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Table S1. Heterogeneous reactions on ice-crystals and sulphate aerosols involving 

halogens in CAM-Chem. 

 Reactions Comments 

 Ice-crystal 

Het1 N2O2  +  H2O  →  2HNO3 * 

Het2 ClONO2  +  H2O  →  HOCl  +  HNO3 * 

Het3 BrONO2  +  H2O  →  HOBr  +  HNO3 * 

Het4 ClONO2  +  HCl  →  Cl2  +  HNO3 * 

Het5 HOCl  +  HCl  →  Cl2  +  H2O * 

Het6 HOBr  +  HCl  →  BrCl  +  H2O * 

 Sulfate aerosol reactions 

Het7 N2O2  +  H2O  →  2HNO3 * 

Het8 ClONO2  +  H2O  →  HOCl  +  HNO3 * 

Het9 BrONO2  +  H2O  →  HOBr  +  HNO3 * 

Het10 ClONO2  +  HCl  →  Cl2  +  HNO3 * 

Het11 HOCl  +  HCl  →  Cl2  +  H2O * 

Het12 HOBr  +  HCl  →  BrCl  +  H2O * 

* As in Table A4 from Auxiliary Material in Kinnison et al. (2007). 

For a complete list of heterogeneous reactions implemented in CAM-Chem see Table 4 in the 

Supplementary Material of Ordoñez et al. (2012).  
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Table S2. Odd oxygen (Ox) loss rates reactions grouped by family cycles 

Family Reaction ∆Ox Odd oxygen loss§ 

    

Ox O  +  O3  →  2×O2 −2 OxLoss = 2×RO+O3 + RO1D+H2O 

O(1D)  +  H2O  →  2×OH −1 

    

HOx HO2  +  O  →  OH  +  O2 −2† HOxLoss = 2×(RHO2+O + RHO2+O3) 

 HO2  +  O3  →  OH  +  2×O2 −2†  

    

NOx NO2  +  O  →  NO  +  O2 −2 NOxLoss = 2×(RNO2+O + JNO3) 

NO3  +  hν  →  NO  +  O2 −2 

    

Halog ClO  +  O  →  Cl  +  O2 −2 ClOxLoss = 2×(RClO+O + JCL2O2 + RClO+ClO
a + RClO+ClO

b + RClO+HO2) 

Cl2O2  +  hν  →  2×Cl  +  O2 −2 

ClO  +  ClO  →  Cl2  +  O2 −2 

ClO  +  ClO  →  Cl  +  OClO −2 

ClO  +  HO2  →  HOCl  +  O2 −2£ 

 BrO  +  O  →  Br  +  O2 −2 BrOxLoss = 2×(RBrO+O + RBrO+BrO + RBrO+HO2) 

BrO  +  BrO  →  2×Br  +  O2 −2 

BrO  +  HO2  →  HOBr  +  O2 −2£ 

 BrO  +  ClO  →  Br  +  Cl  +  O2 −2 ClOxBrOxLoss = 2×(RBrO+ClO
b + RBrO+ClO

c) 

BrO  +  ClO  →  BrCl  +  O2 −2 

    

Ox = O(3P) + O(1D) + O3 + NO2 + 2×NO3 + HNO3 + HO2NO2 + 2×N2O5 + ClO + 2×Cl2O2 + 2×OClO + 2×CLONO2 + BrO + 2×BrONO2  
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§RA+B is the reaction rate for reaction A+B→products and JC is the photodissociation rate constant (i.e. photolysis × concentration) for C+hν→products. Units 

are molec.cm−3s−1. 

†HOx loss cycles represent a net change 2O3 → 3O2 (∆Ox = −2) due to reactions OH  +  O  →  H  +  O2  and  OH  +  O3  →  HO2  +  O2. As Ox  reactions with 
OH are faster than with HO2, only the rate determining steps (RDS) have been considered multiplied by two.  

£Reactions XO  +  HO2  →  HOX  +  O2  , with X = Cl or Br, have been computed for each family with ∆Ox = −2 because the photolysis of HOX produces an 

additional Ox loss by the OH radical (i.e. OH  +  O3  →  HO2  +  O2). As these XO + HO2 reaction are the rate limiting step, their loss rates have been multiplied 
by two.  
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Figure S1: As Fig. 2 but for the end of the 21st century period. 
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Figure S2: Annual zonal mean Temperature (K) for the present-day period. The lower solid white line 

indicates the location of the tropopause (chemical definition of 150 ppb ozone level from runLL experiments). 
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Figure S3: Seasonal zonal mean distribution of the heterogeneous reactivation of ClONO2 (Het2,4) and HOCl 

(Het5) on ice-crystal during the present-day period. The reactions have been specified in table S1 with the label 

Het and the corresponding number. 
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Figure S4: Annual zonal mean distribution of the heterogeneous reactivation of BrONO2 (Het9) and HOBr 

(Het12) on sulphate aerosols for the runLL+VSL (a) and runLL (b) experiments during the present-day period. 

The reactions have been specified in table S1 with the label Het and the corresponding number. 
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Figure S5: Zonal mean distributions of the seasonal O3(z) trends (% dec1) over the century. The masked 

regions in the left panels indicate where of seasonal relative O3(z) between the present-day and the end of the 

21st century periods are statistically significant at the 95% confidence interval using a two-tailed Student’s t test.  
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Figure S6: As Fig. 8 but for the lowermost stratosphere (120 hPa) at northern hemisphere mid-latitudes (NH-

ML). 
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Figure S7: As Fig. 8 but for the lower stratosphere (50 hPa) at tropics. 
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Figure S8: As Fig. 9 but for the lowermost stratosphere (120 hPa) at northern hemisphere mid-latitudes (NH-

ML). 
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Figure S9: As Fig. 9 but for the lower stratosphere (50 hPa) at tropics. 
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