flow controllers was used to inject NO and O3 into the chamber. NO was 109 injected at 1 L min<sup>-1</sup> from an in-house NO/N<sub>2</sub> cylinder (133.16 µmol mol<sup>-1</sup> NO in ultra-pure N<sub>2</sub>), 110 111 and O<sub>3</sub> was generated by flowing 5 L min<sup>-1</sup> zero-air through a flow tube equipped with a UV Pen-112 Ray lamp (UVP LLC., CA) into the chamber. NO and NO2 concentrations were monitored in real 113 time by chemiluminescence with a detection limit of 0.5 ppb (model CLD 88Y, Eco Physics, MI) as were O<sub>3</sub> concentrations using an UV absorption spectroscopy with a detection limit of 0.5 ppb 114 (model 49, Thermo Scientific, CO). In each experiment, the actual amounts of NO and O3 injected 115 116 were calculated using measured  $NO_x$  and  $O_3$  concentrations after steady state was reached (usually within 1 h). The wall loss rate of NO<sub>2</sub> was tested by monitoring O<sub>3</sub> (29 nmol mol<sup>-1</sup>) and NO<sub>x</sub> (62 117 118 nmol mol<sup>-1</sup>) over a 4-hour period. After the NO and NO<sub>2</sub> concentrations reached steady state, no 119 decrease in NO<sub>2</sub> concentrations was observed showing that chamber wall loss was negligible. 120 Two sets of experiments were conducted to separately investigate the EIE, KIE and PHIFE. 121 The first set of experiments was conducted in the dark. In each of these dark experiments, a range of NO and O<sub>3</sub> ([O<sub>3</sub>]<[NO]) was injected into the chamber to produce NO-NO<sub>2</sub> mixtures with 122

124 investigate the EIE between NO and NO<sub>2</sub>. The second set of experiments was conducted under

[NO]/[NO2] ratios ranging from 0.43 to 1.17. The N isotopes of these mixtures were used to

Deleted: supplementary material

| 126 | irradiation of UV lights (300-500 nm, see Appendix A for irradiation spectrum). Under such                                  | Deleted: supplementary material                         |
|-----|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 127 | conditions, NO, NO2 and O3 reached photochemical steady state, which combined the isotopic                                  |                                                         |
| 128 | effects of EIE, KIE and PHIFE. In addition, three experiments were conducted to measure the $\delta^{15}N$                  |                                                         |
| 129 | value of the tank NO. In each of these experiments, a certain amount of O3 was first injected into                          |                                                         |
| 130 | the chamber, then approximately the same amount of NO was injected into the chamber to ensure                               |                                                         |
| 131 | 100% of the NOx was in the form of NO2 with little O3 ( $<3$ nmol mol <sup>-1</sup> ) remaining in the chamber,             |                                                         |
| 132 | such that the $O_3$ +NO <sub>2</sub> reaction was negligible. The NO <sub>2</sub> in the chamber was then collected and its |                                                         |
| 133 | $\delta^{15}$ N value measured, which equates to the $\delta^{15}$ N value of the tank NO.                                  |                                                         |
| 134 | In all experiments, the concentrations of NO, NO2 and O3 were allowed to reach steady                                       |                                                         |
| 135 | state, and the product $NO_2$ was collected from the chamber using a honeycomb denuder tube. After                          |                                                         |
| 136 | the NO, NO2 and O3 concentrations reached steady-state, well-mixed chamber air was drawn out                                |                                                         |
| 137 | through a Norprene Thermoplastic tubing ~40 cm at 10 L min <sup>-1</sup> and passed through a honeycomb                     |                                                         |
| 138 | denuder system (Chemcomb 3500, Thermo Scientific). Based on flow rate, the NO2 residence time                               | Deleted: The glass denuder tubes                        |
| 139 | in the was less than 0.5 second, thus in the light-on experiments where NO and $O_3$ coexisted, the                         |                                                         |
| 140 | $NO_2$ produced inside the transfer tube through $NO+O_3$ reactions should be <0.03 ppb (using the                          |                                                         |
| 141 | upper limit of NO and O3 concentrations in our experiments). The honeycomb denuder system                                   |                                                         |
| 142 | consisted of two honeycomb denuder tubes connected in series. Each honeycomb denuder tube is                                |                                                         |
| 143 | a glass cylinder of 38 mm long, 47 mm in diameter, and consist of 212 hexagonal tubes with inner                            |                                                         |
| 144 | diameters of 2 mm. Before collecting samples, each denuder tube was coated with a solution of                               | Deleted: (Chemcomb 3500, Thermo Fisher Scientific) were |
| 145 | 10% KOH and 25% guaiacol in methanol and then dried by flowing $N_{\rm 2}$ gas through the denuder                          |                                                         |
| 146 | tube for 15 seconds (Williams and Grosjean, 1990, Walters et al., 2016). The NO <sub>2</sub> reacted with                   |                                                         |
| 147 | guaiacol coating and was converted into NO2 <sup>-</sup> that was retained on the denuder tube wall (Williams               |                                                         |
| 148 | and Grosjean, 1990). NO was inert to the denuder tube coating: a control experiment sampled pure                            |                                                         |
|     |                                                                                                                             |                                                         |

| 153 | NO using the denuder tubes, which did not show any measurable $NO_2^-$ . The $NO_2$ collection                                        |              |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 154 | efficiency of a single honeycomb denuder tube was tested in another control experiment: air                                           |              |
| 155 | containing 66 nmol mol <sup>-1</sup> of NO <sub>2</sub> was drawn out of the chamber through a denuder tube, and the                  |              |
| 156 | NO2 concentration at the exit of the tube holder was measured and found to be below the detection                                     |              |
| 157 | limit (<1 nmol mol <sup>-1</sup> ), suggesting the collection efficiency was nearly 100% when [NO <sub>2</sub> ] <66 nmol             |              |
| 158 | mol <sup>-1</sup> . Furthermore, when the denuder system consisted of two denuder tubes in series and NO <sub>2</sub> <sup>-</sup> in |              |
| 159 | the second denuder was below the detection limit indicating trivial NO <sub>2</sub> breakthrough. Each NO <sub>2</sub>                |              |
| 160 | collection lasted for 0.5-3 hours in order to collect enough NO2 <sup>-</sup> for isotopic analysis (~300 nmol).                      |              |
| 161 | After collection, the NO2 <sup>-</sup> was leached from each denuder tube by rinsing thoroughly with 10 ml                            | Deleted: The |
| 162 | deionized water into a clean polypropylene container and stored frozen until isotopic analysis.                                       |              |
| 163 | Isotopic analysis was conducted at Purdue Stable Isotope Laboratory. For each sample,                                                 |              |
| 164 | approximately 50 nmol of the NO2 <sup>-</sup> extract was mixed with 2 M sodium azide solution in acetic                              |              |
| 165 | acid buffer in an air-tight glass vial, then shaken overnight to completely reduce all the $\mathrm{NO}_2^-$ to                       |              |
| 166 | $N_2O_{(g)}$ (Casciotti & McIlvin, 2007; McIlvin & Altabet, 2005). The product $N_2O$ was directed into                               |              |
| 167 | a Thermo GasBench equipped with cryo-trap, then the $\delta^{15}N$ of the $N_2O$ was measured using a                                 |              |
| 168 | Delta-V Isotope Ratios Mass Spectrometer. Six coated denuders tubes that did not get exposed to                                       |              |
| 169 | NO2 were also analyzed using the same chemical procedure, which did not show any measurable                                           |              |
| 170 | signal on the IRMS, suggesting the blank from both sampling process and the chemical conversion                                       |              |
| 171 | process was negligible. The overall analytical uncertainty for $\delta^{15}N$ analysis was 0.5 ‰ (1 $\sigma$ ) based                  | Deleted: ±   |
| 172 | on replicate analysis of in house NO2 <sup>-</sup> standards.                                                                         |              |
| 173 |                                                                                                                                       |              |
| 174 | 3. Results and Discussions                                                                                                            |              |

175 3.1. Equilibrium Isotopic Fractionation between NO and NO<sub>2</sub>

| 178                                    | The equilibrium isotope fractionatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n factor, $\alpha$ (NO <sub>2</sub> -NO), is the <sup>15</sup> N                                                                                                                                                       | enrichment in NO <sub>2</sub>                                                                             |                                                                                                                                                                                                                   |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 179                                    | relative to NO, and is expressed as the ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of rate constants $k_2 / k_1$ of two rea                                                                                                                                                                               | actions:                                                                                                  |                                                                                                                                                                                                                   |
| 180                                    | $^{15}NO_2$ + $^{14}NO \rightarrow ^{15}NO$ + $^{14}NO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R1, rate constant = $k_1$                                                                                                                                                                                              |                                                                                                           |                                                                                                                                                                                                                   |
| 181                                    | $^{15}\text{NO}^{+14}\text{NO}_2 \rightarrow ^{15}\text{NO}_2 + ^{14}\text{NO}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R2, rate constant = $k_2 = k_2$                                                                                                                                                                                        | k1 <u>α(NO2-NO)</u>                                                                                       | Deleted: ×                                                                                                                                                                                                        |
| 182                                    | where $k_1$ is the rate constant of the isotopic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c exchange, which was previous                                                                                                                                                                                         | ly determined to be                                                                                       |                                                                                                                                                                                                                   |
| 183                                    | $8.14 \times 10^{-14} \text{ cm}^3 \text{ s}^{-1}$ (Sharma et al., 1970). The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | reaction time required for NO-N                                                                                                                                                                                        | IO <sub>2</sub> to reach isotopic                                                                         |                                                                                                                                                                                                                   |
| 184                                    | equilibrium was estimated using the excha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | inge rate constants in a simple                                                                                                                                                                                        | kinetics box model                                                                                        |                                                                                                                                                                                                                   |
| 185                                    | (BOXMOX, Knote et al., 2015). The model p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | predicts that at typical NO <sub>x</sub> concer                                                                                                                                                                        | ntrations used during                                                                                     |                                                                                                                                                                                                                   |
| 186                                    | the chamber experiments (7.7-62.4 nmol mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l <sup>-1</sup> ), isotopic equilibrium would b                                                                                                                                                                        | be reached within 15                                                                                      |                                                                                                                                                                                                                   |
| 187                                    | minutes (see Appendix B). Since the sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | collection usually started 1 hour                                                                                                                                                                                      | after NO <sub>x</sub> was well                                                                            | Deleted: supplementary materi                                                                                                                                                                                     |
| 188                                    | mixed in the chamber, there was sufficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | time to reach full isotope equil                                                                                                                                                                                       | ibrium. The isotope                                                                                       | Deleted: al                                                                                                                                                                                                       |
| 189                                    | equilibrium fractionation factor $(\alpha(NO_2-NO))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )) is then calculated to be:                                                                                                                                                                                           |                                                                                                           |                                                                                                                                                                                                                   |
| 190                                    | $\alpha(NO_2 - NO) = \frac{[{}^{15}NO_2][{}^{14}NO]}{[{}^{14}NO_2][{}^{15}NO]} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $=\frac{R(NO_2)}{R(NO)}$                                                                                                                                                                                               | Eq. (1)                                                                                                   | Formatted: Indent: Left: 0.5"                                                                                                                                                                                     |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                        |                                                                                                           | Deleted: ×                                                                                                                                                                                                        |
| 191                                    | where R(NO, NO <sub>2</sub> ) are the ${}^{15}N/{}^{14}N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ratios of NO and NO <sub>2</sub> . I                                                                                                                                                                                   | By definition, the                                                                                        | Deleted: ×                                                                                                                                                                                                        |
| 191<br>192                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                        | · ·                                                                                                       | Deleted: ×                                                                                                                                                                                                        |
| 192                                    | $\delta^{15}N(NO) = (R(NO)/R(reference) - 1) \times 1000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • and $\delta^{15}N(NO_2)=(R(NO_2)/R(reference))$                                                                                                                                                                      | erence)-1) ×1000 ‰,                                                                                       | C Deleted: ×                                                                                                                                                                                                      |
| 192<br>193                             | $\delta^{15}N(NO) = (R(NO)/R(reference) - 1) \times 1000_{\%}$<br>but hereafter, the $\delta^{15}N$ values of NO, NO <sub>2</sub> an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • and $\delta^{15}N(NO_2)=(R(NO_2)/R(reference))$                                                                                                                                                                      | erence)-1) ×1000 ‰,                                                                                       | C Deleted: ×                                                                                                                                                                                                      |
| 192<br>193<br>194                      | $\delta^{15}N(NO) = (R(NO)/R(reference) - 1) \times 1000_{\%}$<br>but hereafter, the $\delta^{15}N$ values of NO, NO <sub>2</sub> an<br>respectively. Eq. (1) leads to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • and δ <sup>15</sup> N(NO <sub>2</sub> )=(R(NO <sub>2</sub> )/R(refo<br>d NO <sub>x</sub> will be referred as δ(NO),                                                                                                  | erence)-1) ×1000 ‰,<br>δ(NO <sub>2</sub> ) and δ(NO <sub>x</sub> ),                                       |                                                                                                                                                                                                                   |
| 192<br>193<br>194<br>195               | $\delta^{15}N(NO) = (R(NO)/R(reference) - 1) \times 1000\%$<br>but hereafter, the $\delta^{15}N$ values of NO, NO <sub>2</sub> an<br>respectively. Eq. (1) leads to:<br>$\delta(NO_2) - \delta(NO) = (\alpha(NO_2 - 1))^{1/2} + ($ | • and $\delta^{15}N(NO_2) = (R(NO_2)/R(reformed and \delta^{15}N(NO_2) = (R(NO_2)/R(reformed and NO_2)/R(reformed and NO_2) = 1) (1 + \delta(NO_2))$                                                                   | erence)-1) ×1000 ‰,<br>δ(NO <sub>2</sub> ) and δ(NO <sub>x</sub> ),<br>Eq. (2) •                          | ✓ Deleted: × 1000 ‰ × ✓ Deleted: ¶                                                                                                                                                                                |
| 192<br>193<br>194                      | $\delta^{15}N(NO) = (R(NO)/R(reference) - 1) \times 1000_{\%}$<br>but hereafter, the $\delta^{15}N$ values of NO, NO <sub>2</sub> an<br>respectively. Eq. (1) leads to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • and $\delta^{15}N(NO_2) = (R(NO_2)/R(reformed and \delta^{15}N(NO_2) = (R(NO_2)/R(reformed and NO_2)/R(reformed and NO_2) = 1) (1 + \delta(NO_2))$                                                                   | erence)-1) ×1000 ‰,<br>δ(NO <sub>2</sub> ) and δ(NO <sub>x</sub> ),<br>Eq. (2) •                          | - ( <b>Deleted:</b> × 1000 ‰ ×                                                                                                                                                                                    |
| 192<br>193<br>194<br>195               | $\delta^{15}N(NO) = (R(NO)/R(reference) - 1) \times 1000\%$<br>but hereafter, the $\delta^{15}N$ values of NO, NO <sub>2</sub> an<br>respectively. Eq. (1) leads to:<br>$\delta(NO_2) - \delta(NO) = (\alpha(NO_2 - 1))^{1/2} + ($ | • and $\delta^{15}N(NO_2) = (R(NO_2)/R(reformed and \delta^{15}N(NO_2) = (R(NO_2)/R(reformed and NO_2)/R(reformed and NO_2) = 1) (1 + \delta(NO_2))$                                                                   | erence)-1) ×1000 ‰,<br>δ(NO <sub>2</sub> ) and δ(NO <sub>x</sub> ),<br>Eq. (2) •                          | $Deleted: \times 1000 \%_0 \times$ $Deleted: \P$ $= \varepsilon(N0_2 - N0) \times (1 + \delta_(N0_1))$                                                                                                            |
| 192<br>193<br>194<br>195<br>196        | $\delta^{15}N(NO) = (R(NO)/R(reference) - 1) \times 1000\%$<br>but hereafter, the $\delta^{15}N$ values of NO, NO <sub>2</sub> an<br>respectively. Eq. (1) leads to:<br>$\delta(NO_2) - \delta(NO) = (\alpha(NO_2 - 1))$<br>Using Eq. (2) and applying NO <sub>x</sub> isotopic mass<br>$f(NO_2) = [NO_2]/([NO] + [NO_2]))$ yields:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • and $\delta^{15}N(NO_2) = (R(NO_2)/R(reformed and \delta^{15}N(NO_2) = (R(NO_2)/R(reformed and NO),d NO_x will be referred as \delta(NO),NO_y = 1_y (1 + \delta(NO_y))s balance (\delta(NO_x) = f(NO_2)\delta(NO_2)$ | erence)-1) ×1000 ‰,<br>δ(NO <sub>2</sub> ) and δ(NO <sub>x</sub> ),<br>Eq. (2) •                          | Deleted: $\times 1000 \%_0 \times$<br>Deleted: $\P$<br>$= \varepsilon(NO_2 - NO) \times (1 + \delta_(NO_1))$<br>Formatted: Indent: Left: 0.5"<br>Deleted: where $\varepsilon(NO_2$ -NO) is the isotope enrichment |
| 192<br>193<br>194<br>195<br>196<br>197 | $\delta^{15}N(NO) = (R(NO)/R(reference) - 1) \times 1000\%$<br>but hereafter, the $\delta^{15}N$ values of NO, NO <sub>2</sub> an<br>respectively. Eq. (1) leads to:<br>$\delta(NO_2) - \delta(NO) = (\alpha(NO_2 - 1))$<br>Using Eq. (2) and applying NO <sub>x</sub> isotopic mass<br>$f(NO_2) = [NO_2]/([NO] + [NO_2]))$ yields:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • and $\delta^{15}N(NO_2) = (R(NO_2)/R(reformed and \delta^{15}N(NO_2) = (R(NO_2)/R(reformed and NO_2)/R(reformed and NO_2) = 1) (1 + \delta(NO_2))$                                                                   | erence)-1) ×1000 ‰,<br>$\delta(NO_2)$ and $\delta(NO_x)$ ,<br>Eq. (2) •<br>$p_2)+(1-f(NO_2))\delta(NO)$ , |                                                                                                                                                                                                                   |
| 192<br>193<br>194<br>195<br>196<br>197 | $\delta^{15}N(NO) = (R(NO)/R(reference) - 1) \times 1000\%$<br>but hereafter, the $\delta^{15}N$ values of NO, NO <sub>2</sub> an<br>respectively. Eq. (1) leads to:<br>$\delta(NO_2) - \delta(NO) = (\alpha(NO_2 - 1))$<br>Using Eq. (2) and applying NO <sub>x</sub> isotopic mass<br>$f(NO_2) = [NO_2]/([NO] + [NO_2]))$ yields:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • and $\delta^{15}N(NO_2) = (R(NO_2)/R(reformed and \delta^{15}N(NO_2) = (R(NO_2)/R(reformed and NO),d NO_x will be referred as \delta(NO),NO_y = 1_y (1 + \delta(NO_y))s balance (\delta(NO_x) = f(NO_2)\delta(NO_2)$ | erence)-1) ×1000 ‰,<br>$\delta(NO_2)$ and $\delta(NO_x)$ ,<br>Eq. (2) •<br>$p_2)+(1-f(NO_2))\delta(NO)$ , | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                             |

| 211 | Here, $\delta(NO_x)$ equals to the $\delta^{15}N$ value of the cylinder NO and $f(NO_2)$ is the molar fraction of NO <sub>2</sub>       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 212 | with respect to total NO <sub>x</sub> . Three experiments (see descriptions in method section) that measured                            |
| 213 | $\delta(NO_x)$ showed consistent $\delta(NO_x)$ values of (-58.7±0.8) ‰ (n = 3), indicating $\delta(NO_x)$ remained                     |
| 214 | unchanged throughout the experiments (as expected for isotope mass balance). Thus, the $\delta(\mathrm{NO}_x)$                          |
| 215 | can be treated as a constant in Eq. (3), and the linear regression of $(\delta(NO_2)-\delta(NO_x))/(1+\delta(NO_2))$                    |
| 216 | versus 1- $f(NO_2)$ should have an intercept of 0 and a slope of $(\alpha(NO_2-NO)-1)/\alpha(NO_2-NO)_{t}$                              |
| 217 | The plot of $(\delta(NO_2)-\delta(NO_x))/(1+\delta(NO_2))$ as a function of $1-f(NO_2)$ values from five                                |
| 218 | experiments yields an a(NO2-NO) value of 1.0275±0.0012 at room temperature (Fig. 1B). This                                              |
| 219 | fractionation factor is comparable to previously measured values but with some differences. Our                                         |
| 220 | result agrees well with the $\alpha$ (NO <sub>2</sub> -NO) value of 1.028±0.002 obtained by Begun and Melton (1956)                     |
| 221 | at room temperature. However, Walters et al., (2016) determined the $\alpha$ (NO <sub>2</sub> -NO) values of NO-                        |
| 222 | $NO_2$ exchange in a 1-liter reaction vessel, which showed a slightly higher $\alpha(NO_2-NO)$ value of                                 |
| 223 | 1.035. This discrepancy might originate from rapid heterogeneous reactions on the wall of the                                           |
| 224 | reaction vessel at high $NO_x$ concentrations and the small chamber size used by Walters et al. (2016).                                 |
| 225 | They used a reaction vessel made of Pyrex, which is known to absorb water (Do Remus et al.,                                             |
| 226 | 1983; Takei et al., 1997) that can react with $NO_2$ forming HONO, HNO <sub>3</sub> and other N compounds.                              |
| 227 | Additionally, previous studies have suggested that Pyrex walls enhance the formation rate of $\mathrm{N_2O_4}$                          |
| 228 | by over an order of magnitude (Barney & Finlayson-Pitts, 2000; Saliba et al., 2001), which at                                           |
| 229 | isotopic equilibrium is enriched in $^{15}$ N compared to NO and NO <sub>2</sub> (Walters & Michalski, 2015).                           |
| 230 | Therefore, their measured $\alpha$ (NO <sub>2</sub> -NO) might be slightly higher than the actual $\alpha$ (NO <sub>2</sub> -NO) value. |
| 231 | In this work, the 10 m <sup>3</sup> chamber has a much smaller surface to volume ratio relative to Walters et                           |
| 232 | al. (2016) which minimizes wall effects, and the walls were made of Teflon that minimize $NO_2$                                         |
| 233 | surface reactivity, which was evidenced by the NO2 wall loss control experiment. Furthermore,                                           |

**Deleted:**  $\epsilon(NO_2-NO)/(1+\epsilon(NO_2-NO))$ 

Deleted: ε

Deleted: 27.5±1.2 ‰

the low NO<sub>x</sub> mixing ratios in our experiments minimized N<sub>2</sub>O<sub>4</sub> and N<sub>2</sub>O<sub>3</sub> formation. At NO and NO<sub>2</sub> concentrations of 50 nmol mol<sup>-1</sup> the steady state concentrations of N<sub>2</sub>O<sub>4</sub> and N<sub>2</sub>O<sub>3</sub> were calculated to be 0.014 and 0.001 pmol mol<sup>-1</sup>, respectively (Atkinson et al., 2004). Therefore, we suggest our measured  $\alpha$ (NO<sub>2</sub>-NO) value (1.0275±0.0012) may better reflect the room temperature (298 K) NO-NO<sub>2</sub> EIE in the ambient environment.

242 Unfortunately, the chamber temperature could not be controlled so we were not able to investigate the temperature dependence of the EIE. Hence, we speculate that the  $\alpha$ (NO<sub>2</sub>-NO) 243 244 follows a similar temperature dependence pattern calculated in Walters et al. (2016). Walters et al. 245 (2016) suggested that, the  $\alpha$ (NO<sub>2</sub>-NO) value would be 0.0047 higher at 273 K and 0.002 lower at 246 310 K, relative to room temperature (298 K). Using this pattern and our experimentally determined 247 data, we suggest the  $\alpha$ (NO<sub>2</sub>-NO) values at 273 K, 298 K and 310 K are  $1.0322\pm0.0012$ , 1.0275±0.0012 and 1.0255±0.0012, respectively. This 0.0067 variation at least partially contribute 248 249 to the daily and seasonal variations of  $\delta^{15}$ N values of NO<sub>2</sub> and nitrate in some areas (e.g., polar 250 regions with strong seasonal temperature variation). Thus, future investigations should be 251 conducted to verify the EIE temperature dependence.

252

#### 253 **3.2.** Kinetic isotopic fractionation of Leighton Cycle

The photochemical reactions of  $NO_x$  will compete with the isotope exchange fractionations between NO and NO<sub>2</sub>. The NO-NO<sub>2</sub> photochemical cycle in the chamber was controlled by the Leighton cycle: NO<sub>2</sub> photolysis and the NO + O<sub>3</sub> reaction. This is because there were no VOCs in the chamber so no RO<sub>2</sub> was produced, which excludes the NO + RO<sub>2</sub> reaction. Likewise, the low water vapor content (RH<10%) and the minor flux of photons < 310 nm results in minimal OH production and hence little HO<sub>2</sub> formation and subsequently trivial amount of NO<sub>2</sub> would be

| Deleted: ε(NO <sub>2</sub> -NO) |
|---------------------------------|
| Deleted: .                      |
| Deleted: ‰                      |
| Deleted: 2.0                    |
| Deleted: ‰                      |
| Deleted: .                      |
| Deleted: .                      |
| Deleted: ‰                      |
| Deleted: .                      |
| Deleted: .                      |
| Deleted: ‰                      |
| Deleted:                        |
| Deleted:                        |
| Deleted: ‰                      |
| Deleted: 6.7‰                   |

| 275 | formed by NO + HO <sub>2</sub> . Applying these limiti                                                                         | ing assumptions, the EIE between NO and NO $_2$ (R1-                                 |             |
|-----|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------|
| 276 | R2) were only competing with the KIE (R3-                                                                                      | R4) and the PHIFE in R5-R6:                                                          |             |
| 277 | $^{14}NO_2 \rightarrow ^{14}NO+O$                                                                                              | R3, rate constant= $j(NO_2)$                                                         |             |
| 278 | $^{15}NO_2 \rightarrow ^{15}NO+O$                                                                                              | R4, rate constant= $j(NO_2) \alpha_1$                                                | Deleted: )× |
| 279 | $^{14}\text{NO+O}_3 \rightarrow ^{14}\text{NO}_2 + \text{O}_2$                                                                 | R5, rate constant= $k_5$                                                             |             |
| 280 | $^{15}NO+O_3 \rightarrow ^{15}NO_2+O_2$                                                                                        | R6, rate constant= $k_{s_k}\alpha_2$                                                 | Deleted: ×  |
| 281 | In which $j(NO_2)$ is the NO <sub>2</sub> photolysis rate (1.                                                                  | $4 \times 10^{-3}$ s <sup>-1</sup> in these experiments), $k_5$ is the rate constant |             |
| 282 | for the NO+O3 reaction (1.73×10 <sup>-14</sup> $\mbox{cm}^3$                                                                   | s-1, Atkinson et al., 2004), and $\alpha_{1,2}$ are isotopic                         |             |
| 283 | fractionation factors for the two reactions.                                                                                   | Previous studies (Freyer et al., 1993; Walters et al.,                               |             |
| 284 | 2016) have attempted to assess the competit                                                                                    | ion between EIE (R1-R2), KIE and PHIFE (R3-R6),                                      |             |
| 285 | but none of them quantified the relative impo                                                                                  | ortance of the two processes, nor were $\alpha_1$ or $\alpha_2$ values               |             |
| 286 | experimentally determined. Here we provide                                                                                     | the mathematical solution of EIE, KIE and PHIFE to                                   |             |
| 287 | illustrate how R1-R6 affect the isotopic fract                                                                                 | ionations between NO and NO <sub>2</sub> .                                           |             |
| 288 | First, the NO <sub>2</sub> lifetime with respect to                                                                            | ) isotopic exchange with NO ( $\tau_{exchange}$ ) and photolysis                     |             |
| 289 | $(\tau_{photo})$ was determined:                                                                                               |                                                                                      |             |
| 290 | $\tau_{\text{exchange}} = \frac{1}{k_{1\psi}[NO]}$                                                                             | Eq. (4)                                                                              | Deleted: ×  |
| 291 | $\tau_{\text{photo}} = \frac{1}{j(\text{NO}_2)}$                                                                               | Eq. (5)                                                                              |             |
| 292 | We then define an A factor:                                                                                                    |                                                                                      |             |
| 293 | $A = \begin{cases} \frac{\tau_{exchange}}{\tau_{photo}} & \text{when } j(NO_2) \neq 0 \\ 0 & \text{when } j(NO_2) \end{cases}$ | Eq. (6)                                                                              |             |
|     |                                                                                                                                |                                                                                      |             |

Using R1-R6 and Eq. (1)-(6), we solved steady-state  $\delta(NO_2)$  and  $\delta(NO)$  values (see calculations

298 in <u>Appendix C</u>). Our calculations show that the  $\delta(NO_2)-\delta(NO)$  and  $\delta(NO_2)-\delta(NO_x)$  values at steady

299 state can be expressed as functions of  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha$ (NO<sub>2</sub>-NO) and A:

297

$$\delta_{(NO_{2})} - \delta_{(NO_{2})} = \frac{(\alpha_{2} - \alpha_{1})A + (\alpha_{1}NO_{2} - NO_{1} - 1)}{\mathbf{v} + A + 1} (1 + \delta_{(NO_{1})})_{\mathbf{v}} \qquad \text{Eq. (7)}$$

$$\delta_{(NO_{2})} - \delta_{(NO_{x})} = \frac{(\alpha_{2} - \alpha_{1})A + (\alpha_{1}NO_{2} - NO_{1} - 1)}{\mathbf{v} + A + 1} (1 + \delta_{(NO_{1})}) (1 - f(NO_{2}))_{\mathbf{v}} \qquad \text{Eq. (8)}$$

302 Equation (7) shows the isotopic fractionation between NO and NO<sub>2</sub> ( $\delta$ (NO<sub>2</sub>)- $\delta$ (NO)) is determined by A, the EIE factor ( $\alpha$ (NO<sub>2</sub>-NO)-1) and the ( $\alpha_2$ - $\alpha_1$ ) factor assuming (1+ $\delta$ (NO)) is close to 1. This 303  $(\alpha_2-\alpha_1)$  represents a combination of KIE and PHIFE, suggesting they act together as one factor; 304 305 therefore, we name the  $(\alpha_2 - \alpha_1)$  factor Leighton Cycle Isotopic Effect, i.e., LCIE. Using measured 306  $(\delta(NO_2)-\delta(NO))/(1+\delta(NO))$  values, A values, and the previously determined EIE factor, we calculated that the best fit for the LCIE factor was  $(-10\pm5)$  % (showing the lowest Rooted Mean 307 308 Square Error, RMSE, of 1.1‰, Fig. 1C). The uncertainties in the LCIE factor are relatively higher than that of the EIE factor, mainly because of the accumulated analytical uncertainties at low NOx 309 310 and  $O_3$  concentrations, and low A values (0.10-0.28) due to the relatively low  $j(NO_2)$  value  $(1.4 \times 10^{-3} \text{ s}^{-1})$  under the chamber irradiation conditions. 311

312 This LCIE factor determined in our experiments is in good agreement with theoretical 313 calculations. Walters and Michalski (2016) previously used an *ab initio* approach to determine an 314  $\alpha_2$  value of 0.9933 at room temperature, 0.9943 at 237 K and 0.9929 at 310 K. The total variation of  $\alpha_2$  values from 273 K to 310 K is only 1.4 %, significantly smaller than our experimental 315 316 uncertainty ( $\pm 5$  %). The  $\alpha_1$  value was calculated using a ZPE shift model (Miller & Yung, 2000) 317 to calculate the isotopic fractionation of NO<sub>2</sub> by photolysis. Briefly, this model assumes both 318 isotopologues have the same quantum yield function and the PHIFE was only caused by the 319 differences in the <sup>15</sup>NO<sub>2</sub> and <sup>14</sup>NO<sub>2</sub> absorption cross-section as a function of wavelength, thus  $\alpha_1$ 

| Deleted: (‰)             |  |
|--------------------------|--|
| Deleted: ×               |  |
| <b>Deleted:</b> × 1000 ‰ |  |
| Deleted: (‰)             |  |
| Deleted: ×               |  |
| Deleted: ×               |  |
| Deleted: × 1000 ‰        |  |
| Deleted: largely         |  |
|                          |  |

Deleted: supplementary material

Deleted: ±0.7

| 330 | values do not vary by temperature. The <sup>15</sup> NO <sub>2</sub> absorption cross-section was calculated by shifting |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| 331 | the ${}^{14}NO_2$ absorption cross-section by the ${}^{15}NO_2$ zero-point energy (Michalski et al., 2004). When         |
| 332 | the ZPE shift model was used with the irradiation spectrum of the chamber lights, the resulting $\alpha_{\rm l}$         |
| 333 | value was 1.0023. Therefore, the theoretically predicted $\alpha_2\text{-}\alpha_1$ value should be -0.0090, i.e., (-    |
| 334 | 9.0±0.7) ‰ when temperature ranges from 273 K to 310 K. This result shows excellent agreement                            |
| 335 | with our experimentally determined room temperature $\alpha_2$ - $\alpha_1$ value of (-10±5) ‰.                          |

336 This model was then used to evaluate the variations of  $\alpha_1$  value to different lighting 337 conditions. The TUV model (TUV5.3.2, Madronich & Flocke, 1999) was used to calculate the 338 solar wavelength spectrum at three different conditions: early morning/late afternoon (solar zenith 339 angle=85 degree), mid-morning/afternoon (solar zenith angle=45 degree), noon (solar zenith 340 angle=0 degree). These spectrums were used in the ZPE shift model to calculate the  $\alpha_1$  values, 341 which are 1.0025, 1.0028, and 1.0029 at solar zenith angles of 85, 45 and 0 degree, respectively. 342 These values, along with the predicted  $\alpha_1$  value in the chamber, showed a total span of 0.6‰ 343 (1.0026±0.0003), which is again significantly smaller than our measured uncertainty. Therefore, 344 we suggest that our experimentally determined LCIE factor ((-10±5) ‰) can be used in most 345 tropospheric solar irradiation spectrums.

The equations can also be applied in tropospheric environments to calculate the combined isotopic fractionations of EIE and LCIE for NO and NO<sub>2</sub>. First, the NO<sub>2</sub> sink reactions (mainly NO<sub>2</sub>+OH in the daytime) are at least 2-3 orders of magnitude slower than the Leighton cycle and the NO-NO<sub>2</sub> isotope exchange reactions (Walters et al., 2016), therefore their effects on the  $\delta$ (NO<sub>2</sub>) should be minor. Second, although the conversion of NO into NO<sub>2</sub> in the ambient environment is also controlled by NO + RO<sub>2</sub> and HO<sub>2</sub> in addition to NO+O<sub>3</sub> (e.g., King et al., 2001), Eq. (7) still showed good agreement with field observations in previous studies. Freyer et al. (1993) Deleted:

determined the annual average daytime  $\delta(NO_2)$ - $\delta(NO)$  at Julich, Germany along with average 354 daytime NO concentration (9 nmol mol<sup>-1</sup>, similar to our experimental conditions) to be 355 356  $(+18.03\pm0.98)$  ‰. Using Eq. (7), assuming the daytime average  $j(NO_2)$  value throughout the year was  $(5.0\pm1.0)\times10^{-3}$ , and a calculated A value from measured NO<sub>x</sub> concentration ranged from 0.22-357 358 0.33, the average NO-NO<sub>2</sub> fractionation factor was calculated to be  $(+18.8\pm1.4)$  ‰ (Fig. 1C), in 359 excellent agreement with the measurements in the present study. This agreement suggests the NO+RO<sub>2</sub>/HO<sub>2</sub> reactions might have similar fractionation factors as NO+O<sub>3</sub>. Therefore, we suggest 360 361 Eq. (7) and (8) can be used to estimate the isotopic fractionations between NO and  $NO_2$  in the 362 troposphere.

363

#### 364 3.3 Calculating nitrogen isotopic fractionations of NO-NO<sub>2</sub>

365 First, Eq. (7) was used to calculate the  $\Delta(NO_2-NO) = \delta(NO_2) - \delta(NO)$  at a wide range of 366 NO<sub>x</sub> concentrations,  $f(NO_2)$  and  $j(NO_2)$  values (Fig. 2A-D), assuming  $(1+\delta(NO))=1$ .  $j(NO_2)$ values of 0 s<sup>-1</sup> (Fig. 2A), 1.4×10<sup>-3</sup> s<sup>-1</sup> (Fig. 2B), 5×10<sup>-3</sup> s<sup>-1</sup> (Fig. 2C) and 1×10<sup>-2</sup> s<sup>-1</sup> (Fig. 2D) were 367 368 selected to represent nighttime, dawn (as well as the laboratory conditions of our experiments), 369 daytime average and noon, respectively. Each panel represented a fixed  $i(NO_2)$  value, and the 370  $\Delta$ (NO<sub>2</sub>-NO) values were calculated as a function of the A value, which was derived from NO<sub>x</sub> 371 concentration and  $f(NO_2)$ . The A values have a large span, from 0 to 500, depending on the  $j(NO_2)$ 372 value and the NO concentration. When A=0 ( $i(NO_2)=0$ ) and  $f(NO_2)<1$  (meaning NO-NO<sub>2</sub> coexist 373 and  $[O_3]=0$ , Eq. (7) and (8) become Eq. (2) and (3), showing the EIE was the sole factor, the 374  $\Delta$ (NO<sub>2</sub>-NO) values were solely controlled by EIE which has a constant value of +27.5 ‰ at 298K (Fig. 2A). When  $j(NO_2) > 0$ , the calculated  $\Delta(NO_2-NO)$  values showed a wide range from -10.0 % 375 376 (controlled by LCIE factor:  $\alpha_2$ - $\alpha_1$ =-10 ‰) to +27.5 ‰ (controlled by EIE factor:  $\alpha(NO_2-NO)$ -1 =

| 377 | +27.5 ‰). Fig. 2B-D display the transition from a LCIE-dominated regime to an EIE-dominated                                   |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 378 | regime. The LCIE-dominated regime is characterized by low $[NO_x]$ (<50 pmol mol <sup>-1</sup> ), representing                |
| 379 | remote ocean areas and polar regions (Beine et al., 2002; Custard et al., 2015). At this range the A                          |
| 380 | value can be greater than 200, thus Eq. (7) can be simplified as: $\Delta(NO_2-NO) = \alpha_2 - \alpha_1$ , suggesting        |
| 381 | the LCIE almost exclusively controls the NO-NO <sub>2</sub> isotopic fractionation. The $\Delta$ (NO <sub>2</sub> -NO) values |
| 382 | of these regions are predicted to be <0 $\infty$ during most time of the day and < -5 $\infty$ at noon. On the                |
| 383 | other hand, the EIE-dominated regime was characterized by high [NO <sub>x</sub> ] (>20 nmol mol <sup>-1</sup> ) and low       |
| 384 | $f(NO_2)$ (< 0.6), representative of regions with intensive NO emissions, e.g., near roadside or stack                        |
| 385 | plumes (Clapp & Jenkin, 2001; Kimbrough et al., 2017). In this case, the $\tau_{exchange}$ are relatively                     |
| 386 | short (10-50 s) compared to the $\tau_{photo}$ (approximately 100 s at noon and 1000 s at dawn), therefore                    |
| 387 | the A values are small (0.01-0.5). The EIE factor in this regime thus is much more important than                             |
| 388 | the LCIE factor, resulting in high $\Delta$ (NO <sub>2</sub> -NO) values (>20 ‰). Between the two regimes, both               |
| 389 | EIE and LCIE are competitive and therefore it is necessary to use Eq. (7) to quantify the $\Delta$ (NO <sub>2</sub> -         |
| 390 | NO) values.                                                                                                                   |

Fig. 2 also implies that changes in the  $j(NO_2)$  value can cause the diurnal variations in 391  $\Delta$ (NO<sub>2</sub>-NO) values. Changing *j*(NO<sub>2</sub>) would affect the value of A and consequently the NO-NO<sub>2</sub> 392 393 isotopic fractionations in two ways: 1) changes in  $j(NO_2)$  value would change the photolysis intensity, therefore the  $\tau_{photo}$  value; 2) in addition, changes in  $j(NO_2)$  value would also alter the 394 395 steady state NO concentration, therefore changing the  $\tau_{exchange}$  (Fig. 2C). The combined effect of 396 these two factors on the A value varies along with the atmospheric conditions, and thus needs to 397 be carefully calculated using NOx concentration data and atmospheric chemistry models. 398 We then calculated the differences of  $\delta^{15}$ N values between NO<sub>2</sub> and total NO<sub>x</sub>, e.g.  $\Delta$ (NO<sub>2</sub>-

 $NO_x$ ) =  $\delta(NO_2)-\delta(NO_x)$  in Fig. 2E-H. Since  $\Delta(NO_2-NO_x)$  are connected through the observed  $\delta^{15}N$ 399

Deleted: ( Deleted: )×1000 ‰

of NO<sub>2</sub> (or nitrate) to the  $\delta^{15}$ N of NO<sub>x</sub> sources, this term might be useful in field studies (e.g., 402 403 Chang et al., 2018; Zong et al., 2017). The calculated  $\Delta$ (NO<sub>2</sub>-NO<sub>x</sub>) values (Fig. 2E-H) also showed a LCIE-dominated regime at low  $[NO_x]$  and an EIE-dominated regime at high  $[NO_x]$ . The  $\Delta(NO_2$ -404 NO<sub>x</sub>) values were dampened by the 1- $f(NO_2)$  factor comparing to  $\Delta(NO_2-NO)$ , as shown in Eq. 405 406 (3) and (8):  $\Delta(NO_2-NO_x) = \Delta(NO_2-NO) (1-f(NO_2))$ . At high  $f(NO_2)$  values (>0.8), the differences 407 between  $\delta(NO_2)$  and  $\delta(NO_x)$  were less than 5 ‰, thus the measured  $\delta(NO_2)$  values were similar to 408  $\delta(NO_x)$ , although the isotopic fractionation between NO and NO<sub>2</sub> could be noteworthy. Some 409 ambient environments with significant NO emissions or high NO<sub>2</sub> photolysis rates usually have f(NO2) values between 0.4-0.8 (Mazzeo et al., 2005; Vicars et al., 2013). In this scenario, the 410 411  $\Delta$ (NO<sub>2</sub>-NO<sub>x</sub>) values in Fig. 2F-H showed wide ranges of -4.8 ‰ to +15.6 ‰, -6.0 ‰ to +15.0 ‰, and -6.3 ‰ to +14.2 ‰ at *j*(NO<sub>2</sub>)=1.4×10<sup>-3</sup> s<sup>-1</sup>, 5×10<sup>-3</sup> s<sup>-1</sup>, 1×10<sup>-2</sup> s<sup>-1</sup>, respectively. These significant 412 differences again highlighted the importance of both LCIE and EIE (Eq. (7) and (8)) in calculating 413 the  $\Delta(NO_2-NO_x)$ . In the following discussion, we assume 1) the  $\alpha_1$  value remain constant (see 414 415 discussion above), 2) the NO+RO<sub>2</sub>/HO<sub>2</sub> reactions have the same fractionation factors ( $\alpha_2$ ) as 416 NO+O<sub>3</sub>, and 3) both EIE and LCIE do not display significant temperature dependence, then use Equations (7) and (8) and this laboratory determined LCIE factor (-10 ‰) to calculate the nitrogen 417 418 isotopic fractionation between NO and NO2 at various tropospheric atmospheric conditions.

419

### 420 4. Implications

421 The daily variations of Δ(NO<sub>2</sub>-NO<sub>x</sub>) values at two roadside NO<sub>x</sub> monitoring sites were
422 predicted to demonstrate the effects of NO<sub>x</sub> concentrations to the NO-NO<sub>2</sub> isotopic fractionations.
423 Hourly NO and NO<sub>2</sub> concentrations were acquired from a roadside site at Anaheim, CA
424 (https://www.arb.ca.gov) and an urban site at Evansville, IN (http://idem.tx.sutron.com) on July

Deleted: ×

| 426 | 25, 2018. The hourly $j(NO_2)$ values output from the TUV model (Madronich & Flocke, 1999) at                                 |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 427 | these locations was used to calculate the daily variations of $\Delta(\text{NO}_2\text{-}\text{NO}_x)$ values (Fig. 3A, B) by |
| 428 | applying Eq. (8) and assuming $(1+\delta(NO))=1$ . Hourly NO <sub>x</sub> concentrations were 12-51 nmol mol <sup>-1</sup>    |
| 429 | at Anaheim and 9-38 nmol mol <sup>-1</sup> at Evansville and the $f(NO_2)$ values at both sites did not show                  |
| 430 | significant daily variations (0.45 $\pm$ 0.07 at Anaheim and 0.65 $\pm$ 0.08 at Evansville), likely because                   |
| 431 | the $NO_x$ concentrations were controlled by the high NO emissions from the road (Gao, 2007). The                             |
| 432 | calculated $\Delta(\mathrm{NO_2\text{-}NO_x})$ values using Eq. (8) showed significant diurnal variations. During the         |
| 433 | nighttime, the isotopic fractionations were solely controlled by the EIE, the predicted $\Delta(\mathrm{NO_2\text{-}NO_x})$   |
| 434 | values were (+14.5±2.0) ‰ and (+8.7±2.1) ‰ at Anaheim and Evansville, respectively. During                                    |
| 435 | the daytime, the existence of LCIE lowered the predicted $\Delta(NO_2-NO_x)$ values to (+9.8±1.7) ‰ at                        |
| 436 | Anaheim and $(\pm 3.1 \pm 1.5)$ ‰ at Evansville while the $f(NO_2)$ values at both sites remained similar.                    |
| 437 | The lowest $\Delta(\mathrm{NO_2\text{-}NO_x})$ values for both sites (+7.0 ‰ and +1.7 ‰) occurred around noon when            |
| 438 | the $NO_x$ photolysis was the most intense. In contrast, if one neglects the LCIE factor in the daytime,                      |
| 439 | the $\Delta(NO_2-NO_x)$ values would be (+12.9±1.5) ‰ and (+10.0±1.6) ‰ respectively, an                                      |
| 440 | overestimation of 3.1 $\%$ and 6.9 $\%$ . These discrepancies suggested that the LCIE played an                               |
| 441 | important role in the NO-NO_2 isotopic fractionations and neglecting it could bias the $\mathrm{NO}_{x}$ source               |
| 442 | apportionment using $\delta^{15}N$ of NO <sub>2</sub> or nitrate.                                                             |
|     |                                                                                                                               |

The role of LCIE was more important in less polluted sites. The  $\Delta(NO_2-NO_x)$  values calculated for a suburban site near San Diego, CA, USA, again using the hourly NO<sub>x</sub> concentrations (https://www.arb.ca.gov, Fig. 3C) and *j*(NO<sub>2</sub>) values calculated from the TUV model. NO<sub>x</sub> concentrations at this site varied from 1 to 9 nmol mol<sup>-1</sup> and assuming (1+ $\delta(NO)$ )=1. During the nighttime, NO<sub>x</sub> was in the form of NO<sub>2</sub> (*f*(NO<sub>2</sub>) = 1) because O<sub>3</sub> concentrations were higher than NO<sub>x</sub>, thus the  $\delta(NO_2)$  values should be identical to  $\delta(NO_x)$  ( $\Delta(NO_2-NO_x) = 0$ ). In the

449 daytime a certain amount of NO was produced by direct NO emission and NO<sub>2</sub> photolysis but the 450  $f(NO_2)$  was still high (0.73±0.08). Our calculation suggested the daytime  $\Delta(NO_2-NO_x)$  values 451 should be only (+1.3±3.2) ‰ with a lowest value of -1.3 ‰. These  $\Delta(NO_2-NO_x)$  values were 452 similar to the observed and modeled summer daytime  $\delta(NO_2)$  values in West Lafayette, IN 453 (Walters et al., 2018), which suggest the average daytime  $\Delta(NO_2-NO_x)$  values at  $NO_x = (3.9\pm1.2)$ 454 nmol mol<sup>-1</sup> should range from +0.1 ‰ to +2.4 ‰. In this regime, we suggest the  $\Delta(NO_2-NO_x)$ 455 values were generally small due to the significant contribution of LCIE and high  $f(NO_2)$ .

456 The LCIE should be the dominant factor controlling the NO-NO2 isotopic fractionation at remote regions, resulting in a completely different diurnal pattern of  $\Delta$ (NO<sub>2</sub>-NO<sub>x</sub>) compared with 457 the urban-suburban area. Direct hourly measurements of NOx at remote sites are rare, thus we used 458 total NOx concentration of 50 pmol mol<sup>-1</sup>, daily O3 concentration of 20 nmol mol<sup>-1</sup> at Summit, 459 460 Greenland (Dibb et al., 2002; Hastings et al., 2004; Honrath et al., 1999; Yang et al., 2002), and 461 assumed  $(1+\delta(NO))=1$  and the conversion of NO to NO<sub>2</sub> was completely controlled by O<sub>3</sub> to 462 calculate the NO/NO<sub>2</sub> ratios. Here the isotopes of NO<sub>x</sub> were almost exclusively controlled by the LCIE due to the high A values (>110). The  $\Delta$ (NO<sub>2</sub>-NO<sub>x</sub>) values displayed a clear diurnal pattern 463 464 (Fig. 3D) with highest value of -0.3 ‰ in the "nighttime" (solar zenith angle >85 degree) and lowest value of -5.0 ‰ in the mid-day. This suggest that the isotopic fractionations between NO 465 466 and NO2 were almost completely controlled by LCIE at remote regions, when NOx concentrations 467 were <0.1 nmol mol<sup>-1</sup>. However, since the isotopic fractionation factors of nitrate-formation reactions (NO<sub>2</sub>+OH, NO<sub>3</sub>+HC, N<sub>2</sub>O<sub>5</sub>+H<sub>2</sub>O) are still unknown, more studies are needed to fully 468 469 explain the daily and seasonal variations of  $\delta(NO_3^-)$  at remote regions.

470 Nevertheless, our results have a few limitations. First, currently there are very few field471 observations that can be used to evaluate our model, therefore, future field observations that

measure the  $\delta^{15}$ N values of ambient NO and NO<sub>2</sub> should be carried out to test our model. Second, 472 473 more work, including theoretical and experimental studies, is needed to investigate the isotope 474 fractionation factors occurring during the conversion from  $NO_x$  to  $NO_y$  and nitrate: in the  $NO_y$ cycle, EIE (isotopic exchange between NO2, NO3 and N2O5), KIE (formation of NO3, N2O5 and 475 476 nitrate) and PHIFE (photolysis of NO<sub>3</sub>, N<sub>2</sub>O<sub>5</sub>, HONO and sometimes nitrate) may also exist and be relevant for the  $\delta^{15}N$  of HNO<sub>3</sub> and HONO. In particular, the N isotope fractionation occurring 477 478 during the NO<sub>2</sub> + OH  $\rightarrow$  HNO<sub>3</sub> reaction needs investigation. Such studies could help us modeling 479 the isotopic fractionation between NOx emission and nitrate, and eventually enable us to analyze the  $\delta^{15}$ N value of NO<sub>x</sub> emission by measuring the  $\delta^{15}$ N values of nitrate aerosols and nitrate in wet 480 481 depositions. Third, our discussion only focuses on the reactive nitrogen chemistry in the troposphere, however, the nitrogen chemistry in the stratosphere is drastically different from the 482 483 tropospheric chemistry, thus future studies are also needed to investigate the isotopic fractionations 484 in the stratospheric nitrogen chemistry. Last, the temperature dependence of both EIE and LCIE 485 needs to be carefully investigated, because of the wide range of temperature in both troposphere 486 and stratosphere. Changes in temperature could alter the isotopic fractionation factors of both EIE 487 and LCIE, as well as contribute to the seasonality of isotopic fractionations between NO<sub>x</sub> and NO<sub>y</sub> 488 molecules.

489

#### 490 5. Conclusions

The effect of NO<sub>x</sub> photochemistry on the nitrogen isotopic fractionations between NO and NO<sub>2</sub> was investigated. We first measured the isotopic fractionations between NO and NO<sub>2</sub> and provided mathematical solutions to assess the impact of NO<sub>x</sub> level and NO<sub>2</sub> photolysis rate (j(NO<sub>2</sub>)) to the relative importance of EIE and LCIE. The EIE and LCIE isotope fractionation factors, at

19

| 495 | room temperature, were determined to be 1.0275±0.0012 and 0.990±0.005, respectively. These                                                  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
| 496 | calculations and measurements can be used to determine the steady state $\Delta(\rm NO_2-\rm NO)$ and $\Delta(\rm NO_2-\rm NO)$             |
| 497 | $\mathrm{NO}_{\boldsymbol{x}})$ values at room temperature. Subsequently we applied our equations to polluted, clean and                    |
| 498 | remote sites to model the daily variations of $\Delta(\text{NO}_2\text{-NO}_x)$ values. We found that the $\Delta(\text{NO}_2\text{-NO}_x)$ |
| 499 | values could vary from over +20 $\%$ to less than -5 $\%$ depending on the environment: in general,                                         |
| 500 | the role of LCIE becoming more important at low $NO_x$ concentrations, which tend to decrease the                                           |
| 501 | $\Delta$ (NO <sub>2</sub> -NO <sub>x</sub> ) values. Our work provided a mathematical approach to quantify the nitrogen isotopic            |
| 502 | fractionations between NO and $NO_2$ that can be applied to many tropospheric environments, which                                           |
| 503 | could help interpret the measured $\delta^{15}N$ values of NO <sub>2</sub> and nitrate in field observation studies.                        |

#### 505 Acknowledgement

We thank NCAR's Advanced Study Program granted to Jianghanyang Li. The National
Center for Atmospheric Research is operated by the University Corporation for Atmospheric
Research, under the sponsorship of the National Science Foundation. We also thank funding
support from Purdue Climate Change Research Center and A. H. Ismail Interdisciplinary Program
Doctoral Research Travel Award granted by Purdue University.

511 Data Availability

512 Data acquired from this study was deposited at Open Sciences Framework (Li, 2019,

513 DOI 10.17605/OSF.IO/JW8HU).

514 Author contribution

515 J. Li and G. Michalski designed the experiments, X. Zhang and J. Li conducted the 516 experiments. X. Zhang, G. Michalski, J. Orlando and G. Tyndall helped J. Li in interpreting the

- 517 results. The manuscript was written by J. Li and all the authors have contributed during the revision
- 518 of this manuscript.
- 519 Competing interest
- 520 The authors declare no competing interest.
- 521

528

532

544

551

555

#### 522 **References:**

- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M.
- 525 E., Rossi, M. J., and Troe, J. (2004). Evaluated kinetic and photochemical data for atmospheric
- 526 chemistry: Volume I-gas phase reactions of  $O_x$ ,  $HO_x$ ,  $NO_x$  and  $SO_x$ . Atmospheric chemistry and
- 527 physics, 4(6), 1461-1738. https://doi.org/10.5194/acp-4-1461-2004, 2004,

Barney, W. S., & Finlayson-Pitts, B. J. (2000). Enhancement of N<sub>2</sub>O<sub>4</sub> on porous glass at room
temperature: A key intermediate in the heterogeneous hydrolysis of NO<sub>2</sub>? The Journal of Physical
Chemistry A, 104(2), 171–175. <u>https://doi.org/10.1021/jp993169b</u>

Begun, G. M., & Fletcher, W. H. (1960). Partition function ratios for molecules containing
nitrogen isotopes. The Journal of Chemical Physics, 33(4), 1083–1085.
<u>https://doi.org/10.1063/1.1731338</u>
536

Begun, G. M., & Melton, C. E. (1956). Nitrogen isotopic fractionation between NO and NO<sub>2</sub> and
mass discrimination in mass analysis of NO<sub>2</sub>. The Journal of Chemical Physics, 25(6), 1292–1293.
<a href="https://doi.org/10.1063/1.1743215">https://doi.org/10.1063/1.1743215</a>

Beine, H. J., Honrath, R. E., Dominé, F., Simpson, W. R., & Fuentes, J. D. (2002). NO<sub>x</sub> during
background and ozone depletion periods at Alert: Fluxes above the snow surface. Journal of
Geophysical Research: Atmospheres, 107(D21), ACH-7. <a href="https://doi.org/10.1029/2002JD002082">https://doi.org/10.1029/2002JD002082</a>

Bigeleisen, J., & Mayer, M. G. (1947). Calculation of equilibrium constants for isotopic exchange
reactions. The Journal of Chemical Physics, 15(5), 261-267. <u>https://doi.org/10.1063/1.1746492</u>

548 Bigeleisen, J., & Wolfsberg, M. (1957). Theoretical and experimental aspects of isotope effects in
549 chemical kinetics. Advances in Chemical Physics, 15–76.
550 <u>https://doi.org/10.1002/9780470143476.ch2</u>

Casciotti, K. L., & McIlvin, M. R. (2007). Isotopic analyses of nitrate and nitrite from reference
 mixtures and application to Eastern Tropical North Pacific waters. Marine Chemistry, 107(2), 184–
 201. <u>https://doi.org/10.1016/j.marchem.2007.06.021</u>

556 Chang, Y., Zhang, Y., Tian, C., Zhang, S., Ma, X., Cao, F., et al. (2018). Nitrogen isotope 557 fractionation during gas-to-particle conversion of  $NO_x$  to  $NO_3^-$  in the atmosphere–implications for

## Formatted: Subscript

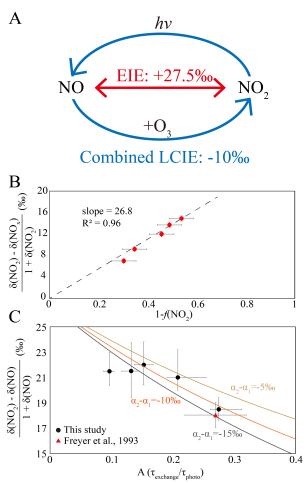
Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

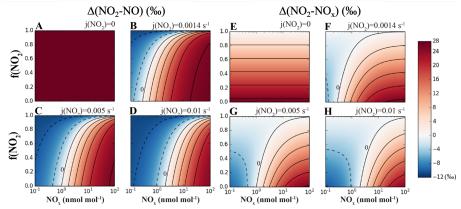
**Deleted:** Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., et al. (2004). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I-gas phase reactions of O<sub>x</sub>, HO<sub>x</sub>, NO<sub>x</sub> and SO<sub>x</sub> species. Atmospheric Chemistry and Physics, 4(6), 1461–1738.<sup>¶</sup>

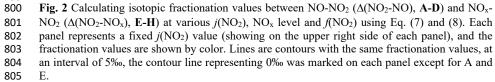
564 isotope-based NO<sub>x</sub> source apportionment. Atmospheric Chemistry and Physics, 18(16), 11647– 565 11661. https://doi.org/10.5194/acp-18-11647-2018, 2018. 566 567 Clapp, L. J., & Jenkin, M. E. (2001). Analysis of the relationship between ambient levels of O<sub>3</sub>, 568 NO<sub>2</sub> and NO as a function of NO<sub>x</sub> in the UK. Atmospheric Environment, 35(36), 6391-6405. 569 https://doi.org/10.1016/S1352-2310(01)00378-8 570 571 Custard, K. D., Thompson, C. R., Pratt, K. A., Shepson, P. B., Liao, J., Huey, L. G., Orlando, J. J., 572 Weinheimer, A. J., Apel, E., Hall, S. R., Flocke, F., Mauldin, L., Hornbrook, R. S., Pöhler, D., 573 General, S., Zielcke, J., Simpson, W. R., Platt, U., Fried, A., Weibring, P., Sive, B. C., Ullmann, 574 K., Cantrell, C., Knapp, D. J., and Montzka, D. D.: The NOx dependence of bromine chemistry in 575 the Arctic atmospheric boundary layer, Atmos. Chem. Phys., 15, 10799-10809. 576 https://doi.org/10.5194/acp-15-10799-2015, 2015, Deleted: Custard, K. D., Thompson, C. R., Pratt, K. A., Shepson, P. B., Liao, J., Huey, L. G., et al. (2015). The NOx 577 dependence of bromine chemistry in the Arctic atmospheric 578 Dibb, J. E., Arsenault, M., Peterson, M. C., & Honrath, R. E. (2002). Fast nitrogen oxide boundary layer. Atmospheric Chemistry and Physics, 15(18), 579 photochemistry in Summit, Greenland snow. Atmospheric Environment, 36(15-16), 2501-2511. 10799-10809 580 https://doi.org/10.1016/S1352-2310(02)00130-9 581 582 Do Remus, R. H., Mehrotra, Y., Lanford, W. A., & Burman, C. (1983). Reaction of water with 583 glass: influence of a transformed surface layer. Journal of Materials Science, 18(2), 612-622. 584 https://doi.org/10.1007/BF00560651 585 586 Elliott, E. M., Kendall, C., Boyer, E. W., Burns, D. A., Lear, G. G., Golden, H. E., Harlin, K., Bytnerowicz, A., Butler, T. J., and Glatz, R. (2009). Dual nitrate isotopes in dry deposition: Utility 587 Deleted: Elliott, E. M., Kendall, C., Boyer, E. W., Burns, 588 for partitioning NO<sub>x</sub> source contributions to landscape nitrogen deposition. Journal of Geophysical D. A., Lear, G. G., Golden, H. E., et al. (2009). 589 Research: Biogeosciences, 114(G4), G04020. https://doi.org/10.1029/2008JG000889 590 591 Felix, J. D., & Elliott, E. M. (2014). Isotopic composition of passively collected nitrogen dioxide 592 emissions: Vehicle, soil and livestock source signatures. Atmospheric Environment, 92, 359-366. 593 https://doi.org/10.1016/j.atmosenv.2014.04.005 594 595 Felix, J. D., Elliott, E. M., & Shaw, S. L. (2012). Nitrogen isotopic composition of coal-fired power 596 plant NO<sub>x</sub>: influence of emission controls and implications for global emission inventories. 597 Environmental Science & Technology, 46(6), 3528-3535. https://doi.org/10.1021/es203355v 598 599 Frey, M. M., Savarino, J., Morin, S., Erbland, J., & Martins, J. M. F. (2009). Photolysis imprint in 600 the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for 601 reactive nitrogen cycling. Atmos. Chem. Phys, 9, 8681-8696. https://doi.org/10.5194/acp-9-8681-2009, 2009. 602 603 Freyer, H. D. (1991). Seasonal variation of <sup>15</sup>N/<sup>14</sup>N ratios in atmospheric nitrate species. Tellus B, 604 43(1), 30-44. https://doi.org/10.1034/j.1600-0889.1991.00003.x 605 606 607 Freyer, H. D., Kley, D., Volz-Thomas, A., & Kobel, K. (1993). On the interaction of isotopic 608 exchange processes with photochemical reactions in atmospheric oxides of nitrogen. Journal of 609 Geophysical Research: Atmospheres, 98(D8), 14791-14796. https://doi.org/10.1029/93JD00874 22

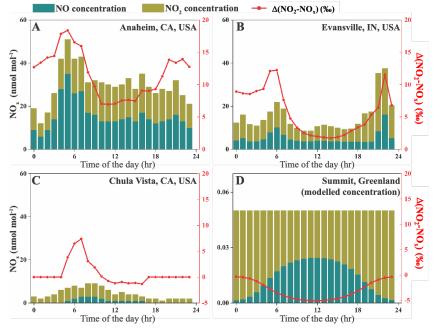

| 617        |                                                                                                                                                  |                   |                                                                                |   |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------|---|
| 618        | Gao, H. O. (2007). Day of week effects on diurnal ozone/NO <sub>x</sub> cycles and transportation emissions                                      |                   |                                                                                |   |
| 619        | in Southern California. Transportation Research Part D: Transport and Environment, 12(4), 292–                                                   |                   |                                                                                |   |
| 620        | 305. https://doi.org/10.1016/j.trd.2007.03.004                                                                                                   |                   |                                                                                |   |
| 621        |                                                                                                                                                  |                   |                                                                                |   |
| 622        | Gobel, A. R., Altieri, K. E., Peters, A. J., Hastings, M. G., & Sigman, D. M. (2013). Insights into                                              |                   |                                                                                |   |
| 623        | anthropogenic nitrogen deposition to the North Atlantic investigated using the isotopic                                                          |                   |                                                                                |   |
| 624        | composition of aerosol and rainwater nitrate. Geophysical Research Letters, 40(22), 5977-5982.                                                   |                   |                                                                                |   |
| 625        | https://doi.org/10.1002/2013GL058167                                                                                                             |                   |                                                                                |   |
| 626        |                                                                                                                                                  |                   |                                                                                |   |
| 627        | Hastings, M G, Jarvis, J. C., & Steig, E. J. (2009). Anthropogenic impacts on nitrogen isotopes of                                               |                   |                                                                                |   |
| 628        | ice-core nitrate. Science, 324(5932), 1288. DOI: 10.1126/science.1170510                                                                         |                   |                                                                                |   |
| 629        |                                                                                                                                                  |                   |                                                                                |   |
| 630        | Hastings, M G, Steig, E. J., & Sigman, D. M. (2004). Seasonal variations in N and O isotopes of                                                  |                   |                                                                                |   |
| 631        | nitrate in snow at Summit, Greenland: Implications for the study of nitrate in snow and ice cores.                                               |                   |                                                                                |   |
| 632<br>632 | Journal of Geophysical Research: Atmospheres, 109(D20).                                                                                          |                   | Delate de 6                                                                    |   |
| 633        | https://doi.org/10.1029/2004JD004991                                                                                                             |                   | Deleted: ¶                                                                     |   |
| 634<br>635 | Honrath, R. E., Peterson, M. C., Guo, S., Dibb, J. E., Shepson, P. B., & Campbell, B. (1999).                                                    |                   | Deleted: Hoefs, J. (2009). Stable isotope geochemistr<br>(Vol. 285). Springer. | у |
| 636        | Evidence of NO <sub>x</sub> production within or upon ice particles in the Greenland snowpack. Geophysical                                       |                   | (vol. 205). Springer.                                                          |   |
| 637        | Research Letters, 26(6), 695–698. https://doi.org/10.1029/1999GL900077                                                                           |                   |                                                                                |   |
| 638        | Research Letters, 20(0), 055-058. https://doi.org/10.1025/15550017                                                                               |                   |                                                                                |   |
| 639        | Jarvis, J. C., Steig, E. J., Hastings, M. G., & Kunasek, S. A. (2008). Influence of local                                                        |                   |                                                                                |   |
| 640        | photochemistry on isotopes of nitrate in Greenland snow. Geophysical Research Letters, 35(21).                                                   |                   |                                                                                |   |
| 641        | https://doi.org/10.1029/2008GL035551                                                                                                             |                   |                                                                                |   |
| 642        |                                                                                                                                                  |                   |                                                                                |   |
| 643        | Kendall, C., Elliott, E. M., & Wankel, S. D. (2007). Tracing anthropogenic inputs of nitrogen to                                                 |                   |                                                                                |   |
| 644        | ecosystems. Stable Isotopes in Ecology and Environmental Science, 2, 375-449.                                                                    |                   |                                                                                |   |
| 645        | https://doi.org/10.1002/9780470691854.ch12                                                                                                       |                   |                                                                                |   |
| 646        |                                                                                                                                                  |                   |                                                                                |   |
| 647        | Kimbrough, S., Owen, R. C., Snyder, M., & Richmond-Bryant, J. (2017). NO to NO <sub>2</sub> conversion                                           |                   |                                                                                |   |
| 648        | rate analysis and implications for dispersion model chemistry methods using Las Vegas, Nevada                                                    |                   |                                                                                |   |
| 649        | near-road field measurements. Atmospheric Environment, 165, 23–34.                                                                               |                   |                                                                                |   |
| 650        | https://doi.org/10.1016/j.atmosenv.2017.06.027                                                                                                   |                   |                                                                                |   |
| 651<br>652 | King, M. D., Canosa-Mas, C. E. and Wayne R. P. (2001) Gas-phase reactions between RO <sub>2</sub> and                                            |                   | Deleted: Martin                                                                |   |
| 653        | No, HO <sub>2</sub> or CH <sub>3</sub> O <sub>2</sub> : correlations between rate constants and the SOMO energy of the peroxy (RO <sub>2</sub> ) |                   | <u> </u>                                                                       |   |
| 654        | radical, Atmospheric Environment 35.12 (2001): 2081-2088. https://doi.org/10.1016/S1352-                                                         | $\mathcal{A}$     | Deleted: Carlos E.                                                             |   |
| 655        | 2310(00)00501-X                                                                                                                                  | $\mathcal{M}$     | Deleted: Richard P.                                                            |   |
| 656        | <u>2510(00)00501 A</u>                                                                                                                           | //                | Deleted:                                                                       |   |
| 657        | Knote, C., Tuccella, P., Curci, G., Emmons, L., Orlando, J. J. Madronich, S., Baró, R., Jiménez-                                                 | $\langle \rangle$ | Deleted: "                                                                     |   |
| 658        | Guerrero, P., Luecken, D., Hogrefe, C., Forkel, R., Werhahn, J., Hirtl, M., Pérez, J. L., San José,                                              | )                 | Deleted: "                                                                     |   |
| 659        | R., Giordano, L., Brunner, D., Yahya, K., Zhang, Y., Jnfluence of the choice of gas-phase                                                        | 1                 | Deleted: Knote, Christoph,                                                     |   |
| 660        | mechanism on predictions of key gaseous pollutants during the AQMEII phase-2 intercomparison,                                                    |                   | Deleted: et al. "                                                              |   |
| 661        | Atmospheric Environment 115 (2015): 553-568. https://doi.org/10.1016/j.atmosenv.2014.11.066.                                                     |                   | Deleted: "                                                                     |   |
| 662        |                                                                                                                                                  |                   |                                                                                |   |

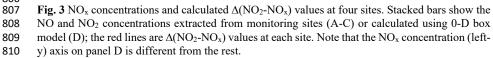
| 675<br>676<br>677 | Li, J. (2019). Quantifying the nitrogen equilibrium and photochemistry-induced kinetic isotopic effects between NO and NO <sub>2</sub> . Retrieved from osf.io/jw8hu                            |                    |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 678<br>679        | Madronich, S., & Flocke, S. (1999). The role of solar radiation in atmospheric chemistry. In Environmental photochemistry (pp. 1–26). <u>The Handbook of Environmental Chemistry (Reactions</u> |                    |
| 680               | and Processes), vol 2 / 2L. Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-69044-                                                                                              | Deleted: Springer. |
| 681<br>682        | <u>3_1</u>                                                                                                                                                                                      |                    |
| 683               | Mazzeo, N. A., Venegas, L. E., & Choren, H. (2005). Analysis of NO, NO <sub>2</sub> , O <sub>3</sub> and NO <sub>x</sub>                                                                        |                    |
| 684<br>685        | concentrations measured at a green area of Buenos Aires City during wintertime. Atmospheric Environment, 39(17), 3055–3068. <u>https://doi.org/10.1016/j.atmosenv.2005.01.029</u>               |                    |
| 686               |                                                                                                                                                                                                 |                    |
| 687               | McIlvin, M. R., & Altabet, M. A. (2005). Chemical conversion of nitrate and nitrite to nitrous                                                                                                  |                    |
| 688               | oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Analytical Chemistry,                                                                                               |                    |
| 689<br>690        | 77(17), 5589–5595. <u>https://doi.org/10.1021/ac050528s</u>                                                                                                                                     |                    |
| 691               | Michalski, G., Jost, R., Sugny, D., Joyeux, M., & Thiemens, M. (2004). Dissociation energies of                                                                                                 |                    |
| 692               | six NO <sub>2</sub> isotopologues by laser induced fluorescence spectroscopy and zero-point energy of some                                                                                      |                    |
| 693               | triatomic molecules. The Journal of Chemical Physics, 121(15), 7153-7161.                                                                                                                       |                    |
| 694               | https://doi.org/10.1063/1.1792233                                                                                                                                                               |                    |
| 695               |                                                                                                                                                                                                 |                    |
| 696               | Michalski, G., Bockheim, J. G., Kendall, C., & Thiemens, M. (2005). Isotopic composition of                                                                                                     |                    |
| 697               | Antarctic Dry Valley nitrate: Implications for NO <sub>y</sub> sources and cycling in Antarctica. Geophysical                                                                                   |                    |
| 698<br>699        | Research Letters, 32(13). https://doi.org/10.1029/2004GL022121                                                                                                                                  |                    |
| 700               | Miller, C. E., & Yung, Y. L. (2000). Photo-induced isotopic fractionation. Journal of Geophysical                                                                                               |                    |
| 701               | Research: Atmospheres, 105(D23), 29039–29051. <u>https://doi.org/10.1029/2000JD900388</u>                                                                                                       |                    |
| 702               | Research: Autospheres, 105(122), 29037 29031. <u>https://doi.org/10.1029/20003D900500</u>                                                                                                       |                    |
| 702               | Monse, E. U., Spindel, W., & Stern, M. J. (1969). Analysis of isotope-effect calculations illustrated                                                                                           |                    |
| 704               | with exchange equilibria among oxynitrogen compounds. Rutgers-The State Univ., Newark, NJ.                                                                                                      |                    |
| 705               | DOI: 10.1021/ba-1969-0089.ch009                                                                                                                                                                 |                    |
| 706               |                                                                                                                                                                                                 |                    |
| 707               | Morin, S., Savarino, J., Frey, M. M., Domine, F., Jacobi, HW., Kaleschke, L., & Martins, J. M.                                                                                                  |                    |
| 708               | F. (2009). Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean                                                                                                      |                    |
| 709               | boundary layer from 65°S to 79°N. J. Geophys. Res, 114. https://doi.org/10.1029/2008JD010696                                                                                                    |                    |
| 710               |                                                                                                                                                                                                 |                    |
| 711               | Park, YM., Park, KS., Kim, H., Yu, SM., Noh, S., Kim, MS., Kim, JY., Ahn, JY., Lee,                                                                                                             | Deleted: et al.    |
| 712               | MD., Seok, KS., Kin, YH., (2018). Characterizing isotopic compositions of TC-C, NO <sub>3</sub> -N,                                                                                             |                    |
| 713               | and NH4 <sup>+</sup> -N in PM2.5 in South Korea: Impact of China's winter heating.                                                                                                              |                    |
| 714               | https://doi.org/10.1016/j.envpol.2017.10.072                                                                                                                                                    |                    |
| 715               |                                                                                                                                                                                                 |                    |
| 716               | Saliba, N. A., Yang, H., & Finlayson-Pitts, B. J. (2001). Reaction of gaseous nitric oxide with                                                                                                 |                    |
| 717               | nitric acid on silica surfaces in the presence of water at room temperature. The Journal of Physical                                                                                            |                    |
| 718               | Chemistry A, 105(45), 10339–10346. https://doi.org/10.1021/jp012330r                                                                                                                            |                    |
| 719               |                                                                                                                                                                                                 |                    |

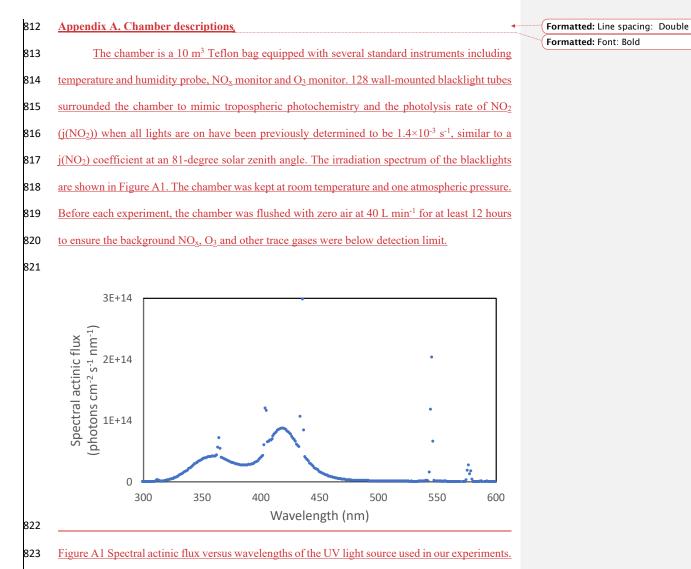
| 722 | Savarino, J., Morin, S., Erbland, J., Grannec, F., Patey, M. D., Vicars, W., Alexander, B.,                         | Deleted: et al. |
|-----|---------------------------------------------------------------------------------------------------------------------|-----------------|
| 723 | Achterberg, E. P., (2013). Isotopic composition of atmospheric nitrate in a tropical marine                         |                 |
| 724 | boundary layer. Proceedings of the National Academy of Sciences, 110(44), 17668-17673.                              |                 |
| 725 | https://doi.org/10.1073/pnas.1216639110                                                                             |                 |
| 726 |                                                                                                                     |                 |
| 727 | Sharma, H. D., Jervis, R. E., & Wong, K. Y. (1970). Isotopic exchange reactions in nitrogen oxides.                 |                 |
| 728 | The Journal of Physical Chemistry, 74(4), 923–933. <u>https://doi.org/10.1021/j100699a044</u>                       |                 |
| 729 | The sound of Thysical chemically, $f(1)$ , $f(2)$ , $f(3)$ .                                                        |                 |
| 730 | Takei, T., Yamazaki, A., Watanabe, T., & Chikazawa, M. (1997). Water adsorption properties on                       |                 |
| 731 | porous silica glass surface modified by trimethylsilyl groups. Journal of Colloid and Interface                     |                 |
| 732 | Science, 188(2), 409–414. https://doi.org/10.1006/jcis.1997.4777                                                    |                 |
| 733 | Science, 100(2), 407 414. <u>https://doi.org/10.1000/jeis.1777.47777</u>                                            |                 |
| 734 | Urey, H. C. (1947). The thermodynamic properties of isotopic substances. Journal of the Chemical                    |                 |
| 735 | Society (Resumed), 562-581. https://doi.org/10.1039/JR9470000562                                                    |                 |
| 736 | Society (Resumed), 502-581. https://doi.org/10.1057/JR74/0000502                                                    |                 |
| 736 | Vicars, W. C., Morin, S., Savarino, J., Wagner, N. L., Erbland, J., Vince, E., Martins, J. M. F.,                   | Deleted: et al. |
|     | Lerner, B. M., Quinn, P. K., Coffman, D. J., Williams, E. J., Brown, S. S., (2013). Spatial and                     | Deleted: et al. |
| 738 | diurnal variability in reactive nitrogen oxide chemistry as reflected in the isotopic composition of                |                 |
| 739 | atmospheric nitrate: Results from the CalNex 2010 field study. Journal of Geophysical Research:                     |                 |
| 740 |                                                                                                                     |                 |
| 741 | Atmospheres, 118(18), 10–567. https://doi.org/10.1002/jgrd.50680                                                    |                 |
| 742 |                                                                                                                     |                 |
| 743 | Walters, W. W., & Michalski, G. (2015). Theoretical calculation of nitrogen isotope equilibrium                     |                 |
| 744 | exchange fractionation factors for various NO <sub>y</sub> molecules. Geochimica et Cosmochimica Acta,              |                 |
| 745 | 164, 284–297. https://doi.org/10.1016/j.gca.2015.05.029                                                             |                 |
| 746 |                                                                                                                     |                 |
| 747 | Walters, W. W., Goodwin, S. R., & Michalski, G. (2015). Nitrogen stable isotope composition                         |                 |
| 748 | $(\delta^{15}N)$ of vehicle-emitted NO <sub>x</sub> . Environmental Science & Technology, 49(4), 2278–2285.         |                 |
| 749 | https://doi.org/10.1021/es505580v                                                                                   |                 |
| 750 |                                                                                                                     |                 |
| 751 | Walters, W. W., & Michalski, G. (2016). Ab initio study of nitrogen and position-specific oxygen                    |                 |
| 752 | kinetic isotope effects in the NO+O <sub>3</sub> reaction. The Journal of chemical physics, 145(22), 224311.        |                 |
| 753 | https://doi.org/10.1063/1.4968562                                                                                   |                 |
| 754 |                                                                                                                     |                 |
| 755 | Walters, W. W., Simonini, D. S., & Michalski, G. (2016). Nitrogen isotope exchange between NO                       |                 |
| 756 | and NO <sub>2</sub> and its implications for $\delta^{15}N$ variations in tropospheric NOx and atmospheric nitrate. |                 |
| 757 | Geophysical Research Letters, 43(1), 440–448. https://doi.org/10.1002/2015GL066438                                  |                 |
| 758 |                                                                                                                     |                 |
| 759 | Walters, W. W., Fang, H., & Michalski, G. (2018). Summertime diurnal variations in the isotopic                     |                 |
| 760 | composition of atmospheric nitrogen dioxide at a small midwestern United States city.                               |                 |
| 761 | Atmospheric Environment, 179, 1-11. https://doi.org/10.1016/j.atmosenv.2018.01.047                                  |                 |
| 762 |                                                                                                                     |                 |
| 763 | Williams, E. L., & Grosjean, D. (1990). Removal of atmospheric oxidants with annular denuders.                      |                 |
| 764 | Environmental Science & Technology, 24(6), 811-814. <u>https://doi.org/10.1021/es00076a002</u>                      |                 |
| 765 |                                                                                                                     |                 |
| 766 | Yang, J., Honrath, R. E., Peterson, M. C., Dibb, J. E., Sumner, A. L., Shepson, P. B., Frey, M.,                    | Deleted: et al. |
| 767 | Jacobi, HW., Swanson, A., Blake, N., (2002). Impacts of snowpack emissions on deduced levels                        |                 |
|     |                                                                                                                     |                 |


- of OH and peroxy radicals at Summit, Greenland. Atmospheric Environment, 36(15–16), 2523–
  2534. <u>https://doi.org/10.1016/S1352-2310(02)00128-0</u>
- 773774 Zhang, X., Ortega, J., Huang, Y., Shertz, S., Tyndall, G. S., & Orlando, J. J. (2018). A steady-state
- continuous flow chamber for the study of daytime and nighttime chemistry under atmospherically
- 776 relevant NO levels. Atmospheric Measurement Techniques, 11(5), 2537–2551.
- 777 <u>https://doi.org/10.5194/amt-11-2537-2018</u>
  778
- 779 Zong, Z., Wang, X., Tian, C., Chen, Y., Fang, Y., Zhang, F., Li, C., Sun, J., Li, J., Zhang, G.,
- 780 (2017). First assessment of  $NO_x$  sources at a regional background site in North China using
- 781 isotopic analysis linked with modeling. Environmental Science & Technology, 51(11), 5923–5931.
- 782 <u>https://doi.org/10.1021/acs.est.6b06316</u>

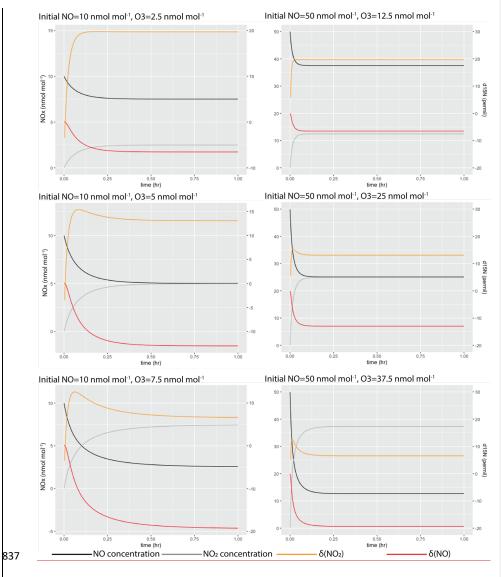

Deleted: et al.





784 785 Fig. 1 A. a sketch of the isotopic fractionation processes between NO and  $\mathrm{NO}_2$ , both fractionation 786 factors are determined in this work. B. Results from five dark experiments yielded a line with slope, of <u>0.0268</u> and <u>an  $\alpha$ (NO<sub>2</sub>-NO) value of 1.0275</u>; C. Results from five UV irradiation experiments 787 788 (black points) and a previous field study (red triangle). The three lines represent different ( $\alpha_2$ - $\alpha_1$ ) 789 values: the  $(\alpha_2 - \alpha_1) = -10$  ‰ line showed the lowest RMSE to our experimental data as well as the 790 previous field observation. The error bars in panels B and C represented the combined uncertainties 791 of NO<sub>x</sub> concentration measurements and isotopic analysis. 792


|         | Aleted - (0.0 NO)/(1 - (0.0 NO)) 1                                      |
|---------|-------------------------------------------------------------------------|
| $\succ$ | <b>Deleted:</b> ε(NO <sub>2</sub> -NO)/(1+ε(NO <sub>2</sub> -NO)) value |
| ( D     | Deleted: 6.8                                                            |
|         | Peleted: ‰                                                              |
|         | eleted: ε                                                               |
|         | Deleted: .                                                              |
|         | Peleted: ‰                                                              |












| 825 | Appendix B. Box model assessing the time needed for NO-NO <sub>2</sub> to reach isotopic equilibrium                              |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
| 826 | The time needed to reach NO-NO2 isotopic equilibrium during light-off experiments were                                            |  |  |
| 827 | assessed using a 0-D box model. This box model contains only two reactions:                                                       |  |  |
| 828 | <u><math>^{15}NO_2+^{14}NO \rightarrow ^{15}NO+^{14}NO_2</math></u> k=8.14000 × 10 <sup>-14</sup> cm <sup>3</sup> s <sup>-1</sup> |  |  |
| 829 | <u><math>15NO+14NO_2</math></u> $\rightarrow 15NO_2+14NO$ k'=8.36385 × 10 <sup>-14</sup> cm <sup>3</sup> s <sup>-1</sup>          |  |  |
| 830 | Where k and k' are rate constants of the reactions. The differences in rate constants were calculated                             |  |  |
| 831 | by assuming an $\alpha$ (NO <sub>2</sub> -NO) value of 1.0275. Six simulations were conducted at various initial NO               |  |  |
| 832 | (with $\delta^{15}N=0$ %) and O <sub>3</sub> levels that were similar to our experiment. Then the $\delta^{15}N$ values of NO     |  |  |
| 833 | and NO <sub>2</sub> during the simulation were calculated from the model and were shown in Figure B1,                             |  |  |
| 834 | suggesting that in our experimental condition, all systems should reach isotopic equilibrium within                               |  |  |
| 835 | <u>1 hr.</u>                                                                                                                      |  |  |
| 836 |                                                                                                                                   |  |  |
| 1   |                                                                                                                                   |  |  |





Formatted: Justified, Line spacing: Double

839 <u>concentrations.</u>

| <b>b</b>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                                                 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------|
| 840<br>841 | Appendix C. Deriving Equations 7 and 8<br>When the system (R1-R6) reaches steady-state, we have:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                                 |
| 841<br>842 | d[ <sup>15</sup> NO <sub>2</sub> ]/dt=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Eq. (C1)                        |                                                 |
| 843        | Therefore, using R1-R6:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                        |                                                 |
| 844        | $\frac{k_1 [^{15}NO_2][^{14}NO] + i(NO_2)\alpha_1[^{15}NO_2] =}{k_1 [^{15}NO_2]} = k_1 [^{15}NO_2] = k_1 [^{15$ |                                 |                                                 |
| 845        | $k_{5\alpha_{2}}[^{15}NO][O_{3}] + k_{1}\alpha(NO_{2}-NO) [^{15}NO][^{14}NO_{2}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eq. (C2)                        | Formatted: Indent: Left: 0", First line: 0"     |
| 846        | From here we refer <sup>14</sup> NO <sub>2</sub> and <sup>14</sup> NO as NO <sub>2</sub> and NO for convenience, rearrange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e the above equation,           |                                                 |
| 847        | we get:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                                                 |
| 848        | $\frac{[{}^{15}NO_2]}{[{}^{15}NO]} = \frac{k_5\alpha_2[O_3] + k_1\alpha(NO_2 - NO)[NO_2]}{j_{NO2}\alpha_1 + k_1[NO]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Eq. (C3)                        |                                                 |
| 849        | Meantime, since the Leighton cycle reaction still holds for the majority isot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | opes (NO and NO <sub>2</sub> ), |                                                 |
| 850        | we have:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                 |
| 851        | $j_{NO2}[NO_2] = k_5[NO][O_3]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Eq. (C4)                        |                                                 |
| 852        | Thus,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                                                 |
| 853        | $\frac{[NO_2]}{[NO]} = \frac{k_5 \times [O_3]}{j_{NO2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Eq. (C5)                        |                                                 |
| 854        | From the text, when $j_{NO2} \ge 0$ , we defined $A = \tau_{exchange}/\tau_{photo} = j_{NO2}/(k_1 \times [NO])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ). Using the above              |                                                 |
| 855        | equations, we know:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                 |
| 856        | $\frac{j_{NO2}}{[NO]} = \frac{k_5[O_3]}{[NO_2]} = Ak_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Eq. (C6) 🔸                      | Formatted: Indent: Left: 2", First line: 0.5"   |
| 857        | $\frac{j_{NO2}}{k_1[NO]} = \frac{k_5[O_3]}{k_1[NO_2]} = A_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Eq. (C7)                        |                                                 |
| 858        | Next, to calculate $\delta(NO_2)-\delta(NO)$ , we use the definition of delta notation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                                                 |
| 859        | $\delta(NO_2) - \delta(NO) = R_{NO2}/R_{std} - R_{NO}/R_{std} = (R_{NO2}/R_{NO} - 1)(1 + \delta(NO))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>)) Eq. (C8)</u> •            | Formatted: Indent: Left: 0.5", First line: 0.5" |
| 860        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                                                 |
| I          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                                                 |

