
Reviewer comment: 
The methodical part of the back trajectory analysis in section 3 is still insufficient. There is very little or 
almost no information given how exactly the back trajectories are used for calculation of the immission 
maps. It seems that the emissions were summed up all along the trajectory without taking the height 
of the trajectory into account or whether the air parcel had contact with the PBL and a chance to pick 
up emissions or not. Although I am not an expert on back trajectory analysis, I would consider this issue 
very essential for the paper. For linking emissions with concentration maps (immission maps) only 
emissions from grid cells where the back trajectory was close to the ground should be considered. If 
this is not the case here, I would have doubts regarding the validity and the usefulness of the calculated 
immission maps and consequently of the key messages of this paper. So it is in my view crucial that 
the applied back trajectory analysis has been done correctly. This must be demonstrated by a more 
detailed and convincing description of the applied method. 
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“In the immission maps constructed with extrapolated measurements at the stations and in 
any comparisons with emissions along the back trajectories only trajectory points under 
1000 m altitude above ground were utilized. “  
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Abstract 11 

Ten years of hourly aerosol and gas data at four rural German stations have been combined 12 

with hourly back trajectories to the stations and inventories of the European EDGAR emission 13 

database yielding immission maps over Germany of PM10, particle number concentrations, and 14 

equivalent black carbon (eBC).  The maps reflect aerosol emissions modified with atmospheric 15 

processes during transport between sources and receptor sites.  Compared to emission maps 16 

strong Western European emission centers do not dominate the downwind concentrations 17 

because their emissions are reduced by atmospheric processes on the way to the receptor area.  18 

PM10, eBC, and to some extent also particle number concentrations are rather controlled by 19 

emissions from Southeastern Europe from which pollution transport often occurs under dryer 20 

conditions.  Newly formed particles are found in air masses from a broad sector reaching from 21 

Southern Germany to Western Europe which we explain with gaseous particle precursors 22 

coming with little wet scavenging from this region. 23 

 Annual emissions for 2009 of PM10, BC, SO2, and NOx were accumulated along each 24 

trajectory and compared with the corresponding measured time series.  The agreement of each 25 

pair of time series was optimized by varying monthly factors and annual factors on the 2009 26 
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emissions.  This approach yielded broader summer emission minima than published values that 29 

were partly displaced from the midsummer positions.  The validity of connecting immission 30 

and emission of particulate pollution was tested by calculating temporal changes of eBC for 31 

subsets of back trajectories passing over two separate prominent emission regions, region A to 32 

the Northwest and B to the Southeast of the measuring stations.  Consistent with reported 33 

emission data the calculated immission decreases over region A are significantly stronger than 34 

over region B. 35 

 36 

  37 

Gelöscht: For BC, SO2, and NOx stronger emission-38 
reductions were determined than what German and European 39 
environmental agencies reported.  These findings are 40 
emphasized with 2017 as endpoint of the trend from which on 41 
our study shows emission increases.  Comparing calculated 42 
trends with emission trends in neighboring countries as 43 
published by EEA supports the explanation that the observed 44 
trends are to some extent due to changes in imported air 45 
masses.  Most strongly this holds for SO2, the trend of which 46 
follows that of Romanian emissions rather well.47 
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1 Introduction 48 

 49 

The atmospheric aerosol is known to influence the Earth’s radiation budget because it directly 50 

scatters and absorbs solar radiation (Schwartz, 1996; Bond et al., 2013), and acts as cloud 51 

condensation nuclei, thus modulating the optical properties and lifetimes of clouds (Twomey, 52 

1974; Penner et al., 2004).  In many regions of the globe that had undergone industrialization 53 

early on, anthropogenic aerosol concentrations are currently in decline (Leibensperger et al., 54 

2012; Zanatta et al., 2016).  With respect to declining concentrations and emissions, Samset al. 55 

(2018) suggest that removing present-day anthropogenic aerosol emissions – assuming constant 56 

greenhouse gas emissions, could lead to a global mean surface heating as high as 0.5–1.1°C.  57 

 58 

 Besides climate, the atmospheric aerosol has been acknowledged to influence human health 59 

through respiratory and cardiovascular health endpoints (Anderson et al., 2012).  Lelieveld et 60 

al., (2015) quantified the world-wide burden of disease (premature mortality) due to outdoor 61 

pollution, large part of which was attributed to airborne particulate matter.  It is apparent that 62 

the distribution of adverse health effects is very uneven among the world-wide population, 63 

depending on the local level of outdoor pollution. 64 

 65 

 In view of the described man-driven effects it seems imperative to develop instruments to 66 

reliably monitor changes in anthropogenic aerosol concentrations as well as an understanding 67 

of the balance between aerosol sources and measured concentrations.  Researchers have strived 68 

to obtain a spatial picture of the distribution of pollutants, and to achieve a connection between 69 

the sources of pollution and concentrations downwind. A widely used method has been the 70 

extrapolation of concentrations measured in one or several locations into two-dimensional 71 

space through the use of meteorological dispersion approaches: The first maps of particulate 72 
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air pollutants over Europe were constructed in the 1970s with the help of coarse emission data 73 

and simple trajectory models (Eliassen, 1978).  Statistical methods were developed to connect 74 

pollution sources and ensuing aerosol concentrations at receptor sites (Miller et al., 1972; 75 

Friedlander, 1973; Cass and McRae, 1983).  By combining statistics with back trajectory data 76 

sectorial information about sources controlling the composition of the aerosol over Southern 77 

Sweden was derived by Swietlicki et al., (1988).  Later the approach of using back trajectories 78 

to map aerosol sources was refined by Stohl (1996) and tested with one-year sulfate data from 79 

the co-operative program for monitoring and evaluation of the long-range transmission of air 80 

pollutants in Europe (EMEP, www.emep.int).  In a similar approach with five years of aerosol 81 

data from a single Siberian receptor site Heintzenberg et al. (2013) identified potential source 82 

regions over Eurasia and with aerosol data from four Swedish icebreaker expeditions over the 83 

Central Arctic (Heintzenberg et al., 2015).  Charron et al. (2008) constructed concentration field 84 

maps to identify the source regions of specific types of aerosol particle size distributions 85 

arriving in England. All these works share the approach that time-dependent information on 86 

concentrations measured at receptor site(s) are transformed into space, thus allowing 87 

conclusions on the potential source regions of gaseous and/or particulate emissions. 88 

 89 

 With more comprehensive air quality models concentrations of specific aerosol were 90 

mapped over Europe together with short temporal developments (e.g., Schell et al., 2001).  For 91 

specific episodes high spatial resolution aerosol concentration maps in urban and non-urban 92 

European areas have been generated with sophisticated chemistry transport models (e.g., 93 

Beekmann et al., 2015; Riemer et al., 2004; Wolke et al., 2004).  For the years 2002 and 2003 94 

Marmer and Langman (2007) analyzed the spatial and temporal variability of the aerosol 95 

distribution over Europe with a regional atmosphere-chemistry model.  They found that 96 

meteorological conditions play a major role in spatial and temporal variability in the European 97 

aerosol burden distribution.  Regionally, year to year variability of modeled monthly mean 98 
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aerosol burden reached up to 100% because of different weather conditions. 99 

 100 

 In the present study ten years of hourly aerosol data at four German stations were available 101 

for the identification of potential source regions.  As it appears unrealistic to analyze such a 102 

large database with advanced chemical transport models we resorted to the well proven 103 

approach of utilizing back trajectories cited above and connected the results to emission fields.  104 

We define the resulting concentration maps of particulate and gas parameters as immission 105 

maps because they represent long-term average emissions of air pollutants modified by the 106 

controlling atmospheric processes along the pathways to the receptor sites.  In Charron et al. 107 

(2008) this approach is termed “concentration field map method”.  With a much larger data set 108 

spanning a much tighter network of 1500 stations Rohde and Muller (2015) used the Kriging 109 

interpolation approach (Krige, 1951) to construct air pollution maps over China.  Another 110 

approach to construct pollution maps over the province Henan, China was used by Liu et al., 111 

(2018).  They combined an emission inventory with chemical modeling and back trajectories 112 

to derive high resolution maps of particulate and gaseous pollution components and find that 113 

emissions from neighboring provinces are important contributors to local air pollution levels. 114 

 115 

 Recent political, economic and technological developments in Europe have caused 116 

substantial changes in the emission of air pollutants.  Lavanchy et al. (1999) deduced a trend in 117 

atmospheric black carbon from preindustrial times to 1975.  Strong downward trends in major 118 

aerosol components before and after the German reunification (1983-1998) over rural East 119 

Germany were reported by Spindler et al.,  (1999).  For the years 2003 – 2009 Kuenen et al., 120 

(2014) published trends in the development of aerosol emissions as elaborated from reported 121 

emissions.  The German Environmental Agency (GEA) publishes trends in air pollution as 122 

measured at a number of ca. 380 federal and state air quality stations (Minkos, 2019).  123 
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According to these records, PM10 mass concentrations declined by approximately 25 % over 125 

the period 2000-2019 126 

 127 

 Combining long-term aerosol and gas data at the four stations of the present study provide 128 

an excellent data base for identifying both the most important source regions and possible 129 

temporal changes.  During the ten recent years covered by our data we expected noticeable 130 

systematic changes in our time series that can be interpreted in terms of emissions.  As a side 131 

result in the process of deriving long-term emission trends of major air pollutants over Germany 132 

information of the monthly disaggregation of annual aerosol emissions can be derived. 133 

 134 

 135 

2 Aerosol and trace gas data 136 

 137 

The core data of the present study have been measured at the stations Melpitz (ME), 138 

Neuglobsow (NG), and Waldhof (WA) of the German Ultrafine Aerosol Network GUAN 139 

network (Birmili et al., 2016) and at station Collmberg (CO) operated by the Saxonian 140 

Environment Agency.  These four rural background stations lie in the northeastern lowlands of 141 

Germany at distances between 30 and 205 km from each other.  Ten-year-average particle mass 142 

concentrations under 10 µm particle diameter (PM10) and their standard deviations at the four 143 

stations are rather similar: 15±13, 22±12, 14±10, and 15±11 µgm-3 at CO, ME, NG, and WA, 144 

respectively.  The corresponding long-term average particle number concentrations between 10 145 

and 800 nm particle diameter (N10-800) and their standard deviations at the three GUAN-stations 146 

are 5400±4100, 3600±2300, and 4300±2800 cm-3, respectively.  Basic statistics on particle 147 

number and eBC mass concentrations of the three GUAN-stations were presented in Sun et al. 148 

(2019) whereas details about instrumentation and their maintenance can be found in Birmili et 149 

Gelöscht: Table 1 gives an overview over their 150 
characteristics.  151 
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al., (2016).  The ensemble of hourly data at the four stations is the base of the pollution maps 152 

derived in this work. 153 

 154 

 TROPOS-type mobility particle size spectrometers (MPSS, Wiedensohler et al., 2012) were 155 

used to record particle number size distributions across the particle size range 10-800 nm.  156 

Quality assurance of the long-term measurements followed the recommendations of 157 

Wiedensohler et al. (2018) including weekly inspections as well as monthly and annual 158 

maintenance intervals.  Once a year the MPSS were intercompared against a reference MPSS 159 

of the WCCAP (World Calibration Center for Aerosol Physics) either on-site and/or at the 160 

calibration facility.  The lower detection limit of the MPSS is around 30 cm-3 for a time 161 

resolution of 30 minutes. Equivalent Black Carbon (eBC) was determined by multi-angle 162 

absorption photometers (MAAP) using a mass absorption cross section of 6.6 m² g-1 (Petzold 163 

et al., 2013; Nordmann et al., 2013; Birmili et al., 2016).  An intercomparison of multiple 164 

MAAP instruments resulted in an inter-device variability of less than 5% (Müller et al., 2011).  165 

While the MAAP deployed at the TROPOS station Melpitz was biannually compared to the 166 

reference absorption photometer at the WCCAP in Leipzig, the instruments at the UBA stations 167 

Waldhof and Neuglobsow were serviced by the manufacturer.  For hourly measurements of 168 

PM10 continuous oscillating microbalances (Thermo Scientific TEOM 1400) were utilized at 169 

stations CO, NG, and WA.  At station ME PM10 was determined in daily filter samples (0:00 170 

to 24:00 CET), Spindler et al. (2013).  The TEOM1400-instrument and gravimetric filter 171 

sampling are different methods for particle mass concentrations.  The TEOM collects 172 

particulate mass on a vibrating substrate (tapered element) and registers the change of the 173 

oscillation frequency that is decreasing with mass loading (Patashnick and Rupprecht, 1991).  174 

The TEOM operates at a constant temperature setting above ambient (typically 30– 50°C) to 175 

prevent contraction and expansion of the tapered element and reduce interferences from water 176 

vapor condensation.  However, heating the ambient air enhances volatilization of particle-177 
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bound semivolatile compounds (e.g., ammonium nitrate and some organic species) resulting in 179 

an underestimation of PM when semivolatile material dominates the particulate phase during 180 

cold seasons.  The condensation and evaporation of ammonium nitrate and organic species can 181 

also influence the filter sampling under ambient conditions.  Here the effect can be balanced 182 

partly by the temperature variation during the daily filter sampling. However, the results of both 183 

methods mostly are in good agreement (e.g., Zhu et al., 2007). 184 

 185 

 Hourly aerosol data from the three GUAN-stations during 2009 – 2015 (NG ≥2011) have 186 

been utilized in a previous study (Heintzenberg et al., 2018) to understand aerosol processes 187 

during air mass transport between the stations.  In the present study the data set was enlarged 188 

to include the additional station Collmberg and data at all stations from the year 2016 through 189 

2018.  The integral aerosol parameters particle number concentration (N10-800, cm-3), light 190 

absorption-equivalent mass concentration of Black Carbon (eBC, µgm-3), and particle mass 191 

concentrations under 10 µm particle diameter (PM10, µgm-3) were utilized.  N10-800 is based on 192 

the integral over measured particle size distributions from 10 to 800 nm. 193 

 194 

 NOx and SO2 emitted by anthropogenic combustion processes are transformed in the 195 

atmosphere and add to the anthropogenic aerosol.  At the three GUAN stations both are 196 

measured with the same temporal resolutions as the aerosol data.  Additionally, at Collmberg 197 

NOx-data could be utilized in the interpretation of the aerosol data.  The trace gas analyzers for 198 

NOx and SO2 were calibrated with test gases for NO (NO in N2) and SO2 (SO2 in N2, both Air 199 

Liquide, Germany).  NO2 was produced in a gas phase titration device (GPT APMC370, 200 

Horiba, Germany) by quantitative oxidation of NO test gas (Rehme, 1976).  The trace gas 201 

analyzers were used in an optimal range and all registered values (also below the detection 202 

limit) were used for this long-term study.  As most particle numbers in polluted continental 203 

environments tropospheric ozone is a secondary atmospheric pollutant.  We utilized hourly 204 
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ozone data taken at all four stations throughout the studied time period as ancillary information 218 

in the discussion of particle-number related results.  For the ozone measurements a common 219 

trace gas ozone monitor was used (Horiba APOA-350).  This device quantifies tropospheric 220 

ozone by UV Absorption and use the cross-flow modulation principle.  Ambient air with and 221 

without ozone (elimination by a selective scrubber) was used alternatively in the measuring 222 

cuvette yielding a very stable ozone signal. The devices were calibrated using an ozone-223 

standard (Ozon-Calibrator, Thermo Environmental Instruments 49PS). 224 

 225 

 Table 1 gives an overview over the instrumental characteristics of all stations and the total 226 

number of validated data hours for each utilized component.  The minimum is 57962 hours for 227 

validated MPSS-data at the three GUAN-stations and the maximum with 88838 validated data 228 

hours for NOx at all four stations.  Strictly concurrent (by the hour) are less validated data hours.  229 

For MPSS, eBC, and SO2-data at the GUAN-stations this numbers is 48533 hours, and 48114 230 

and 47729 hours for PM10 and NOx-data, respectively, at all four stations.  However, these 231 

reduced strictly concurrent numbers do not substantially affect the 10-year-average maps 232 

discussed below. 233 

 234 

 235 

3 Back trajectories 236 

 237 

With the HYSPLIT4 model (Stein et al., 2015) and based on the meteorological fields from the 238 

Global Data Assimilation System with one-degree resolution (GDAS1, 239 

https://www.emc.ncep.noaa.gov/gmb/gdas/) three-dimensional trajectories were calculated 240 

arriving every hour at a height of 500m above ground level at the four stations.  The trajectories 241 

were calculated backward for up to five days using the meteorological fields from the server at 242 
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Air Resources Laboratory (ARL), NOAA (http://ready.arl.noaa.gov), where more information 244 

about the GDAS dataset can be found.  In the immission maps constructed with extrapolated 245 

measurements at the stations and in any comparisons with emissions along the back trajectories 246 

only trajectory points under 1000 m altitude above ground were utilized.  Turbulent 247 

atmospheric mixing is included in parameterized form in HYSPLIT4.  The present study 248 

utilizes the default version of this parameterization according to Draxler and Hess (1998).  The 249 

back trajectories are calculated with the base version of HYSPLIT4 that does not include any 250 

specific dispersion and scavenging of atmospheric trace substances.  Precipitation along the 251 

trajectories was used in the interpretation of the immission maps.  The precipitation values 252 

mapped in the present study and the temperature values used in the trend discussion of N10-800 253 

are those listed by HYSPLIT4 at each point of a trajectory.  They are meteorological parameters 254 

at the nearest grid cell of the assimilated global meteorological fields provided by the U.S. 255 

National Weather Service's National Centers for Environmental Prediction (NCEP)  256 

(Kanamitsu, 1989).  Average horizontal wind speeds in between two one-hour trajectory steps 257 

were calculated from the distance covered by a trajectory between two successive steps.  With 258 

the 350593 hourly back trajectories from the four stations the time series of N10-800, PM10, and 259 

eBC were extrapolated over Germany and part of the neighbor countries.  At Melpitz PM10-260 

data were only available as daily averages.  Thus, the daily average concentrations were 261 

extrapolated along each hourly trajectory of the respective day. 262 

 263 

 264 

4 Emission data 265 

 266 

For the interpretation of the immission maps we used the emission data set version 4.3.2 for 267 

2009 of the components particle mass concentrations below 10 µm (PM10), BC, NOx and SO2 268 
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as compiled in the Emissions Data Base for Global Atmospheric Research (EDGAR, 279 

https://edgar.jrc.ec.europa.eu/overview.php?v=432_AP, DOI (https://data.europa.eu/doi/10.29280 

04/JRC_DATASET_EDGAR).  This data set concerns primary emissions only and has been 281 

introduced by Crippa et al., (2018).  All human activities, except large scale biomass burning 282 

and land use, land-use change, and forestry are included in the data base.  Emissions of coarse 283 

particles from agricultural surfaces are not included.  They are, in fact, very sensitive to soil 284 

and weather conditions, and thus not trivial to quantify.  Primary aerosol emission data are 285 

generally characterized by rather high uncertainties.  For the EDGAR data base Crippa et al. 286 

(2018) report a range of variation in 2012 between 57.4% and 109.1% for PM10, and between 287 

46.8% and 92% for BC.  Even higher uncertainties in PM emissions might come from super-288 

emitting vehicles that are not considered in this data base (Klimont et al., 2017).  In our maps 289 

and trend calculations we applied the grid values of emission data that were listed in the 290 

EDGAR inventories no more than 30 km away from any trajectory time step. 291 

 292 

 293 

5 Results and discussion 294 

5.1 Aerosol concentration maps (immission maps 295 

The trajectory-extrapolated N10-800, PM10, and eBC from the four stations yielded immission 296 

maps averaged over the period 2009 – 2018, that are collected in Figs. 1-2.  Both, the particle-297 

number related N10-800 and the particle-mass related PM10, and eBC exhibit systematic seasonal 298 

variations.  Most events of new particle formation (NPF) over the continents occur during the 299 

photochemically active summer months (Kulmala et al., 2004) whereas the particle-mass 300 

related aerosol parameters due to combustion processes exhibit highest concentrations during 301 

the winter months (Matthias et al., 2018).  Consequently, we constructed two maps for each 302 

discussed component:  One of averages over the months April through October and one of 303 
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averages over the months November through March.  Only map cells with at least 300 trajectory 307 

hits are discussed.  Interpreting these hits in terms of Poisson-statistics would then yield a 308 

maximum uncertainty of 5.8% per cell.  In terms of a Gaussian statistic the arithmetic cell-309 

averages displayed in the maps exhibit standard deviations of cell averages that are less than 310 

six percent. 311 

 312 

 The maps of N10-800 in Fig. 1 show distributions of air masses over Germany and adjacent 313 

countries related to particle numbers instead of particulate mass.  There are two arguments for 314 

showing maps of number related results.  First, particle number concentrations are connected 315 

with cloud processes, their formation (Pruppacher and Klett, 1978), radiative effects, e.g., 316 

albedo (Twomey, 1974), and precipitation (Li et al., 2011).  Second, in the area of aerosol-317 

health issues ultrafine particles (< 100 nm diameter) have been gaining attention in recent years 318 

(Wichmann and Peters, 2000), i.e. an increasing number of health effects is attributed rather to 319 

particle number than to particle mass.  The fact that NPF-events occur concurrently in or near 320 

the top of the continental planetary boundary layer over wide geographical regions (e.g., 321 

Wehner et al., 2007) is partly due to concurrent advantageous photochemical conditions 322 

allowing for the formation of condensable vapors, in particular global radiation (Birmili et al., 323 

2001).  Two other factors constraining NPF are the availability of gaseous particle-precursors 324 

and the concurrent pre-existing aerosol. 325 

 326 

 The summer map (4-10) of N10-800 exhibits the high values in the Southwest-to-Northeast-327 

sector of the map.  Highest values are concentrated in a belt reaching from Burgundy through 328 

Switzerland, Southern Germany, Czech Republic to Southwestern Poland.  Interestingly, this 329 

belt of high N10-800 is collocated to large extent with a belt of high summer ozone concentrations 330 

(cf. Fig. S1).  This photochemically controlled pollutant (Monks et al., 2015) exhibits highest 331 

summer concentrations in air masses from Southwestern Poland and Northern Czech Republic, 332 
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a region from which high ozone values are reported (Struzewska and Jefimow, 2013; Hůnová, 341 

2003; Hůnová and Bäumelt, 2018).  However, the summer map of N10-800 does not show the 342 

highest values in air masses from the region with highest ozone pollution.  High particle 343 

numbers in air masses coming over the Alps from Northern Italy may be related to the high 344 

emissions of air pollutants in the Po Valley that are known to reach frequently through so called 345 

alpine pumping (Winkler et al., 2006; Lugauer and Winkler, 2005; Reitebuch et al., 2003) over 346 

the mountains.  The high NOx-concentrations in air masses from Northern Italy in both summer 347 

and winter maps (see Fig. S2) indicate that pollution from south of the Alps can even reach 348 

Northeastern Germany.  In the winter map of N10-800 (11-3 in Fig. 1) the belt of highest summer 349 

values is apparently complemented by more transalpine pollution transport and by transport 350 

from the Southeast.  The lower photochemical activity in winter is reflected in the lower winter 351 

ozone concentrations in Fig. S1, albeit transalpine pollution transport is still visible in the winter 352 

map of NOx in Fig. S2.  Northwestern Italy also shows up as an emission hot spot in the maps 353 

of trajectory-summed emissions in Fig. S4. 354 

 355 

 In both summer and winter the maps of PM10, and eBC in Fig. 2 exhibit a clear Northwest-356 

to-Southeast structure with the cleanest sector being in the Northwest covering the coastal area 357 

of the North Sea, the BENELUX countries Belgium, the Netherlands, and Luxemburg, and 358 

Northwestern Germany.  The strongest contrast between the cleanest Northwesterly and the 359 

most polluted Southeasterly map sectors is seen in the winter map of eBC.  Highest average 360 

concentrations are measured in airmasses from the Southeastern half of the map, most strongly 361 

expressed in PM10 and eBC with maxima in a region leading from Southwest Poland through 362 

the Czech Republic, Slovakia, Austria, and former Yugoslavia to Northeastern Italy.  The back 363 

trajectories in the Southeastern sector of the maps for PM10 and eBC point towards countries, 364 

in which the emissions of air pollution in the past 20 years developed very differently as 365 

compared to those in Western Europe.  According to the European Environment Agency 366 
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(https://www.eea.europa.eu/data-and-maps/dashboards/air-pollutant-emissions-data-viewer-2) 367 

the latter parts of Western Europe experienced a strong and nearly monotonous decrease in 368 

emissions of PM10 whereas the emissions in Poland, Czech Republic, Slovakia, Austria, former 369 

Yugoslavia, and Italy stayed nearly constant or even increased in recent years after the dramatic 370 

decreases in the course of the political developments of the 1990ies.  The seasonal maps of the 371 

combustion derived SO2 in Fig. S3 look very similar to the those of the particle-mass related 372 

maps of PM10 and eBC, again the strongest NW/SE-contrast visible in winter. 373 

 374 

5.2. Pollutant emissions and atmospheric processes 375 

 376 

In Fig. 3 annual average emissions of PM10, BC, SO2, and NOx are mapped for 2009 according 377 

to the EDGAR emission database.  Except for the absolute numbers the maps for SO2, and NOx 378 

look rather similar to those for particulate emissions.  They all emphasize highly populated and 379 

industrialized emissions center.  Beyond that the SO2-map accentuates individual large 380 

combustion sources such as conventional power plants.  Whereas the strong emissions in 381 

Northern Italy are seen in the maps of PM10, BC, and NOx emissions in the countries in the 382 

Southeastern sector of the maps by no means reflect the high concentrations of particulate 383 

components seen in the immission maps of Figs. 1 and 2.   384 

 385 

 The seeming discrepancy between the immission maps in Figs. 1 and 2 and the emission 386 

maps of Fig. 3 can be resolved.  For that purpose, the EDGAR-emissions of PM10, BC, SO2, 387 

and NOx along all 350593 hourly back trajectories to the four stations during the ten studied 388 

years were summed up.  Then the sums were extrapolated back along each trajectory.  In Fig. 389 

S4 10-year average maps of these extrapolated emission sums are displayed.  As in Fig. 3 except 390 

for the absolute numbers there is a strong similarity between the four mapped component sums.  391 

Because of the integral nature of the mapped results one cannot expect the maps in Fig. S4 to 392 
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locate correctly specific emission centers.  However, they certainly indicate the map sectors 427 

from which the most substantial emissions could have reached the stations.  As in Figs. 1 and 428 

2 the Southeastern sectors of the maps of integrated emissions most prominently show up.  429 

Interestingly, the maps in Fig. S4 also indicate the highly polluted region of Northwestern Italy 430 

(Diémoz et al., 2019a; Diémoz et al., 2019b).  The emissions from the emission centers in 431 

Northwestern Europe are hardly discernible in Fig. S4.  They do show up (most strongly in Fig. 432 

S4c for SO2-emission sums) as apparent emissions over the adjacent North Sea.  We interpret 433 

the “misplaced” emissions over the North Sea as air mass transport from the North Sea via the 434 

emission region in the BENELUX countries to the receptor sites that was not compensated by 435 

other low pollution air transport from the North Sea to the stations that had not passed over the 436 

Northwestern European emission centers. 437 

 438 

 Two major atmospheric processes will reduce the concentrations of emitted or in situ formed 439 

aerosol particles: dilution through mixing with cleaner air masses and wet scavenging through 440 

in-cloud and sub-cloud processes.  As a tracer of the first of these two processes Fig. 4a gives 441 

the long-term average geographical distribution of trajectory derived wind speed over the study 442 

area.  Highest average wind speeds and ensuing atmospheric mixing is seen over the major 443 

emission centers of Northwestern Germany, the BENELUX countries and adjacent seas 444 

whereas lowest wind speeds are seen over Northern Germany and the Southeastern neighbor 445 

countries.  The long-term average geographical distribution of precipitation as taken by 446 

HYSPLIT from the GDAS meteorological fields in Fig. 4b corroborates the results about 447 

atmospheric cleaning processes indicated in Fig. 4a.  The small absolute numbers in Fig. 4b are 448 

due to the episodic nature of precipitation: most of the time it does not rain or snow.  The blue 449 

crescent reaching from the North Sea through the BENELUX countries, Eastern France, 450 

Switzerland and the alpine region exhibits maximum precipitation values while Southern and 451 

Eastern Germany with the adjoining countries to the East and Southeast show minimum 452 

Formatiert: Tiefgestellt

Gelöscht: PM10-emissions are largely concentrated around 453 
major conurbations and highly populated and industrialized 454 
regions such as the German Ruhr area, and the BENELUX 455 
countries whereas highest PM10-concentrations were 456 
measured to some extent in air masses from the East and 457 
much more so in air masses from the Southeast.458 
Formatiert: Block

Gelöscht: 3a 459 

Gelöscht: 3b 460 

Gelöscht: 3a461 
Gelöscht: 3b 462 



 

 
 

16 

precipitation values.  Thus, in the long term we expect much of the high Western European 463 

emissions to be scavenged to a substantially by wet processes.  In addition, air masses arriving 464 

from Western and Northwestern directions at the stations usually cross the Western European 465 

emission centers with much lower pollution burdens than air masses coming from the polluted 466 

countries of Southeastern Europe arriving at the corresponding map borders (cf. Fig. PM10 — 467 

36th maximum daily average value in µg m-3, 2005 in EEA, 2009). 468 

 469 

5.3. Immission trends for air from specific source regions 470 

 471 

As mentioned in the introduction, the pollutant emissions reported by the European and national 472 

Environment Agencies represent a synthesis of known pollutant sources combined with 473 

assumed emission factors. These emissions are typically used as input for air quality modelling 474 

and subsequent assessment, as well as for trend analyses. However, it remains unclear to what 475 

extent these reported emissions are realistic, and whether their trends represent the trend in true 476 

emissions. Here, we attempt to assess spatially-resolved trends in real particulate emissions by 477 

an analysis of measured concentrations (immissions) in air masses travelling over source-478 

specific regions. 479 

 480 

 To test our method, we selected two pronounced source regions in Europe, located within 481 

1000 km distance from our observation sites. These regions were defined by emission hotspot 482 

regions that can be seen in the EDGAR emission maps in Fig. 3a-b and comprise: Region A 483 

(Be-NL-NRW; comprising most of Belgium, southern parts of the Netherlands, and much of 484 

the German state North Rhine-Westphalia) and Region B (CZ-PL-SK; comprising the central 485 

parts of the Czech Republic, southern parts of Poland, and adjacent areas of Slovakia.) 486 

According to the European Environment Agency (EEA) these are regions, where reported 487 
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particulate emissions have developed differently during the past 10 years.  Our goal is to verify 489 

this through an analysis of real atmospheric observations over this period. 490 

Temporal trends were computed using the customized Sen–Theil trend estimator (Sen, 1968; 491 

Theil, 1992).  The Sen–Theil estimator is the median of many slopes calculated in a continuous 492 

or non-continuous time series, with its robustness against outliers being one of its main assets.  493 

For the detailed description of this trend estimator we refer to Sun et al. (2020), Section 2.3.1. 494 

Here we computed the Sen–Theil estimator for hourly observation data at stations ME, NG, 495 

and WA.  Subsets of back trajectories were selected that spent at least 1, 3 , 6, or 12 hours over 496 

the source regions A and B.  Depending on that criterion, different sub-sets were analyzed.  The 497 

difference in median eBC mass concentration between air masses arriving from source region 498 

A and B is obvious, as could already be determined in the corresponding immission maps (Fig. 499 

2c-d).  As we learned from Sect. 5.2 these immission maps are strongly influenced by the 500 

different meteorological conditions governing atmospheric dispersion in different wind 501 

direction, so that these values allow no direct conclusion on the strength of emission sources 502 

located upwind. 503 

 504 

 We analyzed the temporal trends in eBC over the period 2009-2018 for the subsets belonging 505 

to Regions A and B – assuming that these systematic differences in meteorological conditions 506 

should even out over such long observation periods.  Table 2 shows that the Sen–Theil slope 507 

estimator for Region A is between -7.6 % and -5.1 % for the three observation sites and the 508 

requirement of a back trajectory to have spent at least 6 hours over Region A.  For region B, 509 

the corresponding Sen–Theil slope estimators are between -4.0 % and -2.7 % for the 510 

observation sites.  As we can read from these results, the annual decrease in eBC is more 511 

pronounced for air masses that have travelled over Region A. 512 

 513 
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 Between 2009 and 2017 for the EU member states of Belgium, the Netherlands, Germany, 514 

the Czech Republic, Poland, and Slovakia the annual rates of decrease in reported emissions 515 

were between -4.9 and -6.1 % for the first three countries, and between +0.5 and -2.8% for the 516 

latter three (https://www.eea.europa.eu/data-and-maps/dashboards/air-pollutant-emissions-517 

data-viewer-2).  As compiled in Table 2 these reported trends are largely consistent with the 518 

rates of changed derived from our eBC immission trends.  Although we need to keep in mind 519 

that the six nation states only partially contribute to our regions A and B, it seems valid to 520 

conclude that BC emissions in region A indeed decreased more rapidly in the past decade 521 

compared to region B.  Our approach seems able to differentiate between concentrations trends 522 

in air masses that have passes over rather different source regions.  This might represent a step 523 

towards the assessment of changes in real-world emissions allocated in specific source regions 524 

over multi-annual periods. 525 

 526 

5.4. Comparison of immission and emission trends 527 

 528 

Besides the map comparison a second approach was used to connect emission data with the 529 

measured aerosol time series.  Along each of the hourly back trajectories the emissions 530 

according to the EDGAR database were summed up.  Then monthly medians of the emission 531 

sums and the measured parameters were formed.  The EDGAR database reports annual average 532 

emissions.  PM10, black carbon and other combustion related air pollutants show substantial 533 

annual variations with high winter and low summer values at non-urban sites (e.g., 534 

Heintzenberg and Bussemer, 2000).  In emission modeling the temporal variation of annually 535 

reported emissions is considered by disaggregating the annual values with monthly, weekly and 536 

daily factors (Matthias et al., 2018).  For the time-resolved comparison of PM10 and BC-537 

emissions with PM10 and eBC-concentrations at the GUAN-sites monthly medians of PM10 and 538 

eBC-values at the stations were formed and plotted in Fig. 5.  We expected both, seasonal 539 
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variations and a long-term trend in the emissions.  For M hours per month of measured 543 

components at the four stations the annual average EDGAR-emissions EPM10, EBC, ESO2, and 544 

ENOx were summed up along the 121 trajectory steps leading to the stations.  Then monthly 545 

medians "#$%&,(	were formed according to Eq. 1 (exemplified for BC).  Medians were chosen to 546 

reduce the effect of outliers due to local emission and scavenging events. 547 

 548 

"#*+ = -./012(∑ "*+&5&
6%& )8%&,9  Eq. 1 549 

 550 

The monthly median emission sums "#$%&,(	were modified with a monthly (fm) and an annual 551 

factor (gy) in order to simulate respective median monthly measured concentrations taken over 552 

all stations.  Thus, for each component 12 monthly and 10 annual trend factors determined the 553 

agreement of modified summed emissions and measured concentrations.  As objective or utility 554 

function :5 the sum of squared deviations between annually and monthly modified emission 555 

sums and monthly median measured concentrations was formed taken over the 120 months of 556 

the present study (exemplified for BC in Eq. 2). 557 

 558 

:*+5 = 	∑ ;<8%&,&5 ∙ >?%&,&@ ∙ "#*+ − .BCD
5&5@

E%&  Eq. 2 559 

 560 

:5 was minimized with a Generalized Reduced Gradient (GRG) solver (Lasdon et al., 1978) 561 

that optimized the12 monthly and 10 annual factors for each of the four measured components.  562 

We used Excel’sÒ implementation of the GRG-solver procedure for the optimization.  After 563 

optimizing month and trend factors the average relative deviation between emission-simulated 564 

and measured monthly median curves is 14%, 21%, 25%, and 18% for PM10, eBC, SO2, and 565 

NOx, and respectively.  The optimized monthly median emission sums for all four parameters 566 

are displayed in Fig. 5 together with the measured monthly median concentrations. 567 
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 589 

 A ten-year trend in emissions of PM10, BC, SO2, and NOx, and average monthly factors for 590 

the respective parameters are the two essential results derived from the optimization approach.  591 

The ten-year trends relative to 2009 are collected in Fig. 6.  Annual averages of the relative 592 

differences between the monthly median measured parameters and the corresponding emission 593 

derived parameters were formed and applied to the GUAN-trend values displayed in Fig. 6.  594 

The resulting error bars on the trends serve as estimates of the uncertainties of the optimization 595 

approach.  The general trend in Fig. 6 is downward to minima between 30 and 70% of the 2009 596 

values in 2016/17 after which all parameters exhibit increases, most strongly PM10.  SO2 shows 597 

the strongest decrease whereas PM10 and NOx-emissions diminished the least.  In 2010/2011 598 

the trend curves of PM10 and NOx in Fig. 6 show a slight increase that can be linked to a recovery 599 

of economic activity after the world-wide financial and economic crisis during the period 2007-600 

2009.  The increase in PM10 is also visible in the trend curves relative to 601 

2005 published by the German Environment Agency 602 

(https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-603 

deutschland/emissionen-prioritaerer-luftschadstoffe). 604 

 605 

 The results of two comparisons of our trends with data reported by the German and European 606 

Environment Agencies are added to Fig. 6.  In general, the trends reported by the German 607 

Environment Agency for all German emissions exhibit weaker reductions than the results of 608 

the present study.  Only for PM10 in 2011 and 1013 the present study yields higher values than 609 

GEA.  We note that primary PM10-imissions may have substantial contributions from wind 610 

erosion of agricultural soils (Panagos et al., 2015) that are not incorporated in present 611 

anthropogenic inventories.  SO2 exhibits the strongest trend discrepancies with much stronger 612 

reductions in trend of the present study as compared to GEA results.  As Germany has been 613 

reducing SO2 emissions systematically since the nineteen eighties one would not expect any 614 
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further strong trends during the time period of the present study.  As other studies have 621 

demonstrated before, (e.g., van Pinxteren et al., 2019), the  maps in Fig. 1 indicate the possibility 622 

of imported pollution, in particular from the Southeast.  Consequently, we searched for similar 623 

trends in emission data reported by EEA for neighboring countries until 2017 directly West, 624 

South, and East of Germany, going in the East all the way to Romania.  Excel’s solver optimized 625 

combinations of the EEA-trends for Germany and neighboring countries in order to fit the 626 

trends derived in the present study.  The solver did not choose German trends for any of the 627 

four parameters PM10, BC, SO2, and NOx.  For PM10 a combination of emission trends for the 628 

BENELUX countries and France was optimum, albeit without being able to simulate the 629 

relative maxima in 2011 and 2013 and the minimum around 2016.  For BC the emission trend 630 

for the BENELUX countries came closest to the trend of the present study.  For SO2 mostly 631 

emissions in Romania with minor contributions from French and BENELUX trends simulated 632 

the trends observed over Germany best.  NOx-trends were best simulated by emissions over the 633 

Czech and Slovakian countries.  Emissions trends over Switzerland, Austria, Hungary and 634 

Poland were not utilized by the solver.  All simulated trends are displayed as curves EEA in 635 

Fig. 6.  We do not claim that these simulated trends numerically correspond to imported 636 

pollution over Germany.  However, the good fit of SO2-trend with emissions over Romany 637 

corroborates our finding of pollution import from Southeastern Europe to Northeastern 638 

Germany while the development of BC appears to follow better emission trends over Western 639 

neighbor countries than over Germany. 640 

 641 

 Sun et al., (2020) investigated trends of size resolved number and eBC mass concentrations 642 

at 16 observational sites in Germany  from 2009 to 2018 including the three GUAN-sites of the 643 

present study.  Based on monthly median time series they report average decreases for ME, 644 

NG, and WA of -5.5%, -6.1, and -3.9%, respectively.  The corresponding result for eBC of the 645 
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present study is -4.6%, albeit with a high variability (cf. Fig. 6) of 20 percent units expressed 649 

in terms of a standard deviation. 650 

 651 

 Over the polluted continent the particle-number based parameter N10-800 is largely secondary 652 

in nature, i.e., its concentrations are controlled by atmospheric constituents and processes.  653 

Thus, there is no primary emission data base with which a similar trend analysis as with PM10, 654 

BC, SO2, and NOx could be attempted.  Instead we chose the 10-year Grand Averages (GA) 655 

averages taken over the whole time period of the present study as references from the deviations 656 

of annual averages are discussed.  Sun et al. (2020) report very minor trends (between -3.5% 657 

and 0.1%)  for N20-800 at the three GUAN stations of the present study.  The 10-year interannual 658 

variation of our N10-800 in Fig. 7a) bears out why only a minor trend if any can be expected.  For 659 

the first four years the annual averages are substantially higher than average. Then annual 660 

values decrease down to a minimum in the years 2016/17 before they increase again to a level 661 

slightly above the 10-year average. 662 

 663 

 In Figs 7b-d) annual deviations from the respective GAs are displayed that can be connected 664 

to the 10-year course of N10-800.  Ozone concentrations averaged over the data from the three 665 

GUAN stations can be interpreted as an indicator for photochemical activity that also controls 666 

NPF.  The annual deviations of O3 in Fig. 7b) follow rather closely those of N10-800.  In Figs 7c) 667 

and d) annual deviations of ambient temperature and precipitation rates are displayed that have 668 

been averaged over the meteorological data along the back trajectories leading to the four 669 

stations.  For the temperature an averaging period of 120 trajectory hours yielded the highest 670 

(negative) correlation with N10-800 of r = -0.8.  After a dip in 2009 annual average trajectory 671 

temperatures to a maximum in 2016 before returning to near average in 2018.  For the 672 

precipitation rates along the trajectories the highest (negative) correlation with N10-800 was 673 

found with an averaging period of three days (r=-0.6) before arrival at the stations.  The results 674 
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displayed in Figs 7c) and d) illustrate the complexity of processes and conditions controlling 676 

atmospheric particle number concentrations.  On one hand, a scavenging effect of precipitation 677 

can be used as argument for the high values of N10-800 in the years 2010-2013 and the low values 678 

in the years 2014 through 2018.  On the other hand, lower annual temperatures during years of 679 

relatively high N10-800 and higher than GA-temperatures during years of relatively high N10-800 680 

are harder to interpret.  Possibly the nucleation of condensable vapors is furthered by lower air 681 

temperatures upwind of the stations. 682 

 683 

 An important result of trend analysis are the average monthly factors disaggregating the 684 

annual emissions.  In general the summer minima of the month factors determined in the present 685 

study are broader than the curve given by Matthias et al., (2018) for combustion emissions.  The 686 

decrease of the month factor of PM10, BC, and NOx in December and the late winter maxima 687 

of PM10 and SO2 are not reflected in the Matthias et al., (2018) results.  Interestingly, both PM10 688 

and SO2 show a minor secondary peak in June.  As an example of the seasonal variability of 689 

eBC within an urban source region we averaged the relative annual variation of eBC-690 

concentrations at the station Leipzig Eisenbahnstraße (plotted as curve L-EBS in Fig. 8) 691 

exhibiting a smaller seasonal swing than all other curves.  The curve for PM10 comes closest to 692 

that for L-EBS, probably because of agricultural non-combustion emissions in summer. 693 

 694 

 In general the downward trends in particulate parameters determined in the present study are 695 

similar to temporal trends of particle number and black carbon mass concentrations at 16 696 

observational sites in Germany from 2009 to 2018 (Sun et al., 2020).  The long-term emission-697 

decrease of PM10 as determined in the present study from 2009 to 2018 is smaller than the 698 

corresponding number published by the EEA as average over all 28 EU member-states but 699 

similar to the figures published by GEA until 2017 (cf. Table 2).  For BC, SO2, and NOx the 700 

present study yields substantially stronger emission-reductions than both GEA and EEA.  These 701 
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findings are emphasized when considering 2017 as endpoint of the trend calculation (cf. Table 705 

2) at and after which our study shows consistent emission increases of all studied parameters.  706 

Comparing the calculated trends with emission trends in neighboring countries as published by 707 

the European Environment Agency supports the explanation that the observed trends are to 708 

some extent due to changes in imported air masses.  Most strongly this holds for SO2, the trend 709 

of which follows that of Romanian emissions rather well. 710 

 711 

 The last issue we take up in this discussion concerns the frequent residual difference between 712 

measured and emission-simulated time series.  In Fig. 5, e.g., in most winters there are months 713 

when optimized BC-emissions remain substantially lower than the measured monthly medians 714 

of eBC.  Some information can be gleaned from the “Großwetterlagen”, (GWL), representing 715 

29 classifications of large scale weather types after Hess and Brezowsky for Central Europe, 716 

(Gerstengarbe and Werner, 1993), provided by the German Weather service for each day 717 

(http://www.dwd.de/DE/leistungen/grosswetterlage/grosswetterlage.html).  During the winter 718 

months with the strongest difference between measured and simulated time series the 719 

probabilities of high-pressure systems over Fennoscandia with south-to-southeasterly flow to 720 

the four stations is substantially higher than the respective probabilities averaged over the whole 721 

ten-year period of the study.  This GWL-information is consistent with the back trajectories 722 

during the high pollution winter months coming predominantly from the southeasterly sector 723 

of the map.  While the classified large-scale weather situation with weak dilution of pollution 724 

during the winter months is conducive of high particulate concentrations at the receptor sites it 725 

does not explain the discrepancy.  In principle our simplistic approach of accumulating 726 

emissions along back trajectories may be flawed during certain weather situations.  However, 727 

an alternative explanation could be that the emissions inventories over Eastern and Southeastern 728 

Europe in the EDGAR database are somewhat lower than the real emissions. 729 

 730 
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 732 

6 Summary and conclusions 733 

 734 

Ten years of hourly aerosol and gas data at three stations of the German Ultrafine Aerosol 735 

Network GUAN and one station of the Saxonian Environment Agency have been combined 736 

with hourly back trajectories to the stations and emission inventories.  Measured PM10, particle 737 

number concentrations between 10 and 800 nm, and equivalent black carbon were extrapolated 738 

along the trajectories.  This process yielded what we termed immission maps of these aerosol 739 

parameters over Germany.  They reflect aerosol emissions modified with atmospheric processes 740 

along the air mass transport between sources and the four receptor sites at which potential 741 

effects of the particulate air pollution would be realized. 742 

 743 

 The ten-year average immission maps do not simply show the distribution of pollution 744 

sources upwind of the receptor sites.  The comparison with emission data based on the European 745 

EDGAR emission database shows that strong Western European emission centers do not 746 

dominate the downwind concentrations because their emissions often are reduced by wet 747 

scavenging and dilution processes on the way to the receptor area.  Maps of average 748 

precipitation and wind as they occurred along the trajectories illustrate these processes.  In the 749 

receptor region mass related aerosol parameters such as PM10, equivalent black carbon, and to 750 

some extent also the particle number concentration instead is rather controlled by emissions 751 

from Eastern and Southeastern Europe from which pollution transport often occurs under dryer 752 

meteorological conditions in continental high-pressure air masses.  This finding corresponds to 753 

the air mass results derived for the sub-micrometer particle number size distribution by Birmili 754 

et al., (2001), by Engler et al., (2007) for the size distribution of non-volatile particles, by Ma 755 

et al., (2014) for optical particle properties all evaluated at the station Melpitz, and by van 756 
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Pinxteren et al., (2019) for transboundary transport of PM10 to ten stations in Eastern Germany 761 

from neighboring countries.  Newly formed particles on the other hand are found in air masses 762 

from a broad belt reaching from Burgundy to the Western Czech Republic and Southern Poland, 763 

a region with high photochemical activity in summer that is affected by emissions in Northern 764 

Italy. 765 

 766 

 Annual EDGAR emissions for 2009 of PM10, BC, SO2, and NOx, were accumulated along 767 

each trajectory and compared the calculated emission sums with the corresponding measured 768 

time series on a monthly basis.  With a generalized reduced gradient solver the agreement of 769 

each pair of monthly time series e.g., measured eBC and BC-emissions was optimized by letting 770 

the solver determine both monthly emission factors disaggregating the annual EDGAR 771 

emission fields and adjusting the emissions with annual factors modifying the 2009-fields.  772 

Relative to 2009 the annual averages of the analyzed air pollutants were lower in 2018 by values 773 

between 6% for PM10 and 60% for SO2.  In general, the ten-year reductions determined of the 774 

present study were stronger than those reported by the German and the European Environmental 775 

Agencies.  N10-800 exhibited substantial interannual variability but no net decrease over the ten 776 

studied years. 777 

 778 

 The validity of the present approach of connecting immission and emission of particulate 779 

pollution was tested by calculating temporal changes of eBC for subsets of back trajectories 780 

passing over two separate prominent emission regions, region A to the Northwest and B to the 781 

Southeast of the measuring stations.  Consistent with reported emission data the calculated 782 

immission decreases over region A are significantly stronger than over region B. 783 

 784 

 Compared to published emission monthly factors by Matthias et al., (2018) the present 785 

approach yielded broader summer minima that were partly displaced from the midsummer 786 
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positions given by Matthias et al., (2018).  As an aside we note that during the winter months 798 

with extremely high particulate pollution the emissions accumulated along back trajectories 799 

often are substantially lower than the measured concentrations which raises the question of the 800 

validity of the emission figures in Eastern and Southeastern European source regions. 801 

 802 

 There are clear limits in the methodology of the present study.  Air mass trajectories have 803 

inherent uncertainties increasing with their distance travelled (Stohl, 1998).  Meteorological 804 

processes affecting the aerosol during air mass transport are only considered rather coarsely 805 

whereas aerosol dynamics are not considered at all.  Possible future improvements concern 806 

ensemble trajectories with higher resolution, better meteorological information along the 807 

trajectories e.g., radar-derived precipitation as used in Heintzenberg et al., (2018), more 808 

comprehensive emission inventories with higher spatiotemporal resolution and higher numbers 809 

of analyzed stations. 810 
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Table 1: Characteristics of the four stations of the present study, see text for instrumental details.  The number of validated data hours are 1105 

given for each component 1106 

Station Acronym Latitude Longitude MPSS1 eBC2 
PM10 

continous3,4 

PM10 

discontinous5 

 
NOx6 SO27 

O38 

Collmberg CO 51.3 13     85054    88838   88792 

Melpitz ME 51.5 12.9 81561 88196   88822  86260 85541 84421 

Neuglobsow NG 53.1 13 57962 77540 71202     83718 87778 87943 

Waldhof WA 52.8 10.8 84276 80725 88321    85503 82386 87373 

 1MPSS - scanning mobility particle size spectrometer TROPOS (10 – 800 nm); 2MAAP - Multi-angle absorption photometer 5012 Thermo Fischer 

Scientific; 3TEOM-FDM - Tapered element oscillating microbalance fitted with a filter dynamics measuring system 1405 Thermo Fischer 

Scientific; 4SCHARP - Synchronized Hybrid Ambient Real-time Particulate Monitor 5030 Thermo Fischer Scientific; 5HVS – High Volume Sampler 

DIGITEL DH-80; 6TLA-NOx –Trace Level NOx Analyzer 42i-TL Thermo Fischer Scientific; 7TLA-SO2 - Trace Level SO2 Analyzer 43i-TLE Thermo 

Fischer Scientific; 8  
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Table 2 Median concentrations of eBC concentrations (µgm-3) and temporal trends (2009-2018) of eBC in terms of Sen-Theil slope  (% per year) as 1159 

determined for air masses passing over Regions A and B as analyzed at the stations Melpitz (ME), Neuglobsow (NG), and Waldhof (WA).  For 1160 

comparison the national annual decreases in BC emissions 2009-2017 in % according to the European Environmental Agency are added. 1161 

 
DELTA 
T* No. of back trajectories  

Median eBC in 
µm/m³ Sen-Theil slope in % per year  

Decrease in national BC emissions 
in % per year 

 in h ME NG WA ME NG WA ME NG WA 3 Stations**  Belgium Netherlands Germany 

 1 21941 17514 27218 0.38 0.40 0.41 
-

6.40 
-

6.80 
-

4.80 -5.85  -6.1% -6.1% -4.9% 

Region A 3 18605 14268 22132 0.38 0.40 0.41 
-

6.40 
-

6.90 
-

4.80 -5.89     

B-NL-NRW 6 14802 10086 15936 0.39 0.40 0.42 
-

6.40 
-

7.60 
-

5.10 -6.19     

 12 6817 3746 6131 0.40 0.50 0.50 
-

7.10 
-

7.90 
-

5.30 -6.62     

             
Czech 
Rep. Poland Slovakia 

 1 11096 5264 4191 1.10 1.19 1.13 
-

3.60 
-

3.40 
-

1.70 -3.16  -2.8% 0.5% -2.3% 

Region B 3 9601 4339 3541 1.08 1.18 1.12 
-

3.40 
-

3.40 
-

2.10 -3.14     

CZ-PL-SK 6 7000 3062 2570 1.05 1.09 1.11 
-

4.00 
-

2.90 
-

2.70 -3.47     

 12 3628 1410 1277 1.00 1.00 1.00 
-

3.70 
-

3.00 
-

2.70 -3.34     
                

ALL   85846 75190 78356 0.45 0.36 0.36 
-

5.90 
-

5.60 
-

4.00 -5.18     

Sun (2020)        
-

4.40 
-

7.80 
-

3.20      
* Minimum time spent over the specified source region, **Weighted mean, according to the available number of back trajectories 1162 
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Table 3 Percental decreases in the anthropogenic emissions of PM10, BC, SO2, and 1163 

NOx relative to 2009 as reported by the European Environment Agency (EEA, 1164 

https://www.eea.europa.eu/data-and-maps/dashboards/air-pollutant-emissions-data-1165 

viewer-2), the German Environment Agency (GEA), and calculated in the present 1166 

study.  The EEA and GEA only report data until 2017, (*=BC until 2016). 1167 

 1168 

 1169 

  1170 

Component 

EEA 

2009-

2017 

GEA 

2009-

2017 

GUAN 

emissions 

2009- 

2017 

GUAN 

emissions 

2009- 

2018 

PM10 12% 4.2% 16% 6% 

BC* 29% 35%* 63% 44% 

SO2 33% 20% 68% 59% 

NOx 20% 11% 43% 30% 

Gelöscht: Seitenumbruch1171 
¶1172 
Gelöscht: 21173 

Formatierte Tabelle

Gelöscht: Present study1174 

Gelöscht: until1175 

Gelöscht: Present study until 20181176 

Gelöscht: ¶1177 
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 1178 

Fig. 1 Maps of particle number concentration N10-800 (cm-3) extrapolated under 1000 m height 1179 

along five day back trajectories from hourly data at the four stations from 2009 to 2018; 1180 

left: months April through October; right: months November through March.  The 1181 

GUAN-stations are marked with colored diamonds.  The Collmberg station lies 30 km 1182 

Southeast of station Melpitz.  Here and in the following maps the black dots represent 1183 

cities larger than 100000 inhabitants with the size of the dots being proportional to the 1184 

number of inhabitants. 1185 
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 1193 

Fig. 2 As Fig. 1 but for particle mass concentrations (top, PM10, µgcm-3), and black carbon 1194 

concentrations (bottom, eBC, µgm-3). 1195 

  1196 

Formatiert: Zentriert

Gelöscht: volume 1197 
Gelöscht:  right1198 
Gelöscht:  right1199 
Gelöscht: ), extrapolated along back trajectories from 1200 
hourly data at the four stations from 2009 to 2018.  The 1201 
GUAN-stations are marked with colored diamonds.  The 1202 
Collmberg station lies 30 km Southeast of station Melpitz.  1203 
Here and in the following maps the black dots represent 1204 
cities larger than 100000 inhabitants with the size of the 1205 
dots being proportional to the number of inhabitants.1206 
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 1207 

Fig. 3 As Fig. 1 but a) for PM10 emissions (tons/0.1*0.1deg./year), b) for BC emissions, c) for 1208 

SO2 emissions, and d) for NOx emissions (tons/0.1*0.1deg./year) according to the 1209 

EDGAR emission database 1210 

(https://data.europa.eu/doi/10.2904/JRC_DATASET_EDGAR) for 2009 averaged over 1211 

the geogrid of the present study. 1212 
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 1217 

Fig. 4 a) Map of horizontal wind speed (u, kmh-1) as reported by HYSPLIT along hourly five-1218 

day back trajectories to the four stations marked in the graph averaged over the time 1219 

period 2009 to 2018; b) as a) but for precipitation (RR, mmh-1). 1220 
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 1225 

Fig. 5 a) Monthly medians of PM10-concentrations at the four stations of the present study 1226 

(blue), and monthly medians of optimized sums of PM10-emissions along back 1227 

trajectories leading to the stations (red). b) as a) but for measured eBC-concentrations 1228 

and BC-emissions along back trajectories. c) as a) but for measured SO2-concentrations 1229 

and SO2-emissions along back trajectories. d) as a) but for measured NOx-1230 

concentrations and NOx -emissions along back trajectories. 1231 
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 1234 

Fig. 6 GUAN: Trends in the emissions of a) PM10, b) BC, c) SO2, and d) NOx, relative to 2009 1235 

as calculated by optimizing the agreement between 2009-EDGAR-emissions and 1236 

concentrations measured at the four stations of the present study.  The error bars 1237 

represent annual average relative deviations between measured and simulated data. 1238 

GEA: Trends as reported for Germany by the German Environment Agency.  EEA: 1239 

Trends as optimized from combinations of trends over Germany and neighboring 1240 

countries, (see text for details). 1241 
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annual average relative deviations between measured and 1246 
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 1248 

Fig. 7 Trends in annual average deviations a) DN10-800, b) DO3, c) temperature DT along the 1249 

trajectories five days back in time, and d) precipitation rate DRR along the trajectories 1250 

three days back in time.  The deviations are taken relative to the respective 10-year 1251 
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Formatiert: Schriftart: Symbol
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Grand Average (GA).  The error bars represent the standard deviations of the annual 1252 

averages. 1253 

  1254 
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 1255 

 1256 

Fig. 8 Month factors for the emissions of PM10, BC, SO2, and NOx as determined by 1257 

optimizing the agreement between EDGAR-emissions and concentrations measured at 1258 

the four stations of the present study.  For comparison the month factors of Matthias et 1259 

al., (2018) for combustion emissions are plotted and the relative annual variation of eBC 1260 

concentrations measured at the station Leipzig-Eisenbahnstraße (L-EBS) averaged over 1261 

the time period of the present study. 1262 
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