
This document includes authors’ responses to both reviewer 1 and reviewer 2. Reviewer’s comments 

are in bold text. Authors’ responses are plain text with any text taken from the manuscript in italics. 

New additions to the manuscript in response to reviewer comments are shown in red italics.  

Response to RC1: Anonymous Referee #1 

General comment: The work by Squires et al. presents traffic related pollutant emissions in an Asian 

megacity. It presents novel data for a globally important region struggling with air quality. The 

manuscript is appropriate for publication in ACP after addressing some of the more specific 

comments outlined below. 

The authors thank the reviewer for the supportive comments and taking the time to review the 

manuscript. 

Specific comments: Section 2.4: It is not entirely clear how the data treatment is done. Were the 

data time-shifted before submitting these to the eddy flux routine or did the eddy flux routine take 

account this shift and perform a covariance analysis? A better approach to deal with lag-time 

estimation when individual 30 min covariance functions are below the LOD (to estimate a lag time) 

is to average quality filtered covariance functions. This allows to obtain a study (or weekly) average 

lag time for each individual species. This is a more accurate approach if compounds exhibit different 

absorption and desorption properties along an inlet line. 

We calculated the lag times for NOx and CO data for each 30 minute period, by cross-covariance 

maximisation between pollutant concentration and vertical wind speed. When determining the lag 

time for each species a high-pass filter (Hartmann et al., 2018) is used which improves the precision 

of the determined lag time by an order of magnitude. As recommended, we then further calculated 

the median lag times for each species based only on high quality fluxes for each campaign. We 

performed the lag-time shift using these median values for each campaign. 

We added more details to section 2.4 of the manuscript to make the data treatment clearer and have 

included the standard deviation when reporting median lag times.  

Concentration data were coupled with wind data reported by the sonic anemometer by sub-sampling 

the wind vector data to match the 5 Hz concentration data. Data were then despiked prior to flux 

calculation as per the method described in Brock (1986) and Starkenburg et al. (2016). Following 

despiking, the lag time between vertical wind velocity measured in-situ on the tower and the pollutant 

concentrations, measured on the ground, was calculated. The lag time correction was determined by 

maximisation of the cross-covariance between pollutant concentration and the vertical wind 

component. When determining the lag time for each species a high-pass filter (Hartmann et al., 2018) 

was used which improves the precision of the determined lag time by an order of magnitude. The 

median lag time was then calculated for each species during each campaign. The lag time between the 

concentration and vertical wind speed during the winter campaign was found to be 9.6 ± 0.4 s, 10.0 ± 

0.4 s, 10.2 ± 0.3 s for NO, NO2 and CO respectively. For the summer campaign lag times were calculated 

as 9.4 ± 0.4 s, 9.8 ± 0.3 s and 10.6 ± 0.5 s. Because there was no discernible pattern or trend in the lag-

times and to prevent the flux bias that cross-covariance maximisation can introduce when fluxes are 

small (Langford et al., 2015), the final fluxes were calculated by applying the median time-lag value 

for each campaign to all flux periods. 

Section 2.5: Line 6, 16: The authors should outline the changes incorporated in eddy4R that were 

specifically implemented and necessary for the present study (e.g. by showing a work flow diagram). 

Flux footprint model. The flux footprint model is based on Kljun et al., 2004 and was modified 



according to Metzger et al. 2012. Kljun et al. 2012 updated their original footprint model. It is not 

clear what the exact differences between the cross-integrated footprints between Kljun et al. 2012 

and Metzger et al. 2012 are, assuming they are not the same. A clarification of this issue would be 

warranted. 

A workflow diagram (shown below) has been added to the manuscript which highlights the key stages 

in the flux processing workflow, with any settings specific to the Beijing campaign processing noted.  

 

Figure 2. Workflow schematic summarising the data processing steps required for calculation of NOx and CO fluxes. 

The flux footprint model is based on Kljun et al. (2004) with the modifications described in Metzger et 

al. (2012; K04). A short description of the model is included in the workflow diagram and this 

description has been added to section 2.6 to clarify the model set up used.  

The footprint model used is described in detail in Kljun et al. (2004) and Metzger et al. (2012). The 
footprint model used is based on Kljun et al. (2004) with a cross-wind distribution detailed in Metzger 
et al. (2012). 
 
We used this model as it performed reliably during various flux footprint model inter-comparisons, 

including in comparisons with the model described in Kljun et al. (2015; K15), which updated the 

model described in Kljun et al. (2004). Heidbach et al. (2017) use a tracer experiment to evaluate flux 

footprint models, including Kormann and Meixner (2001; KM01) and K15. Metzger et al. (2012) on the 

other hand use a Lagrangian particle model to evaluate KM01 and Kljun et al. (2004) including the 

cross-wind distribution that is used in this work (K04). In addition, Heidbach et al. (2011) evaluated 

KM01 and K04 over extensive field data. Using KM01 as a common benchmark among these studies, 



one can see similar improvements of K15 and K04 over KM01, including in the cross-wind integrated 

footprints. 

Section 2.7: Page 9: “For this evaluation, an optimized version of the MEIC v1.3 inventory for 2013 

was used that was derived by fitting the NAQPMS model with observed pollutant concentrations 

during the campaign periods.” What was done explicitly to optimize the MEIC inventory here. The 

authors cite a reference, but it would help the reader to understand the approach if more 

information on the procedure was given here. 

This was an oversight; the optimized emissions referred to here and in the paper cited were not used 

in the final version of the analysis, which is based on the standard MEIC v1.3 emissions from 2013. 

This sentence has now been removed from the paper. The section now reads: 

The measured pollutant fluxes were compared with the Multi-resolution Emissions Inventory for China 

(MEIC, Qi et al. (2017), http://www.meicmodel.org/, last access: 19 May 2020) to evaluate how well 

the inventory describes the diurnal evolution of pollutants and their absolute magnitude. MEIC 

emissions are available at 0.25 × 0.25 degree resolution and were downscaled to 3 × 3 km resolution 

on a sector by sector basis following the approach of Zheng et al. (2017). MEIC considers five emission 

source sectors; power plants, industry, transport, residential, and agricultural. Agricultural emissions 

are not relevant within our flux footprint so were not included in this work. Emissions are available on 

a monthly basis, and are assumed to be the same each day of the month, and a diurnal cycle 

appropriate to Chinese sources is applied to each emission sector. Example emissions for Beijing are 

presented in figure A3 for November.  

More details have been added to the same section to describe how MEIC emissions were compared 

with the measured emissions: 

The NOx and CO emission predicted by the inventory are calculated from the multiplication of each 

footprint matrix by the MEIC grid. In order to match the scales of the footprint matrix and the inventory, 

a pseudo 100 m × 100 m MEIC grid was created by splitting the 3 km resolution inventory into smaller 

100 m × 100 m grid squares, each with the same emission value. 

Section 3.1: In this manuscript fluxes are generally reported as mg/m2/h. How was the NOx flux 

derived in units of mg/m2/h? The NOx channel would strictly only allow to report fluxes on a molar 

basis. Partitioning NOx and NO fluxes from the two channels could introduce additional uncertainty.  

NOx flux was reported in mass units from the sum of the NO and NO2 mass fluxes. Because the 

measurement of NO2 is determined by two distinct channels, any difference in response time between 

the channels would mean a NO2 concentration could not be accurately determined. To account for 

this and derive NO2 fluxes accurately, NO2 concentrations were calculated after the lag time shift had 

been applied. Because the path lengths of the instruments are identical the lag difference between 

the channels was very small but could have had an impact when data is recorded at 5 Hz.  

More details have been added to the “Data Processing” section (shown below) and these steps are 

included in the new workflow diagram to make this clear. 

Prior to the calculation of pollutant fluxes, the raw data were scaled to take account of calibrations. 

The sensitivity within each channel of the NOx chemiluminescence instrument remained consistent 

throughout the winter and summer campaigns so data were scaled using median sensitivity values. 

The conversion efficiency of the NOx channel gradually deteriorated over the two campaigns and so 

NO2 data were scaled using linearly interpolated conversion efficiency values. As highlighted in Fig. 2, 

the NO2 calibration was applied in two stages, the first during pre-processing and the second following 



lag correction. During the pre-processing stage the channel sensitivities (counts pptv-1) determined by 

field calibration are applied to both the NO and NOx channels to give NO (pptv) and a term referred to 

as converted NOx channel counts ‘NOc’. NO2 is then calculated from the difference between the time-

lagged corrected NOc and NO divided by conversion efficiency. The time lag correction is described 

below. 

Tower setup: at the height of the tower one would expect that the measurements are decoupled 

from the surface and represent the residual layer during night. How is this taken into account into 

the interpretation of night time data? Could this influence the storage flux calculation for night 

time? 

Measurements of the boundary layer height (BLH) were used to filter out any data where the BLH 

dropped to 30 m above measurement height or below, described in the manuscript: 

…any periods where the boundary layer was within 30 m above the measurement height were removed 

from the data. 

Only measurements made within the BL are therefore included in the calculations. BLH measurements 

showed that the measurement height was decoupled on some but by no means all nights, helped by 

the nocturnal heat output from the city. In addition, we assessed the validity of the single-height 

storage flux calculation. In addition to the NOx, CO and aromatic VOC fluxes described in this work 

there were parallel flux measurements of other species, including CO2 flux, which will be described in 

upcoming publications. For CO2 we had access to simultaneous concentration profile measurements 

on the tower at three heights for a period during the summer campaign and compared a storage flux 

calculation based on a multi-height profile with that based on our single-height observations at the 

flux measurement height (Eq. (2)). We found excellent agreement and no systematic bias. As with any 

urban flux measurement (and independent of measurement height), we cannot completely rule out 

that storage might interact with low-level advection during nighttime and, for the reactive tracers, 

also with chemistry. More details have been added to the manuscript to clarify the method used to 

evaluate the storage flux calculation: 

The validity of calculating the storage flux at a single measurement height was evaluated by comparing 

CO2 concentration measurements made at the measurement height and CO2 concentration profile 

measurements made at three different heights on the tower. By comparing the evolution of the CO2 

concentration at the single measurement height with the CO2 profile measurements, it was determined 

that calculating storage flux using the single concentration at the measurement height was a 

reasonable approximation of the storage within the column.  

Table 1: Additional measurements where BTEX fluxes were reported directly should be included in 

Table 1. For example, Karl et al. 2018 (10.1073/pnas.1714715115) report 24h average benzene 

(toluene) fluxes of 20 (82) ug/m2/h for Innsbruck. Park et al., 2010 

(10.1016/j.atmosenv.2010.04.016) present BTEX fluxes for Houston with maximum daytime fluxes 

in the range of 0.2-0.3 mg/m2/h and 0.5 -0.7 mg/m2/h. 

These references have been added to Table 1.   

Editorial comments: Page 1: line 1: fluxes? Page 2: line 12 cc PM can also be emitted by primary 

sources, depending on size, primary or secondary production is more relevant. As Chinese efforts to 

reduce primary PM are regarded successful, a reference could be given to what extent secondary 

aerosols are nowadays dominating in a city like Beijing Page 2: line 15 is a repetition of what was 

said a couple of lines earlier – it could be rewritten more concisely Page 2: line 18: “At” high 



concentration Page 5: line 17: : : : was also. : : : ! Page 6: line 7 cc: this is not a complete sentence. 

Page 7: line 17: Fig. A1, Fig. A2: : :. Page 8: line 10: : : :.tower tower: : :. Page 8: line 30:: : :. to THE 

measured flux ? General editorial comments. Naming and formatting of figures, tables and 

references should follow the ACP editorial guidelines and should be copy edited. For example many 

references are cited as” by (Famulari et al, 2010;): : :.” Probably due to the citation software used. 

ACP formatting guidelines however suggest to cite as following: by Famulari et al. (2010). Similarly, 

references to figures do not follow ACP formatting guidelines and should be corrected. 

These editorial changes have been made and a reference added to the introduction to highlight the 

importance of secondary aerosol in Beijing.  

Secondary aerosols have been shown to comprise a large fraction of fine particulate matter in Beijing 
(Guo et al., 2014; Duan et al., 2020). 
  



Response to RC2: Anonymous Referee #2 

Squires et al. describe seasonal differences in flux measurements of CO, NOx, and select VOCs in 

Beijing during winter and summer, 2016-2017. The authors show that seasonal differences in 

combustion markers can be largely attributed to changing sources between the two seasons 

(residential vs. transportation), while changes in the fluxes of aromatic VOCs are strongly influenced 

by evaporative emissions during summer. The authors compare the flux measurements to inventory 

estimates from the MEIC, and discuss the significant discrepancies between the measurements and 

the inventory. The authors also use the inventory to infer how seasonal differences in emission 

sectors may have contributed to the observed seasonality in CO and NOx fluxes.  

Overall, the manuscript is very well written and organized, and the authors tell a compelling story 

as to what contributes to the CO, NOx, and VOC sources observed in Beijing. It is also an important 

contribution to constraining emission inventories in China, which evolve quickly as sources continue 

to face regulations. The manuscript should be published in ACP, provided that the authors address 

a few comments pertaining to the comparison of the measurements and inventory.   

The authors thank reviewer 2 for their complimentary and supportive comments and for taking the 

time to review the manuscript.   

Main Comments   
  

1. Section 3.4. I appreciate the authors’ careful discussion and source attribution of the VOC 

fluxes, since this can be more complicated than for CO and NOx due to the variety of 

processes that could contribute to enhanced VOC fluxes (emissions, temperature, etc.). I am 

impressed by the general higher flux of aromatics in the summer and good correlation with 

heat flux. This seems to suggest that evaporative emissions are a driving factor in the 

behavior of the aromatics (as concluded by the authors), and could be the primary 

explanation in the seasonal differences in B/T ratios. The authors note that a detailed 

comparison of the VOC emissions with the inventory is beyond the scope of the work (which 

is reasonable), but is it possible to do a comparison between the aromatic / benzene ratios 

measured in this work with VOC profiles represented in the MEIC or other inventories? Li et 

al. (2017) tends to show that residential uses of aromatics result in higher emissions than 

the transportation sector. Perhaps a comparison of the B/T ratio between sectors would 

provide additional evidence as to what is contributing to these seasonal differences.  

  

This is a very good suggestion. Unfortunately, in the MEIC inventory benzene and toluene are grouped 

together as one emission value as described in Acton et al. (2020). It is therefore not possible to 

calculate aromatic/benzene ratios using the MEIC inventory.  Given the focus of this work the authors 

consider a comparison with a different inventory to be out of scope. The manuscript states observed 

B/T ratios with a view to highlighting seasonal differences in emission sources. A reference has been 

added to highlight the probable contribution of fuel evaporation in the summer leading to the lower 

B/T emission ratios observed: 

 

Indeed, Karl et al. (2009) showed that fuel evaporative losses typically have a higher toluene fraction, 

leading to lower B/T ratios. The strong VOC-heat flux correlation and the low B/T ratio observed during 

the summer campaign suggests fuel evaporative loss is a source of aromatic VOC emissions in Beijing.  

 

2. Section 3.5 and Figure 9. In this section, the authors discuss the measurements in context 

with the MEIC. The discussion of this section largely hinges on Figure 9, which suggests that 



the inventory largely overestimates NOx and CO emissions. In my opinion, this figure is 

misleading, since this is comparing an inventory from 2013 to measurements conducted in 

2017. The authors note later in the section that the NOx and CO emissions in China change 

drastically on a multi-year basis. The authors discuss how these changes would have likely 

affected the MEIC estimates from 2013, but still conclude that the inventory is 

overestimated.  

 

I think that it would be most fair to structure this section to first show how the inventory 

would have changed from 2013 until 2017, then adjust the inventory estimates 

appropriately to account for these CO and NOx reductions, and finally compare these 

profiles to the measurements conducted in 2017 and discuss the discrepancies. Otherwise, 

a reader who skims the figures might conclude that the inventory is entirely out to lunch, 

which isn’t truly the case.   

  

This section has been restructured to introduce the adjusted inventory before the discussion of 

uncertainties due to spatial proxies. Figure 9 (in original manuscript, now figure 10 due to the addition 

of a new figure) has been changed to show the adjusted inventory rather than the original. 

 

The structure of section 3.5 is now as follows: 

• Comparisons with the unadjusted inventory and measured NOx and CO emissions are stated.  

• There is a discussion of changes in emissions for Beijing between 2013 (base year of the 

inventory) and 2016/2017 (years measurements were made), concluding that NOx and CO 

emissions should be reduced by 30 % for 2016 and 43 % for 2017. 

• The inventory is adjusted accordingly and compared to measured emissions. The comparison 

is presented in a new version of figure 9 (now figure 10).  

• The diurnal variation in emissions and seasonal differences within the inventory are discussed 

as in the original manuscript.  

 

 
Figure 10: Measured diurnal trend (dashed black line) and predicted diurnal trend using the MEIC inventory (filled areas by 
sector) for NOx and CO emissions. MEIC inventory data has been reduced by 30 % for comparison with the winter 2016 
campaign and by 43 % for comparison with the summer 2017 campaigns to take account of expected emissions reductions 
indicated in Cheng et al. (2019). Panels A and B show emissions for the winter campaign and panels C and D show emissions 
from the summer campaign. 



Other Comments  
  

3. Page 2, Lines 25 - 30. The authors note that total emissions from inventories can differ from 

measured fluxes but I think it is also important to note that the distribution of VOCs can be 

different due to unattributed sources. Karl et al (2018) shows that there is a large, 

unidentified source of oxygenated VOCs (OVOCs) in European cities that isn’t properly 

represented in emission inventories. The same conclusions were drawn by McDonald et al. 

(2018), who showed that these sources likely result from solvent emissions due to the use 

of consumer and industrial products. As China places stricter restrictions on emissions, it’s 

likely that the relative importance of different emissions sectors will also change. Could the 

authors provide some context here (as they do in other places in the manuscript), and 

perhaps provide a brief overview of the current VOC, NOx, and CO distribution of China’s 

emission inventory?  

  

This section has been updated to provide some context about the sources of VOC emissions: 

  

For example, previous studies have highlighted large discrepancies between emissions inventories and 

measured emissions for UK cities both for NOx (Lee et al., 2015; Vaughan et al., 2016) and VOCs 

(Langford et al., 2010; Valach et al., 2015). Karl et al. (2018) revealed that non-methane VOC (NMVOC) 

emissions could be significantly higher than those used in most models by measuring emissions from 

Innsbruck, Austria. In addition to discrepancies in magnitude, the sources of emissions are not always 

correctly identified in inventories. Karl et al. (2018) indicates via emission measurements that a large, 

unidentified source of oxygenated VOCs is not represented in emissions inventories and that actual 

non-methane VOC (NMVOC) emissions could be significantly higher than those used in most models. 

As new emissions controls are introduced and emissions technologies improve the main sources of 

pollutant emissions will change. For example, McDonald et al. (2018) showed that an increasing 

proportion of the VOC emission budget is from volatile chemical products containing organic solvents 

(e.g. pesticides, cleaning agents and personal care products) as the transportation sector becomes 

cleaner. Inventories in China are associated with large uncertainties and are rapidly changing in 

response to economic development and new environmental regulations. Saikawa et al. (2017) 

reviewed and compared five different emissions inventories for China and found large disagreements 

between them. Thus, there is a critical need for reliable field measurements in order to further improve 

the emission estimates and reduce the uncertainty of inventories at local and regional scales (Zhao et 

al., 2017). 

 

An inventory overview is given in Section 2.7 so was not thought to be appropriate here.  

 

4. Section 2.3. How (and how frequently) were background PTR-MS measurements 

performed? The authors might consider referring to the instrument as a PTR-ToF-MS, since 

this is not a quadrupole instrument (the original PTR-MS). This distinction is important 

because the high time resolution of a PTR-ToF-MS is needed for flux calculations.  

 

Zero air was sampled for 5 minutes each hour and these background mixing ratios were subtracted 

from ambient mixing ratios to give corrected mixing ratios. The following sentence has been added to 

the “VOC Sampling and Measurement” section:  

 

The background signal was corrected for by sampling a zero air standard for 5 minutes every hour. 

Background mixing ratios were subtracted from measurement data to give corrected mixing ratios. 



 

Any references to PTR-MS in the original manuscript have now been changed to PTR-ToF-MS. 

 

5. Page 5, Line 30. “Despiked” is an odd term. Would “smoothed” be a better option?  

 

The term “despiked” is commonly used within the flux community to refer to the process of removing 

erroneous, high-magnitude and often singular data points which are an artefact associated with high 

frequency data collection. Given its common use the authors believe it is an appropriate term to use 

in this instance. 

 

6. Page 6, Line1: “allowing the software to calculate” is very vague. Was there an algorithm 

applied to the data to determine instrument lag in real time?  

  

This section has been improved to make the lag determination process clearer. The workflow diagram 

included in response to reviewer 1 also makes this processing step clearer. The section now reads: 

 

The lag time correction applied was determined by maximisation of the cross-covariance between 

pollutant concentration and the vertical wind component. When determining the lag time for each 

species a high-pass filter (Hartmann et al., 2018) is used which improves the precision of the 

determined lag time by an order of magnitude. 

 

7. Page 6, Line 23. What do the authors mean by “non-stationary periods”? Does this mean 

that the flux changing too rapidly over the course of the averaging period?  This statement 

seems repetitive with the previous sentence.  

 

A non-stationary period is when the flux is variable over the averaging period to a degree that it no 

longer fulfils the fundamental simplifications of the conservation equation employed by the EC 

technique. Non-stationary periods hence do not permit conclusions about the actual surface 

emissions. This sentence has been removed as stationarity is defined and discussed in more in detail 

later in the manuscript in section 2.5.1 “Corrections and Filtering” and could be confusing for the 

reader if introduced here. 

  

8. Figure 3. It is difficult to see the grey colored traces highlighting non-stationary periods, and 

it’s also confusing to have the contrasting periods also highlighted with grey. I would 

recommend adding markers for the points that were non-stationary, changing the color to 

clearly indicate these points, or simply remove these from the figure.   

 

Figure 3, now figure 4, has been updated: 

 



 
Figure 4: Time series data for 30 minute averaged NOx and CO fluxes for the winter (blue trace) and summer (orange trace) 
campaigns with fluxes outside of the 60 % stationarity criteria shown in darker colours. Gaps in the time series are due to 
instrument problems. The two contrasting periods discussed in section 3.2 are highlighted in grey. 
 

9. Page 13, Line 5 and Line 23. The authors mention that the major NOx sources are likely the 

same between the two seasons, which is likely true for vehicle traffic. However, wintertime 

fluxes appear to be higher on average (~20%), and the wintertime diurnal patterns shows 

little resemblance to the summertime pattern (in line with the differences seen for CO). 

Furthermore, the nighttime flux of NOx seems to be substantially higher in the winter. To 

my eye, this suggests that there are additional important NOx sources, which are probably 

the same as those implicated for CO (i.e., residential heating). This seems to be supported 

by Fig 10, which shows that the Residential/Transportation ratio for NOx is substantially 

larger in the winter than compared to summer.  

 

The authors agree with this interpretation of the data and this was discussed to a degree in the 

following paragraph (page 13, lines 23 – 26 in original manuscript). The authors agree this could be 

made clearer for NOx emissions however so have updated the following paragraph to:   

The difference between the winter and summer diurnal averages was more significant for CO than for 

NOx with larger CO emissions in the winter than the summer throughout the day. This may be in part 

due to an additional source unique to winter, for example domestic heating. Local heating sources are 

likely to be reasonably consistent throughout the day which may go some way to explaining why the 

relative difference between nighttime and daytime emissions is smaller than for NOx. Local heating 

sources also appear to contribute to the NOx emissions measured, albeit to a lesser degree than for 

CO. The rush hour peaks that were clearly observed in NOx flux during the summer campaign are 

masked somewhat in the winter and the peak was broader in the evening which could be due to 

increased residential emissions throughout the day.  Given the similarity between the NOx and CO 

diurnal variability, there is likely to be a traffic influence for CO. It is possible that additional emissions 



from the residential sector were not the only reason for the difference in magnitude of winter and 

summer CO emissions however. Strong seasonal variability in the fluxes of CO has been observed for 

London as another megacity where CO emissions measured in summer were 69 % lower than in winter 

(Helfter et al., 2016). In this case, higher winter CO emissions were attributed mainly to vehicle cold 

starts and reduced fuel combustion efficiency due to colder ambient temperatures. It should be noted 

that this study took place in a temperate, developed city and Beijing needs more winter heating which 

until recently was primarily from coal. Indeed, Langford et al. (in prep.) identified signatures of coal 

and solid fuel combustion within the flux footprint of the measurement although residential heating is 

overwhelmingly dominated by district heating in this area of Beijing. 

10. Page 13, Line 33. What is meant by “distant heating”? Is this heating using electricity?  

 
This is a typo and should have read “district heating”, where heating is generated at centralised boilers 

and distributed to residential and commercial buildings. This has been changed. 

 

11. Page 13, Lines 34  - Page 14, Line 6. The purpose of this paragraph isn’t entirely clear. Are 

the authors invoking HDV emissions to explain the higher CO and NOx emissions during 

winter, or is this to explain the nighttime emissions during both seasons? Would one expect 

HDV’s to be more active during winter than during summer? It does appear that the 

summertime morning peak in NOx, which is earlier than the CO peak, could be associated 

with the higher truck traffic before 06:00.  

 

This was intended to give greater context to the vehicle fleet of Beijing, but the authors agree that 

clarity would be improved if this paragraph was integrated with an earlier paragraph (page 13, lines 5 

– 22 in original manuscript).  

 

As would be expected, peak traffic flow coincided with lowest average vehicle speeds and occurred at 

08:00 and 18:00. NOx emissions are dependent on fuel type, engine type, combustion temperature, 

vehicle speed, engine load and exhaust after-treatment technology. It is known that “stop - start” 

driving conditions and idling can enhance NOx emissions compared to driving at steady speeds. 

Observations indicated that there are peaks in NOx emissions during these rush hour periods. Beijing 

has attempted to reduce emissions through traffic management as well as by imposing emissions 

reduction regulations; for example yellow label vehicles, vehicles which do not meet the China I 

emissions standard have been forbidden from entering Beijing since 2014 (Yang et al., 2015). One 

management strategy imposed restrictions on heavy duty vehicles (HDVs) entering the city (past the 

sixth ring road) and only permits non-local vehicles to enter between 00:00 – 06:00. HDVs, particularly 

those using diesel fuel, are thought to be responsible for 85 % of NOx emissions, whilst light duty 

vehicles (LDVs) are considered responsible for more than half of CO emissions (Yang et al., 2015). Some 

of the measured nighttime emissions of NOx and CO could be attributed to HDVs making up a higher 

proportion of the vehicle fleet. CO emissions for summer also suggested a strong daytime traffic 

influence… 

 

12. Figure 7: This figure is very nice. It is a little difficult to read the labels and to see the time 

axis on top of the darker colors of the fluxes. Could these be presented in larger fonts, and 

in bold?   

 

Figure 7 (now figure 8) has been updated with larger text to make it clearer and easier to read: 

 



 
Figure 8. Polar annulus plots for NOx and CO fluxes for both campaigns, showing the relationship between mean diurnal flux 
and wind direction. 0 – 23 refers to hour of day and the colour scale shows flux in mg m-2 h-1. 
 

13. Page 20, Line 30. When the authors mean that the change in B/T cannot be explained by 

temperature differences, I assume they mean atmospheric oxidation and not evaporation 

processes. This is clarified in the following sentence, but it would be good to be precise here 

since there is a lot of discussion about what could be affecting the B/T ratio (evaporation, 

chemistry, etc.) and mixing terms is a bit confusing.   

  

This section has been updated to make this clearer: 

 

The difference in B/T concentration ratios does however indicate that VOC sources are changing 

between winter and summer as the change in ratio cannot be explained by expected changes in 

atmospheric oxidation rates caused by seasonal differences in temperature. Langford et al. (2009) 

points out that temperature can impact B/T ratios as reactivity rates increase with warmer 

temperatures but if temperature was driving the seasonal difference it would be expected that the B/T 

ratio measured during summer is higher than during winter. 
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Abstract. Direct measurements of NOx, CO and aromatic VOC (benzene, toluene, C2-benzenes and C3-benzenes) flux were

made for a central area of Beijing using the eddy covariance technique. Measurements were made during two intensive field

campaigns in central Beijing as part of the Air Pollution and Human Health (APHH) project, the first in November – December

2016 and the second during May – June 2017, to contrast winter and summertime emission rates. There was little difference

in the magnitude of NOx flux between the two seasons (mean NOx flux was 4.41mg m-2
:::
mg

::::
m-2 h-1 in the winter compared5

to 3.55mg m-2
:::
mg

::::
m-2 h-1 in the summer). CO showed greater seasonal variation with mean CO flux in the winter campaign

(34.7mg m-2
:::
mg

::::
m-2

:
h-1) being over twice that of the summer campaign (15.2mg m-2

:::
mg

::::
m-2 h-1). Larger emissions of

aromatic VOCs in summer were attributed to increased evaporation due to higher temperatures. The largest fluxes in NOx and

CO generally occurred during the morning and evening rush hour periods indicating a major traffic source with high midday

emissions of CO indicating an additional influence from cooking fuel. Measured NOx and CO fluxes were then compared to the10

MEIC 2013 emissions inventory which was found to significantly overestimate emissions for this region, providing evidence

that proxy-based emissions inventories have positive biases in urban centres. This first set of pollutant fluxes measured in
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Beijing provides an important benchmark of emissions from the city which can help to inform and evaluate current emissions

inventories.

1 Introduction

Rapid development and population growth has led to an ever increasing number of “megacities”, defined by the United Nations

(UN) as a “metropolitan area with a total population of more than 10 million people” (United Nations’ Department Of Eco-5

nomic and Social Affairs: Population Division, 2016). In addition to being home to a large population, megacities are typically

associated with high levels of industrialisation and extensive transportation networks making air pollution a common problem.

Beijing is one such city that regularly experiences significant air quality problems. High levels of particulate matter (PM) in

Beijing during winter months have been widely reported. In 2017, annual PM2.5 (PM with a diameter less than 2.5
:
µm) concen-

trations reached 58 µg m−3, approximately six times greater than the World Health Organisation (WHO) guideline (Ministry10

of Ecology and Environment, the People’s Republic of China, 2018). During the summer, concentrations of ozone, O3, a major

component of photochemical smog, regularly exceeded the WHO 8-hour mean limit of 100 µg m−3 in Beijing. Both PM and

O3 have detrimental impacts on public health and both are formed in the atmosphere from reactions by precursor emissions

that include nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs).
::::::::
Secondary

::::::::
aerosols

::::
have

::::
been

:::::
shown

:::
to

:::::::
comprise

::
a
::::
large

:::::::
fraction

::
of

::::
fine

:::::::::
particulate

:::::
matter

::
in

:::::::
Beijing

:::::::::::::::::::::::::::::
(Guo et al., 2014; Duan et al., 2020)

:
.15

NOx, the sum of nitrogen oxide (NO) and nitrogen dioxide (NO2), and CO are two key anthropogenic pollutants. They

are damaging to human health in their own right as well as forming secondary pollutants, PM and O3. China is the largest

NOx emitter globally and is estimated to contribute as much as 18 % of
::
to global NOx emissions (European Database For

Global Atmospheric Research, 2000–2012) while Beijing itself is reported to have annual mean NO2 concentrations 16 µg

m-3 higher than the national average (Ministry of Ecology and Environment, the People’s Republic of China, 2018). In
::
At20

high concentrations, NO2 is a respiratory irritant (Strand et al., 1998; Tunnicliffe et al., 1994). CO is a harmful air pollutant

produced from incomplete combustion processes including those used in power generation and from vehicle engines. Liu et al.

(2018) concluded that there is an association between short-term exposure to ambient CO and increased cardiovascular disease

mortality, especially coronary heart disease mortality. For both these pollutants, traffic emissions tend to be the dominant source

in megacities.25

In order to manage air quality it is vital that legislators have a clear understanding of pollutant emissions to guide abate-

ment strategies. Models of atmospheric chemistry provide an important mechanism to predict the efficacy of abatement mea-

sures on future air quality yet these predictions are only as certain as the emission inventories upon which they are based.

For example, previous studies have highlighted large discrepancies between emissions inventories and measured emissions

for UK cities both for NOx (Lee et al., 2015; Vaughan et al., 2016) and VOCs (Langford et al., 2010; Valach et al., 2015).30

Karl et al. (2018) revealed that
::
In

:::::::
addition

::
to
::::::::::::

discrepancies
::
in

::::::::::
magnitude,

:::
the

:::::::
sources

::
of

::::::::
emissions

::::
are

:::
not

::::::
always

::::::::
correctly

::::::::
identified

::
in

:::::::::
inventories.

:::::::::::::::
Karl et al. (2018)

:::::::
indicates

:::
via

::::::::
emission

::::::::::::
measurements

:::
that

:
a
:::::
large,

::::::::::
unidentified

::::::
source

::
of

::::::::::
oxygenated

:::::
VOCs

::
is

:::
not

::::::::::
represented

::
in

:::::::::
emissions

:::::::::
inventories

::::
and

:::
that

::::::
actual

:
non-methane VOC (NMVOC) emissions could be signifi-
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cantly higher than those used in most modelsby measuring emissions from Innsbruck, Austria
:
.
:::
As

:::
new

:::::::::
emissions

:::::::
controls

:::
are

:::::::::
introduced

:::
and

::::::::
emissions

:::::::::::
technologies

:::::::
improve

:::
the

:::::
main

::::::
sources

::
of
::::::::

pollutant
:::::::::
emissions

:::
will

:::::::
change.

::::::::::::::::::::
McDonald et al. (2018)

::::::
showed

::::
that

:::
an

:::::::::
increasing

:::::::::
proportion

::
of

:::
the

:::::
VOC

::::::::
emission

::::::
budget

:::
is

::::
from

:::::::
volatile

::::::::
chemical

::::::::
products

:::::::::
containing

:::::::
organic

:::::::
solvents

::::
(e.g.

::::::::
pesticides,

::::::::
cleaning

:::::
agents

::::
and

:::::::
personal

::::
care

::::::::
products)

::
as

:::
the

::::::::::::
transportation

:::::
sector

::::::::
becomes

::::::
cleaner. Inventories

in China are associated with large uncertainties and are rapidly changing in response to economic development and new envi-5

ronmental regulations. Saikawa et al. (2017)
:::::::::::::::::
Saikawa et al. (2017) reviewed and compared five different emissions inventories

for China and found large disagreements between them. Thus there is a critical need for reliable field measurements in order

to further improve the emission estimates and reduce the uncertainty of inventories at local and regional scales (Zhao et al.,

2017).

Given this pressing need for measurements of pollutant emissions, fluxes of NOx, CO and commonly co-emitted VOCs10

(benzene, toluene, C2-benzenes and C3-benzenes) were calculated using the eddy-covariance (EC) technique for an urban area

in Beijing. To the knowledge of the authors, this is the first time these emissions have been directly quantified in Beijing. This

work was carried out as part of the Air Pollution and Human Health (APHH) Beijing project and an overview of this campaign

can be found in Shi et al. (2019).

2 Methodology15

2.1 Site Description

Measurements were taken from an inlet part-way up a 325 m meteorological tower at the Institute of Atmospheric Physics,

Chinese Academy of Sciences (IAP, CAS) (39◦58’28”N, 116◦22’16”E) in central Beijing. The site is between the third and

fourth ring roads and surrounding land use can be characterised as urban, being mainly residential with some busy (two and

three lane dual-carriageway) roads nearby. The Jingzang Highway is approximately 400 m east of the site. Building heights20

surrounding the tower are predominantly 15 – 30 m in height, but with some almost 100 m tall within 500 m to the south of the

tower. The site is in a ‘green’ area with some park space with
::
and

:
a canal close by. Measurements were made over two field

campaigns; the winter campaign from 05 November 2016 – 11 December 2016 and the summer campaign from 22 May 2017

– 25 June 2017 to allow a seasonal comparison of emissions.

Instrumentation was housed in a temporary shipping container laboratory located at the base of the tower. Sample lines25

from an inlet platform at an elevation of 102 m ran down the tower to the laboratory. Air for sampling was drawn down a 1
2”

O.D. (I.D. 9 mm) perfluoroalkoxy (PFA) tube at a rate of approximately 95 L min-1 resulting in an inlet pressure of 44 kPa.

This ensured turbulent flow was maintained (Reynolds Number ≈ 7000) and attenuation of signals along the ∼ 120 m sample

line were minimised. Particles were removed from the airflow via a 90 mm Teflon filter mounted near the inlet which was

changed at 24 hour intervals. The inlet of the tube comprised of a custom built, 32 mm diameter, stainless steel manifold cap30

with gauze to prevent larger debris entering the tube. The manifold was mounted 82 cm vertically below a sonic anemometer

(Model HS-50, Gill Instruments) which measured the three wind vectors, u, v and w data at a rate of 10 Hz. During the winter

campaign it was orientated NW from the tower and during the summer campaign towards the SE to measure the main wind

3



direction without obstructions. However, analysis of the turbulence characteristics did not suggest that the open structure of the

tower affected the measurements even when the flow came through the tower. This may be due to the size of the eddy-motions

at this measurement height.

Figure 1. Measurement site position is shown by the red triangle between the third and fourth ring roads. Key landmarks of Beijing are

highlighted in orange with major roads shown in black and smaller roads in grey. Parks are shown in green and water in blue. Surrounding

land use is mainly residential with many restaurants within a few hundred meters of the site with the Jingzang Highway close by. Map was

built using data from © OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA License.

2.2 Instrumental Description

2.2.1 NOx Sampling and Measurement5

Concentrations of NOx were measured using a dual-channel chemiluminescence instrument (Air Quality Designs Inc., Col-

orado). The instrument is similar to that described in Lee et al. (2009), but modified to enable high time resolution data to be

collected with a residence time of 0.12 s inside the photolytic conversion cell. NO was measured directly by chemilumines-

cence from the reaction of NO and O3 in one channel. The second channel measures total NOx via photolytic conversion of

4



NO2 to NO, at a wavelength of 395 nm, and then by chemiluminescence reaction with O3, as per the direct measurement of

NO. Instrument data were recorded at a frequency of 5 Hz.

The NOx instrument was calibrated regularly (every 2 – 3 days) throughout the campaign using NO gas standards traceable to

the UK’s National Physical Laboratory’s (NPL) NO scale. The instrument was calibrated via standard addition of a small flow

of NO calibration gas to a flow of NOx-free ambient air (NOx was removed using a Sofnofil/charcoal trap). The sensitivities5

of the NO and NOx channels were calculated by direct addition of the diluted NO calibration gas. The NO2 – NO conversion

efficiency within the NOx channel was calculated by gas-phase titration of the diluted NO calibration gas with O3 to create a

known quantity of NO2. During the calibration cycle, an instrument zero was quantified by diversion of sample flow to ‘zero

volumes’ so that the chemiluminescence reaction was completed before the gas reached the detectors. Zero measurements were

scheduled to occur for 15 seconds every hour through the normal operating schedule.10

2.2.2 CO Sampling and Measurement

CO was measured using a resonance fluorescent instrument (Model AL5002, Aerolaser GmbH, Germany). Flows were adjusted

to reduce cell lag times so data could be recorded at 5 Hz to match the NOx data acquisition rate. Details of the unmodified sys-

tem are described by (Gerbig et al., 1996, 1999)
:::::::::::::::::::::
Gerbig et al. (1996, 1999). The CO instrument was calibrated regularly (every

2 – 3 days) throughout the campaign as for the NOx instrument using a 1 ppm CO in synthetic air standard. Previous urban flux15

measurements with this type of instrumentation have been presented for UK cities by (Famulari et al., 2010; Harrison et al., 2012; Helfter et al., 2016)

:::::::::::::::::::::::::::::::::::::::::::::::::::::
Famulari et al. (2010); Harrison et al. (2012); Helfter et al. (2016).

2.3 VOC Sampling and Measurement

VOCs were measured using a Proton Transfer Reaction
::::::::::::
Time-of-Flight

:
Mass Spectrometer (PTR-MS

:::::::::::
PTR-ToF-MS). The

PTR-MS
:::::::::::
PTR-ToF-MS

:
(PTR-MS 2000, Ionicon Analytik, Innsbruck, Austria) was installed at the base of the tower and20

subsampled
:::::::
sampled

:
from the common inlet line at 30 sccm. The instrument was operated with a 5 Hz measurement fre-

quency. The drift tube maintained at 60 °C, with a pressure of 1.9 mbar and 490 V applied across it. This gave an E/N (the

ratio between electric field strength and buffer gas density) of 120 Td in the drift tube. This set up is described in more detail

by Acton et al. (in prep.).
:::::::::::::::
Acton et al. (2020).

:

The PTR-MS
:::::::::::
PTR-ToF-MS

:
was calibrated twice a week during both the winter and summer campaigns using a VOC stan-25

dard containing methanol, acetonitrile, ethanol, 1,3-butadiene, acetone, isoprene, butenone, butan-2-one, benzene, toluene,

m-xylene and 1,2,4-trimethylbenzene at 1 ppmv (National Physics Laboratory, Teddington, UK). The standard was dynami-

cally diluted in zero air to provide a six point calibration. In the winter campaign the instrument also was
::::
was

:::
also

:
calibrated

using two Ionicon standards the first containing methanol, acetonitrile, acetaldehyde, ethanol, acrolein, acetone, isoprene, cro-

tonaldehyde, butan-2-one, benzene, toluene, o-xylene, chlorobenzene, α-pinene and 1,2-dichlorobenzene at 1 ppmv each and30

the second made up of formaldehyde, acetaldehyde, acrolein, propanal, crotonaldehyde, butanal, pentanal, hexanal, heptanal

and octanal at 1 ppmv, nonanal at 600 ppbv and decanal at 500 ppbv. PTR-MS data
:::
The

::::::::::
background

:::::
signal

::::
was

::::::::
corrected

:::
for

5



::
by

::::::::
sampling

::
a

::::
zero

::
air

::::::::
standard

:::
for

::
5

:::::::
minutes

:::::
every

::::
hour.

:::::::::::
Background

::::::
mixing

:::::
ratios

:::::
were

:::::::::
subtracted

::::
from

:::::::::
subtracted

:::::
from

:::::::::::
measurement

:::
data

:::
to

:::
give

::::::::
corrected

:::::::
mixing

:::::
ratios.

::::::::::::
PTR-ToF-MS

:::
data

:
was processed using PTRViewer (Ionicon Analytik).

2.4 Data Processing

Figure 2.
:::::::
Workflow

::::::::
schematic

::::::::::
summarising

::
the

::::
data

::::::::
processing

::::
steps

:::::::
required

::
for

::::::::
calculation

::
of
::::
NOx:::

and
:::
CO

:::::
fluxes.

Prior to the calculation of pollutant fluxes, the raw data were scaled to take account of calibrations. The sensitivity within

each channel of the NOx chemiluminescence instrument remained consistent throughout the winter and summer campaigns so5

data were scaled using median sensitivity values. The conversion efficiency of the NO2 :::
NOx:channel gradually deteriorated

over the two campaigns and so NO2 data were scaled using linearly interpolated conversion efficiency values.
::
As

::::::::::
highlighted

::
in

:::
Fig.

::
2,

:::
the

::::
NO2:::::::::

calibration
::::
was

::::::
applied

::
in

:::
two

::::::
stages,

:::
the

::::
first

:::::
during

::::::::::::
pre-processing

::::
and

:::
the

::::::
second

::::::::
following

:::
lag

:::::::::
correction.

::::::
During

:::
the

::::::::::::
pre-processing

::::
stage

:::
the

:::::::
channel

::::::::::
sensitivities

::::::
(counts

:::::::
pptv−1)

:::::::::
determined

:::
by

::::
field

:::::::::
calibration

:::
are

::::::
applied

::
to

::::
both

:::
the

:::
NO

:::
and

::::
NOx::::::::

channels
::
to

::::
give

:::
NO

:::::
(pptv)

::::
and

:
a
::::
term

:::::::
referred

::
to

::
as

::::::::
converted

::::
NOx:::::::

channel
::::::
counts

:::::
‘NOc’.

:::::
NO2 :

is
::::
then

:::::::::
calculated10

::::
from

:::
the

::::::::
difference

::::::::
between

:::
the

::::::::::
time-lagged

::::::::
corrected

::::
NOc :::

and
::::
NO

::::::
divided

:::
by

:::::::::
conversion

::::::::
efficiency.

::::
The

::::
time

:::
lag

:::::::::
correction

:
is
:::::::::
described

:::::
below.

:
For CO concentration data, the instrument sensitivity following each calibration was directly applied and

the sensitivity remained consistent for the duration of the two campaigns.

Concentration data were coupled with wind data reported by the sonic anemometer by sub-sampling the wind vector data

to match the 5 Hz concentration data. Data were then despiked prior to flux calculation as per the method described in Brock15
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(1986) and Starkenburg et al. (2016). Following despiking, the lag time between vertical wind velocity measured in-situ on

the tower and the pollutant concentrations, measured on the ground, was calculated. The lag time correction applied was

determined by first allowing the software to calculate the optimum lag for each averaging period by maximisation of the

cross-covariance between concentration and
:::::::
pollutant

::::::::::::
concentration

:::
and

:::
the

:
vertical wind component. Because there was no

discernible pattern or trend in the lag-times and to prevent the flux bias that cross-covariance maximisation can introduce5

when fluxes are small (Langford et al., 2015), the final fluxes were calculated by applying the median time-lag value for each

campaign to all flux periods
:::::
When

::::::::::
determining

:::
the

:::
lag

::::
time

:::
for

::::
each

::::::
species

:
a
:::::::::
high-pass

::::
filter

::::::::::::::::::::
(Hartmann et al., 2018)

:::
was

::::
used

:::::
which

::::::::
improves

:::
the

:::::::
precision

::
of

:::
the

::::::::::
determined

:::
lag

::::
time

::
by

::
an

:::::
order

::
of

:::::::::
magnitude.

::::
The

::::::
median

:::
lag

::::
time

::::
was

:::
then

:::::::::
calculated

:::
for

::::
each

::::::
species

:::::
during

:::::
each

::::::::
campaign. The lag time between the concentration and vertical wind speed during the winter campaign

was found to be 9.6 s, 10.0 s, 10.2
:::::::
9.6± 0.4

::
s,

:::::::::
10.0± 0.4

::
s,

::::::::
10.2± 0.3

:
s for NO, NO2 and CO respectively. For the summer10

campaign lag times were calculated as 9.4 s, 9.8 s and 10.6 s.
:::::::
9.4± 0.4

::
s,

::::::::
9.8± 0.3

:
s
::::

and
:::::::::
10.6± 0.5

::
s.

:::::::
Because

:::::
there

::::
was

::
no

:::::::::
discernible

::::::
pattern

:::
or

::::
trend

:::
in

:::
the

::::::::
lag-times

:::
and

::
to

:::::::
prevent

:::
the

:::
flux

::::
bias

::::
that

::::::::::::::
cross-covariance

:::::::::::
maximisation

::::
can

::::::::
introduce

::::
when

::::::
fluxes

:::
are

::::
small

:::::::::::::::::::
(Langford et al., 2015)

:
,
:::
the

::::
final

:::::
fluxes

::::
were

:::::::::
calculated

:::
by

:::::::
applying

:::
the

:::::::
median

:::::::
time-lag

:::::
value

:::
for

::::
each

::::::::
campaign

::
to

::
all

::::
flux

:::::::
periods. Lag time correction was performed using the same method for the PTR-MS

:::::::::::
PTR-ToF-MS

:
VOC

concentrations. Lag times
::::
were calculated for isoprene (summer data) and benzene (winter data) within a 5 – 15

:
s window and15

these values were then applied to all compounds. Where the lag time was found to be outside of the 5 – 15 s range a standard

lag time of 9 s was applied.

2.5 Flux Calculations

The flux, F , of each species, which can be defined as the vertical transport of a pollutant per unit area per unit time, was then

calculated using the eddy covariance (EC) method (Lee et al., 2004):20

F ≈ w′c′ (1)

where w′ is instantaneous change in vertical wind speed (i.e. w′ = w− w̄, where overbars denote averages) and c′ is instanta-

neous change in pollutant concentration. The flux was calculated over a 30 minute averaging period and quantified using the

eddy4R family of R-packages (Metzger et al., 2017) with a customized eddy-covariance workflow template to suit the require-

ments of our study.
:::
this

:::::
study.

:::::
Figure

::
2
:::::
shows

:::
the

::::
key

::::
steps

:::::::
involved

::
in
:::
the

::::::::::
calculation

::
of

:::::::
pollutant

::::::
fluxes. Random uncertainty25

was calculated using the method outlined by Mann and Lenschow (1994). The flux limit of detection was taken to be twice

the random error. It should be noted that, due to the high measurement height, 30 minute fluxes might be an underestimation

of the ‘true’ flux as the averaging period may not capture low frequency contributions. To quantify the effect, a comparison

between 30 minute, 60 minute and 120 minute averaging intervals was carried out for a week-long period of the summer

campaign which indicated 30 minute fluxes were 93 % of the 60 minute fluxes whilst 120 minutes fluxes were considered too30

long an averaging periods for sufficient temporal resolution. Additionally increasing the length of averaging time introduces

more non-stationary periods into the data. The 30 minute flux is therefore a compromise between capturing the entirety of the

flux by keeping the low frequency flux loss small (7 %) and having sufficient temporal resolution to relate the measurements

7



to real-world processes. Fluctuations in temperature and humidity can impact fluxes by causing variation in air density (Webb

et al., 1980). For closed path systems, such as those used in this study, air density variations caused by sensible-heat flux are

negligible however variations due to latent heat flux may need to be corrected for. For CO fluxes, samples were passed through

a dryer negating the need for this correction, however latent heat flux could have an impact on the NOx fluxes (Moravek et al.,

2019). The magnitude of the correction is proportional to the concentration/flux ratio which for reactive species, like NOx, is5

small. The effect of latent heat flux on NOx fluxes was found to be significantly less than 1 % throughout the campaigns and

so the WPL correction was not applied (Pattey et al., 1992). The effect of high-frequency spectral loss on NOx and CO fluxes

was investigated using a wavelet-based methodology (Nordbo and Katul, 2013). Spectral losses were found to be less than 3

% and so were not corrected for.

2.5.1 Corrections and Filtering10

There are numerous assumptions made when calculating EC fluxes, all of which can introduce uncertainties in the derived

quantity. Further conditions need to be met for the measured flux to be representative of surface flux. Assumptions include but

are not limited to, the flux being fully turbulent with all transport done by eddy transfer, the terrain being homogeneous, mea-

surements being made within the boundary layer, air density fluctuations being negligible and conditions remaining stationary.

A common method to deal with periods of low turbulence, during which the flux at the measurement height may not reflect the15

surface flux, is to filter the data based on a friction velocity (u∗) threshold. Friction velocity accounts for shear stress in the tur-

bulent boundary layer, and can be calculated from the instantaneous wind vectors u′, v′ and w′ (Foken, 2017). Concepts for u∗

filtering were originally developed by the community measuring CO2 exchange with vegetation. Here, incorrect application of

u∗ filtering can lead to a “double-counting” of flux as described in Aubinet (2008). In addition, by filtering out low-turbulence

cases (low u∗ values) the data set can become biased with little information about nighttime and winter periods. Whilst for20

CO2 exchange with vegetation fairly robust parametrisations exist that can be used to gap-fill periods of low turbulence, no

such information is yet available for urban fluxes. Liu et al. (2012) therefore argue against applying u∗ filtering for the IAP

site during a similar analysis of CO2 fluxes, and suggest more errors could be introduced through filtering than not. Thus u∗

filtering was also not applied to the data presented here, unless otherwise stated. Approximately 29 % of winter fluxes and 11 %

of summer fluxes are
::::
were associated with u∗ values below 0.175 m s-1. Average fluxes as a function of u∗ values are presented25

in fig
:::
Fig. A1 and the effect of u∗ filtering on diurnal variation is shown in fig

:::
Fig. A2. These show the maximum possible effect

of low turbulence on fluxes. Because low turbulence is correlated with nighttime conditions during which emission activity

is reduced, an increasingly stringent u∗ filter preferentially removes periods during which the surface flux is smaller than the

average. This may result in an increase in the average nighttime flux that does not necessarily reflect suppression of the flux by

lack of turbulence.30

Stationarity is another important consideration for flux data. Stationarity is when the flux is statistically invariant over the

averaging period and is quantified using the method described in Foken and Wichura (1996). The stationarity criterion is likely

not to be met when fluxes are small and subject to a large random uncertainty; this is irrespective of whether the conditions

are actually non-stationary. As a result this filter tends to remove the smallest fluxes and can bias flux results (e.g. Nemitz
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et al., 2018). A broad stationarity filter of 60 % was applied to all flux data presented in any average diurnals, though non-

stationary data is presented and highlighted in time series plots. This stationarity filter was used as a more rigorous filter of

30 %, commonly used within the CO2 flux community, removed a large proportion of the data. During the winter campaign

23 % of NOx fluxes and 22 % of CO fluxes were non-stationary under this more rigorous criterion. During the summer

campaign these proportions were 16 % of NOx fluxes and 39 % of CO fluxes. The 60 % threshold used was determined to be5

appropriate as it falls within the stationarity range recommended for “general use”, such as using diurnal averages to interpret

trends (Foken et al., 2004). Further to these corrections, any periods where the boundary layer was within 30 m of
:::::
above the

measurement height were removed from the data. Boundary layer height was measured throughout both campaigns using a

celiometer (Vaisala CL31).
:::
The

::::
data

:::
are

:::::::
analysed

:::::
using

:::
the

::::::::
CABAM

::::::::
algorithm

:::::::::::::::::::::::::::
(Kotthaus and Grimmond, 2018).

:

It was also important to consider storage effects; due to the build-up or dilution of the pollutants below the measurement10

height. Build-up can occur during periods of low turbulence e.g. during the night and this accumulation reduces the flux at

the measurement height with respect to the emission at the ground (Finnigan, 2006). As conditions become more turbulent

the accumulated pollutant concentrations gets diuluted
:::::::::::
concentration

::::
gets

::::::
diluted

:
again and the measured flux contains a

component that originates from the stored material rather than emission. Gas concentration profile measurements can be used

to allow detection of build-ups by providing data for computing a storage term below measurement height. In this case, the15

storage flux, Fs, at time, t, was calculated according to the following equation (Andreae and Schimel, 1990):

Fs(t) =
C(t− t

2 )
−C(t− t

2 )

t
(2)

:::
The

:::::::
validity

::
of

::::::::::
calculating

:::
the

::::::
storage

::::
flux

::
at

::
a

:::::
single

:::::::::::
measurement

::::::
height

::::
was

::::::::
evaluated

:::
by

:::::::::
comparing

::::
CO2::::::::::::

concentration

:::::::::::
measurements

:::::
made

::
at
:::

the
::::::::::::

measurement
:::::
height

::::
and

::::
CO2:::::::::::

concentration
::::::

profile
::::::::::::
measurements

:::::
made

::
at
:::::
three

:::::::
different

:::::::
heights

::
on

:::
the

:::::
tower.

:
By comparing the evolution of the

:::
CO2:concentration at the single measurement height with that measured at three20

heights up the tower tower for CO2 :::
the

::::
CO2::::::

profile
::::::::::::
measurements, it was determined that calculating storage flux using the

single concentration at the measurement height was a reasonable approximation of the storage within the column. It should be

noted that this storage correction to some extent takes care of the flux suppression at low turbulence, except for the interaction

with advection and chemistry.

Throughout, this paper focusses on the analysis of total NOx flux rather than NO and NO2 flux separately. Whilst the two25

compounds undergo rapid interconversion the total should be conserved at the time-scale that governs the transport from the

surface to the measurement height; the major loss route for NOx is HNO3 formation through reaction with the hydroxyl (OH)

radical. This loss is assumed to be negligible between ground emission and sampling at the tower inlet. Calculation of Deardorff

velocity suggests that on average the time taken for a parcel of air to reach the 102
:
m measurement point is ∼68 s (Deardorff,

1970). Assuming average OH concentrations of 1 × 106 molecules cm-3 it is estimated that less than 1 % reacts with OH at30

this time-scale.
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2.6 Footprint Model

A flux footprint is the area surrounding the measurement tower that contributes to a measured flux based on factors such as wind

speed, wind direction, atmospheric stability and surface roughness. A statistical flux footprint model can be used to quantify the

flux contribution of each cell of an emission grid relative to the distance away from the measurement position in all directions,

creating a weighing matrix that estimates the ground influence of a particular cell contributing to the observed emission flux.5

A footprint was calculated for each half hour flux period at 100 m resolution. The footprint model used is described in detail

in Kljun et al. (2004) and
::::
based

:::
on

::::::::::::::::
Kljun et al. (2004)

:::
with

:
a
::::::::::
cross-wind

:::::::::
distribution

:::::::
detailed

::
in

:
Metzger et al. (2012). Surface

roughness values were taken from Liu et al. (2012) and taken to be 2.5 m, 3.0 m, 5.3 m and 2.8 m for the NE, SE, SW, and NW

wind quadrants respectively. Figure 3 shows the average footprint for the winter and summer campaigns with the 30 %, 60 %

and 90 % cumulative contributions to the measured flux represented by the contours.10

For both campaigns the 90 % contribution to
:::
the measured flux extended as far as 7 km from the measurement site for some

averaging periods, however, as shown in fig
::
Fig. 3 on average 90 % of the contribution to measured emissions was

::::
from

:
within

2 km of the tower. Figure 3 shows the difference in areas of influence covered during the winter and summer campaigns due

to differences in dominant wind directions. During the winter, the measured fluxes were predominantly from the north-west

encompassing Beitucheng West Road and a block of predominantly commercial buildings and restaurants. The mean footprint15

maxima, the distance away from the tower at which the maximum contribution to
:::
the measured flux occurs, falls 0.26 km

away from the tower in winter. In summer, the fluxes were mostly influenced by areas to the north east and east of the tower,

encompassing the Jingzang Expressway. The mean footprint maxima for summer was also 0.26 km away from the site.

2.7 Inventory

The measured pollutant fluxes were compared with the Multi-resolution Emissions Inventory for China (MEIC, Qi et al. (2017); ?20

::::::::::::
Qi et al. (2017)

:
, http://www.meicmodel.org/

:
,
:::
last

::::::
access:

::
19

::::
May

:::::
2020) to evaluate how well the inventory describes the diurnal

evolution of pollutants and their absolute magnitude. MEIC
::::::::
emissions

:::
are

::::::::
available

::
at

::::
0.25

::
×

::::
0.25

:::::
degree

:::::::::
resolution

:::
and

:::::
were

:::::::::
downscaled

::
to
::
3
::
×

::
3

:::
km

::::::::
resolution

:::
on

:
a
:::::
sector

:::
by

:::::
sector

:::::
basis

::::::::
following

:::
the

::::::::
approach

::
of

::::::::::::::::
Zheng et al. (2017).

::::::
MEIC considers

five emission source sectors; power plants, industry, transport, residential, and agriculturaland is presented at a resolution of 3

km2. Agricultural emissions are not relevant within our flux footprint so
::::
were not included in this work.

::::::::
Emissions

:::
are

::::::::
available25

::
on

:
a
::::::::
monthly

:::::
basis,

:::
and

:::
are

:::::::
assumed

::
to

:::
be

:::
the

::::
same

::::
each

::::
day

::
of

:::
the

::::::
month,

:::
and

::
a
::::::
diurnal

:::::
cycle

:::::::::
appropriate

::
to

:::::::
Chinese

:::::::
sources

:
is
:::::::
applied

::
to

::::
each

::::::::
emission

::::::
sector.

:::::::
Example

:::::::::
emissions

:::
for

::::::
Beijing

:::
are

:::::::::
presented

::
in

::::
Fig.

:::
A3

:::
for

:::::::::
November. The NOx and CO

emission predicted by the inventory are calculated from the multiplication of each footprint matrix by the MEIC grid. For this

evaluation, an optimised version of the MEIC v1.3 inventoryfor 2013 was used that was derived by fitting the NAQPMS model

with observed pollutant concentrations during the campaign periods (Du et al., 2019). Temporal variability is represented in30

the inventory with twelve emissions grids, one for each calendar month. The emissions throughout the month are assumed to be

the same each day with a diurnal cycle imposed. Example emissions grid for Beijing are presented in figure A3 for November.

10
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Figure 3. The mean flux footprints for the winter and summer campaigns. The site is shown by the red triangle in the centre of the map. Each

square is 100 m2 and the brighter colours indicate a greater influence on measured emission for a particular area. The white rings show the

areas contributing 30 %, 60 % and 90 % to the flux total with inner ring representing the 30 % contribution and outer ring representing 90 %

contribution. The 90 % of the influence from the footprint extends up to 2 km away from the tower with maximum contribution 0.26 km

away from the tower. Map was built using data from © OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA

License.

::
In

:::::
order

::
to

:::::
match

:::
the

::::::
scales

::
of

:::
the

::::::::
footprint

::::::
matrix

:::
and

:::
the

:::::::::
inventory,

:
a
:::::::
pseudo

:::
100

::
m
:::
×

:::
100

::
m
::::::

MEIC
::::
grid

::::
was

::::::
created

:::
by

:::::::
splitting

:::
the

:
3
:::
km

:::::::::
resolution

::::::::
inventory

:::
into

:::::::
smaller

:::
100

::
m

::
×

::::
100

::
m

::::
grid

:::::::
squares,

::::
each

::::
with

:::
the

::::
same

::::::::
emission

:::::
value.

:

3 Results & Discussion

Statistics for NOx and CO fluxes and concentrations presented in this work are shown in table
::::
Table

:
1. Figure 4 shows a time

series of measured NOx and CO fluxes during the winter and summer measurement campaigns where grey coloured traces5

highlight data which does not meet the 60 % stationarity criteria. For winter, 3.5 % of NOx fluxes and 8.2 % of CO fluxes

were non-stationary. In summer, slightly fewer measurements did not meet the stationarity criteria with 3.1 % of NOx fluxes

and 7.3 % of CO fluxes falling outside the 60 % stationarity limits. The mean flux for NOx during the winter measurement

period was 4.4± 3.9mg m-2
:::
mg

:::
m-2

:
h-1 and 3.6± 3.7mg m-2

:::
mg

:::
m-2

:
h-1 for the summer measurement period. For CO, there

was a larger difference between the two seasons with the mean flux calculated as 35± 40mg m-2
:::
mg

::::
m-2 h-1 for winter and10

15± 14mg m-2
:::
mg

::::
m-2 h-1 in summer. Some of the calculated fluxes are

:::
were

:
negative, corresponding to deposition to the

surface, however, as expected in an urban environment, the net flux is
:::
was strongly positive indicating emission. The average

NOx fluxes for the winter and summer periods are
::::
were similar suggesting an emission source that does

::
did

:
not change much

between seasons. In contrast the average CO flux is
:::
was over double in the winter compared to the summer indicating an

additional source in the winter.15
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Table 1. Summary table for NOx and CO fluxes and concentrations. Data presented is for fluxes which are within 60 % stationarity criteria

for all u∗ values.

Winter Summer

Concentration (mg m-3) NOx CO NOx CO

Mean 0.103 1.41 0.0310 0.502

Median 0.0839 1.01 0.0213 0.429

Percentiles

5th 0.0154 0.268 0.00810 0.210

95th 0.252 3.60 0.0876 0.998

Standard Deviation 0.0776 1.16 0.0278 0.267

Flux (mg m-2 h-1)

Mean 4.41 34.7 3.55 15.2

Median 4.14 32.0 2.45 12.4

Percentiles

5th -1.24 -27.0 -0.0139 -2.15

95th 10.6 103 11.5 42.9

Standard Deviation 3.86 40.1 3.69 14.4

Figure 4. Time series data for 30 minute averaged NOx and CO fluxes for the summer and winter campaign; the
:
(blue tracecorresponds to

measurements taken during the winter campaign
:
) and the orange the summer campaign. Grey coloured flux traces correspond to

::::::
(orange

::::
trace)

::::::::
campaigns

::::
with fluxes outside of the 60 % stationarity criteria

:::::
shown

::
in

:::::
darker

:::::
colours. Gaps in the time series are due to instrument

problems. The grey boxes on the winter timeseries plots highlight two contrasting periods discussed in section 3.2
:::
are

::::::::
highlighted

::
in

::::
grey.
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When considering previous literature, the NOx fluxes measured in Beijing were low compared to London, UK where net

emissions were in the range of 10.8mg m-2
:::
mg

:::
m-2

:
h-1 – 14.4 mg m-2

:::
mg

::::
m-2 h-1 (Lee et al., 2015). A study investigating

NOx fluxes across 13 urban locations in Norfolk, Virginia reported values in the range of 18 – 28mg m-2
:::
mg

:::
m-2

:
h-1, up to 8

times higher than those measured in Beijing (Marr et al., 2013). Fluxes measured in Beijing were similar to those measured

in Innsbruck at a roadside site in July – October, 2015 where NOx fluxes of 2.5 – 5.2mg m-2
:::
mg

:::
m-2

:
h-1 were reported (Karl5

et al., 2017). For CO, measured fluxes in central London were 2 – 3 times lower than those measured in Beijing. Average

winter (December – February) CO flux was reported to be 12.5±3.4mg m-2
:::
mg

:::
m-2

:
h-1 and average summer (June – July) CO

flux was reported to be 4.0± 0.1mg m-2
:::
mg

:::
m-2

:
h-1, for the measurement period September 2011 – December 2014 (Helfter

et al., 2016). NOx emissions are likely to be lower in Beijing than for other cities as the majority of onroad
:::
road

:
vehicles in

Beijing are light-duty gasoline vehicles (LDGVs) which made up to 93 % of the vehicle fleet in Beijing in 2013 (Yang et al.,10

2015) compared to other cities which have a higher proportion of diesel vehicles. However, because fluxes vary spatially within

each city, care needs to be taken when comparing measurement datasets as the type of the location within the city needs to be

considered.

3.1 Average diurnal cycles

Figure 5 shows the mean diurnal profile for both campaigns for pollutant fluxes, concentrations and mixing
:::::
mixed

:
layer height.15

Diurnal profiles are a useful way to visualise flux data, as time of day may indicate processes responsible for emissions. During

the winter campaign, the NOx fluxes were lower during the early hours of the morning (between 00:00 – 05:00) ranging

between 1.9mg m-2
:::
mg

:::
m-2

:
h-1 and 3.6mg m-2

:::
mg

:::
m-2

:
h-1. After 06:00, the NOx fluxes increased and remained elevated,

though variable, throughout the day with a mean daytime value (06:00 – 18:00) of 5.1 mgm-2
:::
m-2

:
h-1. The NOx fluxes

decreased again in the evening. The daily variability in CO fluxes followed a similar pattern to NOx. The mean daytime CO20

flux was 38mg m-2
:::
mg

::::
m-2 h-1, and was lower during the night (19:00 – 05:00) with a mean nighttime value of 29mg m-2

:::
mg

::::
m-2 h-1. Concentrations are influenced by meteorology and long range transport as well as local emissions (in this study

local emissions refer to emissions from within the flux footprint). NOx and CO concentrations remained constant during the

night due to stability in the mixing
:::::
mixed

:
layer height. When NOx and CO emissions increased after 05:00, this enhancement

in flux was reflected in the concentration data with a small peak in NOx and CO concentrations around 06:00, though the effect25

is masked as the mixing
:::::
mixed

:
layer height begins to increase. Concentrations decreased to their minima at 15:00 when the

mixing
:::::
mixed

:
layer height reached its highest point and increase again when the mixing

:::::
mixed

:
layer height contracted over

night.

For
::::::
Fluxes

::::
were

:::::
lower

::::::
during the summer campaign , fluxes are slightly lower than during the winter. The mean nighttime

flux was less than 1.6mg m-2
:::
mg

:::
m-2

:
h-1 for NOx and 6.5mg m-2

:::
mg

:::
m-2

:
h-1 for CO. Emissions rapidly increased after 05:0030

and started to decrease at around 17:00. Daytime emissions for NOx were fairly consistent with a mean value of 4.6mg m-2

:::
mg

:::
m-2

:
h-1. The first of two distinct peaks in the observed NOx fluxes occurred at 07:00, where emissions reached 5.4mg m-2

:::
mg

::::
m-2 h-1 and the second occurred at 17:00 with a slightly higher value of 6.3mg m-2

::::
mg

:::
m-2

:
h-1. The daytime profile for

CO showed two distinct peaks in emissions; the first peak occurred at 11:00 with CO emissions around 30mg m-2
:::
mg

:::
m-2 h-1
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Figure 5. Average diurnal profiles for A) NOx flux, B) CO flux, C) NOx concentration, D) CO concentration and E) mixing
:::::
mixed layer height

and F) heat flux. Blue, solid lines are for measurements taken during the winter campaign and the orange, dashed lines are measurements

taken during the summer campaign. The shaded areas represent the 25th and 75th percentilesto show the spread of the data. For the NOx and

CO fluxes, only stationary data has been used but no u∗ filtering has been applied when doing the diurnal averaging,
::
as

:::::::
described

::
in

::::::
section

::::
2.5.1.

and the second at 17:00, when CO fluxes were around 24mg m-2
:::
mg

:::
m-2

:
h-1. Between these times the CO emissions dipped

with a minimum daytime value of 16mg m-2
:::
mg

:::
m-2

:
h-1 at 14:00 – 15:00. The influence of local emissions on concentration is

more clearly observed during the summer campaign; the peaks in NOx and CO fluxes at 17:00 occurred at the same time as an

enhancement in NOx and CO concentration. Both NOx and CO concentrations reached their daytime minima at 14:00 - 15:00

when the mixing
:::::
mixed layer height was at its peak.5

Given that the NOx emissions were fairly consistent between the two seasons it is likely that the major sources of NOx do not

vary significantly over the year. In urban areas, vehicular emissions tend to be a dominant source of NOx (Parrish et al., 2009;

von Schneidemesser et al., 2010; Borbon et al., 2013) and previous studies measuring NOx fluxes have attributed emissions

to vehicles (Lee et al., 2015; Vaughan et al., 2016). Diurnal variation in summer NOx emissions agree well with previously

reported diurnal variation in Beijing’s traffic flow. Jing et al. (2016) show that traffic flow (vehicle number per hour) begins to10

increase from 05:00 in the morning, corresponding to the observed increase in NOx emissions. As would be expected, peak
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traffic flow coincided with lowest average vehicle speeds and occurred at 08:00 and 18:00. NOx emissions are dependent on

fuel type, engine type, combustion temperature, vehicle speed, engine load and exhaust after-treatment technology. It is known

that “stop - start” driving conditions and idling can enhance NOx emissions compared to driving at steady speeds . Observations

:::
and

:::::::::::
observations indicated that there are peaks in NOx emissions during these rush hour periods. CO emissions

:::::
Beijing

::::
has

::::::::
attempted

::
to

::::::
reduce

::::::::
emissions

:::::::
through

:::::
traffic

::::::::::
management

::
as

::::
well

::
as

:::
by

::::::::
imposing

::::::::
emissions

::::::::
reduction

::::::::::
regulations;

:::
for

:::::::
example5

:::::
yellow

:::::
label

:::::::
vehicles,

::::::::
vehicles

:::::
which

:::
do

:::
not

::::
meet

:::
the

::::::
China

:
I
::::::::
emissions

::::::::
standard

::::
have

::::
been

:::::::::
forbidden

::::
from

:::::::
entering

:::::::
Beijing

::::
since

:::::
2014

:::::::::::::::
(Yang et al., 2015)

:
.
::::
One

:::::::::::
management

:::::::
strategy

:::::::
imposed

::::::::::
restrictions

::
on

::::::
heavy

::::
duty

:::::::
vehicles

:::::::
(HDVs)

::::::::
entering

:::
the

:::
city

:::::
(past

:::
the

::::
sixth

::::
ring

:::::
road)

:::
and

::::
only

:::::::
permits

::::::::
non-local

:::::::
vehicles

:::
to

::::
enter

:::::::
between

::::::
00:00

:
–
::::::
06:00.

::::::
HDVs,

::::::::::
particularly

:::::
those

::::
using

::::::
diesel

::::
fuel,

:::
are

::::::
thought

:::
to

::
be

::::::::::
responsible

:::
for

::
85

::
%

:::
of

::::
NOx:::::::::

emissions,
:::::
whilst

:::::
light

::::
duty

:::::::
vehicles

::::::
(LDVs)

:::
are

::::::::::
considered

:::::::::
responsible

:::
for

:::::
more

::::
than

:::
half

::
of

::::
CO

::::::::
emissions

::::::::::::::::
(Yang et al., 2015).

:::::::::
Nighttime

::::::::
emissions

::
of

:::::
NOx :::

and
:::
CO

::::::
during

::::
both

:::::::
seasons10

::::
could

:::
be

::::::::
attributed

:::
to

::::::
HDVs

::::::
making

:::
up

:::
an

::::::::
unusually

::::
high

::::::::::
proportion

::
of

:::
the

:::::::
vehicle

::::
fleet.

::::
CO

:::::::::
emissions for summer also

suggested a strong
::::::
daytime

:
traffic influence, although the peak at 11:00 may indicate an additional source, possibly relating

to cooking given the time of day. Cooking was identified as a major contributor to the organic PM1 flux in aerosol flux

measurements made during the same measurement period (Langford et al.,
:

in prep.). NOx and CO fluxes measured during

the winter also indicated some traffic influence, although the trend is less clearly resolved than for the summer measurements.15

Winter NOx emissions had a peak of 6.0mg m-2
:::
mg

:::
m-2

:
h-1 at 07:00 and there was a broader evening peak of similar magnitude

between 17:00 – 18:00. NOx flux peaked at 11:00 at 6.7mg m-2
:::
mg

:::
m-2 h-1. CO flux was more variable; there was a small peak

around the time of the morning rush hour though this was not as clearly resolved as it is for NOx. CO flux peaked at 11:00 and

in the evening though the profile showed greater short term variability for NOx.

The difference between the winter and summer diurnal averages was more significant for CO than for NOx with larger CO20

emissions in the winter than the summer throughout the day. This may be in part due to an additional source unique to winter,

for example domestic heating. Local heating sources are likely to be reasonably consistent throughout the day which may go

some way to explaining why the relative difference between nighttime and daytime emissions is smaller than for NOx. Given

the similarity between the NOx and CO diurnal variability, there is likely to be a traffic influence
:::::
Local

::::::
heating

:::::::
sources

::::
also

:::::
appear

:::
to

::::::::
contribute

:::
to

:::
the

::::
NOx:::::::::

emissions
:::::::::
measured,

:::::
albeit

::
to

::
a

:::::
lesser

::::::
degree

::::
than

:
for CO.

:::
The

::::
rush

::::
hour

:::::
peaks

::::
that

:::::
were25

:::::
clearly

::::::::
observed

::
in
:::::

NOx :::
flux

::::::
during

:::
the

:::::::
summer

:::::::::
campaign

:::
are

:::::::
masked

::::::::
somewhat

::
in
:::

the
::::::

winter
::::
and

:::
the

::::
peak

::::
was

:::::::
broader

::
in

::
the

:::::::
evening

::::::
which

:::::
could

::
be

::::
due

::
to

::::::::
increased

:::::::::
residential

::::::::
emissions

::::::::::
throughout

:::
the

:::
day.

::
It
::
is

:::::::
possible

::::
that

::::::::
additional

:::::::::
emissions

::::
from

:::
the

:::::::::
residential

::::::
sector

::::
were

::::
not

:::
the

::::
only

::::::
reason

:::
for

:::
the

:::::::::
difference

::
in

::::::::::
magnitude

::
of

::::::
winter

:::
and

::::::::
summer

:::
CO

:::::::::
emissions

:::::::
however.

:
Strong seasonal variability in the fluxes of CO has been observed for London as another megacity where CO emissions

measured in summer were 69 % lower than in winter (Helfter et al., 2016). In this case, higher winter CO emissions were30

attributed mainly to vehicle cold starts and reduced fuel combustion efficiency due to colder ambient temperatures. It should

be noted that this study took place in a temperate, developed city and Beijing needs more winter heating which until recently,

was primarily from coal. Indeed, Langford et al.
:
, (in prep.) identified signatures of coal and solid fuel combustion within the

flux footprint of the measurement although residential heating is overwhelmingly dominated by distance
::::::
district

:
heating in

this area of Beijing. Beijing has attempted to reduce emissions through traffic management as well as by imposing emissions35
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reduction regulations; congestion reduces vehicle speed which can increase emissions (Yang et al., 2015). One management

strategy imposed restrictions on heavy duty vehicles (HDVs) entering the city (past the sixth ring road) and only permits

non-local vehicles to enter between 00:00 – 06:00. HDVs, particularly those using diesel fuel, are thought to be responsible

for 85 % of NOx emissions, whilst light duty vehicles (LDVs) are considered responsible for more than half of CO emissions

(Yang et al., 2015). Nighttime emissions of NOx and CO could be attributed to HDVs making up an unusually high proportion5

of the vehicle fleet. Yellow label vehicles, vehicles which do not meet the China I emissions standard have been forbidden from

entering Beijing since 2014.

3.2 Impact of local emissions on air quality

The average diurnal profiles in fig
:::
Fig. 5 highlight the relationship between emissions, mixing

:::::
mixed

:
layer height and concen-

trations. Whilst emissions and concentrations seem to be closely linked when averaged over the whole campaigns, there are10

periods where local emissions do not drive concentrations. During the winter months Beijing experiences a frequent cycling

between “polluted” and “clean” days and this phenomenon has been termed “sawtooth cycles”. During winter pollutants build

up during near stagnant periods with SE wind flow being trapped by the mountain range in the NW. These are then advected

out of the city when wind speed increases and the direction switches to the NW resulting in sharp reductions in atmospheric

concentrations (Jia et al., 2008; Li et al., 2017). This distinctive meteorological phenomenon occurs in Beijing as a result of15

the East Asian Winter Monsoon, itself driven by temperature differences between the Pacific Ocean and Asian continent (Chen

et al., 1992). This cycling was observed during the winter field campaign and can be seen in NOx and CO concentrations high-

lighted in fig
:::
Fig. 4. During the period 21 November 2016 – 23 November 2016 average daytime concentrations of 0.020mg

:::
mg

:
m-3 and 0.35mg

:::
mg

:
m-3 for NOx and CO respectively were observed. On the following three days, 24 November 2016

– 27 November 2016, higher concentrations of 0.13mg
:::
mg m-3 of NOx and 1.7mg

:::
mg

:
m-3 of CO were measured, a more20

than five-fold increase in average daytime concentrations compared with the “clean” period. Corresponding increase
::::::::
increases

and decreases in pollutant flux was
::::
were not clearly observed however (fig

:::
Fig. 4). Figure 6 shows the distribution of the NOx

and CO fluxes and concentrations over the “clean” and “polluted” days. Despite the higher concentrations during the polluted

period the measured flux is slightly lower. During the polluted period more deposition flux occurred; 13 % of NOx fluxes and

23 % of CO fluxes (associated with u∗ values over 0.175m
::
m s-1) were negative whereas no deposition fluxes were measured25

during the clean period.

Figure 7 shows two flux footprints; one averaged for the clean period and one for the polluted period. Satellite images

and Open Street Map data (openstreetmap.org) shows that these footprints cover very similar land use areas; predominantly

residential with busy roads so it is expected that the emissions would be similar for these areas, consistent with the variability in

the measured flux. This indicates concentrations were more affected by meteorology, driving the accumulation at the city scale,30

or transport from regions outside Beijing than local emissions. There was not a significant contrast between mean mixing
:::::
mixed

layer heights between the two periods. A mean height of 464 m (including nighttime and daytime) with a daytime maxima

of 811 m for the clean period was measured. For the polluted period the mean mixing
:::::
mixed

:
layer height was 434 m with a

daytime maxima of 822 m. Wind speeds were much lower during the polluted period with a mean wind speed of 1.9 m s-1
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Figure 6. The density distribution of NOx and CO concentrations and fluxes during the “clean” period (21 November 2016 – 23 Novemeber

2016) and “polluted” period (24 November 2016 – 27 November 2016). Only fluxes for which u∗ values are over 0.175 m s-1 and which

meet the 60 % stationarity criteria are presented to allow a valid comparison.

compared to 6.0 m s-1 for the clean period. These more stagnant conditions cause emissions to build up before being advected

out of the city when wind speeds increase once again. Additionally, the higher wind speeds experienced during the “clean”

period mean the city is influenced by air masses from further away. To the north-west, the dominant wind direction for the

“clean” period, there is less industrial activity compared to the south of the measurement site towards the centre of Beijing, so

these air masses are also likely to be less polluted.5

3.3 Dependence on wind direction

Examining the relationship between diurnal flux and wind direction can give further information about emission sources. Figure

8 shows the average diurnal emission NOx and CO flux plotted as a function of wind direction for both the winter and summer

campaigns. Hour of day is represented by the radial scale between the inner and outer rings and starts at 00:00 in the inner side

of the ring to 23:00 on the outer side of the ring.10

For the winter campaign there appears to have been an enhancement in flux when there is a northerly wind direction. For

NOx the emission was largest throughout the afternoon hours but for CO peaks are more distinct, with an enhancement at

midday and again between 16:00 – 20:00. Within the flux footprint, to the north of the site are residential areas, Beitucheng

West Road (a busy traffic route) as well as some university buildings and a hospital. Further north (approximately 1 km from

the tower) is the fourth ring road. The largest NOx fluxes were observed between 16:00 – 20:00 when the wind direction was15

westerly. Within this wind sector lies Beitaipingzhuang Road, about 0.65 km from the tower and Xueyuan Road which links

the third and fourth ring roads slightly further to the west and just under 2 km away from the tower.
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Figure 7. The left-hand plot plot shows the average footprint
::::::
Average

:::::::
footprints for the “

:
“clean”

:
” period, 21 November 2016 – 23 November

2016
::::
(left) and the right-hand plot the average footprint for the “

:
“polluted”

:
”
:
period, 24 November 2016 – 27 November 2016.

:::
2016

::::::
(right).

Map was built using data from © OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA License.

Figure 8. Polar annulus plots for NOx and CO fluxes for both campaigns, showing the relationship between mean diurnal flux and wind

direction. 0 – 23 refers to hour of day and the colour scale shows flux in mg
:

m-2
:
h-1.
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Table 2. Summary table for VOC concentrations and fluxes measured by PTR-MS
::::::::::
PTR-ToF-MS. Data presented is for fluxes which are

within 60 % stationarity criteria for all u∗ values.

Winter Summer

Conc (mg m-3) Benzene Toluene C2-Benzene C3-Benzene Benzene Toluene C2-Benzene C3-Benzene

Mean 0.00703 0.00808 0.00975 0.00258 0.00186 0.00257 0.00390 0.00127

Median 0.00532 0.00620 0.00688 0.00198 0.00173 0.00227 0.00336 0.00113

Percentiles

5th

95th

0.000910

0.0190

0.00100

0.0225

0.00121

0.0299

0.000431

0.00658

0.000860

0.00346

0.00113

0.00502

0.00166

0.00794

0.000572

0.00245

Standard Deviation 0.00618 0.00707 0.00969 0.00198 0.000864 0.00227 0.00237 0.000677

Flux (mg m-2 h-1)

Mean 0.0121 0.0640 0.0730 0.00357 0.101 0.307 0.236 0.148

Median 0.0197 0.00861 0.00656 0.00354 0.0858 0.197 0.131 0.0995

Percentiles

5th

95th

-0.296

0.195

-0.209

0.427

-0.270

0.692

-0.0662

0.0737

0.0180

0.237

0.137

0.872

-0.0166

0.941

0.0207

0.479

Standard Deviation 0.184 0.249 0.286 0.0455 0.0736 0.363 0.374 0.151

During the summer campaign, there was an enhancement in the daytime flux of CO and NOx with an easterly wind, indicating

of an emission source to the east of the site; probably the Jingzang Highway just 0.35 km east of the site as shown in fig
::
Fig.

1. There are also some daytime enhancements in NOx and CO emissions from the south of the measurement site towards

central Beijing. For CO, enhancements to the south show two quite distinct enhancement periods in the morning and evening,

suggesting these emissions are from vehicles. It is unlikely that there were any significant seasonal change in traffic density5

on roads surrounding the measurement site. The change from a westerly influence observed during the winter to an easterly

influence in summer is due to changes in the dominant wind direction. Beijing’s wind patterns are quite different during the

winter and the summer. There is a noticeable absence of easterly winds in the winter and the mean flux footprints (fig
:::
Fig. 3)

highlights
:::::::
highlight the difference in regions contributing to the observed flux.

3.4 Comparison with VOC Flux10

Aromatic hydrocarbons, including benzene, C2-benzene, C3-benzene and toluene are components of gasoline fuel and are

typically emitted from combustion and evaporation of fuels and solvents in urban environments (Caplain et al., 2006; Langford

et al., 2009). Table 2 summarises the fluxes and concentrations measured during the APHH-Beijing measurement campaigns.

Concentrations were significantly greater during the winter season while emissions were higher during the summer for all four

hydrocarbon species. During the summer, toluene fluxes were the largest (0.31mg m-2
:::
mg

::::
m-2 h-1), followed by C2-benzene15

(0.24mg m-2
:::
mg

:::
m-2

:
h-1) then C3-benzene (0.15mg m-2

:::
mg

:::
m-2

:
h-1) and the flux of benzene being the smallest (0.10mg m-2
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Figure 9. Seasonal variation in diurnal profile
:::::
Diurnal

::::::
profiles

:
for A) benzene concentration, B) benzene flux, C) toluene concentration,

D) toluene flux, E) C2-benzene concentration, F) C2-benzene flux, G) C3-benzene concentration and H) C3-benzene flux measured by

PTR-MS
:::::::::

PTR-ToF-MS. Blue, solid lines are for measurements taken during the winter campaign and the orange, dashed lines are measure-

ments taken during the summer campaign. The shaded areas represent the 25th and 75th percentiles to give an idea of the spread of the data.

Only stationary data has been used but no u∗ filtering has been applied when doing the diurnal averaging.

:::
mg

:::
m-2

:
h-1). Diurnal variation of VOCs for winter and summer is shown in fig

::
Fig. 9. The uncertainty in the diurnal averages

makes drawing conclusions about variations between daytime and nighttime difficult, although there are some indications that

summertime trends at least may mimic those of CO and NOx. During summer, fluxes of all four species followed a very

similar diurnal trend with generally higher emissions in the daytime compared to the nighttime. A smaller early morning

peak was observed at 08:00, slightly later than the morning peak in NOx emissions which reached their maximum at 07:00.5

Emissions increased again in the afternoon for toluene, C2-benzene and C3-benzene peaking between 15:00 – 16:00. Benzene

remained fairly constant throughout the afternoon with a mean emission of 0.076mg m-2
::::

mg
:::
m-2

:
h-1. The peak during the

night corresponds to a one-off event measured on the 29/05/2017 at 03:30. During the winter, C2-benzene fluxes were the

largest (0.073mg m-2
:::
mg

::::
m-2

:
h-1), followed by the toluene flux (0.064mg m-2

:::
mg

::::
m-2

:
h-1), then benzene (0.012mg m-2

:::
mg

::::
m-2 h-1) with the flux of C3-benzene flux (0.0036mg m-2

:::
mg

::::
m-2 h-1) being the smallest. There was no clear difference10

between nighttime and daytime emissions for all species.
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Table 3. Summary of mean VOC fluxes measured in various urban or semi-urban locations.

VOC Species Mean Flux /mg m-2 h-1 Location and Year Reference

Benzene 0.0121 Beijing (, November – December 2016 ) This study

0.101 Beijing (, May – June 2017 ) This study

4.7* Mexico City, March – April 2006 Karl et al. (2009)

0.396 Mexico City, March 2006 Velasco et al. (2009)

0.12 Manchester, June 2006 Langford et al. (2009)

0.15 London, October 2006 Langford et al. (2010)

:::
0.17

:::::::
Houston,

:::
May

::
–
:::
July

::::
2008

:::::::::::::
Park et al. (2010)

0.09 London, August – December 2012 Valach et al. (2015)

0.02 Helsinki (urban background), January 2013 – September 2014 Rantala et al. (2016)

0.07* Central London, July 2013 Vaughan et al. (2017)

:::
0.02

::::::::
Innsbruck,

:::
July

::
–

::::::
October

::::
2015

:::::::::::::
Karl et al. (2018)

Toluene 0.0.0640 Beijing (, November – December 2016 ) This study

0.307 Beijing (May – June 2017) This study

0.83 Mexico City, April 2003 Velasco et al. (2005)

14.1* Mexico City, March – April 2006 Karl et al. (2009)

3.1 Mexico City, March 2006 Velasco et al. (2009)

0.28 Manchester, June 2006 Langford et al. (2009)

:::
0.58

:::::::
Houston,

:::
May

::
–
:::
July

::::
2008

:::::::::::::
Park et al. (2010)

0.41 London, August – December 2012 Valach et al. (2015)

0.051 Helsinki (urban background), January 2013 – September 2014 Rantala et al. (2016)

0.24* Central London, July 2013 Vaughan et al. (2017)

:::
0.08

::::::::
Innsbruck,

:::
July

::
–

::::::
October

::::
2015

:::::::::::::
Karl et al. (2018)

C2-Benzene 0.0730 Beijing(
:
, November – December 2016 ) This study

0.236 Beijing(
:
, May – June 2017 ) This study

0.468 Mexico City, April 2003 Velasco et al. (2005)

1.3 Mexico City, March 2006 Velasco et al. (2009)

0.32 Manchester, June 2006 Langford et al. (2009)

0.28 London, October 2006 Langford et al. (2010)

0.059 Helsinki (urban background), January 2013 – September 2014 Rantala et al. (2016)

0.32* Central London, July 2013 Vaughan et al. (2017)

*Measured from an aircraft.
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Table 3 summarises previous urban flux measurements to allow the VOC fluxes from Beijing to be put into context. The

benzene fluxes measured in Beijing during summer fall into the range of those reported in table
::::
Table

:
3 and are most similar

to values reported for large cities in the UK. Toluene fluxes and C2-benzene fluxes measured during the summer in Beijing

are also similar to the mean fluxes measured in UK cities where vehicular emissions were found to dominate aromatic fluxes.

However, it should be noted that previous measurements over London were all made with a quadrupole PTR-MS instrument,5

which, unlike the time-of-flight instrument used in the present study, is restricted to a unit mass resolution. This means that the

benzene, toluene and C2-benzene signals may have included contributions from other compounds and therefore is likely to be

an overestimate of the true C2-benzene emission. The VOC flux values reported for Mexico City are much greater than those

measured in Beijing for both seasons. Karl et al. (2009) reported an influence from evaporative emissions from the northern

industrial district but there is no industrial emission source within the flux footprint for the Beijing measurements. This, along10

with a more modern vehicle fleet subject to stricter emissions regulation in Beijing may explain the larger discrepancy between

these two cities. Fluxes measured in Helsinki are lower than emissions measured in the summer but comparable to those

measured during the winter.

Emissions of all four species were higher in summer than in winter, although the statistical significance of all but C3-

benzene is somewhat uncertain. This is the opposite to the trend observed for NOx and CO emissions, most likely driven by15

higher evaporation rates due to higher temperatures. The mean daytime temperature was 281 K during the winter campaign and

305 K during the summer campaign. Comparing VOC fluxes to NOx and CO fluxes in the summer, emissions of C2-benzene

and C3-benzene started to increase in the early hours of the morning (05:00) as observed for NOx and CO, indicating a rapid

release of emissions from a new source, such as traffic emissions. This is true for toluene and benzene, although the relative

difference between night and day emissions is less pronounced. All four hydrocarbon species peak showed an enhancement20

during the mid-morning during the summer, like CO, probably due to an additional contribution from residential and cooking

emissions from local restaurants. There is possibly a winter contribution from evening rush hour traffic to the benzene and

toluene emissions that mirrors that observed in the CO and NOx emissions at 17:00, though this is not clearly observed during

the summer campaign. During the summer, the emission for
::::::::
emissions

::
of all four species are elevated in the afternoon (between

13:00 – 18:00) when temperatures are highest. These emissions are likely enhanced by evaporation which masks the evening25

rush hour traffic contribution. There is a strong correlation between total VOC flux and heat flux in summer (r = 0.83) compared

to the winter (r = 0.35).

The ratio of benzene to toluene (B/T) is often used to gauge the photochemical age of an air mass as the two species have

different atmospheric lifetimes due to their different reactivities
::::::::
reactivity with the OH radical. Heeb et al. (2000) reported B/T

concentration ratios between 0.41 – 0.83 for primary exhaust emissions. As an air mass ages, the ratio increases as toluene is30

more reactive than benzene. For Beijing, the median B/T concentration ratio in the winter was 0.89 and 0.73 for the summer

at the upper end of the expected range for primary exhaust emissions. Barletta et al. (2005) reported a roadside B/T value

of 0.6 for Beijing, however vehicle fleet and fuel types are rapidly changing in response to legislation so this measurement

may not be representative for the measurement period of this work. The difference in B/T concentration ratios does however

indicate that VOC sources are changing between winter and summer as the change in ratio cannot be explained by temperature35
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differences
:::::::
expected

:::::::
changes

::
in

::::::::::
atmospheric

:::::::::
oxidation

::::
rates

::::::
caused

:::
by

:::::::
seasonal

::::::::::
differences

::
in

::::::::::
temperature. Langford et al.

(2009) points out that temperature can impact B/T ratios as reactivity rates increases
::::::
increase

:
with warmer temperatures but if

temperature was driving the seasonal difference it would be expected that
::
the

:
B/T ratio measured during summer is higher than

during winter. It is likely that additional sources such as domestic burning and cooking are present in winter; Barletta et al.

(2005) reports that higher B/T concentration ratios are associated with natural gas and biomass combustion, which supports5

the hypothesis that these type of emission sources could be leading to an increased B/T concentration ratio in the winter. The

B/T flux ratio should reflect better the ratio of the two pollutants in emissions sources as flux ratios are confined to the area of

the flux footprint rather than being influenced by a wider area (Karl et al., 2009). The median B/T flux ratios were 0.72 for the

winter campaign and 0.31 for the summer campaign, further suggesting a change in emission source between the two seasons.

The B/T flux ratio for summer is lower than expected for primary exhaust emissions though similar values have been reported10

for vehicles without catalytic converters (Heeb et al., 2000) and given higher temperatures, emissions from other sources such

as solvent evaporation, may affect this ratio.
::::::
Indeed,

:::::::::::::::
Karl et al. (2009)

::::::
showed

::::
that

::::
fuel

::::::::::
evaporative

:::::
losses

::::::::
typically

::::
have

::
a

:::::
higher

:::::::
toluene

:::::::
fraction,

:::::::
leading

::
to

:::::
lower

::::
B/T

::::::
ratios.

:::
The

::::::
strong

:::::::::
VOC-heat

::::
flux

:::::::::
correlation

::::
and

:::
the

::::
low

:::
B/T

:::::
ratio

::::::::
observed

:::::
during

:::
the

:::::::
summer

::::::::
campaign

::::::::
suggests

:::
fuel

::::::::::
evaporative

::::
loss

:
is
::
a
:::::
source

:::
of

:::::::
aromatic

:::::
VOC

::::::::
emissions

::
in

:::::::
Beijing.

:

3.5 Comparison with an Emissions Inventory15

The measured NOx and CO fluxes were compared to the high-resolution (3 km × 3 km) MEIC v1.3 inventory and the mean

diurnal profiles are presented in fig. 10.
:::
with

::
a
::::
base

::::
year

:::
of

:::::
2013.

:
The comparison of VOC emissions with an emissions

inventory is beyond the scope of this work. Comparison of measured diurnal trend and diurnal trend predicted by the MEIC

inventory for NOx and CO. Panels A and B show NOx and CO emissions for the winter campaign and panels C and D NOx

and CO emissions from the summer campaign. Four sections of the inventory are presented alongside the measured emission20

as a black dashed line. For both winter and summer, the inventory grossly overestimates emissions of
::
A

:::::
direct

::::::::::
comparison

::
of

:::
the

::::::
diurnal

::::::::
variation

::
in

:::::::::
measured

::::::::
emissions

::::
and

::::
that

::
in

:::
the

::::::::
inventory

::::::::
indicates

::::
that

:
NOx and CO

::::::::
emissions

:::
are

:::::::
grossly

:::::::::::
overestimated

:
throughout the day

::
for

::::
both

:::::::::
campaigns. Total NOx emissions are overestimated by a factor of 3.8 – 17 (mean

overestimation of 9.9 throughout the day) in the winter and 4.2 – 25 (mean = 11) in the summer. For CO, winter emissions

were between 1.6 – 9.7 (mean = 4.8) times larger in the inventory than those measured and summer emissions between 5.2 –25

21 (mean = 10) times larger.

:::
Part

::
of

:::
the

::::::::::
discrepancy

:::::::
between

:::
the

::::::::
inventory

::::
and

::::::::
measured

::::::::
emissions

::::
may

::
be

::::
due

::
to

:::
the

::::::::::
comparison

::
of

::::::::::
observations

::::::
(made

::
in

:::::::::
2016/2017)

::::
with

:::
an

::::
older

::::::::
inventory

:::::
(base

::::
year

:::::
2013).

:::::::
China’s

::::
NOx ::::::::

emissions
::::
have

::::::
rapidly

::::::::
changed

:
in
:::
the

::::
past

::::
three

::::::::
decades.

:::::::::::::
Liu et al. (2016)

:::::
report

::::
that

:::::::
between

:::::
2005

:::
and

:::::
2011

::::
NO2:::::::::

emissions
::::::::
increased

::
by

:::
53

::
%

:::
for

:::
the

:::::
whole

:::
of

::::::
China,

::::::::
attributed

:::
for

::
the

:::::
most

::::
part

::
to

:::::::::
increasing

:::
fuel

:::::::::::
consumption

:::::
with

::::
coal

:::
the

::::::::
dominant

::::
fuel

::::
type.

:::
An

::::::::
estimated

::::::::::::
three-quarters

::
of
:::

all
:::::::::
electricity30

::
in

:::::
China

::::
was

:::::::::
generated

::
by

::::
coal

:::
in

::::
2016

::::::::::::
(International

:::::::
Energy

:::::::
Agency,

::::::
2016).

:::::
After

:::::
2012

::::::::
however,

:
a
:::::::::::

combination
:::
of

:::
the

:::::::::
installation

::
of

::::::
power

::::
plant

::::::::::
de-nitration

:::::::
devices

:::
and

:::::::
vehicle

::::::::
emissions

:::::::
controls

::::
has

:::
led

::
to

:
a
:::
32

::
%

::::::::
decrease

::
in

::::
NO2:::::::::

emissions

:::::::::::::::::::::::::::::::::::::::::::::::::
(Liu et al., 2016; Krotkov et al., 2016; Miyazaki et al., 2017).

::
In

::::::::
Beijing,

::::
NOx:::::::::

emissions
:::
are

:::::::::
decreasing

::::::
thanks

::
to

:::::::::
numerous

::
air

::::::::
pollution

::::::
control

::::::::
measures

:::::::::::
implemented

:::::
since

:::::
2000;

::::::::
polluting

::::::::
industries

::::
and

:::::
power

::::::
plants

::::
have

::::
been

::::::::
relocated

::::::
outside

:::
of
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::
the

::::
city,

:::::::
stricter

::::::::
emissions

::::::::
standards

:::
for

::::::::
industrial

::::
and

::::::::
domestic

::::::
boilers

::::
have

:::::
been

:::::::::
introduced

:::
and

:::
the

::::
fuel

::::
type

::::::
shifted

:::::
from

:::
coal

::
to
::::
gas

:::::::::::::::
(Wang et al., 2010)

:
.
:::::
Since

:::
the

::::::::::
introduction

::
of

:::
the

::::::
“Clean

::::
Air

::::::
Action

:::::
Plan”

::
in

::::::
Beijing

::
in

:::::
2013,

:::::::
900,000

::::::::::
households

::
in

::::::
Beijing

:::::
have

::::::::
converted

:::::
from

:::::
using

::::
coal

::
to

:::::::
cleaner

::::::::::
technologies

::::
like

::::
gas

::
or

:::::::::
electricity.

::::
The

:::::::
burning

::
of

::::::::
biomass,

::::
such

:::
as

::::
wood

::::
and

::::::
crops,

:::
was

::::::::::
completely

:::::::::
forbidden

::
by

:::
the

::::
end

::
of

:::::
2016

:::::::::::::::::
(Cheng et al., 2019).

::::
The

::::::
impact

:::
of

:::
the

:::::::::
emissions

:::::::
controls

:::
has

::::
been

::::::::
predicted

::
to

::::::
reduce

:::::::::
emissions

::
of

::::
NOx::::

and
::::::
VOCs

::
by

:::
43

::
%

::::
and

::
42

:::
%

::::::::::
respectively

:::::::
between

:::::
2013

:
–
:::::

2017
::
in

:::::::
Beijing5

::::::::::::::::
(Cheng et al., 2019).

:::::
Most

:::::::::
significant

:::
for

::::
NOx:::::::::

emissions
:::::::
however

::
is

:::
the

:::::::
stringent

:::::::
vehicle

::::::
control

::::::::
measures

:::::::::
introduced

::::::
within

::
the

::::
last

::::::
decade,

::::::::::
accounting

::
for

:::
47

::
%

::
of

:::
the

::::
total

::::::::
reduction

::
in

:::::::::
emissions

:::
for

::
the

::::
city.

:

:::
CO

::::::::
emissions

::::
have

::::
also

::::
been

::::::::
declining

::
in

::::::
Beijing

::::
over

:::
the

:::
past

::::
two

::::::
decades

:::
by

::
an

::::::
average

::::
rate

::
of

::::
1.14

::
%

:::::
year-1

::::::::::::::::
(Wang et al., 2018)

:
.
::::::::::::::::
Zheng et al. (2018)

:::::::
highlight

:
a
::::::::
reduction

:::
in

::::::::
inefficient

::::::::
domestic

:::::
stoves

::::
and

:::::::::::
improvements

::
in
:::::::::
emissions

::::::::
standards

:::
for

:::::::
vehicles

::
as

:::::
being

::::::::
dominant

::::::
forces

:::
for

:::
the

::::::::
observed

::::::::
reduction

:::
in

:::
CO

:::::::::
emissions.

::::
For

::::::
VOCs,

::::::
vehicle

::::::::
emission

:::::::
controls

:::::
were

:::::::
another10

::::::::
significant

::::::::::
contributor

::
to

:::
the

::::::::
reduction

::::
with

::::
16.1

::
%

::
of

:::
the

::::::::
reduction

:::::::::
attributed

::
to

:::
new

::::::::
controls.

::::::::::::
Improvements

::
in

:::::::::::
management

::
of

::::::
solvent

:::
use

:::::
(e.g.

:::
use

::
of

:::::::::
high-solid

:::
and

::::::::::
waterborne

:::::
paints

:::::::
instead

::
of

::::::
solvent

:::::
based

:::::
ones)

::::::::::
dominated

:::
the

::::::::
reduction

::
in

:::::
VOC

::::::::
emissions

::::::::::
contributing

::::
49.3

::
%
:::

to
:::
the

::::
total

::::::::
reduction

::
in

:::::::
Beijing.

:::::::::
Emissions

:::::::
between

:::::
2013

:
–
:::::
2016

::::
were

::::::::
predicted

::
to

::::::
reduce

:::
by

::
30

::
%

:::
for

::::
NOx::::

and
::
35

::
%

:::
for

:::::
VOCs

:::::::::::::::::::::::::::::::::
(Cheng et al., 2019; Biggart et al., 2020)

:
.

:::::
These

::::::::
estimated

:::::::
changes

:::::
were

::::::
applied

::
to

:::
the

::::::::
inventory

:::::::
leading

::
to

:::::::::
reductions

::
in

::::::::
emissions

:::
of

::
30

:::
%

::
in

:::
the

:::::
winter

::::
and

::
43

:::
%15

::
for

:::
the

:::::::
summer

:::
for

::::
both

:::::::
species.

:::
No

::::::::
emissions

:::::::::
reductions

:::::
were

::::::::
presented

:::
for

:::
CO

:::::
alone

:::
but

:::::
given

:::
that

:::
its

:::::::
expected

:::::::
sources

:::
are

::::::
similar

::
to

::::
NOx :::

the
::::
same

::::::::
reduction

:::::
factor

::::
was

::::::
applied

::
to

:::
the

:::
CO

::::::::
inventory

:::::::::
emissions.

::::
The

:::::
mean

::::::
diurnal

::::::
profiles

:::
for

:::
the

:::::::
lowered

::::::::
inventory

::::::::
estimates

:::
are

::::::::
presented

:::
in

:::
Fig.

::::
10,

::::
with

::::::::
measured

:::::::::
emissions

::::::
shown

::
by

::::
the

:::::
black

::::::
dashed

::::
line.

:::::
With

:::
the

::::::::
expected

::::::::
reduction

:::::::::
considered,

:::::
NOx :

is
::::
still

::::::::::::
overestimated

::
by

::
a
:::::
factor

::
of

:::
2.7

::
–

::
12

::::::
(mean

::
=

:::
7.0)

::
in
:::
the

::::::
winter

::::
and

:::
2.4

:
–
:::
14

:::::
(mean

::
=
::::
6.8)

::::
times

::
in
:::

the
::::::::

summer.
::::::::
Similarly,

::::
CO

::::::::
emissions

:::
are

::::
still

:::::::::::
overestimated

:::
for

::::
both

:::::::
seasons

::::
with

::::::::
inventory

::::
CO

::::::::
emissions

:::
1.1

::
–

:::
6.820

:::::
(mean

::
=

:::
3.4)

:::::
times

:::::
larger

:::::
than

:::
the

::::::::
measured

:::
CO

::::::::
emission

:::
for

:::
the

:::::
winter

:::::::::
campaign.

:::
For

::::::::
summer,

:::
the

::::::::
inventory

::::::::::::
overestimated

:::
CO

::::::::
emissions

:::
by

:
a
:::::
factor

:::
of

:::
2.9

:
–
:::
12

:::::
(mean

::
=
::::
5.6)

:::::
times.

::::
The

::::::
closest

::::::::::
agreements

:::::::
between

::::::::
inventory

:::
and

::::::::::::
measurements

:::::
were

:::::
during

:::
the

:::::::::
nighttime

::
in

:::
all

:::::
cases.

:::::::::
Applying

:::::
these

:::::::::
reductions

::::
does

:::::::::
obviously

:::::::
improve

:::
the

:::::::::
inventory

::::::::::
comparison,

:::::::::
compared

::::
with

:::
the

:::::::
original,

::::::::
however

:::::
large

:::::::::::::
overestimations

:::::::
remain.

:
Examination of the flux footprint suggests that the majority of

measured emissions are coming from transportation and residential sources. The inventory supports this for CO, suggesting25

that transportation is the largest contributing sector, followed by the residential sector. However, for NOx the inventory also

suggests that there is a large industrial source, contributing up to 60 % to the total emissions for the winter campaign and 52 %

for the summer campaign. No obvious industrial sources could be identified within the flux footprint for this study. Zheng et al.

(2017) observed a decoupling between real world emissions and the spatial proxies used to develop
:::
and

::::::::
downscale

:
inventories

as polluting industries are moved out of urban centres. The methods used to allocate emissions in the MEIC inventory appear30

to result in emissions being overestimated in the urban area of Beijing; spatial proxies such as population density and Gross

Domestic Product (GDP) are used to scale down national emissions statistics. This method tends to overestimate emissions in

urban centres and underestimate emissions in rural areas and so even if this comparison only considered the residential and

transport sectors, NOx and CO emissions would still be significantly overestimated by the inventory. Just considering these

two sectors, NOx emissions are overestimated by a factor 2.4
::
1.6

:
– 7.3

::
5.1

:
(mean = 4.7

::
3.3) for winter and 3.4

::
1.9

:
– 15

:::
8.535
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Figure 10.
:::::::
Measured

:::::
diurnal

:::::
trend

::::::
(dashed

::::
black

::::
line)

::::
and

:::::::
predicted

::::::
diurnal

::::
trend

::::
using

:::
the

:::::
MEIC

::::::::
inventory

:::::
(filled

::::
areas

::
by

::::::
sector)

:::
for

:::
NOx:::

and
:::

CO
:::::::::

emissions.
:::::
MEIC

:::::::
inventory

:::
data

:::
has

::::
been

:::::::
reduced

::
by

::
30

::
%
:::
for

:::::::::
comparison

::::
with

::
the

::::::
winter

::::
2016

:::::::
campaign

:::
and

:::
by

::
43

::
%

:::
for

::::::::
comparison

::::
with

:::
the

::::::
summer

::::
2017

:::::::::
campaigns

:
to
::::

take
::::::
account

::
of

:::::::
expected

::::::::
emissions

::::::::
reductions

:::::::
indicated

::
in

::::::::::::::
Cheng et al. (2019)

:
.
:::::
Panels

::
A

:::
and

:
B
::::
show

::::::::
emissions

:::
for

::
the

:::::
winter

::::::::
campaign

:::
and

:::::
panels

:
C
:::

and
::

D
::::
show

::::::::
emissions

::::
from

:::
the

::::::
summer

::::::::
campaign.

(mean = 6.5
::
3.7) for summer. CO emissions are overestimated by 1.5

::
1.1

:
– 9.2

:::
6.5 (mean = 4.4

:::
3.1) in winter and 4.7

:::
2.7 – 20

::
12

:
(mean = 9.2

:::
5.2) in summer. The sensitivity of the inventory to location was tested by shifting the inventory grid 3 km in

each direction (north, east, south and west) and it was found that this had little impact on the comparison with the inventory

still overestimating emissions for all directions.

The inventory did capture some of the general diurnal variation in emissions. Figure 11 shows the normalised diurnal5

variation for the transportation and residential sectors, calculated relative to one another assuming these sectors are the only

emission sectors. The diurnal variation in measured emissions normalised by the daily average is overlaid. For NOx and CO

emissions in the winter (fig
:::
Fig. 11, panels A and B) the sum of the residential and transportation emissions captures the time

of the morning rush hour peak at 07:00 and the evening enhancement in emissions in the mid-afternoon to evening due to

a combination of increased residential and traffic activity. Residential emissions are predicted in the inventory to increase10

between 11:00 – 12:00 which was observed in the measurement
::::::::::::
measurements,

:
though to a greater extent than the inventory

suggests.
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Figure 11. Comparison of normalised diurnal variation in NOx and CO emission predicted by the MEIC inventory and measured flux. The

normalised emission has been calculated for the inventory by dividing hourly sector emission by the mean daily sector emission. Given there

are no clear industrial or power generation emission sources within the flux footprint, only the residential (blue solid line) and transportation

(purple solid line) sectors have been presented. The normalised diurnal variation for these sectors have been multiplied by the normalised

diurnal variation for the sum of the residential and transportation sectors (grey solid line) to reflect the relative contributions of the two sectors.

Normalised diurnal variation in the measured emission has been calculated by dividing mean hourly emission by mean daily emission (black

dashed line). Panels A and B show data for NOx and CO from the winter campaign and panels C and D for the summer.

Looking at the summer data for NOx (fig
:::
Fig. 11, panel C), the increase in emissions after 05:00 when traffic density increased

was well captured for NOx though the measurement
:::::::::::
measurements

:
suggested a slightly quicker increase in emission than

suggested by the inventory. The minimum daytime emission predicted by the inventory occurred at 12:00 where there was a

dip in emissions from transportation though this was not reflected in the measurements where there was an almost constant

decrease in NOx emissions until the evening rush hour peak at 17:00. The evening rush hour peak for NOx in summer was much5

more distinct than the inventory suggests and NOx emissions decrease rapidly after 18:00, earlier than the inventory predicts.

NOx emissions from residential sources in the inventory showed a small enhancement around midday which was not clearly

observed in the measurement
::::::::::::
measurements, suggesting traffic related emissions dominate here. For CO in summer (fig

:::
Fig. 11

panel D), the increase in measured emissions after 05:00 matches the rate of increase predicted
::
by the inventory very well. After

07:00 the inventory predicted CO emissions would not increase further which was not reflected in the measured emissions.10

Emissions from the residential sector are predicted to increase between 11:00 – 12:00 reflecting emissions from cooking

activities. Within the flux footprint there were several restaurants including barbecue restaurants where food was cooked over

open coals. This is not likely to be included in the inventory but would explain the increase in measured CO emissions before

lunchtime as food is prepared. As with NOx emissions, the evening rush hour peak in measured CO emissions was narrower

and began to decrease earlier than suggested by the inventory.15
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The inventory suggests that total emissions are higher in winter than in summer; NOx emissions from the residential and

transportation sectors are between 1.1
:::
1.3 – 1.4

:::
1.7 times larger and for CO emissions from these two sectors are between 1.2

:::
1.5

– 1.6
:::
2.0 times larger. The inventory performs relatively well capturing the measured seasonal difference in NOx (

::
for

:::::::::
emissions

::
of

::::
both

:::::::
species.

::::
The

:::::::
seasonal

:::::::::
difference

::
in

::::
NOx:::::::::

emissions
:::
are

::::::
slightly

::::::::::::
overestimated

:::::::::
(measured

:
emissions were on average

1.2 times greater in winter compared to summer) but not for CO (
::
and

::::
the

::::::::
inventory

::::::::::::
underestimates

::::
the

:::::::
seasonal

:::::::::
difference5

::
in

:::
CO

:::::::::
emissions

:::::::::
(measured emissions were on average 2.3 times higher in winter than summer). Inventory NOx emissions

for transportation are almost identical for the two seasons whilst residential emissions vary by a factor of four. The inventory

attributes seasonal differences in CO emissions chiefly to the residential sector, estimating approximately a 4 fold increase

in residential emissions in winter compared to summer. CO emissions from the transportation sector are between 1.05 – 1.09

times higher in winter than summer suggesting any effects of vehicle cold starts and reduced engine combustion efficiencies are10

not represented in the inventory ; something that was considered the main source of seasonal variation in CO fluxes in London

(Helfter et al., 2016). Aside from the error introduced through the use of the spatial proxies for scaling, discrepancies between

inventory and measurements are likely to be due to the comparison of observations (2016/2017) with an older inventory (2013).

China’s NOx emissions have rapidly changed in the past three decades. Liu et al. (2016) report that between 2005 to 2011 NO2

emissions increased by 53 % for the whole of China, attributed for the most part to increasing fuel consumption with coal15

the dominant fuel type. An estimated three-quarters of all electricity in China was generated by coal in 2016 (International

Energy Agency, 2016). After 2012 however, a combination of the installation of power plant de-nitration devices and vehicle

emissionscontrols has led to a 32 % decrease in NO2 emissions (Liu et al., 2016; Krotkov et al., 2016; Miyazaki et al., 2017).

In Beijing, NOx emissions are decreasing thanks to numerous air pollution control measures implemented since 2000; polluting

industries and power plants have been relocated outside of the city, stricter emissions standards for industrial and domestic20

boilers have been introduced and the fuel type shifted from coal to gas (Wang et al., 2010). Since the introduction of the “Clean

Air Action Plan” in Beijing in 2013
::
For

::::
both

:::::
NOx :::

and
:::
CO

:::
the

::::::::
inventory

:::::::
suggests

::::
that

:::::::
seasonal

::::::::
variation

::
is

:::::
driven

:::
by

::::::::
increased

::::::::
residential

::::::
sector

::::::::
emissions, 900,000 households in Beijing have converted from using coal to cleaner technologies like gas or

electricity. The burning of biomass, such as wood and crops, was completely forbidden by the end of 2016 (Cheng et al., 2019).

The impact of the emissions controls has been predicted to reduce emissions of NOx and VOCs by 43 % and 42 % respectively25

between 2013 – 2017 in Beijing (Cheng et al., 2019). Most significant for NOx emissions however is the stringent vehicle

control measures introduced within the last decade, accounting for 47 % of the total reduction in emissions for the city. CO

emissions have also been declining in Beijing over the past two decades by an average rate of 1.14 % year-1 (Wang et al., 2018)

. Zheng et al. (2018) highlight a reduction in inefficient domestic stoves and improvements in emissions standards for vehicles

as being dominant forces for the observed reduction in CO emissions. For VOCs, vehicle emission controls were another30

significant contributor to the reduction with 16.1 % of the reduction attributed to new controls. Improvements in management

of solvent use (e.g. use of high-solid and waterborne paints instead of solvent based ones) dominated the reduction in VOC

emissions contributing 49.3 % to the total reduction in Beijing. Emissions between 2013 – 2016 were predicted to reduce by

30 % for NOx and 35 % for VOCs (Cheng et al., 2019; ?). Taking these reductions into account and lowering the inventory

emissions by 30 % in the winter and 43 % for the summer NOx is still overestimated by a factor of 1.6 – 7.2 in the winter and35
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1.6 – 9.0 times in the summer. No emissions reductions were presented for CO alone but given that its expected sources are

similar to NOx the same reduction factor was applied to the CO inventory emissions. With this reduction taken into account

CO emissions predicted by the inventory were at times lower than those measured during the night, with the inventory CO

emissions being 0.84 – 5.0 times the measured CO emission. For summer, the inventory overestimated CO emissions by a

factor of 2.2 – 9.0 times. The closest agreements between inventory and measurements were during the nighttime in all cases.5

Applying these reductions does obviously improve the inventory comparison however given the large overestimations it is

likely that the uncertainty caused by use of spatial proxies when developing the inventory is the main one.
:::::
which

:::
are

::::::::
predicted

::
to

::
be

:
5
:::::
times

::::::
higher

::
in

::::::
winter

:::
than

::::::::
summer.

4 Summary

NOx, CO and aromatic VOC emissions have been quantified for the first time during two contrasting seasons for an area of10

central Beijing. The magnitude of NOx emissions were found to be similar during the winter and summer periods whilst the

fluxes of CO showed a greater seasonal dependence with winter emissions being over 2 times greater than CO emissions

measured during summer. The dominant source for NOx and CO emissions is traffic with influence from residential emissions.

The diurnal variation in aromatic VOCs fluxes also suggested traffic and residential sources, though evaporative effects due to

higher summer temperatures meant emissions were greater in the summer than the winter. The NOx and CO fluxes presented15

in this work provide good evidence that proxy-based inventories can overestimate emissions for urban centres as suggested by

Zheng et al. (2017). When developing inventories at an urban scale future work should look carefully at up-to-date proxies or

at deriving emissions by bottom-up approaches in order to correctly predict the magnitude of emissions. When comparing
:::
the

diurnal variation in inventory and measurement the inventory performed relatively well capturing morning and evening rush

hour peaks. The inventory also attributed traffic and residential emissions as the major source of NOx and CO emissions which20

was supported by analysis in this work. This set of pollutant flux measurements can provide a useful basis for developing these

high resolution urban inventories which are at an appropriate scale to assess public health impacts of pollution.
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Appendix A

Figure A1. Mean NOx and CO fluxes as a function of different u∗ thresholds.
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Figure A2. Comparison between diurnal variation in NOx and CO fluxes for all u∗ values and for u∗ values over 0.175.

Figure A3. MEIC inventory emission grids for NOx and CO for November. Map was built using data from © OpenStreetMap contributors

2019. Distributed under a Creative Commons BY-SA License.
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