Characterization of the light absorbing properties, chromophores composition and sources of brown carbon aerosol in Xi'an, Northwest China

Wei Yuan^{1,2}, Ru-Jin Huang^{1,3}, Lu Yang¹, Jie Guo¹, Ziyi Chen⁴, Jing Duan^{1,2}, Meng Wang^{1,2}, Ting
Wang^{1,2}, Haiyan Ni¹, Yongming Han¹, Yongjie Li⁵, Qi Chen⁶, Yang Chen⁷, Thorsten Hoffmann⁸,

5 Colin O'Dowd⁹

- ⁶ ¹State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in
- 7 Quaternary Science and Global Change, Chinese Academy of Sciences, and Key Laboratory of
- 8 Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences,
- 9 Xi'an 710061, China
- 10 ²University of Chinese Academy of Sciences, Beijing 100049, China
- ¹¹ ³Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, 710049, China
- 12 ⁴Royal School of Mines, South Kensington Campus, Imperial College London, Exhibition
- 13 Road, London SW7 3RW, United Kingdom
- ⁵Department of Civil and Environmental Engineering, Faculty of Science and Technology,
- 15 University of Macau, Taipa, Macau 999078, China
- 16 ⁶State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of
- 17 Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- 18 ⁷Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences,
- 19 Chongqing 400714, China
- 20 ⁸Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz,
- 21 Duesbergweg 10–14, Mainz 55128, Germany
- ⁹School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute, National
- 23 University of Ireland Galway, University Road, Galway H91CF50, Ireland
- 24 *Correspondence to*: Ru-Jin Huang (rujin.huang@ieecas.cn)

Table S1. List of target compounds and their abbreviations measured in this study.

Compounds	Abbreviation				
PAHs					
Fluoranthene	FLU				
Pyrene	PYR				
Chrysene	CHR				
Benzo(a)anthracene	BaA				
Benzo(a)pyrene	BaP				
Benzo(b)fluoranthene	BbF				
Benzo(k)fluoranthene	BkF				
Indeno[1,2,3-cd]pyrene	IcdP				
Benzo(ghi)perylene	BghiP				
9,10-Anthracenequinone	9,10AQ				
Benzanthrone	BEN				
Benzo[b]fluoren-11-One	BbF11O				
Picene	PI				
MOPs					
Syringyl Acetone	SyA				
Vanillin	VAN				
Vanillic Acid	VaA				
NACs					
4-Nitronhenol	4NP				
4-Nitro-1-Naphthol	4N1N				
2-Methyl-4-Nitrophenol	2M4NP				
3-Methyl-4-Nitrophenol	3M4NP				
2.6-Dimethyl-4-Nitropheol	2 6DM4NP				
4-Nitrocatechol	4NC				
3-Methyl-5-Nitrocatechol	3M5NC				
4-Methyl-5-Nitrocatechol	4M5NC				
3-Nitrosalicylic Acid	3NSA				
5-Nitrosalicylic Acid	5NSA				
Hopanes					
$17\alpha(H), 21\beta(H)-30$ -Norhopane	HP1				
$1/\alpha(H), 21\beta(H)$ -Hopane	HP2				
$17\alpha(H),21\beta(H)-(22S)$ -Homohopane	HP3				
$17\alpha(H), 21\beta(H)-(22R)$ -Homohopane	HP4				
Others					
Levoglucosan	LEV				
Phthalic Acid	<i>o</i> -ph				

27 **Table S2.** *F* matrix elements constrained in the ME-2/chemical species 4 factors solution. The

28 profiles are normalized to the Abs_{365,MSOC}. The 0 value denote the $f_{h,j}$ values constrained in ME-

Species	Secondary	Biomass burning Coal Burning		Vehicle emission	
	Formation				
Abs _{365,MSOC}	-			-	
o-ph	-	0 0		0	
HP1	0	0 -		-	
HP2	0	0	-	-	
HP3	0	0	-	-	
HP4	0	0	-	-	
PI	0	-	-	-	
FLU	0	-	-	-	
PYR	0	-	-	-	
CHR	0	-	-	-	
BaA	0	-	-	-	
BaP	0	-	-	-	
BbF	0	-	-	-	
BkF	0	-	-	-	
IcdP	0	-	-	-	
BghiP	0	-	-	-	
9,10AQ	-	-	-	-	
BEN	-	-	-	-	
BbF11O	-	-	-	-	
LEV	0	-	0	0	
VaA	0	-	0	0	
VAN	0	-	0	0	
SyA	0	-	0	0	

29 2c, while hyphens denote unconstrained elements.

	OC	WSOC	Abs _{365,MSOC}	Abs _{365,WSOC}	MAE _{365,WSOC}	MAE _{365,MSOC}	AAE _{MSOC}	AAE _{wsoc}	WSOC/	Abs _{365,WSOC} /
	(µgC m ⁻³)	(µgC m ⁻³)	(Mm ⁻¹)	(Mm ⁻¹)	$(m^2 g C^{-1})$	$(m^2 gC^{-1})$			OC	Abs _{365,MSOC}
Spring	6.48(3.35)	2.78(0.81)	4.73(1.63)	2.75(1.03)	1.01(0.31)	0.79(0.22)	4.75(0.39)	5.74(0.39)	0.47(0.15)	0.60(0.18)
Summer	3.36(1.08)	2.22(0.81)	4.05(2.08)	1.89(0.68)	0.91(0.30)	1.21(0.46)	4.59(0.62)	6.15(0.49)	0.66(0.16)	0.52(0.16)
Fall	11.10(6.58)	5.69(2.53)	15.41(7.47)	6.75(3.28)	1.18(0.16)	1.52(0.40)	4.45(0.42)	5.70(0.21)	0.57(0.14)	0.45(0.09)
Winter	22.63(10.60)	10.49(5.65)	34.42(18.39)	17.83(8.02)	1.85(0.48)	1.50(0.29)	5.18(0.23)	5.32(0.18)	0.45(0.10)	0.54(0.08)

Table S3. Seasonal mean and standard deviation (value in bracket) of measured parameters in

31 this study.

Figure S1. Comparison of Abs_{365,WSOC} in Asia urban (Du et al., 2014; Kirillova et al., 2014;
Chen et al., 2018; Huang et al., 2018; Park et al., 2018), remote sites (Srinivas and Sarin, 2013;
Bosch et al., 2014; Zhu et al., 2018) and the United States (Zhang et al., 2011; Liu et al., 2013;

36 Zhang et al., 2013; Xie et al., 2019).

Figure S2. MAE spectra of measured (a) PAHs, (b) NACs, and (c) MOPs at wavelength of
300-500 nm.

41

38

37

42 Calculation of light absorption contribution

43 Light absorption contribution of individual chromophore to methanol-soluble BrC at 44 wavelength of λ (Cont_{chr/BrC, λ}) is calculation as following equation:

45
$$\operatorname{Cont}_{\operatorname{chr}/\operatorname{Br}\mathcal{C},\lambda} = \frac{\operatorname{Conc}_{\operatorname{chr}} \times \operatorname{MAE}_{\operatorname{chr},\lambda}}{\operatorname{Abs}_{\operatorname{Br}\mathcal{C},\lambda}}$$
(S1)

46 where Conc_{chr} is the concentration of individual chromophore, $\text{MAE}_{chr, \lambda}$ represents the mass 47 absorption efficiency (MAE) of individual chromophore at wavelength of λ nm and $\text{Abs}_{BrC, \lambda}$ is 48 the light absorption coefficient of BrC at wavelength of λ nm.

50 Figure S3. Factor profiles for the 4-factor solution in (a) spring, (b) summer, (c) fall, and (d)

52 References

- Bosch, C., Andersson, A., Kirillova, E. N., Budhavant, K., Tiwari, S., Praveen, P. S., Russell,
 L. M., Beres, N. D., Ramanathan, V., and Gustafsson, Ö.: Source-diagnostic dual-isotope
 composition and optical properties of water-soluble organic carbon and elemental carbon
 in the South Asian outflow intercepted over the Indian Ocean, J. Geophys. Res. Atmos.,
 119, 11743-11759. doi:10.1002/2014JD022127, 2014.
- Chen, Y., Ge, X., Chen, H., Xie, X., Chen, Y., Wang, J., Ye, Z., Bao, M., Zhang, Y., and Chen, 58 59 M.: Seasonal light absorption properties of water-soluble brown carbon in atmospheric 60 China, 187. 230-240, fine particles in Nanjing, Atmos. Environ., 61 doi:10.1016/j.atmosenv.2018.06.002, 2018.
- Du, Z., He, K., Cheng, Y., Duan, F., Ma, Y., Liu, J., Zhang, X., Zheng, M., and Weber, R.: A
 yearlong study of water-soluble organic carbon in Beijing II: Light absorption properties,
 Atmos. Environ., 89, 235–241, doi:10.1016/j.atmosenv.2014.02.022, 2014.
- Huang, R. J., Yang, L., Cao, J., Chen, Y., Chen, Q., Li, Y., Duan, J., Zhu, C., Dai, W., Wang, K., 65 Lin, C., Ni, H., Corbin, J. C., Wu, Y., Zhang, R., Tie, X., Hoffmann, T., O'Dowd, C., and 66 67 Dusek, U.: Brown carbon aerosol in urban Xi'an, Northwest China: the composition and light absorption Environ. Sci. Technol., 52, 6825-6833, 68 properties, 69 doi:10.1021/acs.est.8b02386, 2018.
- Kirillova, E. N., Andersson, A., Tiwari, S., Srivastava, A. K., Bisht, S. D., and Gustafsson, Ö.:
 Water-soluble organic carbon aerosols during a full New Delhi winter: Isotope-based
 source apportionment and optical properties, J. Geophys. Res. Atmos., 119, 3476–3485,
 2014.
- Liu, J., Bergin, M., Guo, H., King, L., Kotra, N., Edgerton, E., and Weber, R. J.: Size-resolved
 measurements of brown carbon in water and methanol extracts and estimates of their
 contribution to ambient fine-particle light absorption, Atmos. Chem. Phys., 13, 12389–
 12404, doi:10.5194/acp-13-12389-2013, 2013.
- Park, S., Yu, G. H., and Lee, S.: Optical absorption characteristics of brown carbon aerosols
 during the KORUS-AQ campaign at an urban site, Atmos. Res., 203, 16-27,
 doi:10.1016/j.atmosres.2017.12.002, 2018.

- Srinivas, B., and Sarin, M. M.: Light-absorbing organic aerosols (brown carbon) over the
 tropical Indian Ocean: impact of biomass burning emissions, Environ. Res. Lett., 8,
 044042, doi:10.1088/1748-9326/8/4/044042, 2013.
- Xie, M. J., Chen, X., Holder, A. L., Hays, M. D., Lewandowski, M., Offenberg, J. H.,
 Kleindienst, T. E., Jaoui, M., and Hannigan, M. P.: Light absorption of organic carbon and
 its sources at a southeastern U.S. location in summer, Environ. Pollut., 244, 38-46,
 doi:10.1016/j.envpol.2018.09.125, 2019.
- Zhang, X., Lin, Y.-H., Surratt, J. D., Zotter, P., Prévôt, A. S. H., and Weber, R. J.: Light
 absorbing-soluble organic aerosol in Los Angeles and Atlanta: a contrast in secondary
 organic aerosol, Geophys. Res. Lett., 38, L21810, doi:10.1029/2011GL049385, 2011.
- Zhang, X., Lin, Y.-H., Surratt, J. D., and Weber, R.: Sources, composition and absorption
 Ångström exponent of light-absorbing organic components in aerosol extracts from the
 Los Angeles Basin, Environ. Sci. Technol., 47, 3685-3693, doi:10.1021/es305047b, 2013.
- Zhu, C. S., Cao, J. J., Huang, R. J., Shen, Z. X., Wang, Q. Y., and Zhang, N. N.: Light absorption
 properties of brown carbon over the southeastern Tibetan Plateau, Sci. Total Environ., 625,
 246-251, doi:10.1016/j.scitotenv.2017.12.183, 2018.