
Response to RC1 
 
Dear Dr. Johnson, 
 
Thank you for the comments and input to our manuscript. Below is a line-by-line response to your 
comments.  
 
Model and Interpretation 
 
The semi-analytical PHIFE/ZPE model (Miller 2000; Michalski 2004) is discussed as a way of 
understanding photolytic isotopic fractionation. Please compare the predictions of that theory with 
the results of this experiment and comment. 
 
We discussed the previous calculation of the KIE and added some theoretical calculations in our 
manuscript. The predictions showed good agreement with our observation (KIE=0.9933, 
PHIFE=1.0023, therefore predicted LCIE=-9‰, our results=-10±5‰). In the meantime, we did 
the ZPE calculation using 4 different actinic flux spectrums (lab light, early morning/late afternoon, 
mid-morning/afternoon, and noon), all of them showed similar PHIFE values ranging from 1.0023 
to 1.0029, suggesting the PHIFE do not vary significantly by light. 
 
The abstract states that the Leighton cycle isotope effect is 0.990 ± 0.005 at room temperature. 
However, this must be for a certain insolation spectrum and concentrations of O3, HO2, RO2? 
Please include the conditions. How much will the LCIE change with the changes in conditions 
found in the atmosphere, or can we take this result to be applicable throughout the atmosphere? 
 
We pointed out that, our experiments measured the LCIE fractionation factor when O3 solely 
controls the NOx cycle. However, we suggest this LCIE factor might be used in the ambient 
environment because it showed good agreement with previous field observations. Nevertheless, 
future work is needed to confirm our assumption that the isotopic fractionation factor of 
NO+RO2/HO2 are similar to that of NO+O3. 
 
It is argued that the atmospheric LCIE is 18.8 per mil based on the experiment and one field 
measurement. This may perhaps be sufficient for accepting the proposed value, but no attempt is 
made to discuss the uncertainty of the measurement, and to predict what variations will be seen in 
the atmosphere with changes in temperature, actinic flux spectrum, and concentrations of O3, HO2, 
and RO2. Please present a discussion of these factors. 
 
This 18.8 ‰ value in Freyer’s work is an annual average daytime value of combined EIE and 
LCIE, which was determined using all the measurements in a year. In reality, the value 
significantly varies by temperature, actinic flux spectrum, and concentrations of O3, HO2, and RO2. 
However, since we do not have more detailed data, we are not able to reconstruct the combined 
LCIE+EIE values at a higher time resolution in Freyer’s work. Instead, we discussed this variation 
in the next section by using hourly NO, NO2 and j(NO2) data to model the daily variations. 
 
What affect will the formation of PANs/addition of this equilibrium, have on the LCIE? Please 
comment on the LCIE that would be observed in the stratosphere.  



 
This is a very good point. However, since 1) reactive nitrogen chemistry in the stratosphere is 
dramatically different from the troposphere and 2) the temperature in the stratosphere is also 
different, we suggest our model may not be used in the stratosphere. Therefore, we revised our 
statement and limited our discussion in the troposphere. In the meantime, we pointed out that future 
study is needed to explore the behavior of N isotopes in the stratosphere. 
 
In the authors’ experiment, NO is converted to NO2 by O3 in conditions with low concentrations 
of HO2 and RO2, which will play a role in the atmosphere. They suggest that the HO2 and RO2 
oxidations of NO might have a similar KIE as the O3 oxidation, but this argument could be 
considered convenient. It would be stronger with experimental evidence and with improved 
validation by field measurements. Please make sure to discuss the potential uncertainty that is 
being introduced in transferring the laboratory results to the field. 
 
We addressed this uncertainty by mentioning that, to enable our model in the ambient environment, 
we assume the KIE of O3 is similar to that of HO2 and RO2, because our modelled KIE value could 
explain the only field observation data by Freyer. This is an assumption that needs to be verified 
in the future. 
 
However, if this assumption is true, then we do not need to know the concentrations of O3, HO2 or 
RO2, if we know both NO and NO2 concentrations. The existence of O3, HO2 or RO2 would be 
reflected in the NO/NO2 ratio at a given j(NO2) value. 
 
No description is made of the UV lights that were used for the photolysis, please add this. 
According to PHIFE/ZPE, photolytic isotopic fractionation changes as a function of wavelength. 
How did the spectrum of the lamps used to differ from the solar actinic flux spectrum? What 
wavelength dependence do you expect? How will the LCIE change as a function of altitude in the 
atmosphere as the actinic flux spectrum changes? 
 
We added the description of the UV light in the supplementary material. And as mentioned before, 
we studied the variation of LCIE by calculating the PHIFE using 4 different actinic flux spectrums 
(lab light, early morning/late afternoon, mid-morning/afternoon, and noon). The results show that 
all of them have similar PHIFE values ranging from 1.0023 to 1.0029, suggesting the PHIFE do 
not vary significantly under different actinic flux spectrums. 
 
There is precious little field data to use to validate the model. Please comment on what studies you 
would like to see in order to test the model, and as I have noted, please discuss the impact of 
different environmental factors, other than NOx concentration, on the results. 
 
We added a paragraph before the final conclusion discussing the limitations of our work and 
potential future work that can be done to advance our understanding in this topic. 
 
Presentation: 
 
The abstract is rather short given the interesting findings of the paper. Please expand. 
 



Revised as suggested. We rewrote the abstract to make it readable for a more general audience.  
 
I am not sure why the TLA (three letter acronym) ’EIE’ for ’equilibrium isotope effect’ is 
introduced when there is already the widely accepted idea of the exchange reaction. This could 
make the abstract obscure for non-specialists. 
 
Revised as suggested. We removed the TLA for EIE in the abstract but remained using EIE in the 
main text to contrast with LCIE.  
 
The introduction should include discussion of photolytic re-emission of deposited nitrate. 
 
Revised as suggested. 
 
Please italicize the symbols used for physical quantities such as f, j and k. 
 
Revised as suggested. 
 
Please add a scheme or figure giving an overview of the key reactions involved in this 
work. 
 
We added a sketch as Fig. 1C. 
 
On page 11 line 230, some j values (photolysis rates) are presented. Please include the units with 
these numbers. Also, in figure 2, ’j = 0.005’, but what are the units? 
 
Revised as suggested. 
 
 



Response to RC2 
 
Dear reviewer: 
 

Thank you for the comments, we appreciate your input. We have revised our manuscript 
according to the comments from all the reviewers, below is our line-by-line response to your 
comments and suggestions.  
 
First and foremost, how was the d15N of NOx measured (lines 150-151)? This is critical in that 
these values are used to demonstrate and calculate the observed isotope effects.  
 

We improved our description of measuring the d15N of NOx in the method section. In short, 
we measured the d15N of NOx in three different experiments. In each experiment, we inject same 
amount of NO and O3 to produce pure NO2, then we analyze the d15N value of the NO2. Because 
we can see that 100% of NOx in these experiments were in the form of NO2, therefore the measured 
d15N value can be used to represent the d15N of source NOx. 
 
Second, was the d15N data of all samples corrected for potential isobaric in- fluences of 17O? 
(lines 120-124). The generated O3 should have a high D17O that will be transferred to the product 
NO2. This may impact both the starting NO source d15N values and the measured NO2 values 
during both dark and photochemical experiments. This could cause an important change in the 
findings if excess 17O has not been accounted for in correcting the d15N data. Related to the above, 
in Figure 1A it appears that the data was forced through an intercept of 0. But the best fit to the 
data does not appear to go through 0. What is the slope of the data not forced through the intercept? 
What might the intercept indicate – from my read this could indicate a shift due to the influence 
of 17O on the 45 signals when quantifying the isotopic ratios from N2O. A change in slope with 
the best fit might also bring the calculated value to something that is actually closer to the measured 
value by Walters et al. Wouldn’t this be more consistent with current thinking? 
 

The isobaric influence of O17 was calculated in the ISODAT system. It measures the 46 
signals to calculate d18O first, then calculate the d17O value assuming mass dependent fractionation, 
then use these to correct for d15N signal. We notice that this method did not account for mass 
independent fractionation so it could shift the absolute d15N value (assuming O17 excess=30‰) 
by as much as 1.5‰. 

However, all the data shown on Figure 1A are d(NO2)-d(NOx), and both d(NO2) and d(NOx) 
have the same isobaric shift because they were measured using the same sampling & analysis 
method. So, when calculating the d(NO2)-d(NOx) values, this isobaric error should be cancelled 
out assuming O17 excess were the same. Therefore, the isobaric error may not cause a significant 
shift in the interception on Figure 1A. 

In other words, our experiments that determined the d15N values of source NOx (in these 
experiments f(NO)=0 and d(NO2)-d(NOx)=0) can be seen as 3 extra data points at (0,0), therefore 
the interception on Figure 1A should still be 0. 
 
For Figure 1B, the LCIE factor is calculated from “the best fit” (line 206). However, the figure 
makes it appear qualitative rather than quantitative. This calculation/estimation should be shown 
quantitatively and an r or r2 value should be reported for the fit. It should also be better explained 



why the point at A∼0.1 and A∼0.15 do not follow the expected relationship (why does the 
difference in d15N not change with A?). Also, why does the relationship have to be linear? In 
addition, the -10 per mil line does not “best fit” the field observation. It is also not clear what the 
error bars are on each symbol – I don’t see how these should be the same/have the same meaning 
for the field observation versus the chamber data. The field study point should also be clearly cited 
in the figure caption. Related to this, in the text (line 215-218) it is argued that the experimental 
values determined are in good agreement with the field study. But the field study represents a very 
high NOx environment (at times NOx » O3) and the measurements were taken at different times 
of the year not just at temperature close to room temperature. So, is it possible that the field 
determined value is showing a temperature dependence relative to the controlled experiments? 
 

We call the -10‰ LCIE line “best fit” because this fit gives the highest r value of 0.52 and 
the lowest total variation: 
 total variation=∑(𝑦! − 𝑓!)" 
in which yi is the observed value and fi is the predicted value by the fit line. 

We attribute the deviation of the two points from the prediction line to the relatively large 
analytical uncertainties at low A values. In these two experiments, the NO and NO2 level were low 
(<10 ppb), and the concentration measurements showed a higher error bar. We have recalculated 
the error bars on these data points which are now shown on Figure 1B.  

We used the average conditions of the field study to calculate its position at Figure 2B. 
Although the conditions change significantly throughout the time period of this study, their 18.8‰ 
value represented the average fractionation factor of the sampling period. Therefore, we also used 
their average condition to calculate the fractionation factor. However, it is likely that the 
temperature dependence played a role in this study, and we pointed out that future studies are 
needed to investigate its impact.  
 
Next, how does the EIE measurement compare with theoretical works? What may drive the 
differences in the experimental values versus theory? Is formation of other products (such as N2O3 
or N2O4) in the chamber a concern and could that influence the measured EIE value? 
 

We added some calculations showing the formation of N2O4 and N2O3 were negligible. 
Also, we have mentioned that we conducted a control experiment to evaluate NO2 wall loss but 
did not observe any NO2 loss over a 4-hour period. Therefore, we suggest the formation of other 
products were insignificant.  

We are not sure why it did not align with current theoretical calculations, probably because 
of the different approximation methods in previous studies. Hopefully future theoretical 
calculations can be carried out to evaluate our conclusions. 
 
On line 185-189, it is stated that a2 (“alpha 2”) is not quantified. However, Walters and Michalski 
(2016), which is referenced here, does include an ab initio-based estimate for this value. And 
couldn’t this value be used to separate out the magnitude of PHIFE (rather than assume it)? 
 

We added two paragraphs comparing our results to theoretical calculations. We pointed 
out that our result of -10‰ showed good agreement with theoretical calculations in Walters and 
Michalski (2016) and a ZPE approach that estimates the isotopic fractionation of NO2 photolysis. 
 



Specific comments: Abstract – The abstract should be written for a more general audience. Be 
consistent with abbreviations. For example, NO and NO2 are not defined and nitrate isn’t 
abbreviated. Also, LCIE should be more clearly defined since this is new terminology in this work. 
The implications of the study should be better highlighted here. How will a mathematic solution 
for NO-NO2 isotopic fractionation be useful to the atmospheric chemistry community? 
 

We have revised our abstract, defined NO, NO2 and introduced LCIE. We also revised our 
implication and pointed out the limitation of this study. 
 
Also, the statement that the new solution can be used at any given condition is a stretch since 
experiments were only conducted at room temperature and the experiments seem to be most 
relevant for the troposphere and not stratospheric NOx conditions. 
 

We realized our experimentally determined values have limitations; therefore, we have 
discussed these limitations, and suggested our result should be applied in troposphere near room 
temperature. We also discussed how can future work verify and improve our current results. 

 
Main Text  
 
Line 25-30: The link between NOx and the formation of nitric acid (i.e. nitrate) needs to be more 
clearly stated. Also, the second sentence is a bit awkwardly phrased given that most of the studies 
did not use NO2 isotopes directly. It may be worth separating out the studies that have used 
isotopes of nitrate to understand something about NOx versus studies that have looked at NO2 or 
NOx specifically.  
 

We revised the first paragraph. We now start this introduction by stating that the N isotopes 
are usually applied to study the sources of nitrate, however, it is unclear how atmospheric 
chemistry alters the isotope signals. Then, we narrow down our topic to the isotopic fractionations 
between NO and NO2, because it is very important. 
 
Line 38: remove “the” before chemistry  
 

Revised as recommended. 
 
Lines 46-54: Please separate this into at least two separate sentences.  
 

Revised as recommended. 
 
Lines 61-63: What drives the difference in the theoretical predictions for this EIE?  
 

It is mainly because each theoretical prediction uses different harmonic approximations in 
their calculation. 
 
Lines 63-64: I think it should be pointed out that this was conducted at room temperatures. Also, 
the error of ±0.001 is incorrect?  
 



Revised as recommended. 
 
Lines 68-69: KIE and PHIFE for the NOx system is limited but you should probably acknowledge 
the KIE study on NO + O3: Walters and Michalski (2016) Ab initio study of nitrogen and position-
specific oxygen kinetic isotope effects in the NO + O3 reaction, J. Chem. Phys. 145, 224307.  
 

Revised as recommended. 
 
Lines 70-75: suggest changing this to “. . .tends to diminish the expression of the equilibrium 
isotopic fractionation (EIE) between NO and NO2, but both KIE and PHIFE factors at that time 
were unknown.” It seems strange to suggest that assuming no isotope effects (ie 1) yields no 
isotope effect. Here would be a good place to better detail the Freyer et al work and approach to 
determining the single fractionation factor. Otherwise line 75 doesn’t really make sense to the 
reader unfamiliar with the details of Freyer’s work.  
 

We have revised this part to present a better description of Freyer’s work and pointed out 
the limitation, which is the motivation of our study. 
 
Line 83: atmospheric should be “atmospherically”  
 

Revised as recommended. 
 
Line 88: change “NOx nitrogen isotopes” to something more correct like isotopic composition of 
NOx.  
 

Revised as recommended. 
 
Line 105: “was” should be were. Line 105 (and later): what range of wavelengths are used in the 
experiment. This is important to report as you have already stated!  
 

Revised as recommended. 
 
Lines 112-115: More details on the capture of NO using denuder tubes should be provided in the 
text rather than supplement. And the details are not really given in the suppl either. What was the 
denuder coated with? How is it determined that there was quantitative and accurate collection of 
the NO isotopes? What is this method based upon?  
 

Revised as recommended. 
 
Lines 120-124: Were corrections conducted for D17O interferences? I imagine the generated O3 
will have a high D17O that will be proportional transferred to your product NO2. This may impact 
both your starting NO source d15N value and your measured NO2 values during dark and 
photochemical experiments. Section 2 overall – were any blanks tested throughout the experiments?  
 

The D17O will affect the measured absolute d15N values but this should be cancelled out 
when we calculate the d(NO2)-d(NOx) values (see our reply above). We tested 6 blanks during our 



experiments and none of them showing any measurable nitrite. We have added this part into the 
main text. 
 
Line 129: difference should be “ratio of” correct?  
 

Revised as recommended. 
 
Line 140: I don’t understand the formatting here with d(15N, NO)?  
 

We changed this notation to d15N(NO). 
 
Line 149- 150: How was d15N-NOx measured? If this was done for all experiments, why does 
n=3? and again how will potential 17O isobaric influences affect your quantification of d15N?  
 

As we described above, three extra experiments have been conducted in which we convert 
all the NO into NO2 and measured the d15N values of NO2 to represent the d15N of NOx. All three 
experiments showed consistent d15N values, therefore we suggest the d15N value of NOx remain 
the same in all of our experiments.  
 
Lines 156: Where does the error on the 26.8 value come from? This is not represented in the figure.  
 

Since the slope actually represents the d(NO2)-d(NO) values in each experiment, we 
calculated the error using the standard deviations of d(NO2)-d(NO) values in the 5 experiments.  
 
Lines 166-167: Can you prove that formation of these other products are not important for the 
experiments performed here? EIE should be able to be precisely predicted by theory – so why is 
there such a mismatch between the theoretical and the measured values?  
 

We added some calculations showing the formation of N2O4 and N2O3 were negligible. 
Also, we have mentioned that we conducted a control experiment to evaluate NO2 wall loss but 
did not observe any NO2 loss over a 4-hour period. Therefore, we suggest the formation of other 
products were insignificant.  

We are not sure why it did not align with current theoretical calculations, probably because 
of the different approximation methods in previous studies. We suggest that future theoretical 
calculations can be carried out to evaluate our conclusions. 
 
Figure 1A: It appears that the data was fitted through an intercept of 0, but the data doesn’t appear 
to go through the intercept. What is the slope of the data when not forced through the intercept? 
What might the intercept of your data indicate? Maybe D17O isobaric influence?  
 

Since the d(NOx) is determined using the same method as d(NO2) in our experiments, this 
isobaric influence in this equation should be cancelled out (see our reply above). Therefore, this 
slope should have an intercept of 0. 
 
Lines 174-176: What exactly were the wavelengths of the blacklight used in the experiments?  
 



We provided an irradiation spectrum of the UV light we used in the supplementary material. 
 
Lines 186-189: α2 value was determined in Walters and Michalski, 2016 ab initio study as 
referenced above.  
 

We changed the statement to “nor were α1 and α2 experimentally determined” 
 
Lines 191-197: It might be more straightforward if t(exchange) and t(photo) were defined first and 
then A, etc. Also please better define the purpose of equations 7 and 8. Also shouldn’t these 
equations have epsilon instead of alpha?  
 

Revised as recommended. In these calculations, since e=(α-1)*1000‰, we know e2-
e1=(α2-α1)*1000‰. To introduce as little symbols as possible, we did not use e in this section. 
 
Line 207-210: The experimental LCIE should be compared with the NO + O3 KIE. Here and on 
line 225 it feels a bit like the large uncertainty of +/- 50 percent on the -10 value is being ignored!  
 

We added some extra discussion suggesting 1) this -10‰ value fits well with theoretical 
predictions and 2) the α1 value did not vary significantly with a changing j(NO2). Therefore, we 
will use this -10‰ in the following discussion assuming the α1 value remain constant, and 2) the 
NO+RO2/HO2 reactions have the same fractionation factors (α2) as NO+O3. 
 
Line 220: Note that the field experiments sometimes only represent NO2 and other times NOx. . .so 
the difference between NO and NO2 was not measured, it was determined.  
 

Revised as recommended. 
 
Line 237: I do not see how this shown in Figure 2A.  
 

Figure 2A represents the isotopic fractionations between NO and NO2 in dark condition 
(j(NO2)=0). In this scenario, EIE solely controls the isotopic fractionation therefore the d(NO2)-
d(NO) should be a constant no matter how NOx level and f(NO2) changes.  
 
Line 261-263: These are not emissions, these are ambient NO2 and NOx. Also, NOx is not emitted 
– primary emissions are NO and very on occasion diesel engines have been shown to emit NO2 
directly. All of the language here needs to be much more precise. 
 

We changed “NOx emission” to “total NOx”. 
 
Section 4 overall: This section needs work. It needs to be established why the sites were chosen. 
And the sites should be clearly labeled as representative of, for instance, urban versus suburban 
versus remote versus elevated NOx (roadside) or the like. It seems like the point here actually 
should be to distinguish the effects across the different sites. Why does it not matter that the O3 
(and HO2, RO2, etc) concentrations would vary significantly across these sites? 
 



The four sites represented different NOx level and we can see the impact of NOx level to 
the NO-NO2 isotopic fractionations was significant. 

O3 (and HO2, RO2) concentrations impact the NO-NO2 fractionation by altering the A 
values, which was reflected in the f(NO) parameter and the A value in our equations. From Eq. 7 
and 8 we can know that we do not need to use O3 (or HO2, RO2) concentration to calculate the 
isotopic fractionations as long as we know NO and NO2 concentrations and the j(NO2) values.  
 
What are we really learning from site A vs B? They are both roadside. Given that there is such 
limited data to compare the model with, could the authors compare their roadside model to 
d15N(NO2) data collected by a roadside such as Felix and Elliott, 2014, “Isotopic composition of 
passively collected nitrogen dioxide emissions: Vehicle, soil, and livestock source signatures”, 
Atmospheric Environment, 92, 359-366? 
 

A and B are both roadside sites, however they have different NOx concentrations. The NOx 
concentrations at Anaheim site averaged at 58 ppb but the Evansville site only had 15 ppb. As a 
result, the isotopic fractionations at Anaheim was mainly controlled by EIE which showed high 
d(NO2)-d(NOx) values (>10‰ throughout the day), but at Evansville, LCIE was more significant, 
thus the d(NO2)- d(NOx) values can be as low as ~2‰ at noon. 

Our discussion was less focused on the d15N values of NOx sources but more focused on 
the impact of the NOx level and photochemistry to the isotopic fractionations between NO and 
NO2. Felix and Elliott, 2014 provided a good insight on the d15N(NO2) values at roadside, and the 
NOx level at Felix and Elliott, 2014 study was similar to that of Anaheim. Therefore, we suggest 
at these sites, EIE will also be a dominate factor. Furthermore, in Felix and Elliott, 2014, there are 
little constrain on the differences between the d15N values of NO2 and total NOx, thus we are not 
able to further compare our work to theirs. 
 
Also why not directly compare with what the model would predict quantitatively against the 
Walters 2018 work? And also predict the values for the Freyer work and compare? 
 

Both Walters et al. 2018 and Freyer 1993 work used the same equation to calculate the 
isotopic shift which is similar to our approach. The only difference between their equation and our 
equation is that they assumed α2-α1=0 instead of the -10‰ measured in our experiment. We can 
see in these two works, the calculated isotopic shift values are similar to our results, suggesting 
the differences in LCIE may only slightly impact our results by a couple per mil in these conditions. 
 
Lines 325-327: This conclusion is a bit strange. There is very little local HNO3 at Summit, 
Greenland. So drawing the conclusion based upon snow work (not atmosphere and snow) and 
assuming a direct link temporally between d15NO2 and d15NO3- seems a stretch. It might be 
more useful to look at Jarvis et al. (2009) instead – Jarvis, J. C., M. G. Hastings, E. J. Steig, and S. 
A. Kunasek (2009), Isotopic ratios in gas- phase HNO3 and snow nitrate at Summit, Greenland, J. 
Geophys. Res., 114, D17301, doi:10.1029/2009JD012134.  
 

This is very good point. I have removed this part because directly using our model to 
interpret these data is not solid enough. 
 



Line 329: what kinds of data and future environmental measurements should be conducted to 
validate this model? Help the community make this a reality! 
 

We added a paragraph in the end of this section to address our limitations and future work. 
We suggest that future experiments, field observations and theoretical studies should be done to 1) 
verify our experimental results, 2) investigate the isotopic fractionation factor of reactions that 
converts NOx into NOy and nitrate, 3) study the isotopic effects of reactive nitrogen chemistry in 
the stratosphere amd 4) study the temperature dependence of these fractionation factors. 
 
Supplement – This needs to be re-read and edited – there are a lot of typos. Some comments on 
the methods in the supplement – I have a number of questions: -what was the flow rate used to 
calculate the NO2 residence time (“reside” should be residence in the text)? -include more details 
of the denuder method – what company are these from? What were they coated with? How do you 
know they are quantitative in collection? Please show the collection efficiency data. And report 
how many times this was tested. -need to make it clearer where the 1.0268 value comes from – 
why is this value assumed here? Based upon the “best fit”? which really isn’t a best fit (see 
comments from above). So what happens here if you do not assume a forced zero intercept? -make 
sure the editor’s suggested technical corrections carry through the supplement as well. 
  
 We have gone through the supplementary material and fixed some typos. To answer the 
questions: we provided more detailed descriptions (e.g., flow rate, information about the denuder 
method) both in the main text and in the supplementary material. In the meantime, we have shown 
that our collection efficiency was nearly 100% by stating that we measured the NO2 level on the 
exit of the denuder tubes when using the denuder tubes to collect NO2 at 66 ppb, and the measured 
NO2 level at the denuder exit was below detection limit. We only conducted this control 
experiment once, but the testing lasts for over an hour, and the collection efficiency remained at 
100% throughout this experiment. We also changed the 1.0268 to 1.0275 to align with the main 
text, and the reasons we used a zero intercept have been stated above. 
 
 



Response to SC1 
 
Dear Dr. Savarino, 
 
Thank you for your comment! This is an excellent suggestion that will improve our paper.  
 
We have removed the discussion that used our model to explain the Arctic snow nitrate isotopes. 
Instead, we pointed out some uncertainties that still exist in this field, and we suggest that future 
work is needed to further address these issues.  



List of all the changes made in the manuscript: 
 
1. We rewrite the abstract to provide more information toward a more general audience; 
 
2. In the introduction part, we added some description about snow nitrate photolysis & redeposition, 
and introduced previous theoretical studies by Walters & Michalski, 2016 that calculated the KIE 
of NO+O3. 
 
3. In the method section, we added detailed description of the chamber and our experiments, 
including the light source used, instruments that measured NOx and O3 concentrations, and control 
experiments testing 1) NO2 wall loss, 2) d15N value of NO tank, 3) collection efficiency of denuder 
tubes and 4) blank. Additionally, we added the description of denuder tube coating procedure. 
 
4. We limited our discussion to tropospheric chemistry because we realize our experiments can 
only represent the chemistry in the troposphere; 
 
5. We also discussed the temperature effect of EIE and LCIE, which cannot be addressed by our 
experiments. We suggest future studies are needed to investigate these issues. 
 
6. We added theoretical calculations that compared our measured LCIE results to the theoretical 
prediction using a ZPE shift model. These calculations showed good agreement with our measured 
values. 
 
7. We also used the ZPE shift model to investigate the effect of light to the PHIFE, which was 
suggested to be minor (<0.5‰ shift when solar zenith angle vary from 0 to 85 degree). 
 
8. We revised some symbols: j, k, f to be italic, and used D(NO2-NOx) and D(NO2-NO) to represent 
d(NO2)-d(NOx), d(NO2)-d(NO).  
 
9. We clearly stated our assumptions before applying our model into the ambient environment 
(implication section).  
 
10. We discussed the limitations of our study and suggested some future works to keep 
investigating this topic. 
 
11. We revised the figures to match our changes in the manuscript; in the meantime, we added a 
sketch as Fig. 1C to illustrate our main point of this study. 
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Abstract. Nitrogen isotope fractionations between nitrogen oxides (NO and NO2) play a 11 
significant role in determining the nitrogen isotopic compositions (d15N) of atmospheric reactive 12 
nitrogen. Both the equilibrium isotopic exchange between NO and NO2 molecules and the isotope 13 
effects occurring during the NOx photochemical cycle are important, but both are poorly 14 
constrained. The nighttime and daytime isotopic fractionations between NO and NO2 in an 15 
atmospheric simulation chamber at atmospherically relevant NOx levels were measured. Then, the 16 
impact of NOx level and NO2 photolysis rate to the combined isotopic fractionation (equilibrium 17 
isotopic exchange and photochemical cycle) between NO and NO2 were calculated. It was found 18 
that the isotope effects occurring during the NOx photochemical cycle can be described using a 19 
single fractionation factor, designated the Leighton Cycle Isotope Effect (LCIE). The results 20 
showed that at room temperature, the fractionation factor of nitrogen isotope exchange is 21 
1.0275±0.0012, and the fractionation factor of LCIE (when O3 solely controls the oxidation from 22 
NO to NO2) is 0.990±0.005. The measured LCIE factor showed good agreement with previous 23 
field measurements, suggesting that it could be applied in ambient environment, although future 24 
work is needed to assess the isotopic fractionation factors of NO + RO2/HO2 àNO2. The results 25 
were used to model the NO-NO2 isotopic fractionations under several NOx conditions. The model 26 
suggested that isotopic exchange was the dominate factor when NOx >20 nmol mol-1, while LCIE 27 
was more important at low NOx concentrations (<1 nmol mol-1) and high rates of NO2 photolysis. 28 
These findings provided a useful tool to quantify the isotopic fractionations between tropospheric 29 
NO and NO2, which can be applied in future field observations and atmospheric chemistry models. 30 
 31 
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1. Introduction 60 

 The nitrogen isotopic composition (d15N) of reactive nitrogen compounds in the 61 

atmosphere is an important tool in understanding the sources and chemistry of atmospheric NOx 62 

(NO+NO2). It has been suggested that the d15N value of atmospheric nitrate (HNO3, nitrate 63 

aerosols and nitrate ions in the precipitation and snow) imprints the d15N value of NOx sources 64 

(Elliott et al., 2009; Kendall et al., 2007) thus many studies have used the d15N values of 65 

atmospheric nitrate to investigate NOx sources (Chang et al., 2018; Felix et al., 2012; Felix & 66 

Elliott, 2014; Gobel et al., 2013; Hastings et al., 2004, 2009; Morin et al., 2009; Park et al., 2018; 67 

Walters et al., 2015, 2018). However, there remain questions about how isotopic fractionations 68 

that may occur during photochemical cycling of NOx could alter the d15N values as it partitions 69 

into NOy (NOy = atmospheric nitrate, NO3, N2O5, HONO, etc., Chang et al., 2018; Freyer, 1991; 70 

Hastings et al., 2004; Jarvis et al., 2008; Michalski et al., 2005; Morin et al., 2009; Zong et al., 71 

2017). Similarily, other complex reactive nitrogen chemistry, such as nitrate photolysis and re-72 

deposition in ice and snow (Frey et al., 2009), may impact the d15N of NOy and atmospheric nitrate. 73 

The fractionation between NO and NO2 via isotope exchange has been suggested to be the 74 

dominant factor in determining the d15N of NO2 and ultimately atmospheric nitrate (Freyer, 1991; 75 

Freyer et al., 1993; Savarino et al., 2013; Walters et al., 2016). However, isotopic fractionations 76 

occur in most, if not all, NOx and NOy reactions, while most of these are still unknown or, if 77 

calculated (Walters and Michalski, 2015), unverified by experiment. Since the atmospheric 78 

chemistry of NOy varies significantly in different environments (e.g., polluted vs. pristine, night 79 

vs. day), the isotopic fractionations associated with NOy chemistry are also likely to vary in 80 

different environments. These unknowns could potentially bias conclusions about NOx source 81 

apportionment reached when using nitrogen isotopes. Therefore, understanding the isotopic 82 
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fractionations between NO and NO2 during photochemical cycling could improve our 114 

understanding of the relative role of source versus chemistry for controlling the d15N variations of 115 

atmospheric NO2 and nitrate. 116 

In general, there are three types of isotope fractionation effects associated with NOx 117 

chemistry. The first type is the equilibrium isotopic effect (EIE), i.e., isotope exchange between 118 

two compounds without forming new molecules (Urey, 1947, Bigeleisen and Mayer, 1947), which 119 

for nitrogen isotopes in the NOx system is the 15NO + 14NO2 « 14NO + 15NO2 exchange reaction 120 

(Begun and Melton, 1956, Walters et al., 2016). The second type is the kinetic isotopic effect (KIE) 121 

associated with difference in isotopologue rate coefficients during unidirectional reactions 122 

(Bigeleisen & Wolfsberg, 1957). In the NOx system this KIE would be manifest in the oxidation 123 

of NO into NO2 by O3/HO2/RO2. The third type is the photochemical isotope fractionation effect 124 

(PHIFE, Miller & Yung, 2000), which for NOx is the isotopic fractionation associated with NO2 125 

photolysis. All three fractionations could impact the d15N value of NO2, and consequently 126 

atmospheric nitrate, but the relative importance of each may vary.  127 

The limited number of studies on the EIE in the NOx cycle have significant uncertainties. 128 

Discrepancies in the EIE for 15NO + 14NO2 « 14NO + 15NO2 have been noted in several studies. 129 

Theoretical calculations predicted isotope fractionation factors (a) ranging from 1.035 to 1.042 at 130 

room temperature (Begun & Fletcher, 1960; Monse et al., 1969; Walters & Michalski, 2015) due 131 

to the different apporximations used to calculate harmonic frequencies in each study. Likewise, 132 

two separate experiments measured different room temperature fractionation factors of 133 

1.028±0.002 (Begun & Melton, 1956) and 1.0356±0.0015 (Walters et al., 2016). A concern in both 134 

experiments is that they were conducted in small chambers with high NOx concentrations 135 

(hundreds of µmol mol-1), significantly higher than typical ambient atmospheric NOx levels 136 
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(usually less than 0.1 µmol mol-1). Whether the isotopic fractionation factors determined by these 166 

experiments are applicable in the ambient environment is uncertain because of possible wall effects 167 

and formation of higher oxides, notable N2O4 and N2O3 at these high NOx concentrations.  168 

Even less research has examined the KIE and PHIFE occurring during NOx cycling. The 169 

KIE of NO + O3 has been theoretically calculated (Walters and Michalski, 2016) but has not been 170 

experimentally verified. The NO2 PHIFE has not been experimentally determined or theoretically 171 

calculated. As a result, field observation studies often overlook the effects of PHIFE and KIE. 172 

Freyer et al. (1993) measured NOx concentrations and the d15N values of NO2 over a 1-year period 173 

at Julich, Germany and inferred a combined NOx isotope fractionation factor (EIE+KIE+PHIFE) 174 

of 1.018±0.001. Freyer et al. (1993) suggested that the NOx photochemical cycle (KIE and PHIFE) 175 

tends to diminish the equilibrium isotopic fractionation (EIE) between NO and NO2. Even if this 176 

approach were valid, applying this single fractionation factor elsewhere, where NOx, O3 177 

concentrations and actinic fluxes are different, would be tenuous given that these factors may 178 

influence the relative importance of EIE, KIE and PHIFE (Hastings et al., 2004; Walters et al., 179 

2016). Therefore, to quantify the overall isotopic fractionations between NO and NO2 at various 180 

tropospheric conditions, it is crucial to know 1) isotopic fractionation factors of EIE, KIE and 181 

PHIFE individually and 2) the relative importance of each factor under various conditions. 182 

 In this work, we aim to quantify the nitrogen isotope fractionation factors between NO and 183 

NO2 at photochemical equilibrium. First, we measured the N isotope fractionations between NO 184 

and NO2 in an atmospheric simulation chamber at atmospherically relevant NOx levels. Then, we 185 

provide mathematical solutions to assess the impact of NOx level and NO2 photolysis rate (j(NO2)) 186 

to the relative importance of EIE, KIE and PHIFE. Subsequently we use the solutions and chamber 187 

measurements to calculate the isotopic fractionation factors of EIE, KIE and PHIFE. Lastly, using 188 
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the calculated fractionation factors and the equations, we modeled the NO-NO2 isotopic 207 

fractionations at several sites to illustrate the behavior of d15N values of NOx in the ambient 208 

environment. 209 

 210 

2. Methods 211 

 The experiments were conducted using a 10 m3 Atmospheric Simulation Chamber at the 212 

National Center for Atmospheric Research (see descriptions in supplementary material and Zhang 213 

et al. (2018)). A set of mass flow controllers was used to inject NO and O3 into the chamber. NO 214 

was injected at 1 L min-1 from an in-house NO/N2 cylinder (133.16 µmol mol-1 NO in ultra-pure 215 

N2), and O3 was generated by flowing 5 L min-1 zero-air through a flow tube equipped with a UV 216 

Pen-Ray lamp (UVP LLC., CA) into the chamber. NO and NO2 concentrations were monitored in 217 

real time by chemiluminescence with a detection limit of 0.5 ppb (model CLD 88Y, Eco Physics, 218 

MI) as were O3 concentrations using an UV absorption spectroscopy with a detection limit of 0.5 219 

ppb (model 49, Thermo Scientific, CO). In each experiment, the actual amounts of NO and O3 220 

injected were calculated using measured NOx and O3 concentrations after steady state was reached 221 

(usually within 1 h). The wall loss rate of NO2 was tested by monitoring O3 (29 nmol mol-1) and 222 

NOx (62 nmol mol-1) over a 4-hour period. After the NO and NO2 concentrations reached steady 223 

state, no decrease in NO2 concentrations was observed showing that chamber wall loss was 224 

negligible. 225 

 Two sets of experiments were conducted to separately investigate the EIE, KIE and PHIFE. 226 

The first set of experiments was conducted in the dark. In each of these dark experiments, a range 227 

of NO and O3 ([O3]<[NO]) was injected into the chamber to produce NO-NO2 mixtures with 228 

[NO]/[NO2] ratios ranged from 0.43 to 1.17. The N isotopes of these mixtures were used to 229 
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investigate the EIE between NO and NO2. The second set of experiments was conducted under 240 

irradiation of UV lights (300-500 nm, see supplementary material for irradiation spectrum). Under 241 

such conditions, NO, NO2 and O3 reached photochemical steady state, which combined the 242 

isotopic effects of EIE, KIE and PHIFE. In addition, three experiments were conducted to measure 243 

the d15N value of the tank NO. In each of these experiments, a certain amount of O3 was first 244 

injected into the chamber, then approximately the same amount of NO was injected into the 245 

chamber to ensure 100% of the NOx was in the form of NO2 with little O3 (<3 nmol mol-1) 246 

remaining in the chamber, such that the O3+NO2 reaction was negligible. The NO2 in the chamber 247 

was then collected and its d15N value measured, which equates to the d15N value of the tank NO.  248 

In all experiments, the concentrations of NO, NO2 and O3 were allowed to reach steady 249 

state, and the product NO2 was collected from the chamber using a honeycomb denuder tube. The 250 

glass denuder tubes (Chemcomb 3500, Thermo Fisher Scientific) were coated with a solution of 251 

10% KOH and 25% guaiacol in methanol and then dried by flowing N2 gas through the denuder 252 

tube for 15 seconds (Williams and Grosjean, 1990, Walters et al., 2016). The NO2 reacts with 253 

guaiacol coating and is converted into NO2- that is retained on the denuder tube wall (Williams 254 

and Grosjean, 1990). NO is inert to the denuder tube coating: a control experiment sampled pure 255 

NO using the denuder tubes, which did not show any measurable NO2-. The NO2 collection 256 

efficiency of a single honeycomb denuder tube was tested in another control experiment: air 257 

containing 66 nmol mol-1 of NO2 was drawn out of the chamber through a denuder tube, and the 258 

NO2 concentration at the exit of the tube holder was measured and found to be below the detection 259 

limit (<1 nmol mol-1), suggesting the collection efficiency was nearly 100% when [NO2] <66 nmol 260 

mol-1. Furthermore, when the denuder system consisted of two denuder tubes in series and NO2- in 261 

the second denuder was below the detection limit indicating trivial break NO2 breakthrough. The 262 
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NO2- was leached from each denuder tube by rinsing thoroughly with 10 ml deionized water into 283 

a clean polypropylene container and stored frozen until isotopic analysis. Isotopic analysis was 284 

conducted at Purdue Stable Isotope Laboratory. For each sample, approximately 50 nmol of the 285 

NO2- extract was mixed with 2 M sodium azide solution in acetic acid buffer in an air-tight glass 286 

vial, then shaken overnight to completely reduce all the NO2- to N2O(g) (Casciotti & McIlvin, 2007; 287 

McIlvin & Altabet, 2005). The product N2O was directed into a Thermo GasBench equipped with 288 

cryo-trap, then the d15N of the N2O was measured using a Delta-V Isotope Ratios Mass 289 

Spectrometer. Six coated denuders tubes that did not get exposed to NO2 were also analyzed using 290 

the same chemical procedure, which did not show any measurable signal on the IRMS, suggesting 291 

the blank from both sampling process and the chemical conversion process was negligible. The 292 

overall analytical uncertainty for d15N analysis was ±0.5 ‰ (1s) based on replicate analysis of in 293 

house NO2- standards.  294 

 295 

3. Results and Discussions 296 

3.1. Equilibrium Isotopic Fractionation between NO and NO2 297 

The equilibrium isotope fractionation factor, α(NO2-NO), is the 15N enrichment in NO2 298 

relative to NO, and is expressed as the ratio of rate constants k2 / k1 of two reactions: 299 

 15NO2+14NO®15NO+14NO2   R1, rate constant = k1   300 

 15NO+14NO2®15NO2+14NO   R2, rate constant = k2 = k1×α(NO2-NO) 301 

where k1 is the rate constant of the isotopic exchange, which was previously determined to be 302 

8.14×10-14 cm3 s-1 (Sharma et al., 1970). The reaction time required for NO-NO2 to reach isotopic 303 

equilibrium was estimated using the exchange rate constants in a simple kinetics box model 304 

(BOXMOX, Knote et al., 2015). The model predicts that at typical NOx concentrations used during 305 
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the chamber experiments (7.7-62.4 nmol mol-1), isotopic equilibrium would be reached within 15 325 

minutes (see supplementary information). Since the sample collection usually started 1 hour after 326 

NOx was well mixed in the chamber, there was sufficient time to reach full isotope equilibrium. 327 

The isotope equilibrium fractionation factor is then calculated to be: 328 

α(NO! − NO) =
[!"#$#]×[!$#$]
[!$#$#]×[!"#$]

= &(#$#)
&(#$)

     Eq. (1) 329 

where R(NO, NO2) are the 15N/14N ratios of NO and NO2. By definition, the 330 

d15N(NO)=(R(NO)/R(reference) -1)×1000‰ and d15N(NO2)=(R(NO2)/R(reference)-1) ×1000 ‰, 331 

but hereafter, the d15N values of NO, NO2 and NOx will be referred as d(NO), d(NO2) and d(NOx), 332 

respectively. Eq. (1) leads to: 333 

d(NO!) − d(NO) = (α(NO! − NO) − 1)× 1000	‰× (1 + d(NO))	 334 

							= e(NO! − NO)	× (1 + d(NO))     Eq. (2) 335 

where e(NO2-NO) is the isotope enrichment factor e(NO2-NO) = (α(NO2-NO)-1)×1000‰, (Hoefs, 336 

2009). Using Eq. (2) and applying NOx isotopic mass balance (d(NOx)=ƒ(NO2)×d(NO2)+(1-337 

ƒ(NO2))×d(NO), ƒ(NO2)=[NO2]/([NO]+[NO2])) yields: 338 

d(NO!) − d(NO)) = e(NO! − NO)× 	 (1 + e(NO! − NO)) 	× (1 + d(NO!))× (1 − 𝑓(NO2)) Eq. (3) 339 

Here, d(NOx) equals to the d15N value of the cylinder NO and ƒ(NO2) is the molar fraction of NO2 340 

with respect to total NOx. Three experiments (see descriptions in method section) that measured 341 

d(NOx) showed consistent d(NOx) values of -58.7±0.8 ‰ (n = 3), indicating d(NOx) remained 342 

unchanged throughout the experiments (as expected for isotope mass balance). Thus, the d(NOx) 343 

can be treated as a constant in Eq. (3), and the slope of a linear regression of (d(NO2)-344 

d(NOx))/(1+d(NO2)) versus 1-ƒ(NO2) yields e(NO2-NO)/(1+e(NO2-NO)). 345 
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The plot of (d(NO2)-d(NOx))/(1+d(NO2)) as a function of 1-ƒ(NO2) values from five 420 

experiments yielded an e(NO2-NO) value of 27.5±1.2 ‰ at room temperature. This fractionation 421 

factor is comparable to previously measured values but with some differences. Our result agrees 422 

well with the α(NO2-NO) value of 1.028±0.002 obtained by Begun and Melton (1956) at room 423 

temperature. However, Walters et al., (2016) determined the α(NO2-NO) values of NO-NO2 424 

exchange in a 1-liter reaction vessel, which showed a slightly higher α(NO2-NO) value of 1.035. 425 

This discrepancy might originate from rapid heterogeneous reactions on the wall of the reaction 426 

vessel at high NOx concentrations and the small chamber size used by Walters et al. (2016). They 427 

used a reaction vessel made of Pyrex, which is known to absorb water (Do Remus et al., 1983; 428 

Takei et al., 1997) that can react with NO2 forming HONO, HNO3 and other N compounds. 429 

Additionally, previous studies have suggested that Pyrex walls enhance the formation rate of N2O4 430 

by over an order of magnitude (Barney & Finlayson-Pitts, 2000; Saliba et al., 2001), which at 431 

isotopic equilibrium is enriched in 15N compared to NO and NO2 (Walters & Michalski, 2015). 432 

Therefore, their measured α(NO2-NO) might be slightly higher than the actual α(NO2-NO) value. 433 

In this work, the 10 m3 chamber has a much smaller surface to volume ratio relative to Walters et 434 

al. (2016) which minimizes wall effects, and the walls were made of Teflon that minimize NO2 435 

surface reactivity, which was evidenced by the NO2 wall loss control experiment. Furthermore, 436 

the low NOx mixing ratios in our experiments minimized N2O4 and N2O3 formation. At NO and 437 

NO2 concentrations of 50 nmol mol-1 the steady state concentrations of N2O4 and N2O3 were 438 

calculated to be 0.014 and 0.001 pmol mol-1, respectively (Atkinson et al., 2004). Therefore, we 439 

suggest our measured α(NO2-NO) value (1.0275±0.0012) may better reflect the room temperature 440 

(298 K) NO-NO2 EIE in the ambient environment.  441 
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Unfortunately, the chamber temperature could not be controlled so we were not able to 474 

investigate the temperature dependence of the EIE. Hence, we speculate that the α(NO2-NO) 475 

follows a similar temperature dependence pattern calculated in Walters et al. (2016). Walters et al. 476 

(2016) suggested that, the e(NO2-NO) value would be 4.7 ‰ higher at 273 K and 2.0 ‰ lower at 477 

310 K, relative to room temperature (298 K). Using this pattern and our experimentally determined 478 

data, we suggest the α(NO2-NO) values at 273 K, 298 K and 310 K are 32.2±1.2 ‰, 27.5±1.2 ‰ 479 

and 25.5±1.2 ‰, respectively. This 6.7‰ variation at least partially contribute to the daily and 480 

seasonal variations of d15N values of NO2 and nitrate in some areas (e.g., polar regions with strong 481 

seasonal temperature variation). Thus, future investigations should be conducted to verify the EIE 482 

temperature dependence. 483 

 484 

3.2. Kinetic isotopic fractionation of Leighton Cycle 485 

 The photochemical reactions of NOx will compete with the isotope exchange fractionations 486 

between NO and NO2. The NO-NO2 photochemical cycle in the chamber was controlled by the 487 

Leighton cycle: NO2 photolysis and the NO + O3 reaction. This is because there were no VOCs in 488 

the chamber so no RO2 was produced, which excludes the NO + RO2 reaction. Likewise, the low 489 

water vapor content (RH<10%) and the minor flux of photons < 310 nm results in minimal OH 490 

production and hence little HO2 formation and subsequently trivial amount of NO2 would be 491 

formed by NO + HO2. Applying these limiting assumptions, the EIE between NO and NO2 (R1-492 

R2) were only competing with the KIE (R3-R4) and the PHIFE in R5-R6: 493 

 14NO2®14NO+O     R3, rate constant=j(NO2) 494 

 15NO2®15NO+O     R4, rate constant=j(NO2)×α1   495 

 14NO+O3®14NO2+O2     R5, rate constant=k5   496 
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 15NO+O3®15NO2+O2     R6, rate constant=k5×α2  509 

In which j(NO2) is the NO2 photolysis rate (1.4×10-3 s-1 in these experiments), k5 is the rate constant 510 

for the NO+O3 reaction (1.73×10-14 cm3 s-1, Atkinson et al., 2004), and α1,2 are isotopic 511 

fractionation factors for the two reactions. Previous studies (Freyer et al., 1993; Walters et al., 512 

2016) have attempted to assess the competition between EIE (R1-R2), KIE and PHIFE (R3-R6), 513 

but none of them quantified the relative importance of the two processes, nor were α1 or α2 values 514 

experimentally determined. Here we provide the mathematical solution of EIE, KIE and PHIFE to 515 

illustrate how R1-R6 affect the isotopic fractionations between NO and NO2. 516 

First, the NO2 lifetime with respect to isotopic exchange with NO (τexchange) and photolysis 517 

(τphoto) was determined: 518 

τ#$%&'()# =
*

+!×[-.]
         Eq. (4) 519 

τ0&121 =
*

3(-.")
         Eq. (5) 520 

We then define an A factor: 521 

A =
,

6#$%&'()#
6*&+,+

										when	𝑗(NO7)¹0
	

											0																when	𝑗(NO7) = 0
      Eq. (6) 522 

Using R1-R6 and Eq. (1)-(6), we solved steady-state d(NO2) and d(NO) values (see calculations 523 

in supplementary material). Our calculations show that the d(NO2)-d(NO) and d(NO2)-d(NOx) 524 

values at steady state can be expressed as functions of α1, α2, α(NO2-NO) and A: 525 

 d(NO!) − d(NO)	(‰) = (α2−α1)×A+(*(#$#+#$)−1)
A+1 × 1000	‰   Eq. (7) 526 

 d(NO!) − d(NO))	(‰) = (α2−α1)×A+(*(#$#+#$)−1)
A+1 × (1 − 𝑓(NO2))× 1000	‰ Eq. (8) 527 

Equation (7) shows the isotopic fractionation between NO and NO2 (d(NO2)-d(NO)) is largely 528 

determined by A, the EIE factor (α(NO2-NO)-1) and the (α2-α1) factor. This (α2-α1) represents a 529 
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combination of KIE and PHIFE, suggesting they act together as one factor; therefore, we name the 559 

(α2-α1) factor Leighton Cycle Isotopic Effect, i.e., LCIE. Using measured d(NO2)-d(NO) values, 560 

A values, and the previously determined EIE factor, we calculated that the best fit for the LCIE 561 

factor was -10±5 ‰ (r = 0.52, Fig. 1B). The uncertainties in the LCIE factor are relatively higher 562 

than that of the EIE factor, mainly because of the accumulated analytical uncertainties at low NOx 563 

and O3 concentrations, and low A values (0.10-0.28) due to the relatively low j(NO2) value 564 

(1.4×10-3 s-1) under the chamber irradiation conditions.  565 

 This LCIE factor determined in our experiments is in good agreement with theoretical 566 

calculations. Walters and Michalski (2016) previously used an ab initio approach to determine an 567 

α2 value of 0.9933 at room temperature, 0.9943 at 237 K and 0.9929 at 310 K. The variation of α2 568 

values from 273 K to 310 K is only ±0.7 ‰, significantly smaller than our experimental uncertainty. 569 

The α1 value was calculated using a ZPE shift model (Miller & Yung, 2000) to calculate the 570 

isotopic fractionation of NO2 by photolysis. Briefly, this model assumes both isotopologues have 571 

the same quantum yield function and the PHIFE was only caused by the differences in the 15NO2 572 

and 14NO2 absorption cross-section as a function of wavelength, thus α1 values do not vary by 573 

temperature. The 15NO2 absorption cross-section was calculated by shifting the 14NO2 absorption 574 

cross-section by the 15NO2 zero-point energy (Michalski et al., 2004). When the ZPE shift model 575 

was used with the irradiation spectrum of the chamber lights, the resulting α1 value was 1.0023. 576 

Therefore, the theoretically predicted α2-α1 value should be -0.0090, i.e., -9.0±0.7 ‰ when 577 

temperature ranges from 273 K to 310 K. This result shows excellent agreement with our 578 

experimentally determined room temperature α2-α1 value of -10±5 ‰.  579 

This model was then used to evaluate the variations of α1 value to different lighting 580 

conditions. The TUV model (TUV5.3.2, Madronich & Flocke, 1999) was used to calculate the 581 
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solar wavelength spectrum at three different conditions: early morning/late afternoon (solar zenith 592 

angle=85 degree), mid-morning/afternoon (solar zenith angle=45 degree), noon (solar zenith 593 

angle=0 degree). These spectrums were used in the ZPE shift model to calculate the α1 values, 594 

which are 1.0025, 1.0028, and 1.0029 at solar zenith angles of 85, 45 and 0 degree, respectively. 595 

These values, along with the predicted α1 value in the chamber, showed a total span of 0.6‰ 596 

(1.0026 ±0.0003), which is again significantly smaller than our measured uncertainty. Therefore, 597 

we suggest that our experimentally determined LCIE factor (-10±5 ‰) can be used in most 598 

tropospheric solar irradiation spectrums.  599 

The equations can also be applied in tropospheric environments to calculate the combined 600 

isotopic fractionations of EIE and LCIE for NO and NO2. First, the NO2 sink reactions (mainly 601 

NO2+OH in the daytime) are at least 2-3 orders of magnitude slower than the Leighton cycle and 602 

the NO-NO2 isotope exchange reactions (Walters et al., 2016), therefore their effects on the d(NO2) 603 

should be minor. Second, although the conversion of NO into NO2 in the ambient environment is 604 

also controlled by NO + RO2 and HO2 in addition to NO+O3 (e.g., King et al., 2001), Eq. (7) still 605 

showed good agreement with field observations in previous studies. Freyer et al. (1993) 606 

determined the annual average daytime d(NO2)-d(NO) at Julich, Germany along with average 607 

daytime NO concentration (9 nmol mol-1, similar to our experimental conditions) to be 608 

+18.03±0.98 ‰. Using Eq. (7), assuming the daytime average j(NO2) value throughout the year 609 

was 5.0±1.0×10-3, and a calculated A value from measured NOx concentration ranged from 0.22-610 

0.33, the average NO-NO2 fractionation factor was calculated to be +18.8±1.4 ‰ (Fig. 1B), in 611 

excellent agreement with the measurements in the present study. This agreement suggests the 612 

NO+RO2/HO2 reactions might have similar fractionation factors as NO+O3. Therefore, we suggest 613 
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Eq. (7) and (8) can be used to estimate the isotopic fractionations between NO and NO2 in the 635 

troposphere (Fig. 1C).  636 

 637 

3.3 Calculating nitrogen isotopic fractionations of NO-NO2 638 

First, Eq. (7) was used to calculate the D(NO2-NO) = d(NO2)-d(NO) at a wide range of 639 

NOx concentrations, ƒ(NO2) and j(NO2) values (Fig. 2A-D). j(NO2) values of 0 s-1 (Fig. 2A), 640 

1.4×10-3 s-1 (Fig. 2B), 5×10-3 s-1 (Fig. 2C) and 1×10-2 s-1 (Fig. 2D) were selected to represent 641 

nighttime, dawn (as well as the laboratory conditions of our experiments), daytime average and 642 

noon, respectively. Each panel represented a fixed j(NO2) value, and the D(NO2-NO) values were 643 

calculated as a function of the A value, which was derived from NOx concentration and ƒ(NO2). 644 

The A values have a large span, from 0 to 500, depending on the j(NO2) value and the NO 645 

concentration. When A=0 (j(NO2)=0) and f(NO2)<1 (meaning NO-NO2 coexist and [O3]=0), Eq. 646 

(7) and (8) become Eq. (2) and (3), showing the EIE was the sole factor, the D(NO2-NO) values 647 

were solely controlled by EIE which has a constant value of +27.5 ‰ at 298K (Fig. 2A). When 648 

j(NO2) >0, the calculated D(NO2-NO) values showed a wide range from -10.0 ‰ (controlled by 649 

LCIE factor: α2-α1=-10 ‰) to +27.5 ‰ (controlled by EIE factor: α(NO2-NO)-1 = +27.5 ‰). Fig. 650 

2B-D display the transition from a LCIE-dominated regime to an EIE-dominated regime. The 651 

LCIE-dominated regime is characterized by low [NOx] (<50 pmol mol-1), representing remote 652 

ocean areas and polar regions (Beine et al., 2002; Custard et al., 2015). At this range the A value 653 

can be greater than 200, thus Eq. (7) can be simplified as: D(NO2-NO) = (α2-α1)×1000 ‰, 654 

suggesting the LCIE almost exclusively controls the NO-NO2 isotopic fractionation. The D(NO2-655 

NO) values of these regions are predicted to be <0 ‰ during most time of the day and < -5 ‰ at 656 

noon. On the other hand, the EIE-dominated regime was characterized by high [NOx] (>20 nmol 657 
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mol-1) and low ƒ(NO2) (< 0.6), representative of regions with intensive NO emissions, e.g., near 695 

roadside or stack plumes (Clapp & Jenkin, 2001; Kimbrough et al., 2017). In this case, the τexchange 696 

are relatively short (10-50 s) compared to the τphoto (approximately 100 s at noon and 1000 s at 697 

dawn), therefore the A values are small (0.01-0.5). The EIE factor in this regime thus is much more 698 

important than the LCIE factor, resulting in high D(NO2-NO) values (>20 ‰). Between the two 699 

regimes, both EIE and LCIE are competitive and therefore it is necessary to use Eq. (7) to quantify 700 

the D(NO2-NO) values. 701 

Fig. 2 also implies that changes in the j(NO2) value can cause the diurnal variations in 702 

D(NO2-NO) values. Changing j(NO2) would affect the value of A and consequently the NO-NO2 703 

isotopic fractionations in two ways: 1) changes in j(NO2) value would change the photolysis 704 

intensity, therefore the τphoto value; 2) in addition, changes in j(NO2) value would also alter the 705 

steady state NO concentration, therefore changing the τexchange (Fig. 2C). The combined effect of 706 

these two factors on the A value varies along with the atmospheric conditions, and thus needs to 707 

be carefully calculated using NOx concentration data and atmospheric chemistry models.  708 

We then calculated the differences of d15N values between NO2 and total NOx, e.g. D(NO2-709 

NOx) = d(NO2)-d(NOx) in Fig. 2E-H. Since D(NO2-NOx) are connected through the observed d15N 710 

of NO2 (or nitrate) to the d15N of NOx sources, this term might be useful in field studies (e.g., 711 

Chang et al., 2018; Zong et al., 2017). The calculated D(NO2-NOx) values (Fig. 2E-H) also showed 712 

a LCIE-dominated regime at low [NOx] and an EIE-dominated regime at high [NOx]. The D(NO2-713 

NOx) values were dampened by the 1-ƒ(NO2) factor comparing to D(NO2-NO), as shown in Eq. 714 

(3) and (8): D(NO2-NOx) = D(NO2-NO)×(1-ƒ(NO2)). At high ƒ(NO2) values (>0.8), the differences 715 

between d(NO2) and d(NOx) were less than 5 ‰, thus the measured d(NO2) values were similar to 716 

d(NOx), although the isotopic fractionation between NO and NO2 could be noteworthy. Some 717 
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ambient environments with significant NO emissions or high NO2 photolysis rates usually have 750 

ƒ(NO2) values between 0.4-0.8 (Mazzeo et al., 2005; Vicars et al., 2013). In this scenario, the 751 

D(NO2-NOx) values in Fig. 2F-H showed wide ranges of -4.8 ‰ to +15.6 ‰, -6.0 ‰ to +15.0 ‰, 752 

and -6.3 ‰ to +14.2 ‰ at j(NO2)=1.4×10-3 s-1, 5×10-3 s-1, 1×10-2 s-1, respectively. These significant 753 

differences again highlighted the importance of both LCIE and EIE (Eq. (7) and (8)) in calculating 754 

the D(NO2-NOx). In the following discussion, we assume 1) the α1 value remain constant (see 755 

discussion above), 2) the NO+RO2/HO2 reactions have the same fractionation factors (α2) as 756 

NO+O3, and 3) both EIE and LCIE do not display significant temperature dependence, then use 757 

Equations (7) and (8) and this laboratory determined LCIE factor (-10 ‰) to calculate the nitrogen 758 

isotopic fractionation between NO and NO2 at various tropospheric atmospheric conditions. 759 

 760 

4. Implications 761 

 The daily variations of D(NO2-NOx) values at two roadside NOx monitoring sites were 762 

predicted to demonstrate the effects of NOx concentrations to the NO-NO2 isotopic fractionations. 763 

Hourly NO and NO2 concentrations were acquired from a roadside site at Anaheim, CA 764 

(https://www.arb.ca.gov) and an urban site at Evansville, IN (http://idem.tx.sutron.com) on July 765 

25, 2018. The hourly j(NO2) values output from the TUV model (Madronich & Flocke, 1999) at 766 

these locations was used to calculate the daily variations of D(NO2-NOx) values (Fig. 3A, B) by 767 

applying Eq. (8). Hourly NOx concentrations were 12-51 nmol mol-1 at Anaheim and 9-38 nmol 768 

mol-1 at Evansville and the f(NO2) values at both sites did not show significant daily variations 769 

(0.45±0.07 at Anaheim and 0.65±0.08 at Evansville), likely because the NOx concentrations were 770 

controlled by the high NO emissions from the road (Gao, 2007). The calculated D(NO2-NOx) 771 

values using Eq. (8) showed significant diurnal variations. During the nighttime, the isotopic 772 
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fractionations were solely controlled by the EIE, the predicted D(NO2-NOx) values were 795 

+14.5±2.0 ‰ and +8.7±2.1 ‰ at Anaheim and Evansville, respectively. During the daytime, the 796 

existence of LCIE lowered the predicted D(NO2-NOx) values to +9.8±1.7 ‰ at Anaheim and 797 

+3.1±1.5 ‰ at Evansville while the f(NO2) values at both sites remained similar. The lowest 798 

D(NO2-NOx) values for both sites (+7.0 ‰ and +1.7 ‰) occurred around noon when the NOx 799 

photolysis was the most intense. In contrast, if one neglects the LCIE factor in the daytime, the 800 

D(NO2-NOx) values would be +12.9±1.5 ‰ and +10.0±1.6 ‰ respectively, an overestimation of 801 

3.1 ‰ and 6.9 ‰. These discrepancies suggested that the LCIE played an important role in the 802 

NO-NO2 isotopic fractionations and neglecting it could bias the NOx source apportionment using 803 

d15N of NO2 or nitrate.  804 

 The role of LCIE was more important in less polluted sites. The D(NO2-NOx) values 805 

calculated for a suburban site near San Diego, CA, USA, again using the hourly NOx 806 

concentrations (https://www.arb.ca.gov, Fig. 3C) and j(NO2) values calculated from the TUV 807 

model. NOx concentrations at this site varied from 1 to 9 nmol mol-1. During the nighttime, NOx 808 

was in the form of NO2 (f(NO2) = 1) because O3 concentrations were higher than NOx, thus the 809 

d(NO2) values should be identical to d(NOx) (D(NO2-NOx) = 0). In the daytime a certain amount 810 

of NO was produced by direct NO emission and NO2 photolysis but the f(NO2) was still high 811 

(0.73±0.08). Our calculation suggested the daytime D(NO2-NOx) values should be only +1.3±3.2 ‰ 812 

with a lowest value of -1.3 ‰. These D(NO2-NOx) values were similar to the observed and modeled 813 

summer daytime d(NO2) values in West Lafayette, IN (Walters et al., 2018), which suggest the 814 

average daytime D(NO2-NOx) values at NOx = 3.9±1.2 nmol mol-1 should range from +0.1 ‰ to 815 

+2.4 ‰. In this regime, we suggest the D(NO2-NOx) values were generally small due to the 816 

significant contribution of LCIE and high f(NO2). 817 
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 The LCIE should be the dominant factor controlling the NO-NO2 isotopic fractionation at 841 

remote regions, resulting in a completely different diurnal pattern of D(NO2-NOx) compared with 842 

the urban-suburban area. Direct hourly measurements of NOx at remote sites are rare, thus we used 843 

total NOx concentration of 50 pmol mol-1, daily O3 concentration of 20 nmol mol-1 at Summit, 844 

Greenland (Dibb et al., 2002; Hastings et al., 2004; Honrath et al., 1999; Yang et al., 2002), and 845 

assumed the conversion of NO to NO2 was completely controlled by O3 to calculate the NO/NO2 846 

ratios. Here the isotopes of NOx were almost exclusively controlled by the LCIE due to the high 847 

A values (>110). The D(NO2-NOx) values displayed a clear diurnal pattern (Fig. 3D) with highest 848 

value of -0.3 ‰ in the “nighttime” (solar zenith angle >85 degree) and lowest value of -5.0 ‰ in 849 

the mid-day. This suggest that the isotopic fractionations between NO and NO2 were almost 850 

completely controlled by LCIE at remote regions, when NOx concentrations were <0.1 nmol mol-851 

1. However, since the isotopic fractionation factors of nitrate-formation reactions (NO2+OH, 852 

NO3+HC, N2O5+H2O) are still unknown, more studies are needed to fully explain the daily and 853 

seasonal variations of d(NO3-) at remote regions.  854 

Nevertheless, our results have a few limitations. First, currently there are very few field 855 

observations that can be used to evaluate our model, therefore, future field observations that 856 

measure the d15N values of ambient NO and NO2 should be carried out to test our model. Second, 857 

more work, including theoretical and experimental studies, is needed to investigate the isotope 858 

fractionation factors occurring during the conversion from NOx to NOy and nitrate: in the NOy 859 

cycle, EIE (isotopic exchange between NO2, NO3 and N2O5), KIE (formation of NO3, N2O5 and 860 

nitrate) and PHIFE (photolysis of NO3, N2O5, HONO and sometimes nitrate) may also exist and 861 

be relevant for the d15N of HNO3 and HONO. In particular, the N isotope fractionation occurring 862 

during the NO2 + OH à HNO3 reaction needs investigation. Such studies could help us modeling 863 
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the isotopic fractionation between NOx emission and nitrate, and eventually enable us to analyze 882 

the d15N value of NOx emission by measuring the d15N values of nitrate aerosols. Third, our 883 

discussion only focuses on the reactive nitrogen chemistry in the troposphere, however, the 884 

nitrogen chemistry in the stratosphere is drastically different from the tropospheric chemistry, thus 885 

future studies are also needed to investigate the isotopic fractionations in the stratospheric nitrogen 886 

chemistry. Last, the temperature dependence of both EIE and LCIE needs to be carefully 887 

investigated because of the wide range of temperature in both troposphere and stratosphere, and 888 

the temperature dependence could also contribute to the seasonality of isotopic fractionations 889 

between NOx and NOy molecules.  890 

 891 

5. Conclusions 892 

 The effect of NOx photochemistry on the nitrogen isotopic fractionations between NO and 893 

NO2 was investigated. We first measured the isotopic fractionations between NO and NO2 and 894 

provided mathematical solutions to assess the impact of NOx level and NO2 photolysis rate (j(NO2)) 895 

to the relative importance of EIE and LCIE. The EIE and LCIE isotope fractionation factors, at 896 

room temperature, were determined to be 1.0275±0.0012 and 0.990±0.005, respectively. These 897 

calculations and measurements can be used to determine the steady state D(NO2-NO) and D(NO2-898 

NOx) values at room temperature. Subsequently we applied our equations to polluted, clean and 899 

remote sites to model the daily variations of D(NO2-NOx) values. We found that the D(NO2-NOx) 900 

values could vary from over +20 ‰ to less than -5 ‰ depending on the environment: in general, 901 

the role of LCIE becoming more important at low NOx concentrations, which tend to decrease the 902 

D(NO2-NOx) values. Our work provided a mathematical approach to quantify the nitrogen isotopic 903 
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fractionations between NO and NO2 that can be applied to many tropospheric environments, which 925 

could help interpret the measured d15N values of NO2 and nitrate in field observation studies.  926 
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 1158 
Fig. 1 d15N of NO2 collected in dark and UV irradiation experiments. A. Results from five dark 1159 
experiments yielded a line with e(NO2-NO)/(1+e(NO2-NO)) value of 26.8 ‰ and e(NO2-NO) 1160 
value of 27.5 ‰; B. Results from five UV irradiation experiments (black points) and a previous 1161 
field study (red triangle). The three lines represent different (α2-α1) values: the (α2-α1)=-10 ‰ line 1162 
showed the best fit to our experimental data as well as the previous field observation; C. a sketch 1163 
of the isotopic fractionation processes between NO and NO2.  1164 
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 1190 
Fig. 2 Calculating isotopic fractionation values between NO-NO2 (D(NO2-NO), A-D) and NOx-1191 
NO2 (D(NO2-NOx), E-H) at various j(NO2), NOx level and f(NO2) using Eq. (7) and (8). Each 1192 
panel represents a fixed j(NO2) value (showing on the upper right side of each panel), and the 1193 
fractionation values are shown by color. Lines are contours with the same fractionation values, at 1194 
an interval of 5‰, the contour line representing 0‰ was marked on each panel except for A and 1195 
E.  1196 
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 1204 
Fig. 3 NOx concentrations and calculated D(NO2-NOx) values at four sites. Stacked bars show the 1205 
NO and NO2 concentrations extracted from monitoring sites (A-C) or calculated using 0-D box 1206 
model (D); the red lines are D(NO2-NOx) values at each site.  1207 
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