Response to RC1
Dear Dr. Johnson,

Thank you for the comments and input to our manuscript. Below is a line-by-line response to your
comments.

Model and Interpretation

The semi-analytical PHIFE/ZPE model (Miller 2000; Michalski 2004) is discussed as a way of
understanding photolytic isotopic fractionation. Please compare the predictions of that theory with
the results of this experiment and comment.

We discussed the previous calculation of the KIE and added some theoretical calculations in our
manuscript. The predictions showed good agreement with our observation (KIE=0.9933,
PHIFE=1.0023, therefore predicted LCIE=-9%o, our results=-10£5%o). In the meantime, we did
the ZPE calculation using 4 different actinic flux spectrums (lab light, early morning/late afternoon,
mid-morning/afternoon, and noon), all of them showed similar PHIFE values ranging from 1.0023
to 1.0029, suggesting the PHIFE do not vary significantly by light.

The abstract states that the Leighton cycle isotope effect is 0.990 £+ 0.005 at room temperature.
However, this must be for a certain insolation spectrum and concentrations of O3, HO2, RO2?
Please include the conditions. How much will the LCIE change with the changes in conditions
found in the atmosphere, or can we take this result to be applicable throughout the atmosphere?

We pointed out that, our experiments measured the LCIE fractionation factor when O3 solely
controls the NOx cycle. However, we suggest this LCIE factor might be used in the ambient
environment because it showed good agreement with previous field observations. Nevertheless,
future work is needed to confirm our assumption that the isotopic fractionation factor of
NO-+RO2/HO; are similar to that of NO+Os.

It is argued that the atmospheric LCIE is 18.8 per mil based on the experiment and one field
measurement. This may perhaps be sufficient for accepting the proposed value, but no attempt is
made to discuss the uncertainty of the measurement, and to predict what variations will be seen in
the atmosphere with changes in temperature, actinic flux spectrum, and concentrations of O3, HO2,
and RO2. Please present a discussion of these factors.

This 18.8 %o value in Freyer’s work is an annual average daytime value of combined EIE and
LCIE, which was determined using all the measurements in a year. In reality, the value
significantly varies by temperature, actinic flux spectrum, and concentrations of Oz, HO, and ROx.
However, since we do not have more detailed data, we are not able to reconstruct the combined
LCIE+EIE values at a higher time resolution in Freyer’s work. Instead, we discussed this variation
in the next section by using hourly NO, NO; and j(NO) data to model the daily variations.

What affect will the formation of PANs/addition of this equilibrium, have on the LCIE? Please
comment on the LCIE that would be observed in the stratosphere.



This is a very good point. However, since 1) reactive nitrogen chemistry in the stratosphere is
dramatically different from the troposphere and 2) the temperature in the stratosphere is also
different, we suggest our model may not be used in the stratosphere. Therefore, we revised our
statement and limited our discussion in the troposphere. In the meantime, we pointed out that future
study is needed to explore the behavior of N isotopes in the stratosphere.

In the authors’ experiment, NO is converted to NO2 by O3 in conditions with low concentrations
of HO2 and RO2, which will play a role in the atmosphere. They suggest that the HO2 and RO2
oxidations of NO might have a similar KIE as the O3 oxidation, but this argument could be
considered convenient. It would be stronger with experimental evidence and with improved
validation by field measurements. Please make sure to discuss the potential uncertainty that is
being introduced in transferring the laboratory results to the field.

We addressed this uncertainty by mentioning that, to enable our model in the ambient environment,
we assume the KIE of O3 is similar to that of HO> and RO», because our modelled KIE value could
explain the only field observation data by Freyer. This is an assumption that needs to be verified
in the future.

However, if this assumption is true, then we do not need to know the concentrations of O3, HO or
ROy, if we know both NO and NO: concentrations. The existence of O3, HO2 or RO> would be
reflected in the NO/NOx ratio at a given j(NO») value.

No description is made of the UV lights that were used for the photolysis, please add this.
According to PHIFE/ZPE, photolytic isotopic fractionation changes as a function of wavelength.
How did the spectrum of the lamps used to differ from the solar actinic flux spectrum? What
wavelength dependence do you expect? How will the LCIE change as a function of altitude in the
atmosphere as the actinic flux spectrum changes?

We added the description of the UV light in the supplementary material. And as mentioned before,
we studied the variation of LCIE by calculating the PHIFE using 4 different actinic flux spectrums
(lab light, early morning/late afternoon, mid-morning/afternoon, and noon). The results show that
all of them have similar PHIFE values ranging from 1.0023 to 1.0029, suggesting the PHIFE do
not vary significantly under different actinic flux spectrums.

There is precious little field data to use to validate the model. Please comment on what studies you
would like to see in order to test the model, and as I have noted, please discuss the impact of

different environmental factors, other than NOx concentration, on the results.

We added a paragraph before the final conclusion discussing the limitations of our work and
potential future work that can be done to advance our understanding in this topic.

Presentation:

The abstract is rather short given the interesting findings of the paper. Please expand.



Revised as suggested. We rewrote the abstract to make it readable for a more general audience.
I am not sure why the TLA (three letter acronym) ’EIE’ for ’equilibrium isotope effect’ is
introduced when there is already the widely accepted idea of the exchange reaction. This could

make the abstract obscure for non-specialists.

Revised as suggested. We removed the TLA for EIE in the abstract but remained using EIE in the
main text to contrast with LCIE.

The introduction should include discussion of photolytic re-emission of deposited nitrate.
Revised as suggested.

Please italicize the symbols used for physical quantities such as f, j and k.

Revised as suggested.

Please add a scheme or figure giving an overview of the key reactions involved in this
work.

We added a sketch as Fig. 1C.

On page 11 line 230, some j values (photolysis rates) are presented. Please include the units with
these numbers. Also, in figure 2, ’j = 0.005°, but what are the units?

Revised as suggested.



Response to RC2
Dear reviewer:

Thank you for the comments, we appreciate your input. We have revised our manuscript
according to the comments from all the reviewers, below is our line-by-line response to your
comments and suggestions.

First and foremost, how was the d15N of NOx measured (lines 150-151)? This is critical in that
these values are used to demonstrate and calculate the observed isotope effects.

We improved our description of measuring the §'’N of NOy in the method section. In short,
we measured the 8'"°N of NOx in three different experiments. In each experiment, we inject same
amount of NO and O3 to produce pure NO,, then we analyze the §'’N value of the NO,. Because
we can see that 100% of NOy in these experiments were in the form of NO,, therefore the measured
8'5N value can be used to represent the 3'°N of source NOx.

Second, was the d15N data of all samples corrected for potential isobaric in- fluences of 170?
(lines 120-124). The generated O3 should have a high D170 that will be transferred to the product
NO2. This may impact both the starting NO source d15N values and the measured NO2 values
during both dark and photochemical experiments. This could cause an important change in the
findings if excess 170 has not been accounted for in correcting the d15N data. Related to the above,
in Figure 1A it appears that the data was forced through an intercept of 0. But the best fit to the
data does not appear to go through 0. What is the slope of the data not forced through the intercept?
What might the intercept indicate — from my read this could indicate a shift due to the influence
of 170 on the 45 signals when quantifying the isotopic ratios from N20. A change in slope with
the best fit might also bring the calculated value to something that is actually closer to the measured
value by Walters et al. Wouldn’t this be more consistent with current thinking?

The isobaric influence of O17 was calculated in the ISODAT system. It measures the 46
signals to calculate 5O first, then calculate the 8’0 value assuming mass dependent fractionation,
then use these to correct for 8'°N signal. We notice that this method did not account for mass
independent fractionation so it could shift the absolute §!°N value (assuming O17 excess=30%o)
by as much as 1.5%eo.

However, all the data shown on Figure 1A are 8(NO2)-0(NOx), and both (NOz) and 6(NOx)
have the same isobaric shift because they were measured using the same sampling & analysis
method. So, when calculating the 6(NO2)-0(NOx) values, this isobaric error should be cancelled
out assuming O17 excess were the same. Therefore, the isobaric error may not cause a significant
shift in the interception on Figure 1A.

In other words, our experiments that determined the 8'N values of source NOx (in these
experiments f(NO)=0 and 8(NO2)-3(NOx)=0) can be seen as 3 extra data points at (0,0), therefore
the interception on Figure 1A should still be 0.

For Figure 1B, the LCIE factor is calculated from “the best fit” (line 206). However, the figure
makes it appear qualitative rather than quantitative. This calculation/estimation should be shown
quantitatively and an r or r2 value should be reported for the fit. It should also be better explained



why the point at A~0.1 and A~0.15 do not follow the expected relationship (why does the
difference in d15N not change with A?). Also, why does the relationship have to be linear? In
addition, the -10 per mil line does not “best fit” the field observation. It is also not clear what the
error bars are on each symbol — I don’t see how these should be the same/have the same meaning
for the field observation versus the chamber data. The field study point should also be clearly cited
in the figure caption. Related to this, in the text (line 215-218) it is argued that the experimental
values determined are in good agreement with the field study. But the field study represents a very
high NOx environment (at times NOx » O3) and the measurements were taken at different times
of the year not just at temperature close to room temperature. So, is it possible that the field
determined value is showing a temperature dependence relative to the controlled experiments?

We call the -10%o0 LCIE line “best fit” because this fit gives the highest r value of 0.52 and
the lowest total variation:

total variation=Y.(y; — f;)?
in which y; is the observed value and f; is the predicted value by the fit line.

We attribute the deviation of the two points from the prediction line to the relatively large
analytical uncertainties at low A values. In these two experiments, the NO and NO level were low
(<10 ppb), and the concentration measurements showed a higher error bar. We have recalculated
the error bars on these data points which are now shown on Figure 1B.

We used the average conditions of the field study to calculate its position at Figure 2B.
Although the conditions change significantly throughout the time period of this study, their 18.8%o
value represented the average fractionation factor of the sampling period. Therefore, we also used
their average condition to calculate the fractionation factor. However, it is likely that the
temperature dependence played a role in this study, and we pointed out that future studies are
needed to investigate its impact.

Next, how does the EIE measurement compare with theoretical works? What may drive the
differences in the experimental values versus theory? Is formation of other products (such as N20O3
or N204) in the chamber a concern and could that influence the measured EIE value?

We added some calculations showing the formation of N>O4 and N>O3; were negligible.
Also, we have mentioned that we conducted a control experiment to evaluate NO, wall loss but
did not observe any NO:> loss over a 4-hour period. Therefore, we suggest the formation of other
products were insignificant.

We are not sure why it did not align with current theoretical calculations, probably because
of the different approximation methods in previous studies. Hopefully future theoretical
calculations can be carried out to evaluate our conclusions.

On line 185-189, it is stated that a2 (“alpha 2”) is not quantified. However, Walters and Michalski
(2016), which is referenced here, does include an ab initio-based estimate for this value. And
couldn’t this value be used to separate out the magnitude of PHIFE (rather than assume it)?

We added two paragraphs comparing our results to theoretical calculations. We pointed
out that our result of -10%0 showed good agreement with theoretical calculations in Walters and
Michalski (2016) and a ZPE approach that estimates the isotopic fractionation of NO: photolysis.



Specific comments: Abstract — The abstract should be written for a more general audience. Be
consistent with abbreviations. For example, NO and NO2 are not defined and nitrate isn’t
abbreviated. Also, LCIE should be more clearly defined since this is new terminology in this work.
The implications of the study should be better highlighted here. How will a mathematic solution
for NO-NO2 isotopic fractionation be useful to the atmospheric chemistry community?

We have revised our abstract, defined NO, NO» and introduced LCIE. We also revised our
implication and pointed out the limitation of this study.

Also, the statement that the new solution can be used at any given condition is a stretch since
experiments were only conducted at room temperature and the experiments seem to be most
relevant for the troposphere and not stratospheric NOx conditions.

We realized our experimentally determined values have limitations; therefore, we have
discussed these limitations, and suggested our result should be applied in troposphere near room
temperature. We also discussed how can future work verify and improve our current results.

Main Text

Line 25-30: The link between NOx and the formation of nitric acid (i.e. nitrate) needs to be more
clearly stated. Also, the second sentence is a bit awkwardly phrased given that most of the studies
did not use NO2 isotopes directly. It may be worth separating out the studies that have used
isotopes of nitrate to understand something about NOx versus studies that have looked at NO2 or
NOx specifically.

We revised the first paragraph. We now start this introduction by stating that the N isotopes
are usually applied to study the sources of nitrate, however, it is unclear how atmospheric
chemistry alters the isotope signals. Then, we narrow down our topic to the isotopic fractionations
between NO and NO», because it is very important.

Line 38: remove “the” before chemistry

Revised as recommended.

Lines 46-54: Please separate this into at least two separate sentences.

Revised as recommended.

Lines 61-63: What drives the difference in the theoretical predictions for this EIE?

It is mainly because each theoretical prediction uses different harmonic approximations in
their calculation.

Lines 63-64: I think it should be pointed out that this was conducted at room temperatures. Also,
the error of £0.001 is incorrect?



Revised as recommended.

Lines 68-69: KIE and PHIFE for the NOx system is limited but you should probably acknowledge
the KIE study on NO + O3: Walters and Michalski (2016) Ab initio study of nitrogen and position-
specific oxygen kinetic isotope effects in the NO + O3 reaction, J. Chem. Phys. 145, 224307.

Revised as recommended.

Lines 70-75: suggest changing this to “. . .tends to diminish the expression of the equilibrium
isotopic fractionation (EIE) between NO and NO2, but both KIE and PHIFE factors at that time
were unknown.” It seems strange to suggest that assuming no isotope effects (ie 1) yields no
isotope effect. Here would be a good place to better detail the Freyer et al work and approach to
determining the single fractionation factor. Otherwise line 75 doesn’t really make sense to the
reader unfamiliar with the details of Freyer’s work.

We have revised this part to present a better description of Freyer’s work and pointed out
the limitation, which is the motivation of our study.

Line 83: atmospheric should be “atmospherically”
Revised as recommended.

Line 88: change “NOx nitrogen isotopes” to something more correct like isotopic composition of
NOx.

Revised as recommended.

Line 105: “was” should be were. Line 105 (and later): what range of wavelengths are used in the
experiment. This is important to report as you have already stated!

Revised as recommended.

Lines 112-115: More details on the capture of NO using denuder tubes should be provided in the
text rather than supplement. And the details are not really given in the suppl either. What was the
denuder coated with? How is it determined that there was quantitative and accurate collection of
the NO isotopes? What is this method based upon?

Revised as recommended.

Lines 120-124: Were corrections conducted for D170 interferences? I imagine the generated O3
will have a high D170 that will be proportional transferred to your product NO2. This may impact
both your starting NO source d15N value and your measured NO2 values during dark and
photochemical experiments. Section 2 overall — were any blanks tested throughout the experiments?

The D170 will affect the measured absolute 3' N values but this should be cancelled out
when we calculate the 5(NO2)-6(NOx) values (see our reply above). We tested 6 blanks during our



experiments and none of them showing any measurable nitrite. We have added this part into the
main text.

Line 129: difference should be “ratio of” correct?
Revised as recommended.

Line 140: I don’t understand the formatting here with d(15N, NO)?
We changed this notation to §'>N(NO).

Line 149- 150: How was d15N-NOx measured? If this was done for all experiments, why does
n=3? and again how will potential 170 isobaric influences affect your quantification of d15N?

As we described above, three extra experiments have been conducted in which we convert
all the NO into NO; and measured the 3'°N values of NO to represent the §'N of NOx. All three
experiments showed consistent 8N values, therefore we suggest the 3'°N value of NOy remain
the same in all of our experiments.

Lines 156: Where does the error on the 26.8 value come from? This is not represented in the figure.

Since the slope actually represents the 8(NO7)-0(NO) values in each experiment, we
calculated the error using the standard deviations of 3(NO)-6(NO) values in the 5 experiments.

Lines 166-167: Can you prove that formation of these other products are not important for the
experiments performed here? EIE should be able to be precisely predicted by theory — so why is
there such a mismatch between the theoretical and the measured values?

We added some calculations showing the formation of N>O4 and N>O3; were negligible.
Also, we have mentioned that we conducted a control experiment to evaluate NO, wall loss but
did not observe any NO> loss over a 4-hour period. Therefore, we suggest the formation of other
products were insignificant.

We are not sure why it did not align with current theoretical calculations, probably because
of the different approximation methods in previous studies. We suggest that future theoretical
calculations can be carried out to evaluate our conclusions.

Figure 1A: It appears that the data was fitted through an intercept of 0, but the data doesn’t appear
to go through the intercept. What is the slope of the data when not forced through the intercept?
What might the intercept of your data indicate? Maybe D170 isobaric influence?

Since the 0(NOy) is determined using the same method as 6(NO.) in our experiments, this
isobaric influence in this equation should be cancelled out (see our reply above). Therefore, this

slope should have an intercept of 0.

Lines 174-176: What exactly were the wavelengths of the blacklight used in the experiments?



We provided an irradiation spectrum of the UV light we used in the supplementary material.

Lines 186-189: a2 value was determined in Walters and Michalski, 2016 ab initio study as
referenced above.

We changed the statement to “nor were al and a2 experimentally determined”

Lines 191-197: It might be more straightforward if t(exchange) and t(photo) were defined first and
then A, etc. Also please better define the purpose of equations 7 and 8. Also shouldn’t these
equations have epsilon instead of alpha?

Revised as recommended. In these calculations, since &=(a-1)*1000%o0, we know &2-
el=(02-a1)*1000%o. To introduce as little symbols as possible, we did not use € in this section.

Line 207-210: The experimental LCIE should be compared with the NO + O3 KIE. Here and on
line 225 it feels a bit like the large uncertainty of +/- 50 percent on the -10 value is being ignored!

We added some extra discussion suggesting 1) this -10%o value fits well with theoretical
predictions and 2) the a; value did not vary significantly with a changing j(NO.). Therefore, we
will use this -10%o in the following discussion assuming the a; value remain constant, and 2) the
NO+RO2/HO; reactions have the same fractionation factors (02) as NO+Os.

Line 220: Note that the field experiments sometimes only represent NO2 and other times NOx. . .so
the difference between NO and NO2 was not measured, it was determined.

Revised as recommended.
Line 237: I do not see how this shown in Figure 2A.

Figure 2A represents the isotopic fractionations between NO and NO; in dark condition
(J(NO2)=0). In this scenario, EIE solely controls the isotopic fractionation therefore the 6(NO.)-
O(NO) should be a constant no matter how NOx level and f(NO2) changes.

Line 261-263: These are not emissions, these are ambient NO2 and NOx. Also, NOx is not emitted
— primary emissions are NO and very on occasion diesel engines have been shown to emit NO2
directly. All of the language here needs to be much more precise.

We changed “NOx emission” to “total NOy”.

Section 4 overall: This section needs work. It needs to be established why the sites were chosen.
And the sites should be clearly labeled as representative of, for instance, urban versus suburban
versus remote versus elevated NOx (roadside) or the like. It seems like the point here actually
should be to distinguish the effects across the different sites. Why does it not matter that the O3
(and HO2, RO2, etc) concentrations would vary significantly across these sites?



The four sites represented different NOx level and we can see the impact of NOx level to
the NO-NO; isotopic fractionations was significant.

O3 (and HO;, RO») concentrations impact the NO-NO, fractionation by altering the A
values, which was reflected in the f(NO) parameter and the A value in our equations. From Eq. 7
and 8 we can know that we do not need to use O3 (or HO», RO;) concentration to calculate the
isotopic fractionations as long as we know NO and NO; concentrations and the j(NOy) values.

What are we really learning from site A vs B? They are both roadside. Given that there is such
limited data to compare the model with, could the authors compare their roadside model to
d15N(NO2) data collected by a roadside such as Felix and Elliott, 2014, “Isotopic composition of
passively collected nitrogen dioxide emissions: Vehicle, soil, and livestock source signatures”,
Atmospheric Environment, 92, 359-366?

A and B are both roadside sites, however they have different NOx concentrations. The NOx
concentrations at Anaheim site averaged at 58 ppb but the Evansville site only had 15 ppb. As a
result, the isotopic fractionations at Anaheim was mainly controlled by EIE which showed high
O(NO2)-0(NOx) values (>10%o throughout the day), but at Evansville, LCIE was more significant,
thus the 6(NOz)- 6(NOy) values can be as low as ~2%o at noon.

Our discussion was less focused on the 3'>N values of NOx sources but more focused on
the impact of the NOx level and photochemistry to the isotopic fractionations between NO and
NO.. Felix and Elliott, 2014 provided a good insight on the §'"’N(NO) values at roadside, and the
NOx level at Felix and Elliott, 2014 study was similar to that of Anaheim. Therefore, we suggest
at these sites, EIE will also be a dominate factor. Furthermore, in Felix and Elliott, 2014, there are
little constrain on the differences between the §!°N values of NO; and total NOx, thus we are not
able to further compare our work to theirs.

Also why not directly compare with what the model would predict quantitatively against the
Walters 2018 work? And also predict the values for the Freyer work and compare?

Both Walters et al. 2018 and Freyer 1993 work used the same equation to calculate the
isotopic shift which is similar to our approach. The only difference between their equation and our
equation is that they assumed a2-a1=0 instead of the -10%o measured in our experiment. We can
see in these two works, the calculated isotopic shift values are similar to our results, suggesting
the differences in LCIE may only slightly impact our results by a couple per mil in these conditions.

Lines 325-327: This conclusion is a bit strange. There is very little local HNO3 at Summit,
Greenland. So drawing the conclusion based upon snow work (not atmosphere and snow) and
assuming a direct link temporally between d15NO2 and d15NO3- seems a stretch. It might be
more useful to look at Jarvis et al. (2009) instead — Jarvis, J. C., M. G. Hastings, E. J. Steig, and S.
A. Kunasek (2009), Isotopic ratios in gas- phase HNO3 and snow nitrate at Summit, Greenland, J.
Geophys. Res., 114, D17301, doi:10.1029/2009JD012134.

This is very good point. I have removed this part because directly using our model to
interpret these data is not solid enough.



Line 329: what kinds of data and future environmental measurements should be conducted to
validate this model? Help the community make this a reality!

We added a paragraph in the end of this section to address our limitations and future work.
We suggest that future experiments, field observations and theoretical studies should be done to 1)
verify our experimental results, 2) investigate the isotopic fractionation factor of reactions that
converts NOx into NOy and nitrate, 3) study the isotopic effects of reactive nitrogen chemistry in
the stratosphere amd 4) study the temperature dependence of these fractionation factors.

Supplement — This needs to be re-read and edited — there are a lot of typos. Some comments on
the methods in the supplement — I have a number of questions: -what was the flow rate used to
calculate the NO2 residence time (“reside” should be residence in the text)? -include more details
of the denuder method — what company are these from? What were they coated with? How do you
know they are quantitative in collection? Please show the collection efficiency data. And report
how many times this was tested. -need to make it clearer where the 1.0268 value comes from —
why is this value assumed here? Based upon the “best fit”? which really isn’t a best fit (see
comments from above). So what happens here if you do not assume a forced zero intercept? -make
sure the editor’s suggested technical corrections carry through the supplement as well.

We have gone through the supplementary material and fixed some typos. To answer the
questions: we provided more detailed descriptions (e.g., flow rate, information about the denuder
method) both in the main text and in the supplementary material. In the meantime, we have shown
that our collection efficiency was nearly 100% by stating that we measured the NO; level on the
exit of the denuder tubes when using the denuder tubes to collect NO» at 66 ppb, and the measured
NO2 level at the denuder exit was below detection limit. We only conducted this control
experiment once, but the testing lasts for over an hour, and the collection efficiency remained at
100% throughout this experiment. We also changed the 1.0268 to 1.0275 to align with the main
text, and the reasons we used a zero intercept have been stated above.



Response to SC1
Dear Dr. Savarino,
Thank you for your comment! This is an excellent suggestion that will improve our paper.
We have removed the discussion that used our model to explain the Arctic snow nitrate isotopes.

Instead, we pointed out some uncertainties that still exist in this field, and we suggest that future
work is needed to further address these issues.



List of all the changes made in the manuscript:
1. We rewrite the abstract to provide more information toward a more general audience;

2. In the introduction part, we added some description about snow nitrate photolysis & redeposition,
and introduced previous theoretical studies by Walters & Michalski, 2016 that calculated the KIE
of NO+O3.

3. In the method section, we added detailed description of the chamber and our experiments,
including the light source used, instruments that measured NOx and O3 concentrations, and control
experiments testing 1) NO, wall loss, 2) '°N value of NO tank, 3) collection efficiency of denuder
tubes and 4) blank. Additionally, we added the description of denuder tube coating procedure.

4. We limited our discussion to tropospheric chemistry because we realize our experiments can
only represent the chemistry in the troposphere;

5. We also discussed the temperature effect of EIE and LCIE, which cannot be addressed by our
experiments. We suggest future studies are needed to investigate these issues.

6. We added theoretical calculations that compared our measured LCIE results to the theoretical
prediction using a ZPE shift model. These calculations showed good agreement with our measured
values.

7. We also used the ZPE shift model to investigate the effect of light to the PHIFE, which was
suggested to be minor (<0.5%o shift when solar zenith angle vary from 0 to 85 degree).

8. We revised some symbols: j, k, fto be italic, and used A(NO»-NOx) and A(NO>-NO) to represent
O(NO2)-8(NOx), 8(NO2)-3(NO).

9. We clearly stated our assumptions before applying our model into the ambient environment
(implication section).

10. We discussed the limitations of our study and suggested some future works to keep
investigating this topic.

11. We revised the figures to match our changes in the manuscript; in the meantime, we added a
sketch as Fig. 1C to illustrate our main point of this study.
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Quantifying the nitrogen isotope effects during photochemical
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Abstract. Nitrogen isotope fractionations between nitrogen oxides (NO and NO;) play a+«

significant role in determining the nitrogen isotopic compositions (8'*N) of atmospheric yeactive

nitrogen. Both the equilibrium isotopic exchange between NO and NO, molecules and the isotope

effects occurring during the NOy photochemical cycle are important, but both are poorly

constrained. The nighttime and daytime isotopic fractionations between NO and NO; in an

atmospheric simulation chamber at atmospherically relevant NOy levels were measured. Then, the

impact of NOx level and NO; photolysis rate to the combined isotopic fractionation (equilibrium

isotopic exchange and photochemical cycle) between NO and NO, were calculated. It was found *

that the isotope effects occurring during the NOx photochemical cycle can be described using a
single fractionation factor, designated the Leighton Cycle Isotope Effect (LCIE). The results
showed that at room temperature, the fractionation factor of nitrogen isotope exchange is

1.0275+0.0012, and the fractionation factor of LCIE (when Oj3 solely controls the oxidation from

NO to NO») is 0.990+0.005. The measured LCIE factor showed good agreement with previous
field measurements, suggesting that it could be applied in ambient environment, although future
work is needed to assess the isotopic fractionation factors of NO + RO»/HO> >NO,. The results
were used to model the NO-NO> isotopic fractionations under several NOy conditions. The model
suggested that isotopic exchange was the dominate factor when NOx >20 nmol mol™'. while LCIE

was more important at low NOy concentrations (<1 nmol mol'") and high rates of NO- photolysis,

These findings provided a useful tool to guantify the jsotopic fractionations between tropospheric

NO and NO,, which can be applied in future field observations and atmospheric chemistry models.
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1. Introduction

The pitrogen isotopic composition (8'°N) of reactive nitrogen compounds in the
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atmosphere is an important tool in understanding the sources and chemistry of atmospheric NOx

(NO+NOy). It has been suggested that the §'"°’N value of atmospheric nitrate (HNO3, nitrate
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Elliott, 2014; Gobel et al., 2013; Hastings et al., 2004, 2009; Morin et al., 2009; Park et al., 2018;

Walters et al., 2015, 2018). However, there remain questions about how isotopic fractionations
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deposition in ice and snow (Frey et al., 2009), may impact the 5'N of NOy and atmospheric nitrate.
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fractionations between NO and NO:» during photochemical cycling could improve our

understanding of the relative role of source versus chemistry for controlling the §'°N variations of
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atmospheric NO; and nitrate,,

In general, there are three types of isotope fractionation effects associated with NOx

two compounds without forming new molecules (Urey, 1947, Bigeleisen and Mayer, 1947), which

for nitrogen isotopes in the NOx system js the '’'NO + “NO, <> '*NO + ’NO, exchange reaction,
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(Begun and Melton, 1956, Walters et al., 2016). The second type is the kinetic isotopic effect (KIE)

associated with difference in isotopologue rate coefficients during unidirectional reactions

(Bigeleisen & Wolfsberg, 1957). In the NOx system fhis KIE would be manifest in the oxidation

of NO into NO> by O3/HO2/RO>, The third type is the photochemical jsotope fractionation effect )

(PHIFE, Miller & Yung, 2000), which for NOy is the isotopic fractionation associated with NO»

photolysis. All three fractionations could impact the §'SN value of NO2. and consequently

atmospheric nitrate, but the relative importance of each may vary,

The Jimited number of studies on the EIE, in the NOx cycle have significant uncertainties.

Discrepancies in the EIE for ’NO + “NO, <> “NO + 'NO, have been noted in several studies.

Theoretical calculations predicted isotope fractionation factors (o) ranging from 1.035to 1.042 at
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(usually Jess than 0.1 umol mol™"). Whether the isotopic fractionation factors determined by these

experiments are applicable in the ambient environment is uncertain,because of possible wall effects

and formation of higher oxides, notable N>O4 and N>O3 at these high NOx concentrations.

Even less research has examined the KIE and PHIFE occurring during NOx cycling. The

KIE of NO + Os has been theoretically calculated (Walters and Michalski, 2016) but has not been

experimentally verified. The NO, PHIFE has not been experimentally determined or theoretically

calculated. As a result, field observation studies often overlook the effects of PHIFE and KIE.

Freyer et al. (1993) measured NOy concentrations and the 83N values of NO» over a 1-year period

at Julich, Germany and inferred a combined NOy isotope fractionation factor (EIE+KIE+PHIFE)

of 1.01840.001. Freyer et al. (1993) suggested that the NOx photochemical cycle (KIE and PHIFE)
tends to diminish the equilibrium isotopic fractionation (EIE) between NO and NO,, Even if this
approach were valid, applying this single fractionation factor elsewhere, where NOy, O3

concentrations and actinic fluxes are different, would be tenuous given that these factors may
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averaged at 1.018+0.001 and suggested that this fractionation
factor was a combined effect of EIE, KIE and PHIFE.

influence the relative importance of EIE, KIE and PHIFE (Hastings et al., 2004; Walters et al.,

2016). Therefore, to quantify the overall isotopic fractionations between NO and NO» at yarious

tropospheric conditions, it is crucial to know 1) isotopic fractionation factors of EIE, KIE and

PHIFE individually and 2) the relative importance of each factor under various conditions.

In this work, we aim to quantify the nitrogen jsotope fractionation factors between NO and

NO: at photochemical equilibrium. First, we measured the N isotope fractionations between NO

and NOz> in an atmospheric simulation chamber at atmospherically relevant NOx levels. Then, we

provide mathematical solutions to assess the impact of NOx level and NO; photolysis rate ((NO>))
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to the relative importance of EIE, KIE and PHIFE. Subsequently we use the solutions and chamber

measurements to calculate the isotopic fractionation factors of EIE, KIE and PHIFE. Lastly, using
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the calculated fractionation factors and the equations, we jmodeled the NO-NO; isotopic

fractionations at several sites to illustrate the behavior of 5'°N values of NOy in the ambient
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environment.

2. Methods
The experiments were conducted using a 10 m* Atmospheric Simulation Chamber at the
National Center for Atmospheric Research (see descriptions in supplementary material and Zhang

et al. (2018)). A set of mass flow controllers was used to inject NO and O; into the chamber, NO
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was injected at 1 L min™' from an in-house NO/N> cylinder (133.16 umol mol”! NO in ultra-pure

N>), and O3 was generated by flowing 5 L min™!' zero-air through a flow tube equipped with a UV

Pen-Ray lamp (UVP LLC., CA) into the chamber. NO and NO» concentrations were monitored in
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ppb (model 49, Thermo Scientific, CO). In each experiment, the actual amounts of NO and O3

injected were calculated using measured NOx and O3 concentrations after steady state was reached

(usually within 1 h). The wall loss rate of NO, was tested by monitoring O3 (29 nmol mol!) and
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NOy (62 nmol mol!) over a 4-hour period. After the NO and NO» concentrations reached steady

state, no decrease in NO, concentrations was observed showing that chamber wall loss was
negligible.

Two sets of experiments were conducted to separately investigate the EIE, KIE and PHIFE.
The first set of experiments was conducted in the dark. In each of these dark experiments, a range
of NO and O3 ([O3]<[NO]) was injected into the chamber to produce NO-NO: mixtures_with

[NOJ/[NO»] ratios ranged from 0.43 to 1.17. The N isotopes of these mixtures were used to
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NO; was leached from each denuder tube by rinsing thoroughly with 10 ml deionized water into

a clean polypropylene container and stored frozen until isotopic analysis. Isotopic analysis was
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conducted at Purdue Stable Isotope Laboratory. For each sample, approximately 50 nmol of the

NO;y _extract was mixed with 2 M sodium azide solution in acetic acid buffer in an air-tight glass

vial, then shaken overnight to completely reduce all the NO>™ to N2Og) (Casciotti & Mcllvin, 2007;

Mcllvin & Altabet, 2005). The product N2O was directed into a, Thermo GasBench equipped with
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cryo-trap, then the 8'°N of the NoO was measured using a Delta-V Isotope Ratios Mass (Deleted: by
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the blank from both sampling process and the chemical conversion process was negligible. The

overall analytical uncertainty for 8'>N analysis was £0.5 %o (15) based on replicate analysis of in

house NO>™ standards.

3. Results and Discussions

3.1. Equilibrium Isotopic Fractionation between NO and NO»

The equilibrium jsotope fractionation factor, a(NO,-NO), is the '*N enrichment in NO,

relative to NO, and is expressed as the ratio of rate constants ko / k1 of two reactions:
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the chamber experiments (7.7-62.4 nmol mol "), isotopic equilibrium would be reached within 15 Deleted: ppb), the...mol mol!), isotopic equilibrium
was...ould be reached within 15 min, and...inutes (see
supplementary information). Since the sample collection

information). Since the sample collection usually started 1 hour after usually started ~... hour after NO; was well mixed in the

chamber.... ... [1]

NOx was well mixed in the chamber, there was sufficient time to reach full isotope equilibrium. /

The isotope equilibrium fractionation factor is then calculated to be:

_ [*5NO2]x[**NO] _ R(NOy) . _ ['NO,J*[**NO] _ Rno, .
'(x(NOZ -Noy = [1*NO,|x[15NO] __R(NO) Eq. (1) - ?eleted. ONO02=NO = [5ing, 1 5N0) T Rwo " Ea.
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but hereafter, the §'*N values of NO, NO, and NOy will be referred as §(NO), 3(NO,) and 3(NOy).

respectively. Eq. (1) leads to:
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S(NOz) = 3(NO,) = g(NO, — NO) X (1+¢e(NO, —NO)) X (1+8(NOz)) X (1 — f(NO3))_Eq. (3) fno2)*8"Nno, frnoa=]. .. ... [4]

Deleted: 3'*Nyo,—8"*Nyo, = eno,—no * (1 —
fvo,)” =~~~ ~Eq.(3)f
In which 8" Nyoy and 8'*Nno, are

Deleted: total NOx (equal to ...he §'°N of source...ylinder
NO)...and f(NO; respectively, and fxoo... is the molar
fraction of NOs....with respect to total NOy. Three
calibration ...xperiments that ...see descriptions in method
section) that measured 8'*Nyox before, during and after all
the experiments. ..(NOy) showed consistent 3'*Nyox...(NOx)
values of -58.7+0.8 %o (n = 3), indicating the

/ 3" Nnox. ..(NOy) remained unchanged throughout the

can be treated as a constant in Eq. (3), and the slope of a linear regression of (S5(NO»)- / experimenﬁs....(as expected for isogtope massgbalance). Thus,
the 8'"Nyox...(NOx) can be treated as a constant in Eq. (3),
and the slope of a linear regression of 5'"Nno2-8""Nwox. . [5]

linder NO,and f(NQO3) is the molar fraction of NO

Here, 8(NOx) equals to the "N value of the

with respect to total NO,. Three gxperiments (see descriptions in method section) that measured

HS(NOy) showed consistent 5(NO,) values of -58.7+0.8 %o (n = 3), indicating S(NOy) remained

unchanged throughout the experiments, (as expected for isotope mass balance). Thus, the S(NOx) /

S(NOW)/(1+56(NOy)), versus 1-/(NO») yields e(NO2-NO)/(1+e(NO»-NO)).
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The plot of (8(NO,)-6(NOy))/(1+5(NOy)) as a function of 1-./(NO,) values from five

experiments yielded an £(NO,-NO) value of 27.5+1.2 %o at room temperature. This fractionation

factor js comparable to previously measured values but with some differences. Our result agrees

well with the g(NO,-NO) value of 1.028+0.002 obtained by Begun and Melton, (1956) at room
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This discrepancy jnight originate from rapid heterogeneous reactions on the wall of the reaction

vessel at high NOx concentrations and the small chamber size used by Walters et al. (2016), They -
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Unfortunately, the chamber temperature could not be controlled so we were not able to

investigate the temperature dependence of the EIE. Hence, we speculate that the a(NO>-NO)

follows a similar temperature dependence pattern calculated in Walters et al. (2016). Walters et al.

(2016) suggested that, the e(NO>-NO) value would be 4.7 %o higher at 273 K and 2.0 %o lower at

310 K, relative to room temperature (298 K). Using this pattern and our experimentally determined

data, we suggest the a(NO>-NO) values at 273 K, 298 K and 310 K are 32.241.2 %o, 27.5%1.2 %o

and 25.5+1.2 %o, respectively. This 6.7%o variation at least partially contribute to the daily and

seasonal variations of 3"*N values of NO; and nitrate in some areas (e.g.. polar regions with strong

seasonal temperature variation). Thus, future investigations should be conducted to verify the EIE

temperature dependence.

3.2. Kinetic isotopic fractionation of Leighton Cycle

The photochemical reactions of NOxwill compete with the jsotope exchange fractionations .-
h 'CDeIeted: isotopic

between NO and NO,. The NO-NO> photochemical cycle in the chamber was controlled by the

Leighton cycle: NO; photolysis and the NO + Os reaction. This is because there were no VOCs in

(Deleted: complicate

)
)

Deleted: Since there were no VOCs or OH sources in the
chamber (the photolysis of O3 as the OH precursor is minor
at the wavelength of blacklights used in the chamber), the
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the chamber so no RO> was produced, which excludes the NO + RO» reaction. Likewise, the low

water vapor content (RH<10%) and the minor flux of photons < 310 nm results in minimal OH

production and hence little HO, formation and subsequently trivial amount of NO> would be

formed by NO + HO,. Applying these limiting assumptions, the EIE between NO and NO, (R1-

R2) were only competing with the KIE (R3-R4) and the PHIFE in R5-R6;

(Deleted: Hence the

NN

| Deleted: were competing with the EIE between NO and
NO; (R1-R2):

- CDeIeted: jNo2

- CDeIeted: jno2*

“NO,—'“NO+0 R3, rate constant=j(NO,)
5NO,—5NO+0 R4, rate constant=;(NO>)x o,
UNO+0;—>“NO,+0, RS5, rate constant=ks

- CFormatted: Font: Italic

N N )

10



509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

I5NO+05—!5NO»+05 R6, rate constant=fksx o

- (Deleted: *

In whichj(NO,) is the NO; photolysis rate (1.4x10 s™' in these experiments), s is the rate constant

for the NO+O; reaction (1.73x10' cm? s, Atkinson et al., 2004), and a1 are isotopic

fractionation factors for the two reactions. Previous studies (Freyer et al., 1993; Walters et al., . C
. [ Deleted: *
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2016) have attempted to assess the competition between EIE (R1-R2), KIE and PHIFE (R3-R6),
but none of them quantified the relative importance of the two processes, nor were o or oz values
experimentally determined. Here we provide the mathematical solution of EIE, KIE and PHIFE to

illustrate how R1-R6 affect the isotopic fractionations between NO and NOx.

First, the NO, lifetime with respect to isotopic exchange with NO (Texchanee) and photolysis<
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We then define an A factor:
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Using R1-R6 and Eq. (1)-(6), we solved steadystate 5(NO,) and §(NO) values (see calculations
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in supplementary material). Our calculations show that the 5(NO,)-6(NO) and 8(NO;)-6(NOy)

values at steady state can be expressed as functions of a;, 02, a(NO»-NO) and A:

(02—1)XA+((NO;—NOy—1)

. 3(NOz) — 3(NOy (%0) = s X 1000 %o Eq. (7)
. S(NO,) — 8(NO,) (%o) = L XAHERONOZD 5 1 — £(NO,)y x 1000 %0___Eq. (8)

Equation (7) shows the isotopic fractionation between NO and NO; (3(NO,)-6(NO)) is largely -
-/ { Formatted: Not Superscript/ Subscript

determined by A, the EIE factor (w(NO»-NO)-1) and the (o2-a1) factor. This (az-0u), represents a -

11

CDeIeted:

" ‘CDeIeted: calculation

’ CDeIeted: ):

/| Deleted: 8" Ny, —8"*Nyo (%0) =

(%2=%1)*A+(ano,-No—1) «
A+1

/| Deleted: - 5Ny, —8"*Nyo, Yooy =

(92 =01)*A+(Ano,-no—1)
A+1

* (1= fvo,) * 1000 %o~ Eq. (8)"

[Deleted: (EISNNoz-SISNNo)

CDeleted: NO2

CDeIeted: -

CDeleted: factor

AN A AN N A NN




559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

combination of KIE and PHIFE, suggesting they act together as one factor; therefore, we name the

(02-au) factor Leighton Cycle Isotopic Effect, i.c.. LCIE. Using measured S5(NO,)

A values, and the previously determined EIE factor, we calculated that the best fit for the LCIE

factor was -10£

oo (1 =

than that of the EIE factor, mainly because of the accumulated analytical uncertainties at low NOx

and O3 concentrations, and low A values (0.10-0.28) due to the relatively low j(NO,) value

(1.4x1073 s7) under the chamber irradiation conditions.

-6(NO) values, .

0,52, Fig. 1B). The uncertainties in the LCIE factor are relatively higher .-
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This LCIE factor determined in our experiments is in good agreement with theoretical
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calculations. Walters and Michalski (2016) previously used an ab initio approach to determine an

a2 value 0f 0.9933 at room temperature, 0.9943 at 237 K and 0.9929 at 310 K. The variation of a»

values from 273 K to 310 K is only +0.7 %o, significantly smaller than our experimental uncertainty.

The o; value was calculated using a ZPE shift model (Miller & Yung. 2000) to calculate the

isotopic fractionation of NO, by photolysis. Briefly, this model assumes both isotopologues have

the same quantum yield function and the PHIFE was only caused by the differences in the '"NO»

and '“NO, absorption cross-section as a function of wavelength, thus a; values do not vary by

temperature. The "NO, absorption cross-section was calculated by shifting the "*NO, absorption

cross-section by the '"NO, zero-point energy (Michalski et al., 2004). When the ZPE shift model

was used with the irradiation spectrum of the chamber lights, the resulting a; value was 1.0023.

Therefore, the theoretically predicted ap-a; value should be -0.0090, i.e.. -9.0+0.7 %o when

temperature ranges from 273 K to 310 K. This result shows excellent agreement with our

experimentally determined room temperature a-0; value of -10+5 %e..
This model was then used to evaluate the variations of oy value to different lighting

conditions. The TUV model (TUVS5.3.2, Madronich & Flocke, 1999) was used to calculate the
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solar wavelength spectrum at three different conditions: early morning/late afternoon (solar zenith

angle=85 degree). mid-morning/afternoon (solar zenith angle=45 degree). noon (solar zenith

angle=0 degree). These spectrums were used in the ZPE shift model to calculate the a; values,

which are 1.0025, 1.0028. and 1.0029 at solar zenith angles of 85, 45 and 0 degree, respectively.

These values, along with the predicted oy value in the chamber, showed a total span of 0.6%o

1.0026 +0.0003), which is again significantly smaller than our measured uncertainty. Therefore

we suggest that our experimentally determined LCIE factor (-10+5 %o) can be used in most

tropospheric solar irradiation spectrums.

The equations can also be applied in fropospheric environments to calculate the combined+

isotopic fractionations of EIE and LCIE for NO and NO,. First, the NO; sink reactions (mainly

NO:+OH in the daytime) are at least 2-3 orders of magnitude slower than the Leighton cycle and

the NO-NO» jsotope exchange reactions (Walters et al., 2016), therefore their effects on the 5(NO»)

should be minor. Second, although the conversion of NO jinto NO; in the ambient environment is

also controlled by NO + ROz and HO; in addition to NO+O3 (e.g., King et al., 2001), Eq. (7) still

showed good agreement with field observations in previous studies, Freyer et al. (1993)
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+18.03+0.98 %o. Using Eq. (7), assuming the daytime average j(NO) value throughout the year

was 5.0+1.0x107, and a calculated A value from measured NOy concentration ranged from 0.22-
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0.33, the average NO-NO; fractionation factor was calculated to be +18.8£1.4 %o (Fig. 1B), in

excellent agreement with the measurements in the present study. This agreement suggests the

NO-+RO,/HO; reactions might have similar fractionation factors as NO+Os. Therefore, we suggest
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mol ") and low f(NO,) (< 0.6), representative of regions with intensive NO emissions, e.g., near

roadside or stack plumes (Clapp & Jenkin, 2001; Kimbrough et al., 2017). In this case, the Texchange

are relatively short (10-50 s) compared to the Tpnow (approximately 100 s at noon and 1000 s at

dawn), therefore the A values are small (0.01-0.5). The EIE factor in this regime thus is much more

important than the LCIE factor, resulting in high A(NO,-NO) values (>20 %o). Between the two

regimes, both EIE and LCIE are competitive and therefore it is necessary to use Eq. (7) to quantify

the A(NO>-NO) values.
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Greenland (Dibb et al., 2002; Hastings et al., 2004; Honrath et al., 1999; Yang et al., 2002), and
assumed the conversion of NO to NO> was completely controlled by Os to calculate the NO/NO>
ratios. Here the isotopes of NOx were almost exclusively controlled by the LCIE due to the high

A values (>110). The A(NO>-NOx) values displayed a clear diurnal pattern (Fig. 3D) with highest
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value of -0.3 %o in the “nighttime” (solar zenith angle >85 degree) and lowest value of -5.0 %o in

the mid-day. This suggest that the isotopic fractionations between NO and NO» were almost

completely controlled by LCIE at remote regions, when NOx concentrations were <0.1 nmol mol

. However, since the isotopic fractionation factors of nitrate-formation reactions (NO2+OH,
NO;+HC, N2Os+H0) are still unknown, more studies are needed to fully explain the daily and

seasonal variations of 9(NOj3") at remote regions.

Nevertheless, our results have a few limitations. First, currently there are very few field

observations that can be used to evaluate our model, therefore, future field observations that

measure the 3'5N values of ambient NO and NO, should be carried out to test our model. Second,

more work, including theoretical and experimental studies, is needed to investigate the isotope

fractionation factors occurring during the conversion from NOy to NOy and nitrate: in the NOy

cycle, EIE (isotopic exchange between NO>, NO3 and N»Os), KIE (formation of NO3, N>Os and

nitrate) and PHIFE (photolysis of NOz, N>Os, HONO and sometimes nitrate) may also exist and

be relevant for the "N of HNO3 and HONO. In particular, the N isotope fractionation occurring

during the NO, + OH = HNOs reaction needs investigation. Such studies could help us modeling

18
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82  the isotopic fractionation between NO, emission and nitrate, and eventually enable us to analyze

83  the 8N value of NOy emission by measuring the §'SN values of nitrate aerosols. Third, our

84  discussion only focuses on the reactive nitrogen chemistry in the troposphere, however, the

85  nitrogen chemistry in the stratosphere is drastically different from the tropospheric chemistry, thus

86  future studies are also needed to investigate the isotopic fractionations in the stratospheric nitrogen

87  chemistry. Last, the temperature dependence of both EIE and LCIE needs to be carefully

88  investigated because of the wide range of temperature in both troposphere and stratosphere, and

89  the temperature dependence could also contribute to the seasonality of isotopic fractionations

90  between NOy and NOy molecules.
891

892 5. Conclusions
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’925 fractionations between NO and NO; that can be applied to many fropospheric environments, which [Deleted: conditions
926  could help interpret the measured 8'°N values of NO; and nitrate in field observation studies.
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