
Response to Referees for Westervelt et al. (2020):  
 
Reviewer 1 
 
This is a nice study. It’s great to see some numbers on these effects, especially in the context of a 
multi-model study. This paper is clearly important, not only for its additions to the scientific 
literature, but also for policy at the intersection of climate and air quality, as well as for 
negotiations of allowable greenhouse gas emissions. The paper is also quite well written. I am 
recommending minor revisions.  
 
We thank the reviewer for the nice comments and suggestions.  
 
Comments: I really appreciate your careful attention to your statistical tests, particularly the 
number of degrees of freedom.  
 
GISS ModelE has a configuration (TOMAS) that could allow you to prognostically simulate 
aerosol size distribution, like CESM1. It would be useful to say why you chose not to use that 
configuration.  
 
TOMAS introduces an extra ~200 or so advected tracers for aerosol size, so running 200 to 400 
year simulations with it is currently not computationally efficient. It is worth noting that the first 
author (Westervelt) is a TOMAS developer and did his PhD on TOMAS.  
 
In your introduction, a reference to Murphy (2013) seems relevant: 
https://www.nature.com/articles/ngeo1740  
 
Good point, added to manuscript. The following sentence has been edited to include radiatve 
forcing and a citation was added for Murphy (2013): 
  
“Recently, additional studies have quantified mean surface temperature responses and radiative 
forcing to regional emissions changes of aerosol (Murphy, 2013).” 
 
Section 2.3: It would be helpful to spell things out a little more when computing the ETCCDI 
metrics. For your baseline, did you use the entire 400-year control run? Did you throw out any of 
that period for spinup? For the perturbed case, did you throw out any of the 160 years or did you 
use the whole thing? (This sort of thing really matters for TX90p, but to some degree for the 
others as well.)  
 
This is a good point. We remove about the first 200 years or so of the control runs and treat that 
as spin up. Then we also remove the 20 of the 160 years in the perturbation to allow for 
equilibration. The years are matched between the control and perturbation such that we 
difference the same year. We have added the following text:   
 
“We discard the first 20 years of each perturbation simulation (as with the mean surface 
temperature analysis), and use the corresponding matching years in the control run when creating 
the differences.“ 



 
Page 6, lines 24-25: In light of Malavelle et al. (2018) 
(https://www.nature.com/articles/nature22974), it might be worth making a comment as to 
whether the cloud lifetime effect is actually something that should be included.  
 
While the point about the uncertainty of the cloud lifetime effect and whether it should be 
included in models is well taken, the results of our paper are not authoritative on this subject, so 
any statement on the worthiness of inclusion of the cloud lifetime effect would be too speculative 
to be included in the paper.  
 
Page 6, lines 24-29: Your results bear a striking similarity to those of Seneviratne et al. (2018): 
https://www.nature.com/articles/s41561-017-0057-5 Your choice, but could be worth a 
comment?  
 
Yes, cited and added to the manuscript:  
“The response pattern is also similar to regional modifications of land surface albedo as reported 
in Seneviratne et al. (2018).” 
 
Page 10, lines 1-3: Is there a statistical test you could use? Anything better than simply 
eyeballing the change?  
 
In lieu of another statistical test on the dataset (we note that the t-test for significance has already 
been applied), we have changed the text to be more descriptive and precise regarding shape:  
 
“For the spatial average over the eastern US, the shape of the distributions remains unimodal and 
not skewed in GISS-E2 and GFDL-CM3, except for CESM1 which is not skewed in the control 
simulation but skewed in the perturbation. Global mean temperature distributions are 
consistently bimodal in the control and perturbation and generally not skewed. Overall, 
distribution shapes are mostly consistent, indicating that a mean shift is the statistical mechanism 
behind the increased temperature extremes.” 
 
Figure 1: The results here say some interesting things about aerosol transport. In particular, the 
bottom row indicates that Wang et al. (2014) 
(https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014JD022297) and subsequent 
related studies might be relevant. The point being, your discussion about common patterns of 
temperature change is good, but it’s not necessarily the entire story.  
 
Interesting point. We have added a citation to the Wang paper and the following sentence to the 
manuscript:  
“ The role of transport of BC from source regions remote to the Arctic may also be a contributor 
to the Arctic temperature response (Wang et al., 2014)” 
 
Figure 2: I’d recommend getting rid of the red color and just leaving it white. It doesn’t say 
much that two models agree on the sign but without statistical significance.  
 
Done. 



In Figure 4, CESM1 clearly has some different Southern Hemisphere behavior from the other 
two models (which doesn’t show up in Figure 5, possibly due to cancellation). Any hypotheses 
as to what might be going on here? 
 
There is indeed some different behavior, such as cooling over Australia, in CESM1 in the TXx 
response. The extreme temperature response is mostly not statistically significant in any 
simulation in CESM1 in the southern hemisphere, so this is most likely just internal variability.  
 
Reviewer 2 
 
Review of “Local and remote mean and extreme temperature response to regional aerosol 
emissions reductions” by Westervelt at al.  
 
Summary  
This paper quantifies the temperature response, including extremes, due to removal of aerosol 
emissions in six different geographical regions, with three different climate models. Such 
removal generally leads to warming, with the Arctic region particularly vulnerable. Similar 
changes occur in temperature extremes. The authors also update Regional Temperature 
Potentials, which are useful for estimating regional climate impacts due to regional aerosol 
changes in Integrated Assessment Models. Overall, the paper is well written and contains 
interesting and novel results. I recommend publication with minor revision.  
 
We thank the reviewer for the useful review and comments.  
 
Comments  
P2 L12. See also “Emerging Asian aerosol patterns” Nature Geosci. 12 (2019) by Samset et al.  
 
Good point. Added and cited.  
 
There are also several PDRMIP papers that are relevant to the discussion, that should probably 
be cited. For example, “Rapid Adjustments Cause Weak Surface Temperature Response to 
Increased Black Carbon Concentrations” by Stjern et al. JGR 2017.  
 
Added and cited. Refer to the comment below which also references this paper.   
 
Also, “Arctic Amplification Response to Individual Climate Drivers” by Stjern et al. JGR 2019. 
Looks like the Arctic Amplification paper is eventually mentioned on Page 6.  
 
Yes, this is already cited and discussed.  
 
P4 L33. Naik reference parentheses typo.  
 
Fixed, thanks.  
 
Model Description Section. Please include some brief information of each of these model’s 
aerosol ERF (e.g., PD-PI). For example, in “A 21st century northward tropical precipitation shift 



caused by future anthropogenic aerosol reductions” by Allen JGR 2015, CESM yields - 1.52; 
GFDL yields -1.60; and GISS yields -0.76 W/mˆ2. So GISS has a much smaller aerosol ERF. 
Based on this alone, I would expect any temperature response to similar aerosol perturbations to 
be weakest in GISS. You may also want to mention why this is. For example, GISS lacks 
aerosol-cloud second indirect effects (aerosol-cloud lifetime effect). Looks like this is eventually 
mentioned on Page 6. Might be beneficial to mention here as well. Although, it is interesting that 
GISS also has a smaller climate sensitivity to CO2, relative to GFDL and NCAR. This could also 
contribute to a weaker surface temperature response in GISS.  
 
 
Good points. We have added the following text:  
“For comparison, the present day minus pre-industrial aerosol ERF in CESM1, GFDL-CM3, and 
GISS-E2 is -1.52, 1.60, and 0.76 W m-2, respectively (Allen et al., 2015). This version of the 
GISS-E2 model does not include the aerosol-cloud lifetime effect, resulting in a smaller ERF, as 
discussed below.” 
 
The sensitivity to regional aerosol reductions in GISS-E2 is about the same or larger than GFDL-
CM3 and CESM1 (Figure 8), suggesting that the weaker CO2 climate sensitivity is not a major 
factor in the GISS-E2 weaker temperature response.  
 
 
Methods Section. These simulations are designed for an instantaneous removal of aerosol 
emissions. Thus, there is no time evolution of the aerosol emission reductions, which would be 
more realistic. How does this impact the results? Maybe a few comments on this are necessary.  
 
These are idealized simulations, meant to establish the maximum potential impact of phasing-out 
of aerosols on climate. The temperature response would be a bit weaker overall assuming a ~100 
year drawdown of aerosols. If only the years after the time evolving anthropogenic aerosol 
emissions approached 0 (or close to it) were included in the hypothetical analysis, then I expect 
the results to be similar to what we are showing here. We have added a line clarifying this in the 
manuscript:    
“Aerosol emissions removals are instantaneous and we do not consider the effect of a long time-
evolving drawdown.” 
 
Methods Section. It is stated perturbation simulations are conducted for 160-200 years. What 
years are actually analyzed? I assume the first several decades (hopefully more) are not used, 
since the model is not yet in some sort of quasi-equilibrium?  
 
We discard the first 20 years of the perturbation simulation. This has been added to the 
manuscript. Also for the 400 year control simulation, the first 200 years are discarded as spin up. 
There is a tradeoff between years analyzed and likelihood that the model is in equilibrium. In 
order to generate robust statistics, we need a long sample size, so this is part of the reason why 
we only discard the first 20 years.  
 
Added to manuscript:  
“The first 20 years of the perturbation simulations are discarded in the response calculation.” 



 
P6 L26. “Surface temperature response is strongest in the US SO2 and Europe SO2 simulations 
in all three models, with annual mean local and remote temperature increases of up to 1 K or 
higher.” I assume this is related to the magnitude of the aerosol emission reduction. What if you 
normalize by this perturbation? I guess you eventually normalize by ERF, which would be 
similar.  
 
Yes, we normalize by effective radiative forcing, which provides the same effect (with different 
units). In a forthcoming paper in preparation, we plan to present some results normalized by 
emissions, so we leave that analysis for later.  
 
P7 L10. Regarding the weak and inconsistent BC temperature response. Again, this appears to be 
consistent with the Stjern PDRMIP paper above. Also, this may be related the resulting rapid 
adjustments. See, for example, Smith, C. J. et al. “Understanding rapid adjustments to diverse 
forcing agents”. Geophys. Res. Lett. 45, 12023–12031 (2018). And in particular, the impact of 
the vertical profile of absorbing aerosol on the rapid adjustments. For example, Allen, R. J. et al. 
“Observationally constrained aerosol cloud semi-direct effects” npj Climate and Atmospheric 
Science (2019) showed very different surface temperature responses to absorbing aerosol 
dependent on the vertical absorbing aerosol profile. Models tend to have a vertically-uniform 
profile, and this leads to a negative adjustment, associated with high cloud reductions. However, 
a vertical profile that resembles CALIPSO observations (more absorption in the lower 
troposphere) yields low/mid-level cloud reductions, a positive adjustment, and surface warming. 
Looks as if this is eventually discussed near P11.  
 
Yes, the Smith et al. (2018) paper is already cited and discussed on page 11. However, we have 
added another reference to it, as indicated below. We agree with the reviewer that rapid 
adjustments could explain some of the weaker responses for BC reductions. We have added the 
following to the text: 
 
“The weak forcing in the black carbon simulations may reflect the role of rapid adjustments 
(Stjern et al., 2017; Smith et al., 2018), including the semi-direct effect of BC on clouds (Allen et 
al., 2019)." 
 
Figure 2. Can the “Robustness %” be defined in the figure caption. 
 
Yes, done. Added to caption: 
“Robustness indicates percentage of the surface area that has all 3 models in sign agreement.” 
 
 Near Page 8 L10. Can you explain why BC reductions lead to surface warming (despite having a 
positive RF) in nearly all cases?  
 
This is likely a symptom of internal variability swamping the signal from BC reductions. For 
example, BC reductions in India yield very little statistical significance in temperature response.  
 
How do tropical emission reductions drive Arctic warming? Is it due to direct transport of 
aerosol to the Arctic, or due to changes in atmospheric/oceanic circulation that then leads to 



Arctic warming? Are these responses robust across the three models? Perhaps this is outside the 
scope of the current study. 
 
We believe that the majority of the impact is due to atmospheric and ocean circulation that then 
causes Arctic warming. The first reviewer pointed out that transport of BC to the Arctic is 
possible even from the tropics, though Wang et al. (2014 suggests that tropical regions such as 
Southeast Asia seem to contribute less than 10% to the BC burden in the Arctic, so we do not 
expect this to be the dominant pathway for Arctic temperature changes. Figure 3b shows the 
Arctic temperature response, and for some of the tropical aerosol emissions pertubations (such as 
India SO2, Africa BB, etc), there is some minor degree of robustness. For example, for India 
SO2 and South America BB, all three models agree on sign.    
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Abstract. The climatic implications of regional aerosol and precursor emissions reductions implemented to protect human 

health are poorly understood. We investigate the mean and extreme temperature response to regional changes in aerosol 15 

emissions using three coupled chemistry-climate models: NOAA GFDL-CM3, NCAR-CESM1, and NASA GISS-E2. Our 

approach contrasts a long present-day control simulation from each model (up to 400 years with perpetual year 2000 or 2005 

emissions) with fourteen individual aerosol emissions perturbation simulations (160-240 years each). We perturb emissions of 

sulfur dioxide (SO2) and/or carbonaceous aerosol within six world regions and assess the statistical significance of mean and 

extreme temperature responses relative to internal variability determined by the control simulation and across the models. In 20 

all models, the global mean surface temperature response (perturbation minus control) to SO2 and/or carbonaceous aerosol is 

mostly positive (warming), statistically significant, and ranges from +0.17 K (Europe SO2) to -0.06 K (US BC). The warming 

response to SO2 reductions is strongest in the US and Europe perturbation simulations, both globally and regionally, with 

Arctic warming up to 1 K due to a removal of European anthropogenic SO2 emissions alone; however, even emissions from 

regions remote to the Arctic, such as SO2 from India, significantly warm the Arctic by up to 0.5 K. Arctic warming is the most 25 

robust response across each model and several aerosol emissions perturbations. The temperature response in the northern 

hemisphere mid-latitudes is most sensitive to emissions perturbations within that region. In the tropics, however, the 

temperature response to emissions perturbations is roughly the same in magnitude from emissions perturbations either within 

or outside of the tropics. We find that climate sensitivity to regional aerosol perturbations ranges from 0.5 to 1.0 K per W m-2 

depending on the region and aerosol composition, and is larger than the climate sensitivity to a doubling of CO2 in two of three 30 

models. We update previous estimates of Regional Temperature Potential (RTP), a metric for estimating the regional 

temperature responses to a regional emissions perturbation that can facilitate assessment of climate impacts with integrated 

assessment models without requiring computationally demanding coupled climate model simulations. These calculations 

indicate a robust regional response to aerosol forcing within the northern hemisphere mid-latitudes, regardless of where the 

aerosol forcing is located longitudinally. We show that regional aerosol perturbations can significantly increase extreme 35 
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temperatures on the regional scale. Except in the Arctic in the summer, extreme temperature responses largely mirror mean 

temperature responses to regional aerosol perturbations through a shift of the temperature distributions and are mostly 

dominated by local rather than remote aerosol forcing.  

1 Introduction 

Understanding regional climate responses to present and future anthropogenic forcing agents remains a key challenge 5 

of direct relevance to human and natural systems. Emissions of aerosols and their precursors are spatially heterogeneous and 

short-lived, and thereby expected to exert complex responses as emissions of air pollutants are reduced through policies enacted 

to protect human health. Emissions of sulfur dioxide (SO2), black carbon (BC), and organic carbon aerosol (OA) have 

decreased throughout the United States and Europe for several decades (Leibensperger et al., 2012; Tørseth et al., 2012). On 

the other hand, emissions have largely increased in recent decades in countries such as China, India, and others in the Global 10 

South; however, since 2013, emissions of SO2 are beginning to decline at least in China, while emissions in India continue to 

increase (Fontes et al., 2017; Li et al., 2017; Lu et al., 2011; Samset et al. 2019). As emissions of anthropogenic aerosols and 

their precursors are reduced in high-emitting regions such as China, their reduction is expected to perturb regional and global 

temperatures (Kasoar et al., 2016). To improve future climate projections, a deep understanding of the magnitude, spatial 

pattern, statistical significance, and physical mechanisms of the temperature response to a phasing out of both scattering and 15 

absorbing anthropogenic aerosols is needed. Here we address this need by simulating the local and remote mean and extreme 

surface temperature responses to removal of different components of anthropogenic aerosols from six world regions in three 

distinct earth system models.   

The net effect of removal of global emissions of all anthropogenic aerosols is a surface warming, as decreases in 

aerosol scattering result in additional solar energy reaching the surface of the Earth (Myhre et al., 2013). Removal or reduction 20 

of scattering aerosols on the regional scale will also result in surface warming on average. However, removal of global and 

regional emissions of black carbon or other absorbing aerosol is generally expected to induce a cooling at the surface, due to 

a net reduction in the absorption of incoming solar radiation (Bond et al., 2013; Ramanathan and Carmichael, 2008; Samset et 

al., 2018). In addition to influencing surface temperature directly by scattering or absorbing incoming solar radiation (aerosol 

direct effect), aerosols also indirectly influence surface temperature by modulating cloud properties such as brightness and 25 

lifetime (aerosol indirect effects) (Albrecht, 1989; Twomey, 1977). Regional emissions perturbations of both scattering and 

absorbing aerosols also exert significant local and remote precipitation responses (Westervelt et al., 2017, 2018), though here 

we focus primarily on mean and extreme surface temperature responses.  

Several previous studies have considered the global and regional climate response to global reductions in aerosol and 

precursor emissions using transient future simulations (e.g. Gillett and Von Salzen, 2013; Levy et al., 2013; Samset et al., 30 

2018; Westervelt et al., 2015), finding a robust increase of up to about 1 K of surface warming by 2100 in response to 

decreasing aerosol burden. Recently, additional studies have quantified mean surface temperature responses and radiative 
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forcing to regional emissions changes of aerosol (Murphy, 2013). Kasoar et al. (2016) used three global climate models to 

estimate the global and regional surface temperature impacts from the removal of Chinese anthropogenic SO2 emissions, 

finding hemispheric warming in two of the three models. Conley et al. (2018) also used three climate models to estimate the 

mean surface temperature response to a removal of SO2 emissions from the United States alone, with warming over the United 

States and in the Arctic found to be as high as 0.5 K. Persad and Caldeira (2018) used the NCAR CAM5 (Community 5 

Atmosphere Model 5) to show that climate responses to identical aerosol emissions changes are significantly different 

depending on the region where emissions are perturbed. Using a different model and a different emissions perturbation format, 

Kasoar et al. (2018) find similar patterns of mean surface temperature response to aerosols from different regions. Both Kasoar 

et al. (2018) and Persad and Caldeira (2018) used a single model to estimate the temperature responses to regional 

anthropogenic aerosol emissions.  10 

Reductions in regional aerosol emissions may also influence temperature extremes; however, the magnitude, 

statistical significance, and physical mechanisms of the greenhouse gas and aerosol impact on extreme events is also poorly 

understood (Horton et al., 2016). The Intergovernmental Panel on Climate Change Special Report on Managing the Risks of 

Extreme Events and Disasters to Advance Climate Change Adaptation (IPCC SREX; (IPCC, 2012)) identified forcing factors 

that are important on regional scales (such as aerosols) as a key challenge to further understanding of the anthropogenic causes 15 

of extreme temperature change. Recent studies have found a role for global aerosol reductions in heat waves (Zhao et al., 2019) 

and also in temperature extreme indices (Mascioli et al., 2016; Samset et al., 2018) as defined by Expert Team of Climate 

Change Detection and Indices (ETCCDI) (Sillmann et al., 2013). To our knowledge, the extreme temperature response to 

regional aerosol emissions reductions has not been previously studied.  

In addition to understanding the changes in mean and extreme surface temperature response to aerosol reductions, it 20 

is vitally important to understand the effective radiative forcing (ERF) induced by aerosols, and how ERF relates to temperature 

response. ERF includes the instantaneous top of atmosphere radiative forcing plus rapid adjustments, i.e. the radiative impacts 

to the top of atmosphere energy budget which are not related to surface temperature. Radiative forcing exerted by 

anthropogenic aerosols is far more spatially inhomogeneous than that from well-mixed greenhouse gases, making 

generalization of the climate responses to anthropogenic aerosol emissions changes a more difficult task (Shindell, 2014). 25 

Additionally, radiative forcing in one region may result in different temperature response in local regions compared with 

remote regions. Shindell and Faluvegi (2009) began to address this by using an early version of the Goddard Institute for Space 

Studies ModelE chemistry-climate model to estimate temperature responses per unit radiative forcing for forcing perturbations 

in several wide latitude bands. Shindell (2012) also used these latitude bands to further develop the Regional Temperature 

Potential (RTP), a temperature response metric normalized by aerosol ERF to provide estimates regional temperature change. 30 

More recently, Lewinschal et al. (2019) used NorESM (Norwegian Earth System Model) to calculate similar metrics based on 

emissions. Simple climate metrics such as RTP coefficients can be used in the Integrated Assessment Modelling (IAM) and 

climate impacts community to rapidly and easily calculate the climate impact of different energy or climate mitigation policies 

without requiring computationally expensive coupled climate model simulations. Thus far, metrics such as RTP incorporated 
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into IAMs have been based on simulations with a single climate model. Future climate projections can benefit and improve 

from a multi-model approach that enables more robust estimates of mean and extreme regional surface temperature responses 

per unit radiative forcing from a given region.  

The relationship between surface temperature response and associated ERF is not well understood for individual 

short-lived forcing agents such as regional aerosols. The climate sensitivity parameter, or the ratio between the temperature 5 

response to an external forcing and the forcing itself (K per W m-2), is a widely used metric essential for projecting future 

climate change (Myhre et al, 2013; Marvel et al., 2016; Previdi et al., 2013). Estimation of equilibrium climate sensitivity 

(ECS) using coupled models has mostly occurred in the context of a doubling (or quadrupling) of CO2 concentrations (2xCO2) 

(Arrhenius, 1896; Callendar, 1938; Cox et al., 2018; Huber et al., 2014; Knutti et al., 2017; Knutti and Hegerl, 2008; Knutti 

and Rugenstein, 2015; Otto et al., 2013). A few studies estimating the ability of single forcing agents to change surface 10 

temperature (sometimes called “forcing efficacy”) have found that anthropogenic aerosols have a greater forcing efficacy than 

CO2 (Hansen, 2005; Marvel et al., 2016; Shindell, 2014). These findings, however, have come from single models using global 

reductions in aerosol and precursor emissions, despite substantial regional dependence and heterogeneity of aerosol forcing. 

Estimates of ECS based on modelling and modern and paleoclimatic observations should take into account the forcing efficacy 

of regional aerosol perturbations, which our approach can help inform.  15 

We improve on past work by conducting an extensive set of computationally demanding simulations in three (instead 

of one) Coupled Model Intercomparison Project Phase 5 (CMIP5) era chemistry-climate models in which emissions of SO2, 

BC, OA, and a combination of all three are set to zero or significantly reduced in one of six world regions (instead of latitude 

bands). Using these simulations, we estimate the local and remote regional surface temperature responses to reduced or 

removed aerosol and precursor emissions. We aggregate our results in each model to provide an estimate of robustness of the 20 

regional surface temperature response. In order to compare the surface temperature responses across models, regions, and 

forcing agents (including aerosols but also carbon dioxide), and to provide updated estimates of regional temperature response 

metrics as done in Shindell (2012), we estimate the climate sensitivity for a given region and forcing agent in each of our 

models, on a global and regional basis.  We also report for the first time the extreme surface temperature response to regionally 

specific emissions reductions of aerosols and their precursors in three climate models.  25 

2 Methods 

2.1 Models and simulations 

Our modeling framework has been previously described by Westervelt et al. (2018), Westervelt et al. (2017), and 

Conley et al. (2018). Briefly, we employ three coupled atmosphere-ocean-land-sea-ice climate models with fully interactive 

chemistry of aerosols and trace gases: 1) Geophysical Fluid Dynamics Laboratory Coupled Climate Model version 3 (GFDL-30 

CM3) (Donner et al., 2011), 2) Goddard Institute for Space Studies ModelE2 (GISS-E2-R) (Schmidt et al., 2014), and 3) 

Community Earth System Model version 1 (CESM1) (Neale et al., 2012). The model configuration for each is very similar to 

that used for CMIP5. For further model description and model evaluation, we refer readers to Westervelt et al. (2017) and Naik Deleted: (
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et al. (2013). Only CESM1 includes prognostic simulation of aerosol size distribution (Conley et al., 2018 and references 

therein). Of particular relevance for our results is the model treatment of black carbon. In GFDL-CM3, black carbon is 

internally mixed with only sulfate in the radiation code, whereas in CESM1, black carbon is internally mixed with all aerosol 

constituents within a given aerosol mode. In GISS-E2, black carbon is externally mixed with other aerosol species (Schmidt 

et al., 2014).  5 

 We conduct for each model a long “present-day” control simulation of up to 400 years in length, forced by perpetual 

year 2000 (2005 for NCAR-CESM1) conditions, including all emissions of aerosols and their precursors and greenhouse gas 

concentrations. We also conduct individual regional aerosol perturbation simulations of at least 160 years and as long as 240 

years in each model, in which the anthropogenic aerosol or aerosol precursor emissions for a certain region are completely 

removed (100%) or reduced by the amount shown in Table 1. Aerosol emissions removals are instantaneous and we do not 10 

consider the effect of a long time-evolving drawdown. The first 20 years of the perturbation simulations are discarded in the 

response calculation. We choose the magnitude of relative emissions reductions in order to have roughly equivalent emissions 

decreases for a particular species across regions and models. As an example, “ISO2” refers to a simulation with perpetual year 

2000 conditions (2005 for NCAR-CESM1), perturbed by setting all anthropogenic SO2 emissions over India to zero. Other 

than the regional aerosol emissions perturbation, all other model settings remain identical to the control. Long control and 15 

perturbation simulations allow us to establish statistical significance and separate forced responses from internal climate 

variability.  

We also conduct a set of simulations for each perturbation and control in each model using modeled climatological 

fixed sea surface temperatures (SST) and sea ice cover (SIC) in order to calculate ERF. These simulations only use the 

atmosphere and land components of the climate models and are not coupled to the ocean and sea ice models but are otherwise 20 

identical to our longer coupled model integrations. ERF is determined by differencing the perturbation simulation minus the 

control simulation. Estimates of ERF done in this manner include the instantaneous radiative forcing plus the rapid adjustments 

from the atmosphere and the land. For the aerosol perturbation simulations, the ERF is calculated based on 50 years of 

simulation data for CESM1, 80 years for GFDL-CM3, and 160 years for GISS-E2 (to allow detection of a smaller forcing 

observed in that model). The ERF associated with a doubling of CO2 (2xCO2) is also calculated using the fixed-SST method 25 

from simulations similar to 4xCO2 fixed-SST simulations conducted for the CMIP5 experiments. For comparison, the present 

day minus pre-industrial aerosol ERF in CESM1, GFDL-CM3, and GISS-E2 is -1.52, -1.60, and -0.76 W m-2, respectively 

(Allen et al., 2015). This version of the GISS-E2 model does not include the aerosol-cloud lifetime effect, resulting in a smaller 

ERF, as discussed below.  

 30 

2.2 Statistical methods 

 We estimate the change in surface temperature between the control and perturbation simulations as the cotemporal 

annual mean differences (perturbation minus control), and perform a paired sample modified Student t-test where the pairs are 

cotemporal samples of the perturbation and the control. The modified t-test accounts for autocorrelation in the model surface 
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temperature time series by calculating an effective standard error, which utilizes an effective sample size based on the lag-1 

autocorrrelation. A time series showing autocorrelation overestimates the number of independent samples when calculating 

statistical significance, but our approach, based on Conley et al. (2018) and Zwiers et al. (1995), corrects against this 

overestimation. We also use the False Discovery Rate procedure of Wilks (2016) on our t-tests over our gridded atmospheric 

data, which limits the fraction of erroneously rejected null hypotheses in a field of mutually correlated t-tests (at each grid 5 

point).  

 

2.3 Extreme indices  

To estimate extreme temperature responses to aerosol perturbations, we use the “FClimDex” Fortran package 

(http://etccdi.pacificclimate.org/software.shtml) developed by the Expert Team of Climate Change Detection and Indices 10 

(ETCCDI) to estimate 27 climate extreme indices. Daily minimum, maximum, and mean surface air temperature is input to 

the extremes package for each of our simulations for which daily data was available, including the control simulation. 

Cotemporal differences were then taken as for mean temperature, and we performed modified paired t-tests (perturbation and 

control) to assess significance. Extreme temperature analysis was not performed on all of our simulations, but rather a subset 

of simulations that demonstrated the highest mean temperature response. Further, we only perform extreme analysis on 15 

simulations conducted for at least 160 years of daily data, as shorter time periods are not sufficient to build up robust statistics. 

We discard the first 20 years of each perturbation simulation (as with the mean surface temperature analysis), and use the 

corresponding matching years in the control run when creating the differences. We focus our analysis on the TXx index, one 

of the most commonly analyzed extreme index in the existing literature. TXx is defined as the maximum of the maximum 

daily temperature in a given time period (e.g., over a model simulated year) (Sillmann et al., 2013). We explored results using 20 

other temperature indices and found the results to be qualitatively similar to the results for TXx, and thus do not include these 

additional indices in the main text (see Supplementary Information).  

 

3 Global and regional mean surface temperature responses to regional aerosol emissions 

3.1 Comparison across models 25 

Figure 1 shows the ~160-240 year annual mean surface temperature response in each of the three models for 6 regional 

aerosol perturbations. An analogous figure for all of the remaining simulations can be found in the Supplementary Fig. S1. 

The change in temperature in Fig. 1 and all following figures is the “perturbation minus control”, representing the temperature 

response to a removal or reduction of emissions of anthropogenic aerosols and their precursors. Generally, the response is 

overwhelmingly positive (warming) with large regions of statistical significance in each of the three models for most 30 

simulations. We find a larger temperature response in GFDL-CM3 and CESM1 (first and second columns of Fig. 1) compared 

to GISS-E2, consistent with to the smaller magnitude of aerosol ERF in GISS-E2 (see Sect. 5) resulting from a lack of a cloud 

lifetime effect in that model (Westervelt et al., 2017, 2018). In all three models, the largest remote temperature responses are 
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over the Arctic, owing to the well-established polar amplification phenomenon (Smith et al., 2019; Stjern et al., 2019). Surface 

temperature response is strongest in the US SO2 and Europe SO2 simulations in all three models, with annual mean local and 

remote temperature increases of up to 1 K or higher. Despite different regions of emissions perturbations, the salient features 

of the spatial distribution of surface temperature response are similar between the US SO2, China SO2, US ALL (SO2, BC, and 

OC combined), Europe SO2, and EU ALL (Fig. S1) perturbations in all models, suggesting that aerosol forcing in northern 5 

hemisphere mid latitudes (NHML) induces a qualitatively consistent spatial response pattern. This pattern features strong 

Arctic warming, differential heating of the Northern Hemisphere compared to the Southern Hemisphere, strong local 

responses, and far-reaching remote responses across continents (e.g., European warming in response to US SO2 emissions 

reductions). The response pattern is also similar to regional modifications of land surface albedo as reported in Seneviratne et 

al. (2018). Climate responses to aerosol perturbations also can project onto known modes of climate variability, such as El 10 

Niño-Southern Oscillation (ENSO), as described in Westervelt et al. (2018). The temperature response to US SO2 emissions 

removal in CESM1 (Fig. 1b) resembles an El Niño-like response, with cooling in the western tropical Pacific Ocean coupled 

with warming in the eastern tropical Pacific Ocean. In GFDL-CM3, most simulations regardless of region or aerosol species 

result in cooling (sometimes statistically significant) south of 60ºS along the Antarctic coast starting roughly at the 180º 

meridian coupled with surrounding statistically significant warming (e.g. EU SO2, Fig 1d), suggesting interaction with the 15 

Amundsen Sea Low (ASL), which exerts significant influence on Antarctic climate (Raphael et al., 2016). However, this is 

also a region of strong climate variability in GFDL-CM3. 

Although the surface temperature response to Indian SO2 and BC emissions reductions is small in all models, despite 

the tropical location of the emissions perturbation, changes in temperature still occur at both poles in all models, with some 

statistical significance. Removal of black carbon emissions (Fig. 1p, q, and r) elicits a very different temperature response in 20 

each of the three models in spatial distribution, sign, and magnitude, indicating a strong dependence of the surface temperature 

response to different model assumptions for black carbon, including different mixing state assumptions. Additionally, as 

reported in Westervelt et al. (2018), aerosol ERF from India BC perturbations is small (ranging from -0.04 to 0.06 W m-2 

across the three models) and statistically insignificant, resulting in climate responses that may be influenced by internal 

variability. The weak forcing in the black carbon simulations may also reflect the role of rapid adjustments (Stjern et al., 2017; 25 

Smith et al., 2018), including the semi-direct effect of BC on clouds (Allen et al., 2019). The climate response to BC 

perturbations in other regions, such as US BC (Fig S1 panel g and h), also is marked by disparate temperature responses, 

further highlighting the sensitivity of climate response to model physics, and in some cases representing noise when forcing 

signals are small. The role of transport of BC from source regions remote to the Arctic may also be a contributor to the Arctic 

temperature response (Wang et al., 2014).  30 

3.2 Robustness across models 

To estimate robustness of the surface temperature responses to regional aerosol perturbations, we use the sign 

(warming or cooling) and the statistical significance as a point of comparison between the three models. Figure 2 shows the 
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agreement between models in sign and statistical significance in each of the aerosol perturbations simulations that were 

conducted by all three models. We find widespread agreement in sign and significance in the US SO2 (Fig. 2a), Europe SO2 

(Fig. 2b), China SO2 (Fig. 2c), and US All (SO2, BC, and OA combined, Fig. 2d) simulations. Using sign agreement in three 

models as a minimum for a qualification of robustness (light blue color), the most robust responses are to Europe SO2 removal, 

where 81 % of the Earth’s surface qualifies as robust (values in the upper right of Fig. 2 panels). On the other hand, the response 5 

to India BC is robust across only 39 % of the Earth’s surface. We conclude that climate responses to black carbon over India 

exhibit large variability between models compared to climate responses from source regions such as the US and Europe, likely 

due to the small forcing exerted by the BC perturbation simulations. 

 The three models frequently agree in the sign and significance of Arctic warming, indicating that the Arctic surface 

temperature response is one of the most robust features of climate response to regional aerosol perturbations. Local responses 10 

are also robust, in particular the US SO2 and US All perturbations show high levels of robustness (green and dark blue colors 

in Fig. 2a and 2d) over North America. The models agree in sign and significance in the remote Arctic temperature response 

even in the case of India BC and African biomass burning emissions perturbation, suggesting that the Arctic warming response 

is somewhat independent of emissions region or aerosol composition. Overall, all three models agree on sign and at least two 

report statistical significance over 32 % of the Earth’s surface (66 % when not including significance) in response to removal 15 

of US SO2 emissions.  

3.3 Local and remote responses by region 

 In Fig. 3, we present the global and regional mean surface temperature response to 14 different emissions 

perturbations in each of the three models. The emissions reductions forcing these temperature changes are roughly the same 

across models within a given perturbation scenario (Table 1). The global mean surface temperature response (Fig. 3a) indicates 20 

warming in 33 of the 34 simulations (US BC in GFDL-CM3 being the only example of global cooling) and is significant at 

the 95% confidence level in 30 of the 34 perturbation simulations. The Europe and US emissions perturbations (e.g., ESO2, 

EALL, USO2, etc.) cause the largest global mean temperature increases across all regions and aerosol compositions, resulting 

in a global mean warming of about 0.15 K. The SO2 perturbations tend to result in greater warming than OA or BC (which can 

also result in global cooling). CESM1 and GFDL-CM3 tend to warm more than GISS-E2, although not for all simulations.  25 

 We break down the regional climate response into latitude bands, following the approach used by Shindell and 

Faluvegi (2009), by regionally averaging the temperature responses from 60 to 90ºN (Arctic, Fig. 3b), 30 to 60ºN (Northern 

Hemisphere Mid Latitudes, NHML, Fig. 3c), 30ºS to 30ºN (tropics, Fig. 3d), and 30 ºS to 90ºS (Southern Hemisphere, Fig. 

3e). Surface temperature increases approach 1 K regionally averaged over the Arctic (60 to 90ºN) in CESM1 and GFDL-CM3, 

with GISS-E2 simulating smaller but still often statistically significant warming responses. The Arctic responds most strongly 30 

to European aerosol perturbations (e.g. ESO2, EALL), perhaps owing to the greater proximity of the European continent to 

the Arctic region. However, even remote regional aerosol perturbations, such as India SO2 (ISO2), or South American biomass 

burning (SABB) lead to Arctic warming in all of the models (Fig. 2), with some statistical significance. NHML temperature 
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changes (Fig. 3c) are mostly dominated by these local perturbations. On the other hand, the temperature response to the 

emissions perturbations local to the tropics (red labels in Fig. 3d) are roughly the same in magnitude and significance as the 

response to some of the “remote” perturbations. Emissions perturbations local to the tropics exert a larger temperature response 

in the Arctic than they do either locally or in the closer NHML region. In the Southern Hemisphere (Fig. 3e), we find consistent, 

statistically significant warming in CESM1, but less warming in GFDL-CM3 and GISS-E2, owing to the localized Antarctic 5 

cooling in the case of GFDL-CM3. Overall, responses in the Southern Hemisphere are less statistically significant.  

4. Extreme surface temperature responses to regional aerosol emissions 

The response of temperature extremes (TXx, annual maximum of maximum daily temperature) averaged over the 

entire 160-240 simulation years is shown in Fig. 4 for each simulation in each model for which daily data were available. In 

addition to the TXx extreme index, we have also analyzed a series of other indices, however the results are qualitatively similar 10 

so we only present TXx here (see Supplementary Information for additional indices). In general, we find increases in extreme 

temperature nearly everywhere both locally and remotely in most simulations, with a few exceptions such as the BC aerosol 

perturbations. Increases in extreme temperature are as large as 1 K especially near the source region of the particular 

perturbation simulation. Remote increases in extreme temperature are observed for several perturbations, for example 

European SO2 in NCAR-CESM1 and GFDL-CM3. Statistical significance is less abundant in GISS-E2, though we find 15 

increases of similar magnitude in GISS-E2 and the other two models. Over land, extreme temperature (TXx) can be equally 

or more sensitive to regional aerosol forcing than mean temperature, which can be seen by comparing temperature changes in 

Fig. 1 and Fig. 4. For example, TXx response to US SO2 is mostly similar in magnitude or slightly larger than mean temperature 

over the eastern US in all three models. In contrast, mean temperature changes are strong (up to 1 K) over the Arctic, whereas 

extreme temperature changes (TXx) are much smaller (< 0.3 K) and statistically insignificant. This is likely caused by the 20 

seasonality of Arctic amplification, which is a robust response to external forcing in every season except summer. TXx values 

mostly reflect summer temperature changes, when the maximum temperature throughout the year is likely to occur in the 

northern hemisphere. We confirm this by showing extreme temperature response for the winter months December, Janaury, 

and February (DJF, Fig. S2), in which Arctic extreme temperature responses are larger and consistent with mean temperature 

responses. We conclude that the remote response relationship between mean and extreme temperatures is therefore strongly 25 

seasonally dependent.  

Figure 5 shows the global (panel a) and latitude band averaged (panels b through e) extreme surface temperature 

response in each of the model simulations, analogous to Fig. 3 for mean surface temperatures. Another extreme temperature 

metric TX90p, or the percentage of days when the daily maximum temperature is greater than the 90th percentile, is shown in 

Fig. S3 but is qualitatively similar to Figure 5. Global mean extreme surface temperature response is largest in GFDL-CM3 30 

and CESM1 and in the Europe SO2 (ESO2) and US SO2 (USO2) simulations, in which the TXx response can approach about 

0.2 K. Global mean TXx is only statistically significant for the ESO2 in GFDL-CM3 and CESM1, USO2 for CESM1, and 

ISO2 for GFDL-CM3. Changes in the extreme temperatures over the Arctic (Fig. 5b) are close to zero and statistically 
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insignificant, in contrast to Arctic mean temperature, which was heavily affected by many of the remote aerosol perturbations, 

though this is primarily caused by the seasonal dependence of Arctic amplification, as described above. TXx responses in the 

NHML (Fig. 5c) are dominated by local aerosol perturbations, reaching statistically significant increases of up to 0.4 K, while 

remote perturbations have no statistical significance. In the tropics and the Southern Hemisphere (Figs. 5d and 5e), there is 

almost no significant response in TXx to any aerosol perturbation. We conclude that although extreme temperature can be 5 

increased by remote aerosol perturbations in a few cases, in general the local forcing is a much greater control on extreme 

temperature, and remote responses are not nearly as large or significant for TXx compared to mean surface temperatures.  

Figure 6 shows the eastern US and global mean surface temperature probability density function for each model for 

control and USO2. Each probability density function has been normalized such that the area under the curve is equal to unity. 

The bars represent the actual probability density for each temperature value, whereas the dashed curve is a fitted Gaussian 10 

kernel density estimation of the probably density. In each model both globally and regionally, there is a clear shift in the mean 

of the distribution, resulting in additional occurrence of temperature extremes. Each mean shift is also statistically significant 

at the 95% confidence level, except for the eastern US regional temperature distributions in GISS-E2. For the spatial average 

over the eastern US, the shape of the distributions remains unimodal and not skewed in GISS-E2 and GFDL-CM3, except for 

CESM1 which is not skewed in the control simulation but skewed in the perturbation. Global mean temperature distributions 15 

are consistently bimodal in the control and perturbation and generally not skewed. Overall, distribution shapes are mostly 

consistent, indicating that a mean shift is the statistical mechanism behind the increased temperature extremes.  

5. Effective radiative forcing and climate sensitivity 

5.1 Effective radiative forcing and surface temperature response 

We use ~80 year fixed-SST and SIC atmosphere-only simulations in each of the three models to diagnose ERF due 20 

to each aerosol emissions perturbation. The global mean ERF from the 34 simulations ranges from about -0.1 to 0.3 W m-2, 

though all but 6 simulations (several of the BC emissions perturbations) have ERF greater than zero. In Fig. 7, we plot global 

mean surface temperature response from the ~200 year coupled model simulations against global mean ERF for every 

perturbation simulation. We find a strong positive correlation among all models (r = 0.64 for CESM1, r = 0.79 for GFDL-

CM3, and r = 0.76 for GISS-E2), consistent with previous studies (Liu et al., 2018; Marvel et al., 2016). There is substantial 25 

overlap and a similar slope for all three models (~0.4 K per W m-2), indicating that, on a global mean basis, the models are 

each similarly sensitive to regional aerosol forcing. We further analyze the climate sensitivity to aerosol forcing in the 

following section. 

 

5.2 Global climate sensitivity to regional aerosol perturbations and global CO2 doubling 30 

For a selection of simulations in which the aerosol ERF was statistically significant, we calculate in Fig. 8 the climate 

sensitivity parameter (K per W m-2) to the regional aerosol perturbations as the quotient between the equilibrium global surface 

temperature response from the coupled model simulations and global ERF using the fixed-SST approach, similar to the 
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equilibrium climate sensitivity (ECS) approach used for CO2. We also present the equilibrium climate sensitivity to a doubling 

of CO2 (2xCO2) in each of the three models using the same fixed-SST methodology for comparison to the aerosol climate 

sensitivity. We find that the climate sensitivity parameter for aerosol perturbations varies by model and by forcing, but mostly 

ranges from about 0.5 to 1.0 K per W m-2 in each of the three models, which is comparable to the values for CO2 sensitivity of 

approximately 1.0 K per W m-2 in GFDL-CM3 and CESM1, and 0.5 K per W m-2 in GISS-E2. Surface temperature appears to 5 

be most sensitive to European SO2 emissions in GFDL-CM3, US SO2 emissions in CESM1, and US ALL (SO2, BC, and OA 

combined) emissions in GISS-E2. The 2xCO2 climate sensitivity and the aerosol climate sensitivity for the European SO2, 

European ALL, and US SO2 are approximately equivalent at about 1.0 K per W m-2 for GFDL-CM3 and CESM1. The aerosol 

climate sensitivity is also in good agreement (overlapping error bars in Fig. 8) for the US SO2 emissions perturbation between 

the three models. However, the aerosol climate sensitivity is often substantially greater than 2xCO2 climate sensitivity in GISS-10 

E2, consistent with results from Marvel et al. (2016), discussed further below.  Differences between aerosol climate sensitivity 

and 2xCO2 climate sensitivity can be explained by the differences in both the temperature response and the associated ERF 

for each perturbation. In particular, ERF may be quite different between heterogeneous, relatively smaller in magnitude forcing 

agents such as regional aerosols compared to more globally homogeneous, large forcing agents such as CO2. Using 11 models 

including GISS-E2, Smith et al. (2018) found that rapid adjustments reduce the ERF for BC aerosol, but increase the ERF for 15 

CO2 forcing, consistent with the hypothesis that differences in ERF can explain differences in the temperature sensitivities 

shown in Fig. 8. 

Previous work by Marvel et al. (2016) and Hansen et al. (2005) using only the GISS-E2 climate model found that the 

forcing efficacy of global aerosol reductions is greater than that of CO2. We extend this finding for GISS-E2 to regional aerosol 

emissions reductions, as the climate sensitivity parameter in all but one of our regional aerosol perturbation simulations in 20 

GISS-E2 is larger than the 2xCO2 perturbation. In contrast, the aerosol climate sensitivity parameter in both GFDL-CM3 and 

CESM1 is smaller or about equal to that of 2xCO2. We can conclude at minimum that aerosol forcing efficacy is model 

dependent, especially for regional aerosol perturbations, and this further highlights the importance of using multiple models 

to estimate or constrain estimates of ECS that includes forcing from a diverse set of agents. The CMIP6 experiments may be 

used to shed further light on the relative efficacy of aerosol and greenhouse gas forcing, though not from regional perturbations.   25 

5.3 Regional Temperature Potential 

 In addition to the global temperature response and global ERF, we also estimate the regional temperature sensitivities. 

We use the approach of Shindell (2012), which introduced Regional Temperature Potential (RTP) coefficients. These 

coefficients account for the spatial heterogeneity of aerosol forcing and temperature response and can be derived for any pair 

of response regions and forcing regions. Following the methods of Shindell (2012) and Lewinschal et al. (2019), we calculate, 30 

within each latitude band, the temperature response to regional aerosol perturbations as a function of the latitude band averaged 

ERF containing each aerosol perturbation region. We then normalize this quantity by the global mean equilibrium temperature 
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response to global mean forcing, resulting in a dimensionless coefficient giving the equilibrium temperature response in 

latitude band x to forcing in region y. The response latitude band x can be any of the bands defined in Fig. 2, whereas forcing 

regions y are the latitude bands containing each of our 14 regional aerosol perturbation locations, either 30-60ºN (NHML) or 

30ºS-30ºN (tropics). As defined in Shindell (2012), RTP for a given pair of regions is:  

𝑅𝑇𝑃 =
%&'
%()

%&*+,-.+
%(*+,-.+

/
              (Equation 1) 5 

where dT is change in temperature and dF is change in ERF. Because of the normalization by global mean temperature and 

global mean ERF, the RTP coefficients are unitless. 

 RTP coefficients in each latitude band for a given aerosol perturbation region are reported in Table 2 for GFDL-CM3, 

Table 3 for GISS-E2, and Table 4 for CESM1. We present only RTP values for which the corresponding ERF and temperature 

response were statistically significant or for which data was available. The India, South America, and Africa entries in Tables 10 

2-4 are based on a forcing average from the tropics since that region contains almost all of the statistically significant signal. 

All other values are based on NHML latitude band forcing average. Higher values of RTP indicate higher sensitivity of the 

particular response region to the aerosol forcing regions. RTP values from individual models provide a range of possible 

estimates. Figure 9 shows the multi-model mean RTP coefficients for a selection of regional aerosol perturbation simulations, 

along with a mean of the NHML and tropics perturbations grouped together (“NHML tot.”, “tropics tot.”). Figure 9 indicates 15 

that the response to NHML forcing is consistent in all response regions regardless of where the aerosol forcing is longitudinally 

located within the NHML, as indicated by the similar RTP magnitudes in the first 4 clusters of bars (CSO2, ESO2, USO2, and 

UALL). Consistent with our earlier findings in Fig. 2, the Arctic always emerges as the most sensitive region to nonlocal 

aerosol forcing. After the Arctic, regional sensitivities are greatest for NHML, tropics, and Southern Hemisphere (SH) for 

perturbations in the NHML (e.g. CSO2, ESO2, USO2, UALL). For tropical perturbations such as ISO2, SABB and AFBB, 20 

either the SH or the tropics are most sensitive, after the Arctic. Across each of the aerosol perturbations, the RTP coefficients 

are similar in magnitude when grouped by similar latitudinal forcing locations.  

 Our findings are similar to Shindell (2012), but we find a higher sensitivity in the Arctic to NHML forcing (1.49, Fig. 

9 “NHML tot.” versus RTP of 0.43 in Shindell (2012)). Shindell (2012) finds the Arctic is most sensitive to local forcing but 

we lack a perturbation simulation to diagnose that response here. Shindell (2012) reported an Arctic RTP for tropical forcing 25 

of 0.36, close to that of NHML forcing, indicating that aerosol perturbations in the tropics is also important for Arctic climate 

response, which qualitatively agrees with our findings in Fig. 9. Averaging the RTP values corresponding to statistically 

significant ERF and temperature response within a single latitude band (for example, average RTP of USO2, ESO2, and CSO2) 

yields a close match with Shindell (2012) RTP values, especially in the NHML and tropics. Shindell (2012) report an RTP of 

0.49 for NHML response to NHML forcing, very close to the average of our NHML forcings in Fig. 9, which is 0.46 (orange 30 

bar in Fig. 9 for “NHML tot.”). The other response regions (tropics and southern hemisphere) compare moderately well with 
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Shindell (2012) for NHML forcing (0.25 versus 0.15 for the tropics and 0.1 versus 0.05 for the southern hemisphere). Shindell 

(2012) used an older model and an idealized forcing through an entire latitude band as opposed to our more realistic localized 

forcing, which may account for some of the differences in each region.  

The uncertainty range in the final two clusters of bars in Fig. 9 give the range of RTP values for the total NHML 

forcing using the model individual values to construct a high and low estimate. For the NHML forcing cases, which include 5 

USO2, CSO2, and ESO2, the responses are robust across our models and there is little intermodel variation, as indicated by 

the small uncertainty range in each of the four response regions under “NHML tot.”. For the tropical forcing cases, the models 

diverge (uncertainty bars under “Tropics tot.” in Fig. 9), especially in the regions remote to the tropics. These results imply 

that the use of RTP coefficients or similar simple climate response metrics for remote responses to forcing in NHML regions 

are more robust and reliable than those for remote responses to forcing in tropical regions.  10 

 

6. Summary and conclusions 

  Using three coupled chemistry-climate models, we conduct 160-240 year simulations in which aerosols of a specific 

type and from a specific region are set to zero (or greatly reduced) and compare to an otherwise identical control simulation in 

order to estimate the mean and extreme temperature response to regional aerosol emissions reductions. We estimate both the 15 

near-source local climate response and the remote response to regional aerosol emissions for both mean and extreme 

temperatures. Removal of regional aerosol emissions almost universally results in warming both globally and regionally, with 

some exceptions including perturbations of black carbon, an absorbing aerosol species. Surface warming is largest and most 

robust across models in response to SO2 emissions reductions, particularly SO2 from Europe and the US. Using a sign and 

significance approach to assessing robustness, we estimate that about 81% of the global surface area has a robust surface 20 

temperature response to European SO2 reduction. All perturbations except for Indian BC have a spatial robustness of greater 

than 50%. Furthermore, the magnitudes of the responses are in agreement (overlapping ranges in globally and regionally 

averaged temperature responses in most perturbation simulations) in CESM1 and GFDL-CM3, but temperature changes are 

smaller in GISS-E2 due to weaker aerosol forcing. We find both local and remote statistically significant regional climate 

responses to regional aerosol emissions perturbations. Local emissions perturbations exert a strong warming response in the 25 

northern hemisphere mid latitude (NHML) regions including the US and Europe. Aerosol emission reductions from all world 

regions that we considered significantly increase mean temperature in the Arctic by up to 1 K (for emissions perturbations 

from Europe). Emissions reductions from the NHML exert a warming response in the tropics that rivals the magnitude of the 

response to emissions perturbations that are local to the tropics.  

 We assess the climate sensitivity to aerosol perturbations in each model and find a range from about 0.5 to 1.0 K per 30 

W m-2. The aerosol climate sensitivity varies by type of forcing (e.g. SO2, OC, BC) and also magnitude of forcing, and can be 
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different than the 2xCO2 climate sensitivity, due to differences between a heterogeneous, localized aerosol forcing and a more 

homogeneous CO2 forcing. Though it has been argued that uncertainty in aerosol forcing is the major factor in uncertainty of 

estimates of climate sensitivity to CO2  based on modern observations (Andreae et al., 2005), less attention has been given to 

the temperature sensitivity to aerosol forcing itself, both in response to global and regional aerosol perturbations. In contrast 

to previous findings using global aerosol reductions (Hansen, 2005; Marvel et al., 2016), we find that the climate sensitivity 5 

to aerosol forcing is less than or equal to the climate sensitivity to a doubling of CO2 in 2 of 3 models, indicating a strong 

dependence on both model choice and region of aerosol reduction. Future work using the CMIP6 simulations may shed light 

on forcing efficacy of global aerosol reductions using a large number of models.   

 We estimate updated RTP coefficients in order to help facilitate estimation of climate impacts metrics at a sub-global 

scale. These updated RTP coefficients may be useful for integrated assessment modelling (IAM), such as the Long-range 10 

Energy Alternatives Planning system – Integrated Benefits Calculator (LEAP-IBC) (Heaps 2016), to calculate climate impacts 

across a range of emission scenarios quickly and efficiently. We improve on previous studies by providing RTP coefficients 

for multiple models and for a large variety of aerosol types and regional perturbations, and by narrowing the forcing region 

from latitudinal bands to specific countries or continents (e.g. US SO2, European SO2). We provide a multimodel mean RTP 

as well as the range represented by individual models. We find that the regional temperature response to northern hemisphere 15 

mid-latitude forcing (NHML) is largely independent of longitudinal forcing location within the NHML. We also find a small 

range of intermodel variability in regional temperature response to NHML forcing, indicating robustness of the RTP 

coefficients. For aerosol forcing occurring in the NHML, our reported RTP coefficients are similar to those reported in Shindell 

(2012), except for the response in the Arctic, which we find to be more sensitive to NHML forcing. Our results indicate that 

RTP coefficients for Arctic response to aerosol forcing in the Arctic may need to be revised upwards, which has implications 20 

for climate impacts and integrated assessment modelling applications. Further unexpected warming in the Arctic from the 

unmasking of aerosol forcing could bring about Arctic climate tipping points such as permafrost thawing even sooner than 

currently projected. Future work will link climate responses directly to emissions changes for each of our models, similar to 

what has been done for NorESM in Lewinschal et al. (2019). 

  We also consider the extreme temperature response to regional aerosol perturbations and find that by shifting the 25 

overall surface temperature distribution, aerosol perturbations increase the warming extremes (upper tail of the surface 

temperature distribution). The annual maximum of maximum daily temperatures, or TXx, increases by about 0.1 to 0.2 K 

globally, closely mirroring the global changes in mean surface temperature, suggesting a mean shift of the temperature 

distribution to warmer temperatures, with limited impact on the shape of the distribution mainly occurring in only one of our 

models. We find the mean shift to be statistically significant on a global mean basis in all models, and regionally in two of the 30 

three models. Compared to mean surface temperatures, extreme temperatures are not very sensitive to remote aerosol 

perturbations, with a few exceptions.  

The understanding of the major drivers of projected regional climate change is key information needed by the climate 

assessment and impacts community. Our results have the potential to provide a framework for a key methodological link 



15 
 

between physical science and impacts, adaptation, and vulnerability analysis. This work is a first step towards providing 

statistical relationships between the changes in regional aerosol emissions and the statistically significant changes in climate 

that can be attributed to them. Such relationships would allow for the generation of regional climate change scenarios without 

having to simulate computationally demanding chemistry-climate models.  
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Table 1: Simulation description and labels, and amount of emissions perturbation (roughly the same for each model) in absolute terms and 
the percentage removed 

Simulation 

name 

Region of emissions 

perturbation 

Species perturbed  Perturbation amount (Tg yr-1), (%) 

ESO2 Europe Sulfur dioxide 18 (80%) 

EBC Europe Black carbon  0.8 (100%) 

EOC Europe Organic carbon  2 (100%) 

EALL Europe Sulfur dioxide, black carbon, organic 

carbon 

(Sum of above) 

USO2 United States Sulfur dioxide 15 (100%) 

UBC United States Black carbon 0.4 (100%) 

UOC United States Organic carbon 0.8 (100%) 

UALL Unites States Sulfur dioxide (Sum of above) 

CSO2 China Sulfur dioxide 15 (80%) 

ISO2 India Sulfur dioxide 5.6 (100%) 

IBC India Black carbon 0.6 (100%) 

IOC India Organic carbon 2.78 (100%) 

SABB South America Biomass burning sulfur dioxide, black 

carbon, organic carbon 

0.4 (SO2), 0.4 (BC), 4.7 (OA) 

(100%) 

AFBB Africa Biomass burning sulfur dioxide, black 

carbon, organic carbon 

0.4 (SO2), 0.4 (BC), 5.3 (OA) 

(33%) 

 

Table 2: Regional Temperature Potential (RTP) values for GFDL-CM3 for simulations with statistically significant ERF and temperature 
response 5 

 60-90ºN (Arctic) 30-60ºN (NHML) 30ºS-30ºN (Tropics) 30-90ºS (SH) 

CSO2 1.86 0.54 0.44 0.05 

ESO2 2.26 0.58 0.24 0.12 

EALL 1.29 0.38 0.18 0.16 

USO2 1.43 0.42 0.21 0.09 

UALL 1.87 0.32 0.22 0.11 

ISO2 2.98 0.45 0.50 0.41 

SABB 4.57 0.36 1.21 0.44 

AFBB 2.15 0.34 0.26 0.17 
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Table 3: Regional Temperature Potential (RTP) values for GISS-E2 for simulations with statistically significant ERF and temperature 
response 

 60-90ºN (Arctic) 30-60ºN (NHML) 30ºS-30ºN (Tropics) 30-90ºS (SH) 

CSO2 1.34 0.34 0.16 0.22 

ESO2 0.62 0.43 0.23 0.12 

USO2 0.87 0.37 0.16 0.12 

UALL 0.80 0.44 0.15 0.04 

SABB 0.97 0.61 0.42 0.37 

AFBB 0.98 0.31 0.44 0.45 

Table 4: Regional Temperature Potential (RTP) values for CESM1 for simulations with statistically significant ERF and temperature 
response 5 

 60-90ºN (Arctic) 30-60ºN (NHML) 30ºS-30ºN (Tropics) 30-90ºS (SH) 

USO2 2.02 0.57 0.20 0.52 

AFBB 1.29 0.72 0.97 2.37 
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Figure 1: 200-year annual mean temperature responses (K) to aerosol emissions decreases in each of the three models (GFDL-

CM3, first column; NCAR-CESM1, second column; GISS-E2, third column) for several different regional emissions decreases 
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(simulations indicated in figure titles; see Table 1). Hatching represents statistical significance at the 95% level according to a 

Student’s t-test with the False Discovery Rate method from Wilks (2016) applied.  
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Figure 2: Regions of robustness in surface temperature response to individual aerosol emissions perturbations (panels a-h). 

The different colors represent the number of models in agreement in sign (two or three) for a particular location, and asterisks 

indicate whether models agree that the response is statistically significant (** for significance in all three or both models, * for 

significance in two out of three models, and no asterisks for significance in 1 or no models). Robustness indicates percentage 5 

of the surface area that has all 3 models in sign agreement. 
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Figure 3: Global annual mean (panel a) and regional mean by latitude bands (panels b through e) surface temperature responses 

(K) to each of the 14 aerosol perturbation simulations. Error bars show ±2 standard errors of the mean to assess statistical 

significance. Regions that are “local” to the given latitude band are in red. See Table 1 for definition of abbreviations. Note 

the different scales in each panel.  
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Figure 4: 200-year annual extreme temperature (TXx) responses (K) to aerosol emissions decreases in each of the three models 

(GFDL-CM3, first column; NCAR-CESM1, second column; GISS-E2, third column) for several different regional emissions 

decreases (simulations indicated in figure titles; see Table 1). Hatching represents statistical significance at the 95% level 

according to a Student’s t-test with the False Discovery Rate method from Wilks (2016) applied. 
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Figure 5: Global annual mean (panel a) and regional mean by latitude bands (panels b through e) extreme temperature responses 

(K) to each of the 14 aerosol perturbation simulations. Error bars show ±2 standard errors of the mean to assess statistical 

significance. See Table 1 for definition of abbreviations 

 

 5 

 

 

 

 
Figure 6: Eastern US regional (top row) and global mean (bottom row) probability density function for control and perturbation 10 

simulations in each model (columns). Dashed line is the Gaussian kernel density estimation for the normalized probability 

density function.  
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Figure 7: Scatterplot of global mean surface temperature response (K) to regional aerosol perturbations (symbols) versus global 

mean effective radiative forcing in each model (green: GISS-E2, red: GFDL-CM3, blue: NCAR-CESM1).   
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Figure 8: Global climate sensitivity to regional aerosol emissions perturbations and to a doubling of CO2 (2xCO2) in each 

model. Error bars represent ±2 standard errors around the mean. See Table 1 for definition of abbreviations.  
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Figure 9: Regional Temperature Potential (RTP) coefficients (unitless) for the multi-model mean between GFDL-CM3, GISS-

E2, and CESM1 for select simulations and the average by forcing region (e.g. “NHML tot.” and “Tropics tot.”). Uncertainty 

bars in the last two columns indicate the range of the RTP values as reported by the three models.  
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