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Abstract 19 

Two parallel field studies were conducted simultaneously at both urban and rural sites in 20 

Beijing from 11/01/2016 to 11/29/2016. Online single-particle chemical composition 21 

analysis was used as a tracer system to investigate the impact of heating activities and the 22 

formation of haze events. Central heating elevated EC-Nit, EC-Nit-Sul, and ECOC-Nit 23 

levels by 1.5–2.0 times due to the increased use of coal in the urban areas. However, in the 24 

rural areas, residential heating which mainly consumes low-quality coal and biomass 25 

burning elevated ECOC-Nit-Sul, Nak-Nit, and OC-Sul levels by 1.2–1.5 times. Four severe 26 

haze events (hourly PM2.5 > 200 µg m‒3) occurred at both sites during the studies. In each 27 

event, a pattern of “transport and accumulation” was found. In the first stage of the pattern, 28 

particles were regionally transported from the south or southwest and accumulated under 29 

air stagnations, creating significant secondary formation, then PM2.5 boosted up to 300 µg 30 

m‒3. At both sites, the severe haze occurred due to different patterns of local emission, 31 

transport, and secondary processes. At PG, the sulfate-rich residential coal burning 32 

particles were dominant. The regional transport between PG and PKU was simulated using 33 

the WRF-HYSPLIT model, confirming that the transport from PG to PKU was significant, 34 

but PKU to PG occurred occasionally. These cases can explain the serious air pollution in 35 

the urban areas of Beijing and the interaction between urban and rural areas. This study 36 

can provide references for enhancing our understanding of haze formation in Beijing.  37 

Keywords: urban; regional; single particle; transport; pollution event 38 

  39 
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1. Introduction 40 

The Beijing-Tianjin-Hebei (BTH) area in China has been suffering from extreme haze 41 

events caused by high concentrations of PM2.5 ( > 200 µg m⁻3) since 2013 (Guo et al., 2014). 42 

Studies have been performed to understand the formation of such massive haze events in 43 

Beijing (Tian et al., 2014; Quan et al., 2013; Che et al., 2014; He et al., 2015). Traffic, 44 

cooking, and coal combustion emissions accounted for 41–59% of the total submicron 45 

organic aerosols and the remainder was secondary organic aerosols (Sun et al., 2014). 46 

Model studies suggest that temperature inversion, low boundary layer, and transported 47 

pollutants cause the local accumulation of PM2.5 in urban areas (Zhang et al., 2015). In 48 

short, significant local emissions, unfavorable meteorological conditions, and regional 49 

transport play essential roles in accumulating PM2.5.  50 

There are unresolved issues surrounding whether the rapid boosting of PM in Beijing is 51 

due to local secondary aerosol formation or transport. Wang et al. (2016) have proposed 52 

that the accumulation of nitrates is dominant at the beginning of haze events, and then 53 

sulfate increases because SO2 is oxidized into sulfate in ammonium-rich conditions. 54 

Moreover, Cheng et al. (2016) have suggested that NO2 could oxidize SO2 to sulfate on the 55 

surface of alkali aerosols. However, Li et al. (2015) have argued that regionally transported 56 

PM2.5 is a significant cause of severe haze. Last but not least, Sun et al. (2013) and (2014) 57 

have proposed that both local formation and regional transport are causing factors. Except 58 

for model studies, most field studies have focused on urban areas in Beijing, with limited 59 

attention to rural areas. The characterization of rural PM is also essential to understanding 60 

the evolution of particulate haze events. 61 
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The cold winter results in the necessity of heating, consequently impacting the air quality 62 

in BTH (Sun et al., 2014). In urban areas, central heating systems use coal or natural gas, 63 

while rural households use coal or biofuel for heating and cooking. Residential emissions 64 

in Beijing reach about 4 million tons, mainly caused by low-efficiency coal combustion 65 

(Li et al., 2015). Coal combustion organic aerosols (CCOA) account for 20–32% of total 66 

submicron OA in Beijing (Sun et al., 2014; Sun et al., 2013). However, whether CCOA is 67 

contributed by central or household heating remains unclear. Notably, central and 68 

household heating release distinct particles due to different burning conditions (Lee et al., 69 

2005; Chagger et al., 1999). Therefore, analyzing household heating and cooking emissions 70 

in rural areas is also beneficial for understanding the source of urban PM2.5 in Beijing.  71 

SPAMS has proven a useful tool for characterizing the single-particle chemical 72 

composition, mixing state, and processing of atmospheric particles (Chen et al., 2019a). 73 

Single-particle chemical composition and mixing state can be used as a tracing system to 74 

explore the sources and origins of unique particle types (Chen et al., 2019b; Li et al., 2016). 75 

For example, by combining meteorological parameters, we can determine the sources and 76 

transport conditions of specific particle types (Chen et al., 2018; Chen et al., 2020). 77 

As mentioned in Part I (Chen et al., 2020), two SPAMSs were deployed simultaneously at 78 

Peking University (PKU) and Pinggu (PG) to monitor urban and rural particles in the 79 

Beijing region. In Part II, the resolved particle types are used to trace the evolution, 80 

transport, and formation of pollution events. The detailed analysis of haze events and 81 

effects of heating activities are addressed. Combining field measurements and model 82 
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studies, the interactions between the two sampling sites, representing urban and rural 83 

eastern areas, are systematically analyzed. 84 

2. Methodology 85 

2.1 Sampling sites, instrumentation, and data analysis 86 

Please refer to Part I and Support Information for the detail (Chen et al., 2020). Briefly, the 87 

field studies were performed simultaneously at Peking University (PKU) (116.32ºE, 88 

39.99ºN) and Pinggu  (PG) (117.05ºE, 40.17ºN) from 11/01/2016 to 11/29/2016 (Figure 89 

1). The detailed description of these two sites is available at (Chen et al., 2020). The two 90 

sites represent both typical urban and rural areas, respectively. The local meteorological 91 

data is retrieved from the local meteorological offices. Two SPAMSs (0515, Hexin Inc., 92 

Guangzhou, China) were deployed at both sites for parallel measurements. SPAMS 93 

generates single particle mass spectra from the captured individual particles. The technical 94 

description of SPAMS is available in the literature (Li et al., 2011). A neural network 95 

algorithm based on adaptive resonance theory (ART-2a) was applied for clustering particle 96 

types in the datasets (Song et al., 1999). During the clustering procedure, the relative peak 97 

areas (RPA) of sulfate and nitrate are considered. A criterion of RPA >0.1 is used to 98 

identify the nitrate-rich (-Nit), sulfate-rich (-Sul), or both. Based on the strategy, 20 and 19 99 

particle types were identified at PKU and PG respectively. 100 

2.2 Dispersion model 101 

A WRF-HYSPLIT (Weather Research and Forecasting - Hybrid Single Particle 102 

Lagrangian Integrated Trajectory) coupling model was used to describe the air parcel 103 

https://www.mmm.ucar.edu/weather-research-and-forecasting-model
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movement between PKU and PG. The description of the model is available at 104 

https://www.arl.noaa.gov/hysplit/inline-wrf-hysplit-coupling/. The HYSPLIT dispersion 105 

simulations were driven by the meteorological data fields from the WRF model version 106 

3.8. The WRF domains are shown in Figure 2. The innermost domain was configured to 107 

cover northern China with a horizontal resolution of 3 km and 35 vertical layers. The 108 

longwave and shortwave radiation schemes were set as the RRTMG and Dudhia scheme 109 

respectively. The Yonsei University (YSU) scheme was used for the PBL parameterization. 110 

For the microphysics, the Morrison 2-moment scheme was adopted. NCEP FNL (National 111 

Centers for Environmental Prediction, final) data with a resolution of 1°×1° was employed 112 

as initial and boundary conditions. The WRF simulation was initialized as a “cold start” at 113 

0000 UTC each day and ran for 36 hours. The first 12 hours were discarded as model spin-114 

up time, and the output for the following 24 hours was retained. This process was repeated 115 

to produce continuous meteorological data fields for the whole experimental period. The 116 

HYSPLIT was set to release 10,000 Lagrangian particles within one hour at PKU and PG, 117 

10 m above ground level. The concentration of released particles was simulated with one 118 

vertical layer extending from 0 to 1,000 m above ground level. 119 

3. Results and Discussion 120 

3.1 Particle type description 121 

We observed five particle categories at both sites: elemental carbon (EC), organic carbon 122 

(OC), internal-mixed EC and OC (ECOC), potassium-rich (K-rich), and metals. According 123 

to their different stages of atmospheric processing, the five categories can be divided into 124 

up to 20 particle types, as shown in Table 1. Particles with relative peak areas of sulfate 125 
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and nitrate greater than 0.1 were marked with nitrate (-Nit) or sulfate (-Sul), respectively, 126 

or both (-Nit-Sul). The typical single-particle mass spectra of all particle types are available 127 

in Supportive Information and. Besides, the suffixes “_PKU” and “_PG” are used when 128 

the same particles appear. The higher relative abundance of secondary species indicates the 129 

particles are more aged (Chen et al., 2020).  130 

As described in Part I, we performed a responding analysis of meteorological factors (e.g., 131 

wind speed and wind direction) and hourly number counts of observed particles at both 132 

sites.  At PKU, the following particle types were local: EC-Nit, EC-Nit-Sul, ECOC-Nit-133 

Sul, Ca-rich, and ECOC-Nit. These particles arrived at PKU with no unique orientations, 134 

at low wind speed (commonly < 2 m s‒1) and with clear diurnal patterns. On the contrary, 135 

parts of OC-Nit, OC-Sul, NaK-Nit, and NaK-Nit-Sul responded to unique wind directions, 136 

implying that these particle types were regionally transported. At PG, all particle types 137 

showed patterns that were both local and regional. For example, OC, ECOC, OC-Nit-Sul, 138 

and ECOC-Nit-Sul came from the local area, northeast, and southwest. Universal patterns 139 

can be used to determine the mechanisms of pollution event formation when combined 140 

with unique cases.  141 

  142 
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Table 1. Particle types and their relative fractions and chemical composition 143 

* chemical species with ionic relative peak area >0.1 144 

3.2 Overview of haze events 145 

Figures 3 and 4 show the overview of PM2.5, meteorology parameters, and time trends of 146 

particles at PKU and PG respectively. There were four parallel haze events during the 147 

observation period: 11/01/2016–11/07/2016 (E1), 11/09/2016–11/15/2016 (E2), 148 

11/15/2016–11/22/2016 (E3), and 11/25/2016–11/28/2016 (E4).  149 

The pattern of single-particle chemical composition, represented by normalized number 150 

fractions of particle types in different periods, is used to describe PM characteristics. The 151 

correlations of normalized number fractions during events at PKU and PG are shown in 152 

 Both PKU PG Chemical Composition* 

EC EC-Nit 7.0 2.0 Cn
+, Cn

-, HSO4
-, NO2

-,  

 EC-Nit-Sul 10.5 3.5 NO3
- 

 EC-Sul 0.7 0.1  

ECOC ECOC-Nit-Sul 12.0 18.6 Cn
+, Cn

-, CxHy
+, CxHyOz

+ 

  ECOC-Sul 12.7 9.8 HSO4
-, NO3

- 

K-rich K-rich 7.2 6.4 K+, NH4
+, HSO4

-, NO3
- 

 K-Nit 8.0 8.2 NO2
- 

 K-Nit-Sul 16.0 1.9  

 K-Sul 0.6 4.5  

NaK NaK 0.4 1.8 Na+, K+, NH4
+, HSO4

-,  

 NaK-Nit 6.4 1.7 NO3
- 

 NaK-Nit-Sul 2.5 1.9  

 NaK-Sul 0.2 0.4  

OC OC-Nit-Sul 7.4 21.3 CxHy
+, CxHyOz

+, NH4
+ 

 OC-Sul 0.9 6.9 HSO4
-, NO3

- 

 Ca-dust 0.4 0.1 Cl- 

Fe  Fe-rich 3.1 1.8 Fe+, Org, HSO4
-, NO3

- 

 ECOC-Nit 3.1%   

 OC-Nit 0.9%   

 K-Amine-Nit-Sul 0.1%  TMA, NH4
+, HSO4

-, NO3
- 

 ECOC  5.9% Cn
+, Cn

-, CxHy
+, CxHyOz 

 OC   3.3% CxHy
+, CxHyOz 
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Tables 2 and S3. E1_PKU was well correlated with Clear1 (R = 0.90) and E2_PKU (R = 153 

0.86), but poorly correlated with Clear2 (R = 0.38) and E4 (R = 0.64). This is because 154 

E1_PKU and E2_PKU occurred before the heating period, but E4_PKU occurred after 155 

(11/15/2016). The chemical compositions of the four events at PG are highly correlated 156 

with each other (all Rs > 0.90, Table S3). These results indicate that the chemical 157 

composition patterns changed significantly at PKU, but insignificantly at PG.  158 

Table 2. Correlations of number fractions of particle types in different events at PKU. 159 

  E1 Clear1 E2 Clear2* E4 

E1 1     
Clear1 0.90 1    
E2 0.86 0.91 1   
Clear2 0.38 0.70 0.58 1  
E4 0.64 0.81 0.83 0.76 1 

Note: The chemical composition of E3 is unavailable.  160 

3.3 Influence of heating activities 161 

Central heating began on 11/15/2016 in the urban area, while residential heating in the rural 162 

area had no distinct starting day. As such, the shift in emissions due to the increased use of 163 

solid fuel directly affected the particulate chemical composition. As shown in Figure 5, the 164 

normalized fractions of EC-Nit_PKU, EC-Nit-Sul_PKU, and OC-Nit_PKU increased by 165 

about 1.5 times. EC-Nit_PKU and EC-Nit-Sul_PKU came from multiple local sources, one 166 

of which was coal burning in boilers (Xu et al., 2018). In addition, high EC concentrations 167 

have been observed during the heating period each year for decades (Chen et al., 2016b). 168 

The mass spectra of OC-Nit particles were composed of a series of ion fragments of 169 

polycyclic aromatic hydrocarbons (PAHs). The results are consistent with organic aerosols 170 
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from coal burning in AMS-related studies (Wang et al., 2019). Additionally, PM2.5-bound 171 

PAHs increased by three times when the heating period began in Beijing (Zhang et al., 172 

2017). The results also suggest the potential health risks of coal burning in wintertime in 173 

Beijing (Linak et al., 2007; Chen et al., 2013).  174 

Biomass burning (BB) has been proven as a significant source of PM2.5 in Beijing (Sun et 175 

al., 2014), accounting for 9–12% (Liu et al., 2019). Anthropogenic BB, e.g. burning 176 

household biofuel, is prohibited in urban areas, but common in the areas surrounding 177 

Beijing. Most BB-related particles such as K-rich, K-Nit, and K-Nit-Sul at PKU were 178 

regional (Part I)(Chen et al., 2020). Not surprisingly, K-Nit_PKU and K-Nit-Sul_PKU 179 

both increased to 1.7 times after 11/15/2016. Interestingly, K-Amine-Nit_PKU increased 180 

by 2.3 times after the heating period began, suggesting that BB is also a source of 181 

particulate amines in Beijing (Chen et al., 2019b). 182 

After 11/15/2016, NaK-Nit-Sul_PG, Ca-rich_PG, and OC-Sul_PG increased by 1.96, 1.30, 183 

and 1.47 times respectively. As described above, in rural areas, low-quality coal is 184 

commonly used for residential heating and cooking, resulting in abundant EC-Sul, OC-Sul, 185 

and NaK-Nit-Sul (Xu et al., 2018; Chen et al., 2016a). Interestingly, Ca-rich particles that 186 

were well correlated with OC-Sul (R = 0.79) also increased, possibly due to flying ash from 187 

coal stoves.  188 

A number of studies have reported contributions of coal burning to the submicron PM in 189 

urban areas of Beijing. According to these mass-based studies, PM-bound PAHs, chloride, 190 

sulfate, nitrate, and lead were markers from emissions of coal burning (Xu et al., 2018; Sun 191 

et al., 2014; Ma et al., 2016; Zhang et al., 2019). Our result shows that these species were 192 
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internally mixed as the ECOC particles. In particular, the household heating in PG released 193 

significant fractions of ECOC particles that arrived in the urban areas of Beijing. Likewise, 194 

K-rich particles from BB also transport to the urban areas of Beijing. Conclusively, control 195 

of emissions from household heating is also a key to improve the air quality in Beijing.  196 

3.4 Case studies: Haze events at PKU 197 

As shown in Figure 3, before PM2.5 increased to 100 µg m‒3 during E1_PKU, two processes 198 

of PM2.5 transport were observed. The first process was from 12:00 on 11/01/2016 to 2:00 199 

on 11/02/2016, in which OC-Nit-Sul, K-Nit-Sul, K-Nit, NaK-Nit, K-Nit-Sul increased 200 

dramatically as the southern wind speed increased from 1.3 m s‒1 to 3.7 m s‒1. The wind 201 

speed then decreased to 1.2 m s‒1 until 16:00 on 11/02/2016, and the accumulation of PM2.5 202 

resulted in a concentration of 67 µg m‒3. The second process occurred from 17:00 on 203 

11/02/2016 to 16:00 on 11/03/2016. Severe accumulation then started at 1:00 on 204 

11/04/2016, with an elevating trend of RH, reaching the highest PM2.5 level of 314 µg m‒3 205 

at 03:00 on 11/05/2016. After that, the wind dispersed the PM2.5 to 11 µg m‒3 at 17:00 on 206 

11/06/2016. In short, regional particles were transported from the south or southwest, then 207 

the accumulation of PM2.5 began. The accumulation of pollutants was accompanied by 208 

secondary aerosol formation, causing severe haze events.  209 

During the events at PKU (Figure 3), particles transported from the south and southwest 210 

were observed and labeled with red rectangles. During E4_PKU, the PM2.5 concentration 211 

increased from 6 µg m‒3 to 122 µg m‒3 between 15:00 on 11/24/2016 and 3:00 on 212 

11/25/2016 due to the southern wind, which brought abundant NaK-Nit, NaK-Nit-Sul, 213 

ECOC-Nit-Sul, and EC-Nit-Sul. Notably, regional particles were dramatically different 214 
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from those of E1_PKU due to the heating period. Then, under stagnant air conditions, the 215 

accumulation began at 22:00 on 11/25/2016 and lasted until 03:00 on 11/26/2016, with 216 

PM2.5 levels reaching 281 µg m‒3. At this stage, such local particles as OC-Nit-Sul, ECOC-217 

Nit-Sul, and ECOC-Nit also showed accumulation and local emissions, while both the K-218 

rich and NaK families showed a pattern of transport and accumulation (Figures 6 and 7).  219 

As shown in Figure 6, which gives an integrated view of related particle types in urban 220 

Beijing, three types of particle evolution are distinguished during E1. First, EC particles, 221 

including EC-Nit, EC-Nit-Sul, and EC-Sul, show trends of accumulation, but with clear 222 

patterns of emissions, suggesting a pattern of emission and accumulation. Second, for 223 

regional particles such as the K-rich and NaK families, the processes of transport and 224 

accumulation were identified, with significant accumulation but unclear diurnal patterns. 225 

Third, the OC and ECOC families illustrated clear diurnal patterns of local emission and 226 

evolution. Notably, during the development of E1, the fractions of aged ECOC-Nit-Sul 227 

increased from 20% to 83%, suggesting that significant secondary processing occurred.  228 

Due to the nature of SPAMS, the quantitative measurement of secondary formation is 229 

unavailable. Fortunately, as an integrated and extensive project, APHH-Beijing also 230 

included the online monitoring of the chemical composition of PM2.5. For example, during 231 

the transport stage of E4_PKU, PM2.5 was composed of 60% organic matter (OM) and 40% 232 

total nitrate, sulfate, and ammonium. During the accumulation stage, sulfate, nitrate, and 233 

ammonium levels were boosted up to 123 µg m‒3 (63%) together (Liu et al., 2019). Wang 234 

et al. (2019) also reported that, during the accumulation stage of E4_PKU, the elevation of 235 

secondary OOA1 and OOA2 was significant.  236 
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In the most recent study of aerosol-radiation feedback deterioration in Beijing during 237 

wintertime, Wu et al. (2019) proposed that the increase of near-surface PM2.5 from 10 to 238 

200 µg m‒3 can result in a decrease of the planetary boundary layer (PBL) from 1,500 m to 239 

400 m, the decrease consequently contributs to PM2.5 concentration by 20%. However, a 240 

20% difference cannot explain that PM2.5 concentration increased from 100 µg m‒3 to 300 241 

µg m‒3. Moreover, when PM2.5 exceeded 200 µg m‒3, the height of the PBL remained at 242 

400‒500 m and air stagnation occurred with weak horizontal wind and inactive advection. 243 

Zhong et al. (2017) observed that weak temperature inversion occurred at the same period, 244 

and near-surface RH increased after southerly transport, along with decreased vertical wind 245 

speed and increased RH during winter. Air stagnation was also observed in this study with 246 

low wind speed and high RH (Figure 2). Based on the evidence of chemical evolution, the 247 

southerly transport of PM was strongly connected to pollution events at PKU. 248 

3.5 Case studies: Haze events at PG 249 

A pollution event occurred at PG (E1_PG) from 11/01 to 11/08. During this period, a 250 

similar pattern of transport and accumulation as E1_PKU was also observed. At the 251 

beginning of each pollution event, there was also a transport process of particles from the 252 

southwest (Figure 4); when the wind speed reached < 2 m s‒1, accumulations began, and 253 

the haze dispersed with the elevating wind speed. The development of haze events was 254 

similar, and Figure 4 lists all the favorable wind directions for transport marked with red 255 

rectangles. As shown in Figure 9, EC-Nit and EC-Nit-Sul showed unclear diurnal patterns, 256 

indicating that both particle types were transported regionally. K-rich, NaK, OC, and 257 

ECOC had clear diurnal heating and cooking patterns, suggesting that local sources were 258 

dominant. Such aged particle types as OC-Nit-Sul and ECOC-Nit-Sul increased due to 259 
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local aging processes during E1_PG. Therefore, E1_PG was mainly driven by the input of 260 

particles, local emissions, and accumulation. Moreover, the relative abundance of ECOC-261 

Nit-Sul increased twofold from 2:00 on 11/03/2016 to 12:00 on 11/03/2016, suggesting the 262 

contribution of secondary formation (Figure 8).  263 

Both E1_PG and E1_PKU had patterns of transport and accumulation, but the transported 264 

particles were different; for example, at the PG site, the appearance of EC-Nit and EC-Nit-265 

Sul, which came from the west, i.e., urban Beijing, was pronounced, while at PKU, aged 266 

particle types such as OC-Nit-Sul, K-Nit-Sul, K-Nit, NaK-Nit, and K-Nit-Sul increased 267 

dramatically due to transport. These particle types were emitted from residential heating in 268 

rural areas. In the accumulation stages at both sites, the concentrations of local particles 269 

rose, such as EC-Nit-Sul at PKU and NaK-Nit-Sul at PG. In short, the evolution of particles, 270 

including both transport and accumulation at both PKU and PG, were affected by the 271 

movement of air mass and local emissions. 272 

When E4_PG occurred, transport from the southwest was identified along with the 273 

transport of EC-Sul and EC-Nit-Sul, resulting in a PM2.5 concentration of 176 µg m‒3 at 274 

10:00 on 11/24/2016. The average wind speed was 1.5 ms-1 at the time, representing a 275 

typical stagnant-air condition. All particle families showed accumulation trends after that 276 

(Figure 4). The sharp decrease of all particle families was due to the high western wind 277 

speed (> 4 ms-1) at 12:00 on 11/26/2016. During particulate accumulation at PG, such local 278 

particle types as ECOC, OC, and NaK still had diurnal patterns, but the aged “-Nit-Sul” 279 

particles types were predominant (> 50% in all particle families). Thus, the local 280 

accumulation of pollutants was the major driver of E4_PG (Figure 8).  281 
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3.6 Interaction of PM between PKU and PG 282 

Since PKU and PG share 17 common particle types, possible transport between the two 283 

sites was validated using the HYSPLIT model. All cases of transport are available in 284 

Supplementary information (Figures S11 and S12). Figures 10 and 11 only illustrate the 285 

examples of transport during each pollution event. The PKU site is located on the edge of 286 

plumes originating from PG during E1, which implies that the particulate transport was 287 

partially from PG (Figure 10). Moreover, the PKU site lies in the high concentration zone 288 

of plumes PG from during E3 and E4. Therefore, E3_PKU and E4_PKU were confidently 289 

considered input haze events. In contrast, the relatively slighter transport of air mass from 290 

PKU to PG was observed during these events. As shown in Figure 11, the air mass passing 291 

through the PKU site mainly influenced the areas in the south and east. Consequently, the 292 

PG site was seldom in the high concentration zone of plumes originating from PKU. 293 

Figures 10 and 11 suggest that pollutants were transported significantly from PG to PKU 294 

during stagnant air conditions when dense haze occurred. These results are consistent with 295 

the analysis of particle categories. As shown in Figure 3, when the transport occurred in 296 

04th November, 19th November, and 26 November, the regional particle types, such as K-297 

Nit-Sul, Nak-Nit-Sul, ECOC-Nit-Sul, and OC-Nit-Sul increased due to the transport from 298 

the East (Part I). In an urban area such as PKU, the local EC particles were associated with 299 

the ECOC and OC families causing severe pollution in the urban area. On the other hand, 300 

in the rural area, the aged particles were dominant under stagnant air conditions and 301 

transported to PKU, leading to extreme urban particulate pollution. Besides, our results are 302 

consistent with other studies in the APHH-Beijing Project. For example, Du et al. (2019) 303 
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have confirmed that regional transport plays a non-negligible role in haze episodes with 304 

contributions of 14–31% to the surface PM2.5 mass concentration. 305 

3.7 Implications 306 

This study provides the polar plots that are used to explain the interaction of pollutants and 307 

wind. Such regional pollution sources as BB, coal, and steel industries have a strong impact 308 

on the particulate chemical composition of the air in urban Beijing. Besides, according to 309 

model studies, air pollutants in Hebei, Henan, and Shandong provinces are transported to 310 

Beijing (Shi et al., 2019; Du et al., 2019). In these provinces, efforts have been made to 311 

abate emissions from the steel industry, power plants, and traffic. However, BB accounted 312 

for 10–20% of the PM2.5 in the study period (Liu et al., 2019). In particular, household 313 

biofuel combustion is a primary BB source during winter, impacting both outdoor and 314 

indoor air quality (Zhang and Cao, 2015). Therefore, more attention should be paid to 315 

tackling BB emissions. 316 

This study improves our general understanding of the sources of sulfates in Beijing. 317 

Particles that only increased with the uptake of sulfate, such as OC-Sul_PKU, K-Sul_PKU, 318 

and NaK-Sul_PKU, were transported regionally and arrived at the sampling site during 319 

high wind speeds (> 4 m s‒1). The results are consistent with the findings of Duan et al. 320 

(2019) and Du et al. (2019) that sulfates in Beijing during winter are formed regionally. 321 

Nitrate-containing particles could be found after processing in the NOx-rich urban and rural 322 

plumes of Beijing. Since SPAMS is limited in tracking such partial organics as 323 

hydrocarbons and PAHs, the evolution of secondary organics is unavailable in this study. 324 
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4. Summary 325 

The wintertime haze events that occurred in Beijing from 11/01/2016 to 11/29/2016 have 326 

been investigated. The heating period, including central and residential heating in both 327 

urban and rural areas, severely impacted the particulate chemical composition in the region. 328 

In Beijing, a pattern of the transport and accumulation of particles was found in both the 329 

urban and rural areas. The input of regional particles was strongly connected to stagnation 330 

of the air which provided favorable conditions for the accumulation of pollutants, 331 

ultimately leading to severe haze events. In the rural area, the heavy haze was mainly 332 

controlled by air stagnation and local emissions, but regional transport was also observed. 333 

We also discussed the influence of regional transport using the dispersion model. The air 334 

masses between PKU and PG interacted with each other whenever heavy haze occurred. 335 

Parts I and II of this study are useful for understanding the formation mechanism of winter 336 

haze in both the urban and rural areas of Beijing. This study also implies that the mitigation 337 

of PM relies on both urban and rural areas. 338 
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Figure 1 Map of the sampling sites. 487 

Figure 2. Spatial configuration of domains used for WRF simulation. 488 

Figure. 3. Time trends of PM2.5, temperature, relative humidity, wind direction, wind speed, 489 

and single particle types at PKU. The rectangles indicate the transport of regional particles.  490 

Figure 4. Time trends of PM2.5, temperature, relative humidity, wind direction, wind speed, 491 

and single particle types at PG. The rectangles indicate the transport of regional particles. 492 

Figure 5. Variation of particle number fractions at PKU and PG before and after the heating 493 

period 2017.  494 

Figure 6. Time trends of number fractions of particle types (left) and hourly counts of 495 

particle families (EC, BB, NaK, OC, and ECOC, right) during Pollution Event 1 (E1 11/01–496 

11/08) at PKU. 497 

Figure 7. Normalized time trends of number fraction of particle types (left) and hourly 498 

counts of particle families (EC, BB, NaK, OC, and ECOC, right) during Pollution Event 4 499 

(E4) at PKU. 500 

Figure 8. Time trends of number fractions of particle types (left) and hourly counts of 501 

particle families (EC, BB, NaK, OC, and ECOC, right) during Pollution Event 1 (E1 11/01–502 

11/08) at PG. 503 
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Figure 9. Time trends of number fractions of particle types (left) and hourly counts of 504 

particle families (EC, BB, NaK, OC, and ECOC, right) during Pollution Event 4 (E4) at 505 

PG. 506 

Figure 10. Typical dispersion of air mass from PG (star, on the right) to PKU (dot, on the 507 

left) during E1 (11/04), E2 (11/11), E3 (11/19) and E4 (11/26). 508 

Figure 11. Typical dispersion of air mass from PKU (star, on the left) to PG (dot, on the 509 

right) in E1 (11/01), E2 (11/11), E3 (11/19) and E4 (11/29). 510 

 511 
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Figure 1 Map of the sampling sites. 515 
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 517 

Figure 2. Spatial configuration of domains used for WRF simulation. 518 

  519 
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 520 

Figure. 3. Time trends of PM2.5, temperature, relative humidity, wind direction, wind speed, 521 

and single particle types at PKU. The rectangles indicate the transport of regional particles.  522 
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 524 

Figure 4. Time trends of PM2.5, temperature, relative humidity, wind direction, wind speed, 525 

and single particle types at PG. The rectangles indicate the transport of regional particles. 526 
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 528 

Figure 5. Variation of particle number fractions at PKU and PG before and after the heating 529 

period 2017.  530 
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 532 

Figure 6. Time trends of number fractions of particle types (left) and hourly counts of 533 

particle families (EC, BB, NaK, OC, and ECOC, right) during Pollution Event 1 (E1 11/01–534 

11/08) at PKU. 535 
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 537 

Figure 7. Normalized time trends of number fraction of particle types (left) and hourly 538 

counts of particle families (EC, BB, NaK, OC, and ECOC, right) during Pollution Event 4 539 

(E4) at PKU. 540 
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 542 

Figure 8. Time trends of number fractions of particle types (left) and hourly counts of 543 

particle families (EC, BB, NaK, OC, and ECOC, right) during Pollution Event 1 (E1 11/01–544 

11/08) at PG. 545 
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 547 

Figure 9. Time trends of number fractions of particle types (left) and hourly counts of 548 

particle families (EC, BB, NaK, OC, and ECOC, right) during Pollution Event 4 (E4) at 549 

PG. 550 
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 552 

Figure 10. Typical dispersion of air mass from PG (star, on the right) to PKU (dot, on the 553 

left) during E1 (11/04), E2 (11/11), E3 (11/19) and E4 (11/26). 554 
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 555 

Figure 11. Typical dispersion of air mass from PKU (star, on the left) to PG (dot, on the 556 

right) in E1 (11/01), E2 (11/11), E3 (11/19) and E4 (11/29) 557 

11/01 

11/11 

11/19 

11/29 


