Response to Reviewers

We thank the reviewer for the constructive comments and suggestions. As suggested, we have added some details to make our analysis easier to follow and we hope our point-to-point response to the comments given below can address these concerns. The comments, our replies, and the corresponding changes in the manuscript and supplementary information are marked in black, blue, and green, respectively.

1) It looks to me that most of revisions were not made on the text or SI, though the authors tried to include additional figures to address comments in their response. I would like these figures to be included in revised manuscript.

Response: The previous changes made in the manuscript and supplement are marked in orange. Please note that in the following replies, the acronym SA stands for sulfuric acid, which has also been defined in the manuscript.

As suggested, Fig. 6 (b) and the corresponding illustration have been additionally added in the revised manuscript:

"Fig. 6 (b) shows that the particle nucleation rates (J) in the nighttime and the daytime roughly fall on the same line. Especially, the daytime values agree well with those from previous observations in Shanghai and CLOUD chamber SA-DMA (dimethylamine)- H_2O experiment. The similar J – SA relationship between the nighttime and the daytime suggests a similar nucleation mechanism as SA-base clustering. Lei Yao et al. proposed that in urban megacities, high concentration of DMA together with SA were enough to explain the particle growth to ~3 nanometers (Yao et al., 2018). Therefore, the formation of nighttime as well as daytime sub-3nm particles at our site was more likely a result of SA-DMA- H_2O nucleation." (Line 284-289, Page 11)

Fig. 6 (b) Comparison of Beijing ambient, Shanghai ambient and CLOUD experimental cluster formation rates against SA concentration. Green, light blue and grey dots denote CLOUD J_{1.7} data for SA-H₂O, SA-NH₃-H₂O and SA-DMA-H₂O nucleation respectively (Almeida et al., 2013;Kirkby et al., 2011). Magenta diamonds represent Shanghai NPF J_{1.7} data (Yao et al., 2018). Red and blue diamonds are Beijing J_{1.5} data for NPF day (10:00-14:00) and Clean-2 night (20:00-04:00), respectively.

Besides, Fig. S9 and Table S5 have also been added to the revised supplement with the following explanation being added in the revised manuscript:

"Besides, João Almeida et al. suggested that when SA concentration doesn't exceed 3.0×10^7 cm⁻³, the level of amines above 5 ppt are sufficient to reach the rate limit for amine ternary nucleation (Almeida et al., 2013). Although the median nighttime concentration of C2 amines (very likely DMA) was around 2.4 ppt (Fig. S9 and Table S5), there were also other base species (e.g., C3-amines, NH₃) co-existing. Altogether, they are sufficient to stabilize SA clusters. (Line 289-293, Page 11)

Please also note that Fig. 6 now is Fig. 6 (a).

Fig. S9 Median diurnal variation of NH₃, C2 amines and C3 amines from 10th December, 2018 to 6th January, 2019.

Spacios	Unit	Night	Polluted Night	Clean-2 Night (Vis≥
Species	Unit	(20:00-04:00)	(Vis < 12 km)	16km, $[O_3] \ge 2 \times 10^{11} \text{ cm}^{-3}$)
NILL	Mixing ratio in ppb	2.8	3.3	1.9
1113	Concentration in cm ⁻³	7.6×10 ¹⁰	8.9×10^{10}	5.1×10^{10}
	Mixing ratio in ppt	2.4	2.6	1.6
C2 Amines	Concentration in cm ⁻³	6.3×10 ⁷	7.0×10^{7}	4.4×10 ⁷
C2 A	Mixing ratio in ppt	1.2	1.4	0.74
C3 Amines	Concentration in cm ⁻³	3.1×10^{7}	3.9×10 ⁷	2.0×10 ⁷

Table S5 Median concentrations of NH₃, C2 amines and C3 amines from 10th December 2018 to 6th January 2019.

2) Also, in a new ESTLett paper that came out recently (https://pubs-acs-org.elib.uah.edu/doi/10.1021/acs.estlett.0c00615), the authors showed SO3 formation (hence, sulfuric acid and even sub-3 nm particles) during the night due to heterogeneous reactions of SO2 on soot particles. Then the steady state of sulfuric acid must include this production route as well.

Response: Thanks a lot for your suggestion.

The ambient SO_3 was indeed observed. We first look into the correction between the measured concentrations of SO_3 and SA. As shown in Fig. S10 (a), under Clean-2 condition when the oxidation from alkenes ozonolysis pathway dominates the formation of SA, there is almost no apparent correlation between SA and SO₃. With the increase of pollution level, the positive correlation shows up. Under polluted condition, high aerosol surface could favor the heterogeneous production of SO₃, which might, at least to some extent, explain the extra SA sources. For this reason, we mentioned in the manuscript that there could be additional sources of SA under polluted condition.

It should be pointed out that, by assuming the pseudo-steady state, we calculated the concentration of SA based on the measured SO_3 data:

$k_6[SO_3][H_2O]^2 = [SA]CS + \beta[SA]^2$

where $k_6=3.9\times10^{-41} \exp(6830.6/T) \text{ cm}^{-6} \text{ s}^{-1}$ (Jayne et al., 1997). The calculated SA concentration was over 10 times higher than the measured one. As mentioned in the ESTLett paper, "SO₃ concentration could be overestimated because the influence of ambient ions (i.e., SO₃·NO₃⁻) was not excluded and some of the hydrate complex intermediate (SO₃·H₂O) also could be detected as SO₃·NO₃⁻". This means that not all measured SO₃ molecules/clusters were the ones producing SA. Due to the remaining uncertainties in the measured SO₃ concentration and the unclear mechanism of the SO₂ heterogeneous pathway, we are not able to quantify the formation of SO₃ and SA from the heterogeneous reactions of SO₂ on soot particles. Therefore, we can't include this SO₂ heterogeneous term in the production of SA.

Fig. S10 Correlation between sulfuric acid monomer and SO₃ measured by CI-APi-TOF during nighttime (20:00 - 04:00 next day) from 18th January to 15th March 2019 for (a) Clean-2 condition with visibility larger than 16.0 km and O₃ concentration higher than 2.0×10^{11} cm⁻³ (~ 7 ppb), (b) Clean-1 condition with visibility larger than 12.0 km, (c) mildly polluted condition with visibility in the range of 4.0 - 12.0 km, and (d) heavy polluted condition with visibility smaller than 4.0 km.

To clarify this consideration, we added Fig. S10 in the revised supplement and the following interpretation in the revised manuscript:

"Besides, a recent study shows that SO₃ generated from the reaction of SO₂ on the surface of soot particles potentially leads to the formation of SA during nighttime and early morning (Yao et al., 2020). However, the correlation between the nighttime SA and SO₃ was only found during polluted periods (Fig. S10), suggesting that it might have an important contribution during polluted cases. This may, at least to some extent, explain the extra SA sources under polluted condition. (Line 256-260, Page 10)

3) Nevertheless, a simple 0-D box model simulations will be most useful.

Response: Thanks for your suggestion.

As suggested, the MCMv3.3.1 was used to simulate the production rate of SA (P_{SA}) from the alkenes ozonolysis route. In total, 26 VOCs, including 6 alkenes, and 5 trace gases were added as input parameters (Table R1). It should be noted that the isomers of VOCs molecules cannot be distinguished due to the lack of structure information, and fractions of different isomers

were roughly set to be equal. Both the sCI and OH pathways were simulated and their production reactions are listed in Table R2 and Table R3.

Fig. R2 shows that the median values of P_{SA} for all nights (20:00-04:00) and Clean-2 nights during the measurement period (from 18th January to 16th March 2019) are 1.61×10⁴ cm⁻³ s⁻¹ and 6.07×10³ cm⁻³ s⁻¹ respectively. As mentioned in the manuscript, the rate constant between stabilized Criegee intermediate (sCI) and SO₂ (k_{sCI-SO_2}) spans over several orders of magnitude, from 7.0×10⁻¹⁴ cm³ s⁻¹ (MCMv3.3.1) to 4.0×10⁻¹¹ cm³ s⁻¹ (Ahrens et al., 2014). As expected, with the increase of k_{sCI-SO_2} , the modelled P_{SA} also increases dramatically, varying from 2.73×10³ cm⁻³ s⁻¹ to 5.61×10⁴ cm⁻³ s⁻¹. Although a uniform k_{sCI-SO_2} can be adjusted to match the measured SA values, but it also reflects a large uncertainty of the model. Besides, there exist large deviations between the modelled and measured concentrations of SA, with daytime SA exceedingly higher than the measured one no matter what k_{sCI-SO_2} value is chosen (Fig. R3), which further reveals the uncertainty in modeling P_{SA} and SA concentration. Therefore, we still feel it is unnecessary to add the box model results in this study. However, we did mention in the manuscript that "A well-tuned box model is a useful tool to resolve it and verify the role of the ozonolysis of alkenes on the nighttime SA formation. However, such a modeling work is not included in our study, as the lacking of a complete VOC datasets and the large uncertainties in yields of sCI and oxidation rate constants of SO₂ by sCI have posed challenges in ensuring the precision of the box-model.". (Line 266-269, Page 10)

Fig. R2 Production rate of SA (P_{SA}) from measurement and box model simulation. The 'All' and 'Clean2' represent dataset belonging to all night and clean-2 night. The 'k=7e-14', 'k=8e-13', 'k=4e-12', 'k=8e-12', and 'k=4e-11' are the reaction rate constants between sCI and SO₂ with unit of cm³ s⁻¹. The rate constant of 7.0×10^{-14} cm³ s⁻¹ is chosen from MCMv3.3.1 as a lower limit. The rate constants of 8.0×10^{-13} cm³ s⁻¹ and 4.0×10^{-11} cm³ s⁻¹ are taken from literature (Mauldin et al., 2012;Ahrens et al., 2014) and latter one is regarded as the upper limit. The middle two 4.0×10^{-12} cm³ s⁻¹ and 8.0×10^{-12} cm³ s⁻¹ are used for sensitivity analysis for the box model. The black and colored values are the corresponding median values of P_{SA}.

Fig. R3 Diurnal variations of measured and modelled SA concentration. The grey dashed line, red dashed line and grey dot-dashed line represent the 25 %, median and 75 % values of measured SA concentrations. The blue, green, orange, magenta and red solid lines are simulated SA concentrations from box model with different values of k_{sCI-SO_2} with unit of cm³ s⁻¹.

Group	Name of Species	Formula
	Sulfur Dioxide	SO ₂
T	Ozone	O 3
Trace	Carbon Monoxide	CO
Gases	Nitrogen Dioxide	NO ₂
	Nitric Oxide	NO
	Propylene	C ₃ H ₆
	Butadiene	C_4H_6
Allranas	Butene	C_4H_8
Alkenes	Isoprene	C_5H_8
	Pentene	C_5H_{10}
	Hexene	C6H12
	Butane	C_4H_{10}
	Acetone	C ₃ H ₆ O
	Pentane	C5H12
	Methyl Ethyl Ketone	C_4H_8O
	Hexane	C_6H_{14}
Other	Methylcyclohexane	C7H14
VOCs	Heptane	C7H16
	Octane	C8H18
	Nonane	C9H20
	Decane	$C_{10}H_{22}$
	Undecane	C11H24
	Dodecane	$C_{12}H_{26}$

 Table R1 Input VOCs and trace gases for box model simulation

Benzene	C_6H_6
Toluene	C7H8
Styrene	C_8H_8
Xylene	C_8H_{10}
Ethylbenzene	C_8H_{10}
Trimethylbenzene	C9H12
Ethyltoluene	C9H12
Propylbenzene	C9H12

Table R2	Production	reactions	of Criegee	intermediate

Species	Formula	Reactions	
Propylene	CaHe	$O_3 + C_3H_6 = CH_2OOB + CH_3CHO$	
Topytene	03116	$O_3 + C_3H_6 = CH_3CHOOA + HCHO$	
Butadiana	CiHe	$O_3 + C_4H_6 = ACR + CH_2OOD$	
Butaciene	C4116	$O_3 + C_4H_6 = HCHO + ACROOA$	
1 Rutene		$BUT1ENE + O_3 = CH_2OOB + C_2H_5CHO$	
1-Dutene	C.H.	$BUT1ENE + O_3 = C_2H_5CHOOA + HCHO$	
Trans-2-Butene	C4118	$TBUT2ENE + O_3 = CH_3CHO + CH_3CHOOB$	
Cis-2-Butene		$CBUT2ENE + O_3 = CH_3CHO + CH_3CHOOB$	
		$O_3 + C_5 H_8 = CH_2 OOE + MVK$	
Isonrana	CeHa	$O_3 + C_5H_8 = CH_2OOE + MACR$	
isopiene	C5118	$O_3 + C_5H_8 = HCHO + MVKOOA$	
		$O_3 + C_5H_8 = HCHO + MACROOA$	
1 Dentene		$PENT1ENE + O_3 = CH_2OOB + C_3H_7CHO$	
1-1 entene		$PENT1ENE + O_3 = C_3H_7CHOOA + HCHO$	
Trans-2-Pentene	C.H.	$TPENT2ENE + O_3 = C_2H_5CHOOB + CH_3CHO$	
	051110	$TPENT2ENE + O_3 = CH_3CHOOB + C_2H_5CHO$	
Cia 2 Dontono		$CPENT2ENE + O_3 = CH_3CHOOB + C_2H_5CHO$	
CIS-2-Fentene		$CPENT2ENE + O_3 = C_2H_5CHOOB + CH_3CHO$	
Havana	Celler	$HEX1ENE + O_3 = C_4H_9CHO + CH_2OOB$	
TIEXCIIC	C611 12	$HEX1ENE + O_3 = HCHO + NC_4H_9CHOOA$	

Table R3 Production reactions of stabilized Criegee intermediate (sCI) and OH radical

Species	Production Reactions of sCI	Production Reactions OH radical
CH ₂ OOB	$CH_2OOB = CH_2OO$	$CH_2OOB = HO_2 + CO + OH$
CH ₂ OOD	$CH_2OOD = CH_2OO$	$CH_2OOD = HO_2 + CO + OH$
CH ₂ OOE	$CH_2OOE = CH_2OO$	$CH_2OOE = HO_2 + CO + OH$
ACROOA	ACROOA = ACROO	$ACROOA = HO_2 + CO + HCHO + CO + OH$
MVKOOA	MVKOOA = MVKOO	$MVKOOA = OH + MVKO_2$
MACROOA	MACROOA = MACROO	$MACROOA = OH + CO + CH_3CO_3 + HCHO$
CH ₃ CHOOA	$CH_{3}CHOOA = CH_{3}CHOO$	$CH_3CHOOA = CH_3O_2 + CO + OH$
CH ₃ CHOOB	$CH_{3}CHOOB = CH_{3}CHOO$	$CH_3CHOOB = CH_3O_2 + CO + OH$
C ₂ H ₅ CHOOA	$C_2H_5CHOOA = C_2H_5CHOO$	$C_2H_5CHOOA = C_2H_5O_2 + CO + OH$
C ₂ H ₅ CHOOB	$C_2H_5CHOOB = C_2H_5CHOO$	$C_2H_5CHOOB = C_2H_5O_2 + CO + OH$

C ₃ H ₇ CHOOA	$C_{3}H_{7}CHOOA = C_{3}H_{7}CHOO$	$C_{3}H_{7}CHOOA = NC_{3}H_{7}O_{2} + CO + OH$
NC4H9CHOOA	NC ₄ H ₉ CHOOA = NC ₄ H ₉ CHOO	$NC_4H_9CHOOA = NC_4H_9O_2 + CO + OH$

4) It is still not clear to me how the authors retrieved the equation in Line 218 (main text) – I would like the authors to show the derivation of this equation.

 k_{app} [Alkene][O₃][SO₂]=[SA]CS+ β [SA]² (Line 218 in the main text)

Response: Since the detailed sources of SA in the real atmosphere is really complex, e.g., the varied role of each alkene in producing OH radical, sCI, and SA, we did not intend to precisely calculate the P_{SA} from each of these individual sources. But instead, we use an approximation as indicated by the equation. As mentioned in the manuscript, the two terms on the right side denote the sink of SA, i.e., the condensation of SA onto particles and the collision of SA monomers with each other to form SA dimers. The term on the left side is an empirical one that accounts for the formation from the ozonolysis-of-alkenes-initiated oxidation of SO₂. Here, both the OH radical produced from the decomposition of Criegee intermediate (CI) (R3) and stabilized Criegee intermediate (sCI) (R2) are potentially important for oxidizing SO₂. As such oxidation is very complicated and reaction dynamics are largely unknown, precise calculation of different reactions is impossible. Therefore, we apply an empirical parameter, i.e., apparent reaction constant (k_{app}) to show the general rate of all reactions. The derivation of k_{app} is shown below.

The non-photochemical oxidation pathway for SO_2 to form SA mainly includes the following reactions (which have been listed in the manuscript, Line 75, 77, 80-83, Page 3):

Alkene+O ₃ $\xrightarrow{k_1} \phi$ sCI+(1- ϕ)CI+RCHO	R 1
$sCI+SO_2 \xrightarrow{k_2} SO_3+RCHO$	R2
$CI \xrightarrow{k_3} OH + R_1 COR_2$	R3
$SO_2 + OH \xrightarrow{k_4} HSO_3$	R4
$\mathrm{HSO}_3 + \mathrm{O}_2 \xrightarrow{k_5} \mathrm{SO}_3 + \mathrm{HO}_2$	R5
$SO_3+2H_2O \xrightarrow{k_6} H_2SO_4+H_2O$	R 6

where k_i is the rate constant of each reaction, ϕ is the yield of sCI in the ozonolysis of alkenes, and CI is the chemically activated Criegee intermediate. Besides, there are four additional reactions concerning the loss of sCI, CI and OH:

$sCI+X \xrightarrow{k_{XX}} \dots$	R7
$sCI \xrightarrow{k_X} \dots$	R 8
$\operatorname{CI} \xrightarrow{k_{\mathrm{Y}}} \dots$	R9
$Z+OH \xrightarrow{k_{ZZ}} \dots$	R10

where k_{XX} is the bimolecular reaction constant for sCI with other species except from SO₂, k_X is the decomposition rate of sCI, k_Y is the deposition rate of CI which do not generate OH, and k_{ZZ} is the bimolecular constant reaction for OH with other species excluding SO₂.

Then the net production rate of SA can be expressed as:

$$\mathbf{P}_{\mathrm{SA}} = \mathbf{k}_6 [\mathrm{SO}_3] [\mathrm{H}_2 \mathrm{O}]^2 \tag{1}$$

sCI, CI, OH, SO₃ and HSO₃ are short-lived intermediates, so that a PSS assumption can be applied. PSS equations for sCI, CI, OH, SO₃ and HSO₃ are as follows:

sCI:	$k_1[Alkene][O_3]\phi=k_2[sCI][SO_2]+k_{XX}[sCI][X]+k_X[sCI]$	(2)
CI:	k_1 [Alkene][O ₃](1- φ)= k_3 [CI]+ k_Y [CI]	(3)
OH:	$k_3[CI]=k_4[SO_2][OH]+k_{ZZ}[Z][OH]$	(4)

SO₃:
$$k_2[sCI][SO_2]+k_5[HSO_3][O_2]=k_6[SO_3][H_2O]^2$$
 (5)

$$HSO_3: k_4[SO_2][OH] = k_5[HSO_3][O_2]$$
 (6)

then, the concentrations of sCI, CI and OH are calculated as:

$$[sCI] = \frac{k_1 [Alkene][O_3]\phi}{k_2 [SO_2] + k_{XX} [X] + k_X}$$
(7)

$$[CI] = \frac{k_1 [Alkene] [O_3] (1-\phi)}{k_3 + k_Y}$$
(8)

$$[OH] = \frac{k_3[CI]}{k_4[SO_2] + k_{ZZ}[Z]}$$

$$\tag{9}$$

bring (5), (6), (7), (8) and (9) to (1) gives:

The first term and second term for k_{app} in equation (10) represent the sCI and non-photochemical OH oxidation pathways respectively. k_1 , k_2 and k_4 are chosen to be 1.29×10^{-17} cm³ s⁻¹, 8.0×10^{-13} cm³ s⁻¹, and 1.38×10^{-12} cm³ s⁻¹ separately according to previous studies (Sipila et al., 2014; Mauldin et al., 2012; Wine et al., 1984). $\frac{k_3}{k_3+k_Y}$ is the fraction of CI decomposition leading the formation of OH radical, which is around 0.4 according to MCMv3.3.1. τ_{sCI} and τ_{OH} are the lifetimes of sCI and OH radical respectively.

It can be seen that k_{app} is highly environment-dependent, as k_{app} is not only influenced by the yields of OH radical and sCI, but also determined by the rate constants of various reactions as well as the concentration of enormous atmospheric species. As discussed in the response to Comment #3, these parameters for each individual alkene are with large uncertainty, and hence, this "bulk oxidant" method is an appropriate option. It should be noted that, the 25%, median, and 75% values of τ_{sCI} during nighttime under clean condition were 0.012 s, 0.017 s, and 0.021 s, respectively. Similarly, the 25%, median, and 75% values of τ_{oH} were 1.27×10^{-3} s, 1.73×10^{-3} s and 2.42×10^{-3} s, respectively. The variation of τ_{sCI} and τ_{OH} (roughly \pm 50%) could be even smaller than the variation of the rate constants for different alkenes. So, the value of k_{app} may depend more on the mixing ratios of different alkenes.

Besides, the rate constants concerning the lifetime calculation for reactions of sCI with SO₂, H₂O, CO, NO₂, and NO as well as OH radical with VOCs, O₃, SO₂, CO, NO₂ and NO are listed below in Table S4.

Compound	Reaction Constant (cm ⁻³ s ⁻¹)*		Reference
Propylene	kон	3.19E-11	
Butadiene	kон	7.45E-11	
1-Butene	k _{OH}	3.53E-11	
Trans-2-Butene	kон	7.35E-11	
Cis-2-Butene	k _{OH}	6.37E-11	
Isoprene	kон	1.11E-10	
1-Pentene	kон	3.56E-11	
Trans-2-Pentene	k _{OH}	6.69E-11	
Cis-2-Pentene	kон	6.54E-11	
1-Hexene	k _{OH}	3.70E-11	
Butane	kон	2.19E-12	
Acetone	kон	1.80E-13	
Pentane	kон	3.63E-12	
Methyl Ethyl Ketone (MEK)	kон	1.11E-12	
Hexane	kон	1.77E-12	
Octane	kон	8.30E-12	
Nonane	kон	9.68E-12	
Decane	k _{OH}	1.08E-11	
Undecane	kон	1.29E-11	
Dodecane	kон	1.39E-11	MCMv3.3.1
Benzene	kон	1.16E-12	
Toluene	kон	6.13E-12	
Styrene	k _{OH}	5.80E-11	
m-Xylene	kон	2.31E-11	
p-Xylene	k _{OH}	1.43E-11	
o-Xylene	kон	1.36E-11	
Ethylbenzene	kон	7.00E-12	
1,3,5-Trimethylbenzene	k _{OH}	5.67E-11	
1,2,4-Trimethylbenzene	kон	3.25E-11	
1,2,3-Trimethylbenzene	k _{OH}	3.27E-11	
m-Ethyltoluene	kон	1.86E-11	
p-Ethyltoluene	k _{OH}	1.18E-11	
o-Ethyltoluene	kон	1.19E-11	
Propylbenzene	kон	6.30E-12	
Heptane	k _{OH}	6.86E-12	
Chloroform	kон	8.71E-14	
O ₃	kон	5.75E-14	
SO ₂	kон	1.37E-12	
СО	kон	5.64E-11	

Table R4 Rate constants for reactions of sCI and OH radical used for lifetime calculation

NO ₂	kон	3.65E-11	
NO	kон	1.81E-10	
 SO_2	k_{sCI}	8.00E-13	(Mauldin et al., 2012)
H_2O	k_{sCI}	1.20E-15	(Newland et al., 2015)
СО	k_{sCI}	1.20E-15	MCMv3.3.1
NO ₂	k _{sCI}	1.00E-15	MCMv3.3.1
NO	k_{sCI}	1.00E-14	MCMv3.3.1
sCI	$k_{sCI-dec}$	12.0 s	(Newland et al., 2015)

* The unit for rate constant is cm⁻³ s⁻¹ if not specified.

References

Ahrens, J., Carlsson, P. T., Hertl, N., Olzmann, M., Pfeifle, M., Wolf, J. L., and Zeuch, T.: Infrared detection of Criegee intermediates formed during the ozonolysis of beta-pinene and their reactivity towards sulfur dioxide, Angew Chem Int Ed Engl, 53, 715-719, 10.1002/anie.201307327, 2014.

Almeida, J., Schobesberger, S., Kuerten, A., Ortega, I. K., Kupiainen-Maatta, O., Praplan, A. P., Adamov, A., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M., Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen, T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurten, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppa, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T., Onnela, A., Petaja, T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M., Sipila, M., Stozhkov, Y., Stratmann, F., Tome, A., Troestl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U., Worsnop, D. R., Vehkamaki, H., and Kirkby, J.: Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere, Nature, 502, 359-+, 10.1038/nature12663, 2013.
Jayne, J. T., Pöschl, U., Chen, Y.-m., Dai, D., Molina, L. T., Worsnop, D. R., Kolb, C. E., and Molina, M. J.: Pressure and Temperature Dependence of the Gas-Phase Reaction of SO3 with H2O and the Heterogeneous Reaction of SO3 with H2O/H2SO4 Surfaces, The Journal of Physical Chemistry A, 101, 10000-10011, 10.1021/jp972549z, 1997.

Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., Franchin, A., Gagne, S., Ickes, L., Kuerten, A., Kupe, A., Metzger, A., Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas, G., Wimmer, D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Downard, A., Ehn, M., Flagan, R. C., Haider, S., Hansel, A., Hauser, D., Jud, W., Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo, K., Lima, J., Lovejoy, E. R., Makhmutov, V., Mathot, S., Mikkila, J., Minginette, P., Mogo, S., Nieminen, T., Onnela, A., Pereira, P., Petaja, T., Schnitzhofer, R., Seinfeld, J. H., Sipila, M., Stozhkov, Y., Stratmann, F., Tome, A., Vanhanen, J., Viisanen, Y., Vrtala, A., Wagner, P. E., Walther, H., Weingartner, E., Wex, H., Winkler, P. M., Carslaw, K. S., Worsnop, D. R., Baltensperger, U., and Kulmala, M.: Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation, Nature, 476, 429-U477, 10.1038/nature10343, 2011.
Mauldin, R. L., III, Berndt, T., Sipilae, M., Paasonen, P., Petaja, T., Kim, S., Kurten, T., Stratmann, F., Kerminen, V. M., and Kulmala, M.: A new atmospherically relevant oxidant of sulphur dioxide, Nature, 488, 193-196, 10.1038/nature11278, 2012.
Newland, M. J., Rickard, A. R., Vereecken, L., Munoz, A., Rodenas, M., and Bloss, W. J.: Atmospheric isoprene ozonolysis:

impacts of stabilised Criegee intermediate reactions with SO2, H2O and dimethyl sulfide, Atmospheric Chemistry and Physics, 15, 9521-9536, 10.5194/acp-15-9521-2015, 2015.

Sipila, M., Jokinen, T., Berndt, T., Richters, S., Makkonen, R., Donahue, N. M., Mauldin, R. L., III, Kurten, T., Paasonen, P., Sarnela, N., Ehn, M., Junninen, H., Rissanen, M. P., Thornton, J., Stratmann, F., Herrmann, H., Worsnop, D. R., Kulmala, M., Kerminen, V. M., and Petaja, T.: Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO2 and organic acids, Atmospheric Chemistry and Physics, 14, 12143-12153, 10.5194/acp-14-12143-2014, 2014.

Wine, P. H., Thompson, R. J., Ravishankara, A. R., Semmes, D. H., Gump, C. A., Torabi, A., and Nicovich, J. M.: Kinetics of the reaction OH + SO2 + M .fwdarw. HOSO2 + M. Temperature and pressure dependence in the fall-off region, The Journal of Physical Chemistry, 88, 2095-2104, 10.1021/j150654a031, 1984.

Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipila, M., Wang, M. Y., Wang, X. K., Xiao, S., Chen, H. F., Lu, Y. Q., Zhang, B. W., Wang, D. F., Fu, Q. Y., Geng, F. H., Li, L., Wang, H. L., Qiao, L. P., Yang, X., Chen, J. M., Kerminen, V. M., Petaja, T., Worsnop, D. R., Kulmala, M., and Wang, L.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278-+, 10.1126/science.aao4839, 2018.

Yao, L., Fan, X., Yan, C., Kurten, T., Daellenbach, K. R., Li, C., Wang, Y., Guo, Y., Dada, L., Rissanen, M. P., Cai, J., Tham,
Y. J., Zha, Q., Zhang, S., Du, W., Yu, M., Zheng, F., Zhou, Y., Kontkanen, J., Chan, T., Shen, J., Kujansuu, J. T., Kangasluoma,
J., Jiang, J., Wang, L., Worsnop, D. R., Petaja, T., Kerminen, V. M., Liu, Y., Chu, B., He, H., Kulmala, M., and Bianchi, F.:
Unprecedented Ambient Sulfur Trioxide (SO3) Detection: Possible Formation Mechanism and Atmospheric Implications,
Environ Sci Technol Lett, 7, 809-818, 10.1021/acs.estlett.0c00615, 2020.