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 14 
Abstract. Aerosol measurements over the Southern Ocean are used to constrain aerosol-15 

cloud interaction radiative forcing uncertainty in a global climate model. Aerosol forcing 16 

uncertainty is quantified using one million climate model variants that sample the uncertainty 17 

in nearly 30 model parameters. Ship-based measurements of cloud condensation nuclei, 18 

particle number concentrations and sulfate mass concentrations from the Antarctic 19 

Circumnavigation Expedition: Study of Preindustrial-like Aerosols and Their Climate Effects 20 

(ACE-SPACE) are used to identify observationally implausible variants and thereby reduce 21 

the spread in the simulated forcing. Southern Ocean measurements strongly constrain natural 22 

aerosol emissions: default sea spray emissions in the model need to be increased by around a 23 

factor of 3 to be consistent with measurements. Aerosol forcing uncertainty is reduced by 24 
around 7% using these measurements, which is comparable to the 8% reduction achieved 25 

using an extensive set of over 9000 predominantly Northern Hemisphere measurements. The 26 

radiative forcing due to aerosol-cloud interactions (RFaci) is constrained to -2.61 to -1.10 W 27 

m-2
 (95% confidence) and the effective radiative forcing from aerosol-cloud interactions 28 

(ERFaci) is constrained to -2.43 to -0.54 W m-2.  When Southern Ocean and Northern 29 

Hemisphere measurements are combined, the uncertainty in RFaci is reduced by 21% and the 30 

strongest 20% of forcing values are ruled out as implausible. In this combined constraint the 31 

observationally plausible RFaci is around 0.17 W m-2 weaker (less negative) with credible 32 

values ranging from -2.51 to -1.17 W m-2 and from -2.18 to -1.46 W m-2 when using one 33 

standard deviation to quantify the uncertainty. The Southern Ocean and Northern Hemisphere 34 

measurement datasets are complementary because they constrain different processes. These 35 

results highlight the value of remote marine aerosol measurements.  36 

 37 

 38 

1 Introduction 39 

The uncertainty in the magnitude of the effective radiative forcing caused by aerosol-cloud interactions (ERFaci) 40 
due to changing emissions over the industrial period is around twice that for CO2 (Stocker et al., 2013). It is 41 
essential to reduce this uncertainty if global climate models are to be used to robustly predict near-term changes 42 
in climate (Andreae et al., 2005, Myhre et al., 2013, Collins et al., 2013, Tett et al., 2013, Seinfeld et al., 2016).  43 
 44 
Aerosol forcing uncertainty has persisted in climate models since the 1990s partly because there are no 45 
measurements covering the industrial period that can be used to directly constrain simulations of long-term 46 
changes in aerosol and cloud properties (Gryspeerdt et al., 2017; McCoy et al., 2017). Estimates of aerosol 47 
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forcing over the industrial period therefore rely on models that have been evaluated against measurements made 48 
in the present-day atmosphere. However, it is known that the aerosol forcing (in particular the component 49 
caused by aerosol-cloud interactions) depends sensitively on the state of aerosols in the pre-industrial period 50 
(Carslaw et al., 2013; Wilcox et al. 2015) when natural aerosols were dominant (Carslaw et al., 2017). 51 
Observations of natural aerosols in the present-day atmosphere are therefore expected to help constrain the 52 
simulated forcing unless there have been significant changes in natural aerosol processes over the industrial 53 
period, for which there is little evidence (Carslaw et al., 2010).  54 
 55 
In this paper we address the questions: i) To what extent can measurements of aerosols in pristine (natural) 56 
environments help to constrain model simulations and thereby reduce the large uncertainty in aerosol forcing? 57 
ii) What is the relative importance of measurements in remote and polluted environments for constraining the 58 
forcing uncertainty? It is known that the abundance of natural aerosols affects the magnitude of forcing in a 59 
model (Spracklen and Rap, 2013; Carslaw et al., 2013). However, to assess the effect on the uncertainty in 60 
forcing it is necessary to explore how the spread of predictions of a set of models changes when constrained by 61 
measurements. The 5th Coupled Model Intercomparison Project is inadequate for this purpose because of 62 
insufficient aerosol diagnostics (Wilcox et al., 2015). Here we use large perturbed parameter ensembles (PPEs) 63 
of the UK Hadley Centre General Environment Model HadGEM3 (Hewitt et al, 2011). The PPEs were created 64 
by systematically perturbing numerous model parameters related to natural and anthropogenic emissions and 65 
physical processes. The simulated aerosol forcings have uncertainty ranges that exceed those of multi-model 66 
ensembles (Yoshioka et al., 2019; Johnson et al., 2019). Instantaneous radiative forcing (RF) is quantified using 67 
the 26-parameter AER PPE in which just aerosol-related parameters were varied, and the effective radiative 68 
forcing (ERF) is quantified using the 27-parameter AER-ATM PPE in which aerosol and physical atmosphere 69 
parameters were varied (Yoshioka et al., 2019). We use these PPEs to quantify how the constraint provided by 70 
pristine aerosol measurements affects the spread of aerosol forcings simulated by the ensembles.  71 
 72 
Previous analysis of HadGEM3 PPEs showed that measurements of the present-day atmosphere in regions 73 
affected by anthropogenic emissions have limited impact on the uncertainty in simulated aerosol forcing. For 74 
example, Regayre et al., (2018) showed that top-of-the-atmosphere shortwave radiation flux measurements 75 
reduce ERFaci uncertainty by only around 10%, despite the fluxes in the present-day and early-industrial 76 
environments sharing multiple causes of uncertainty. Johnson et al. (2019) showed that a much larger dataset of 77 
over 9000 (predominantly Northern Hemisphere) aerosol measurements constrained the global, annual mean 78 
aerosol RF uncertainty by only around 8%. These measurements reduce the uncertainty in a small number of 79 
parameters related to anthropogenic emissions and aerosol processing in polluted environments. However, 80 
important causes of uncertainty in RFaci, such as natural aerosol emission fluxes, were largely unconstrained. 81 
 82 
The Southern Ocean is one of the few regions on Earth (along with some boreal forests) in which the same 83 
processes are expected to affect cloud-active aerosol concentrations in the present-day and early-industrial 84 
atmospheres (Hamilton et al., 2014). In this study we make use of aerosol measurements from the Antarctic 85 
Circumnavigation Expedition: Study of Preindustrial-like Aerosols and Their Climate Effects (ACE-SPACE) 86 
campaign (Schmale et al., 2019). They offer a unique opportunity to constrain the early-industrial aspects of 87 
aerosol forcing uncertainty because the Southern Ocean is a source of natural aerosols that are relevant at the 88 
global scale and remains largely unaffected by anthropogenic aerosol and precursor emissions. 89 
 90 
We use near-surface measurements of cloud condensation nuclei concentrations at 0.2% and 1.0% 91 
supersaturations (CCN0.2 and CCN1.0; Tatzelt et al., 2019), as well as mass concentrations of non-sea-salt sulfate 92 
in PM10 and number concentrations of particles larger than 700 nm (N700; Schmale et al., 2019a). The 93 
measurements are compared to output from 1 million variants of the HadGEM3 model that sample combinations 94 
of parameter settings in the model. These model variants are used to represent aerosol forcing uncertainty in our 95 
model using probability density functions (pdfs) and were generated by sampling from Gaussian Process 96 
emulators that were trained on the PPE model outputs (see SI Methods). Model variants that were judged to be 97 
observationally implausible against the measurements were rejected, resulting in a set of plausible variants from 98 
which the uncertainty in aerosol forcing could be computed (see SI Methods). In the results shown below, we 99 
retained approximately 3% of model variants (following Johnson et al., 2019) that best match all four measured 100 
aerosol properties. 101 
 102 
 103 
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2 Results 104 

 105 
Fig. 1 shows the CCN0.2 mean and standard deviation from the unconstrained and constrained model variants to 106 
exemplify the effect of constraint on model output. The mean concentrations in the unconstrained sample are 107 
much smaller than measured concentrations. However, the range of CCN0.2 values in the unconstrained sample 108 
spans the measurements in most locations (Fig. 1b). The measurement constraint increases CCN0.2 109 
concentrations (more than double the unconstrained mean in many locations; Fig. 1c) and greatly reduces the 110 
CCN0.2 uncertainty (by more than half everywhere to less than 50 cm-3; Fig. 1d).  111 
 112 

 113 

Fig. 1. a,c) Mean and b,d) standard deviation of CCN0.2 concentrations from the a,b) unconstrained sample and c,d) the 114 
sample constrained using concentration measurements of CCN0.2, CCN1.0, non-sea-salt sulfate and particle numbers larger 115 
than 700 nm. Measured CCN0.2 values are plotted as dots. Means and standard deviations were calculated using samples 116 
taken from emulators trained using monthly mean values. December to March sample values were combined based on 117 
longitudinal agreement with measurements. 118 
 119 
Fig. 2 shows pdfs of the output from the model for the four variables used as constraints, calculated as means 120 
over the locations where measurements were taken. The constraint reduces the uncertainty in all measurement 121 
types (narrower pdfs) and the central tendency of the pdfs is closer to the regional mean of measurements after 122 
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constraint. Rejecting around 97% of model variants as implausible compared to measurements greatly improves 123 
the model-measurement comparison. 124 
 125 

 126 
 127 
Fig. 2. Unconstrained (black) and observationally constrained (red) pdfs of aerosol properties: a) CCN0.2%, b) CCN1.0%, c) 128 
N700 and d) aerosol sulfate. The pdfs were calculated at locations where measurements were used for constraint across the 129 
months December to March. The green dashed line shows the median of the measurements and the dotted green lines show 130 
the approximate uncertainty ranges that were accounted for in the constraint (See SI Methods).  131 
 132 
After constraint, the remaining model variants inhabit specific parts of the 26-dimensional parameter uncertainty 133 
space used to quantify the model uncertainty. We explore the effect of constraints on parameter values using 1-134 
dimensional marginal probability distributions (described in detail in Johnson et al., 2019) – see Fig. 3 and Fig. 135 
S1 for equivalent AER-ATM results. The magnitude of the marginal probability distribution after constraint 136 
reflects the number of ways in which a particular value of a parameter can be combined with settings of all the 137 
other parameters to produce an observationally plausible model. The white space in the marginal pdfs shows 138 
where parameter value density has decreased.  139 
 140 
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 141 
 142 
Fig. 3. Marginal probability distributions for the 26 aerosol parameters after constraint using ACE-SPACE measurements. 143 
The density of parameter values in the unconstrained sample are shown as dashed lines. Densities of constrained samples are 144 
shown in colour and are scaled so that the maximum densities in the constrained and unconstrained samples are aligned. The 145 
25th, 50th and 75th percentiles of each marginal distribution are shown in the central boxes. Parameter values on the x-axes 146 
correspond to values used in the model (Yoshioka et al., 2019). 147 
 148 
The relative simplicity of aerosol emissions and processes over the Southern Ocean (compared to polluted 149 
continental regions) means that measurements can be used to tightly constrain uncertainty in the associated 150 
parameters. Two parameters, sea spray emissions and dry deposition velocity, are tightly constrained such that 151 
some parameter values are ruled out as implausible. Several other parameters (related to cloud droplet pH, DMS 152 
emissions and wet deposition) are more modestly constrained. These constraints suggest the model-153 
measurement comparison is improved when aerosol number concentrations and mass are relatively high. 154 
 155 
Sea spray emissions are tightly constrained to be around 3 times larger than the default model value. 156 
Observationally plausible values of the sea spray scaling parameter range from around 1.6 to 5.1 and all other 157 
values (including the default emission calculated in the model) are ruled out as implausible. This suggests that 158 
sea spray emissions in our model need to be significantly higher than those calculated using the wind speed 159 
dependent Gong (2003) parametrisation. We do not make any assumptions about the composition of these 160 
additional sea spray particles. They may be rich in organic material as proposed by Gantt et al., (2011) which 161 
would alter the CCN activity of emitted particles. However, the consistency of constraint of CCN0.2 and N700 162 
towards higher values (Fig. 1) implies that a general scaling of the existing sea spray flux is consistent with the 163 
measurements without the need for an additional source of fine-mode, organic-rich particles. 164 
 165 
These results conflict with the findings of Revell et al. (2019) who suggest the relatively simple wind speed 166 
dependent nature of the Gong (2003) parametrisation produces too much sea spray aerosol over the Southern 167 
Ocean from December to February.  If Revell et al. (2019) had sampled a wider range of processes (such as 168 
deposition) as we have here, our results might be brought into agreement. A better understanding of these 169 
conflicting results could be achieved using a multi-model experiment that sampled a range of atmospheric 170 
process representations. 171 
 172 
The dry deposition velocity of accumulation mode aerosols (Dry_Dep_Acc) has an 84% likelihood of being 173 
lower than the default model value after applying the constraint. Furthermore, deposition velocities larger than 174 
around 3 times the default value are effectively ruled out. This constraint is consistent with the higher aerosol 175 
concentrations implied by constraint of the sea spray emission parameter.  176 
 177 
Other parameters are more modestly constrained. The constraint on the scaled DMS emission flux is two-sided, 178 
reducing the credible range of DMS emission scalings from 0.5 to 2.0 down to 0.54 to 1.9. This constraint 179 
suggests the default emission inventory is consistent with measurements and doesn’t benefit from being scaled. 180 
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Furthermore, ACE-SPACE measurements are consistent with less efficient aerosol scavenging (55% likelihood 181 
of Rain_Frac, the parameter that controls the proportion of cloudy model grid boxes where rain occurs, being 182 
below 0.5) and less aqueous phase sulfate production (pH of cloud droplets has a 62% likelihood of being lower 183 
than the unconstrained median value). These combined constraints suggest, in agreement with sea spray and 184 
deposition parameter constraints, higher aerosol number and mass concentrations are consistent with 185 
measurements. 186 
 187 
The effects of measurement constraint on pdfs of RFaci and ERFaci are shown in Fig. 4. Removing implausible 188 
model variants has reduced the uncertainty in several parameters including natural aerosol emission fluxes, 189 
which translates into a reduction in RFaci uncertainty (Carslaw et al., 2013). The measurement constraints have 190 
two important effects on aerosol forcing. Firstly, the magnitude of median RFaci weakens from -1.99 W m-2 to -191 
1.88 W m-2 (-1.64 to -1.49 W m-2 for ERFaci). A weaker forcing is consistent with higher natural aerosol 192 
emissions and increased aerosol load in the early-industrial period. Secondly, the constrained forcing pdfs are 193 
approximately symmetric but have shorter tails (lower kurtosis). This suggests the constraints are selectively 194 
ruling out model variants that are outliers. The 95% credible range of RFaci values is reduced by around 9% 195 
(from -2.84 to -1.15 W m-2 down to -2.64 to -1.10 W m-2) and around 9% for ERFaci (from -2.69 to -0.62 W m-2 196 
down to -2.43 to -0.54 W m-2). The consistency of forcing constraint across two distinct PPEs suggests the 197 
results are insensitive to differences in meteorology, parameters perturbed in the PPEs, and the inclusion of 198 
rapid atmospheric adjustments. These results are also insensitive to additional constraint to ensure energy 199 
balance at the top of the atmosphere (Fig. S2). 200 
 201 
  202 

 203 
 204 
Fig. 4. Probability distributions of a) RFaci and b) ERFaci. The distributions of the unconstrained sample of one million model 205 
variants from statistical emulators of each PPE are in black. Red lines show the distributions after constraint using ACE-206 
SPACE measurements (around 3% of the unconstrained sample). The 25th, 50th and 75th percentiles of each sample are 207 
shown as shaded boxes and dashed lines span the 2.5th and 97.5th percentiles. 208 
 209 
 210 
Johnson et al. (2019) reduced the global, annual mean RFaci uncertainty by constraining multiple anthropogenic 211 
emission and model process parameters (as well as some natural aerosol parameters) using over 9000 212 
predominantly Northern Hemisphere measurements of aerosol optical depth, PM2.5, particle number 213 
concentrations and mass concentrations of organic carbon and sulfate. We used the same methodology as 214 
Johnson et al. (2019) to rule out implausible model variants from the same original sample of one million model 215 
variants, so we can readily combine these constraints. Around 700 model variants (0.07%) are observationally 216 
plausible in both the Southern Ocean (ACE-SPACE) and Johnson et al. (2019) constraints. The marginal 217 
parameter pdfs from this 700-member sample are shown in Fig. 5. Because Johnson et al. studied only the AER 218 
PPE (from which RFaci can be computed) we are unable to explore the effect of the combined constraint on 219 
ERFaci. 220 
 221 
 222 

https://doi.org/10.5194/acp-2019-1085
Preprint. Discussion started: 4 December 2019
c© Author(s) 2019. CC BY 4.0 License.



7 
 

    223 

 224 
 225 
Fig. 5. Marginal probability distributions for the 26 aerosol parameters after constraint using around 250 Southern Ocean 226 
measurements and more than 9000 aerosol measurements in Johnson et al. (2019). Plotting features of this figure are 227 
identical to Fig. 3. 228 
 229 
The two measurement datasets constrain distinct groups of parameters. There are a few cases where the same 230 
parameters are constrained by both datasets and in these cases the parameter values are constrained consistently 231 
(e.g. cloud droplet pH) or more strongly through ACE-SPACE (e.g. sea spray emissions). The complementary 232 
nature of these constraints means that the combined constraint marginal parameter pdfs (Fig. 5) are remarkably 233 
similar to those in our Fig. 3e (for sea spray and DMS emission fluxes, as well as deposition and pH parameters) 234 
and in figure 6 of Johnson et al. (2019) for other parameters.  235 
 236 
The Johnson et al. (2019) constraint reduced the RFaci uncertainty by around 6% and our ACE-SPACE 237 
measurement constraint reduced the uncertainty by around 9%. However, the RFaci uncertainty is reduced by 238 
around 21% (Fig. 6a) after applying both constraints, meaning the combined constraint is stronger than the sum 239 
of individual constraints. 240 
 241 
 242 

 243 

 244 
Fig. 6. Probability distributions of a) RF, b) RFaci and c) RFari from the unconstrained (black line) and constrained (red line) 245 
samples of model variants. The constrained sample includes model variants that agree with our ACE-SPACE measurement 246 
constraint and the Johnson et al. (2019) constraint. Plotting features are identical to Fig. 4. 247 
 248 
The Johnson et al. (2019) constraint strengthened the RFaci by around 0.3 W m-2 because the largest sea spray 249 
emission flux scaling and largest new particle formation rates were ruled out. Our ACE-SPACE constraint rules 250 
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out the same large sea spray emission fluxes, but also rules out all emission flux scale factors lower than around 251 
1.6, which increases the baseline aerosol concentration in the early-industrial atmosphere. The ACE-SPACE 252 
measurements also constrain several other parameters that collectively weaken RFaci weaken the median RFaci by 253 
around 0.18 W m-2. Therefore, using the combined measurement dataset, the highest and lowest RFaci values 254 
have been ruled out as implausible and the credible range of observationally plausible RFaci values is reduced to 255 
around -2.51 to -1.17 W m-2

 (-2.18 to -1.46 W m-2 , when using one standard deviation to quantify the 256 
uncertainty). Uncertainty in RFari is reduced by around 48% with observationally plausible values ranging from -257 
0.27 to -0.09 W m-2 (-0.23 to -0.13 W m-2, when using one standard deviation), because the strongest RFari 258 
values are ruled out as observationally implausible.  259 
 260 

3 Discussion 261 

 262 
Our results show, as hypothesised from previous sensitivity analyses, that remote marine measurements are 263 
valuable for constraining the natural aerosol state of the atmosphere (Carslaw et al., 2013; Regayre et al., 2014; 264 
Regayre et al., 2018). Remote marine aerosol measurements provide new information about plausible model 265 
behaviour because they are closely related to model emissions and processes that measurements in polluted 266 
environments do not constrain.  267 
  268 
For the first time we have achieved a meaningful reduction of 21% in the RFaci uncertainty by constraining the 269 
aerosol properties in the model. The reduction in forcing uncertainty can still be improved by considering the 270 
following: Firstly, there are several causes of RFaci uncertainty that are not constrained by a combination of 271 
Northern Hemisphere and pristine Southern Ocean measurements. Identifying measurements associated with 272 
primary particle emission diameters (BB_diam and Prim_SO4_diam), Aitken mode aerosol removal rates 273 
(Dry_Dep_Ait) and model process parameters related to cloud droplet activation (Kappa_OC, Ait_width, 274 
Sig_W) and using them as additional constraints should further reduce the forcing uncertainty. Secondly, even 275 
within the considerably reduced volume of multi-dimensional parameter space there still exist many 276 
compensating parameter effects, which limit the constraint on individual parameter ranges (Lee et al., 2016; 277 
Regayre et al., 2018). The impact of these compensating effects could be greatly reduced by perturbing 278 
uncertain emissions regionally rather than globally as we do here.   279 
 280 
Our results are based on uncertainty in a single climate model. Model inter-comparison projects (such as 281 
CMIP6) can be used to quantify the diversity of RF (or ERF) output from models, but they lack information 282 
about single model uncertainty. Ideally, multi-model ensembles would contain a perturbed parameter 283 
component, but the computational cost prevents many modelling groups from engaging with this important 284 
aspect of uncertainty quantification, limiting our shared knowledge about the causes of aerosol forcing 285 
uncertainty. Studies like ours that quantify the remaining uncertainty in aerosol forcing and its components after 286 
constraint using multiple measurement types fill an important knowledge gap. This knowledge can be used to 287 
form a more complete understanding of the importance of historical and near-term aerosol radiative forcing 288 
which would reduce the diversity in equilibrium climate sensitivity across models.  289 
 290 
 291 

Data availability 292 

The ACE-SPACE data are accessible from: https://zenodo.org/communities/spi-ace. Simulation output data in 293 
both AER and AER-ATM PPEs are available on the JASMIN data infrastructure (http://www.jasmin.ac.uk). 294 
Some of the climate-relevant fields are derived and stored in netCDF files (.nc) containing data for all ensemble 295 
members and made available as a community research tool as described in Yoshioka et al. (2019). Model data 296 
and analysis code can be made available from the corresponding author upon request. 297 
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