
Author Comment for: 

”The value of remote marine aerosol measurements for constraining radiative forcing uncertainty” 

We thank the reviewers for their thoughtful comments on our paper. We have adapted our 
article in response to many of the helpful comments and suggestions. In particular, we have 
added detail to the description of our method, including additional SI tables and figures. We 
have also included an additional table in the main article to show the process-based nature 
of our constraint on aerosol forcing. Many of our assumptions and their implications are 
now described in more detail, as suggested.  

Response to anonymous reviewer 1: 

Line 79. Is this RF or is it ERF? 

We make use of 2 PPEs in this study, one which outputs aerosol RF (the AER PPE) and one 

which outputs aerosol ERF (AER-ATM), as described in the 3rd paragraph of the introduction 

(line 56 onwards).  

These PPEs were designed to complement one another and are described in full in Yoshioka 

et al. (2019). The AER-ATM PPE used in Regayre et al. (2018) to diagnose ERF includes rapid 

atmospheric adjustments and perturbations to multiple physical atmosphere parameters, 

alongside perturbations to aerosol parameters, with horizontal wind fields nudged only 

above the boundary layer. However, the AER PPE used in Johnson et al. (2019) is nudged 

throughout the atmosphere to suppress meteorological effects entirely. Hence, no rapid 

adjustments were included in this PPE meaning that only aerosol RF can be analysed and 

constrained in this case. In this article we aim to complement and extend the constraint 

using output from the AER PPE from Johnson, et al. (2019) with remote marine aerosol 

measurements, so we mainly refer to aerosol RF. We refer to ERF when referring to 

corresponding results from the AER-ATM PPE. 

For additional clarity, we have added “(neglecting rapid adjustments)” to the text describing 

the Johnson et al. (2019) constraint on around line 75 and more fully describe the efficacy of 

previous constraints on components of aerosol forcing: 

“Previous analysis of HadGEM3 PPEs showed that measurements of the present-day atmosphere in regions 

affected by anthropogenic emissions help to constrain the uncertainty in aerosol-radiation interaction forcing 

(RFari) but not the component due to aerosol-cloud interactions (RFaci). For example, Regayre et al. (2018) 

showed that top-of-the-atmosphere shortwave radiation flux measurements reduce ERFaci uncertainty by only 

around 10%, despite the fluxes in the present-day and early-industrial environments sharing multiple causes of 

uncertainty. Johnson et al. (2019) showed that a much larger dataset of over 9000 (predominantly Northern 

Hemisphere) aerosol measurements reduced the uncertainty in global, annual mean aerosol RFari (neglecting 

rapid adjustments)  by 35%, but RFaci uncertainty by only around 7%.” 

Line 93 N700: Is it wet or dry size. Radius or diameter? 
 
We use dry aerodynamic particle diameters from the Schmale et al. (2019) dataset. 
 
We have clarified this for the reader by changing the text to “with dry aerodynamic 
diameter (N700; corresponds to volume equivalent diameter larger than around 500 to 570 



nm; Schmale et al., 2019a)” on line 93 of the main article, line 113 of the SI and in the 
caption of figure 1. 
 
Line 109-1111 + Figure 1d. While the constrainment of the model parameterisation 
narrows the range of CCN concentrations and reduces the original model bias, the 
constrained values has a very low variability compared to the observations. While it is 
understandable that the combined product should may have lower deviation than both 
the model and measurements alone. Is it realistic that the constrained variability is so 
much lower compared to observations? 
 
To clarify, Fig 1d is a map of the standard deviation of the monthly mean CCN concentration. 
It doesn’t show model variability. We are aware that the use of point measurements to 
constrain monthly mean fields of CCN introduces temporal and spatial uncertainties, but we 
account for these uncertainties in our implausibility metric (through the Var(R) term in SI 
equation 1). Although we constrain monthly mean uncertainties in each model gridbox by 
more than half, the remaining uncertainties at the model gridbox scale are non-negligible 
and of the remaining uncertainty is the same order of magnitude as the gridbox means. 
 
Figure 2. The N700 number is much lower than than CCN_0.2 Do you have any estimates 
for N(total sea-salt) to show that the constrained sea-salt emissions increase 
is indeed the cause of CCN_0.2 and not e.g. the increase in Nss-sulphate. Or the 
constraining of accumulation mode dry deposition.  
 
We think the reviewer is referring to line 162 of original manuscript, which read: “the 
consistency of constraint of CCN0.2 and N700 towards higher values (Fig. 1) implies that a 
general scaling of the existing sea spray flux is consistent with the measurements without 
the need for an additional source of fine-mode, organic-rich particles.”. There are many ways 
to combined multiple uncertain processes and get approximately the same outcome. Our 
figure 2 (incorrectly referred to as Fig. 1 in the original manuscript) shows that CCN0.2, N700 
and nss-sulfate concentrations are all constrained to higher values.  We relied on 
preliminary work on understanding the effects of constraining individual measurement 
types on model parameters to inform our analysis. However, we did not make this evidence 
available to the reader. We have added a table to the SI (table S3) which provides 
information about the effect of each measurement type constraint on model parameters. 
This table shows higher values of the sea spray emission flux scale factor parameter are 
consistent with CCN0.2 measurements. 
 
We introduce table S3 in the SI section “SI Results: Constrained marginal parameter 
distributions: 
“In addition to the constraint achieved by combining remote marine aerosol measurements, table S3 shows the 

effect of individual measurement type constraints (table S2) on model parameters and how these translate into a 

combined constraint (Fig. 3).” 
 
We now refer to the new table S3 in the following places. 
 
The Fig. 3 caption, which now reads: 
“Fig. 3. Marginal probability distributions for the 26 aerosol parameters after constraint using ACE-SPACE measurements. 

The density of parameter values in the unconstrained sample are shown as horizontal dashed lines (uniform sampling over 



the parameter space). Densities of constrained samples are shown in colour and are scaled so that the maximum densities in 

the constrained and unconstrained samples are aligned. The 25th, 50th and 75th percentiles of each marginal distribution are 

shown in the central boxes. Parameter values on the x-axes correspond to values used in the model (Yoshioka et al., 2019, 

table S3).” 

 
Around line 153 which now reads: 
“These joint constraints (see also Fig. S3) suggest the model-measurement comparison is improved when 

aerosol number concentrations and mass are relatively high.” 

 

Around line 160 of the manuscript, which now reads: 
“We do not make any assumptions about the composition of these additional summertime sea spray particles. 

They may be rich in organic material as proposed by Gantt et al. (2011) which would alter the CCN activity of 

emitted particles. However, the consistency of constraint of CCN0.2 and N700 towards higher values (Fig. 2, table 

S3) implies that a general scaling of the existing sea spray flux is consistent with the measurements from 

December to April, without the need for an additional source of fine-mode, organic-rich particles.” 
 
and on line 275 which reads: 
“Secondly, even within the considerably reduced volume of multi-dimensional parameter space there still exist 

many compensating parameter effects (Fig. S3), which limit the constraint on individual parameter ranges (Lee 

et al., 2016; Regayre et al., 2018). The impact of these compensating effects could be greatly reduced by 

perturbing uncertain emissions regionally rather than globally as we do here.” 
 
Figure 2: Does both model and measurements use the same definition of aerosol size, i.e. 
the same relative humidity? If the measurements is done at e.g. 80 % relative humidity 
and the model results use dry radius, the N700 from the model should be lower than the 
measurements 
 
Yes. We use measured N700 concentrations of particles with dry aerodynamic diameters 
(40% relative humidity at the APS device air intake valve) larger than 700 nm. The volume 
equivalent diameter of these particles is around 500 to 570 nm. Aerosol concentrations are 
also calculated using dry particle diameters. 
 
The N700 description from line 93 of the original manuscript now reads: “number 
concentrations of particles with dry aerodynamic diameter larger than 700 nm (N700; 
corresponds to volume equivalent diameter larger than around 500 to 570 nm; Schmale et 
al., 2019a).” 
 
Line 216: Adding the NH experiment is reducing the number of constrained model 
versions to 0.7 % of the total. As this likely give an even more narrow range for the 
constrained estimate e.g. as in figure 1d. Any comments on the validity of this heavy 
constrainment given that it is based on a very limited amount measurements? 
 
The constrained sample contains 700 model variants, which is far more than are typically 
used to quantify model uncertainty or multi-model diversity. We don’t agree that the 
measurements are “very limited”. We used over 9000 measurements from Johnson et al. 
(2019) combined with hundreds of measurements for four aerosol properties covering 
much of the Southern Ocean.  The results is ‘valid’ in the sense that these are the model 
variants that are most consistent with this very large set of measurements.  
 
We have contextualised this for the reader on line 216 which now reads: 



“Around 700 model variants (0.07%) are observationally plausible in both the Southern Ocean (ACE-SPACE) 

and Johnson et al. (2019) constraints. Although this is a relatively small percentage of the original sample, 700 

observationally-plausible model variants is far more than are typically used to quantify model uncertainty or 

multi-model diversity (e.g. around 30 for CMIP6).” 
 
SI Line 106. Any estimates for the uncertainty caused by the sampling procedure? 
 
The sentence in question is “Fig. 1 shows the CCN0.2 mean and standard deviation from the 
unconstrained and constrained model variants”. It’s not clear to us what the referee means 
by “sampling procedure”. Our statistical approach densely samples the model’s uncertain 
parameter space. The constraint methodology accounts for multiple sources of uncertainty 
within the implausibility metric (equation S1; including using an emulator in place of the 
model). Therefore, the uncertainty in the posterior CCN distribution implicitly accounts for 
our sampling methodology.  
 
We added a clarification to our emulation description on line 101 of the SI: 
“Some additional uncertainty is caused by emulating (rather than simulating) model output 
and this uncertainty is incorporated into our model-measurement constraint process (SI 
Methods: Model-measurement comparisons), despite being much smaller than other sources 
of uncertainty (Johnson et al., 2019).” 
 
SI: Wind speed discrepancies. I can not see that the assumption about wind speed 
discrepancy being unimportant is supported at all by Korhonen et al. On the contrary 
the main point of Korhonen et al is that even a quite modest increase in wind-speed 
creates a higher CCN concentration. As the wind speed in the ensembles is said to 
be lower than the values in ACE-SPACE and even much lower than the climatological 
values the unconstrained values, the unconstrained sea-salt emissions is expected to be 
lower than during the campaign and even lower compared with climatological 
values (potentially relevant if the "NH" added constrainment use retrieved values for 
AOD). Any deviations for the high wind speeds would be even more deleterious for the 
constrainment of sea-salt emissions. 

The reviewer is correct that the wording of this section was misleading. The reference to 

Korhonen et al. (2010) has now been removed. We referred to a subtle result in Korhonen 

et al. (2010) which our description did not make clear. We originally cited this article to 

point out that there are many factors other than sea spray which affect remote marine 

cloud condensation nuclei concentrations (52% of the CCN variability according to their 

research). 

Our approach compares in-situ measurements with monthly mean model data. In-situ 

measurements are inherently more variable because of differences in averaging period, and 

hence are more likely to include high wind speed events. Indeed, wind speed and N700 

measurements from the ACE-SPACE campaign are only weakly correlated. Measured wind 

speed averages within regions defined by model gridboxes (as used in our comparison to 

monthly mean model output) are only weakly correlated with N700 measurements (Pearson 

correlation coefficient of around 0.2). 



Our constraint methodology is designed to avoid relying on measurements that are in 

strong disagreement with the model, because these discrepancies are more likely to be 

caused by model structural errors. This approach also avoids the use of measurements 

where nudged meteorology causes large model-measurement discrepancies in variables 

used for constraint.  

We have altered the associated section of the SI (line 208 onwards) to clarify the 

importance of understanding these wind speed discrepancies and how we prevent 

measurements with high wind speed discrepancies from affecting our results: 

“SI Results: Wind Speed discrepancies 

Southern Ocean wind speeds during the ACE-SPACE expedition were often much lower than climatological 

mean values, but on average were higher than winds in our ensemble (Schmale et al., 2019). We account for the 

effects of inter-annual variability in the Var(R) term in equation S1. However, monthly mean differences 

between ERA-Interim wind speeds in the measurement year and the year used in the ensemble are less than 20% 

along the route taken by the ACE-SPACE campaign vessel (Fig. S4). The modest discrepancy in wind speeds 

may be important for constraining aerosol concentrations, because sea spray emissions in our model are strongly 

dependent on wind speeds (Gong, 2003). However, the measured wind speed and N700 values are only weakly 

correlated (Pearson correlation coefficient of around 0.2) when degraded to the resolution used for comparison 

with model output.  

 

Our constraint process has in-built functionality that prevents the use of measurements with large model-

measurement discrepancies. We tested the robustness of our constraint methodology to the discrepancy in wind 

speeds by neglecting around 50% of the measurements (those with the largest discrepancies between measured 

and AER-ATM PPE mean simulated winds) and repeating the constraint. The effects on marginal parameter and 

aerosol forcing constraints were negligible (not shown). The consistency of constraint, with and without 

measurements in locations with relatively large model-measurement wind speed discrepancies, suggests the 

constraint methodology is insensitive to wind speed discrepancies caused by daily wind speed variability and 

differences in meteorological years between model simulations and measurements.” 

 

Response to anonymous reviewer 2: 

We have positively responded to many of reviewer 2’s suggestions and think this has 

improved our revised manuscript considerably. However, we think some of the changes 

suggested by reviewer 2 could mislead the reader, by giving a too simple representation of 

our constraint process. The reviewer encourages us to emphasise uncertainty in the 

measurements, yet our focus in this article is on uncertainties in the model-measurement 

constraint process. Hence, there are some suggestions we have not been able to 

accommodate.  

Fig. 1(b/d), please overlay measured standard deviation as dots, as performed for 
the average of the measurements (a/c). 

We appreciate the motivation behind this suggestion, but think adding these dots would 

confuse the reader. We overlaid the mean measurements over the mean model field in Fig 1 

a) and c) because these values are directly comparable. However, the model standard 

deviation represents uncertainty in the model parameters while the measurement standard 

deviation represents temporal and spatial variability, as well as instrument error – they 

should not be compared. We have not neglected the measurement variability. The 

implausibility metric used in our model-measurement constraint process includes spatial 

and temporal representation errors, emulation errors, inter-annual variability and 



instrument uncertainty. It would be misleading to compare any one of these with the model 

parametric uncertainty. 

The authors are focussing on natural aerosol. How were any ship measurements 
influenced by anthropogenic pollution eliminated from the analysis? 

The measurements were filtered to ensure that they are free of ship stack contamination. In 
appendix A of Schmale et al., 2019, we explain our method: “Equivalent black carbon, trace 
gases data such as CO and CO2, and the 10 s-1 variability of particle number concentrations 
were used to identify the influence of ship exhaust. Identified exhaust periods are not 
included here and constitute about 50% of the total data. Size-dependent particle losses in 
the inlet lines were determined experimentally after the cruise and data are corrected 
accordingly. Losses were <10% for submicron particles and about 15% for supermicron 
particles.”. 
 
It is important to note that we don’t assume that all the sampled aerosol was natural. The 

atmosphere may have contained some anthropogenic aerosol from distant sources. The 

model includes these and several anthropogenic aerosol emission and process parameters 

were perturbed in our ensemble. These parameters were very modestly constrained, 

suggesting that the environment is dominated by natural aerosol. 

Is each measurement used given equal weighting in constraining the model? 

Yes, measurement types are given as equal a weighting as possible in the constraint process. 

The description of our constraint process in the original manuscript lacked some important 

details and relied on the methodology described in Johnson et al. (2019). Our constraint 

process relies on the use of “implausibility” metrics, which are calculated for each of the one 

million model variants, for each measurement type at each measurement location. We set 

implausibility thresholds for each measurement type and also set exceedance tolerances, 

defined as the number (or percentage) of measurements for which a model variant’s output 

exceeds the specified threshold. The constraint efficacy differs between measurement types 

and we adjust the tolerance and exceedance threshold values (defined in the SI) for each 

measurement type to ensure each variable constraint retains approximately the same 

proportion of the original sample of model variants. The proportion retained by individual 

measurement type constraints varies from 18% to 30%. 

We have enhanced the description of our implausibility threshold and exceedance tolerance 

value selection process in the SI section “SI Methods: Model-measurement comparisons” 

and have included two additional tables (tables S1 and S2) for readers interested in the 

specific values used for each measurement type. The additional text included in the 

adjusted SI reads: 

“We set threshold and tolerance values for each variable distinctly for each month of data. This makes 

processing the implausibility data more efficient and allows for a degree of automation of the constraint process. 

We ensure that each measurement type on each leg of the journey (Schmale et al., 2019) affects the combined 

constraint. This requires quantification of the constraint of individual measurement types on parameter values at 

multiple combinations of threshold and implausibility exceedance tolerances. We avoid increasing the threshold 

and/or tolerance values in individual months for each measurement type, if the constraint efficacy of the 



measurement would saturate as a result. Otherwise, threshold and tolerances for each month are required to be 

as similar as possible.  

 

Although our analysis in the main article focusses on a combined measurement constraint, this analysis is 

informed by individual measurement type constraints. The threshold and exceedance tolerances for individual 

measurement type constraints are summarised in table S1. Only 0.004% of the one million model variants (40 

variants) are retained when these individual constraints are combined. Thus, we relax the threshold and 

tolerance criteria for each measurement type constraint when combining constraints (table S2).” 

 
SI: The authors state: “The variance terms in the denominator of Eq. (1) are calculated 
uniquely for each measurement. Following Johnson et al., (2019), we use a measurement 
uncertainty of 10%”. Are the measurement errors for the constraints used in this study 
homoscedastic or heteroscedastic? Do they correspond with the definition of the 
implausibility metric (eq. 1, SI)? How does the variability in the measurements compare to 
the uncertainty chosen (10%)? 
 
We applied heteroscedastic uncertainties for measurement and representation errors for 
consistency with Johnson et al. (2019). It would have been far simpler to apply 
homoscedastic uncertainties. We acknowledge that our choice of heteroscedastic errors is a 
subjective decision. However, as shown in Fig. 2, we reject model variants with the lowest 
values for each measurement type, which correspond to our lowest instrument error values. 
If we had used homoscedastic errors, all constraints would have been weaker. Thus, we 
would have needed to reduce implausibility thresholds and exceedance tolerances to attain 
the same degree of constraint. 
 
We think the 10% instrument error applied here is an overestimate. This is a cautious 
approach that allows us to avoid over-constraint based on this set of measurements. 
Furthermore, there is limited data available to inform our choice of spatial and temporal 
representation errors. The “variability in the measurements” on short timescales at point 
locations conflates instrument error with spatial and temporal representation errors, but 
does not fully encompass any of these. Dedicated measurement campaigns are required to 
establish robust estimates of these errors. We therefore elected to use 10% of the 
measured value for instrument error, as well as 20% and 10% respectively for spatial and 
temporal representation errors, to maintain consistency with Johnson et al. (2019). These 
errors are typically larger than strictly necessary, which is intentional. Larger uncertainties 
prevent us from over-constraining the model. Our approach is based on ruling out model 
variants (and parts of parameter space) that are implausible, rather than on finding all 
model variants that are plausible. This is a subtle, but important, distinction that shapes our 
methodology. Even so, using these relatively large model-measurement comparison 
uncertainties, we are able to rule out the majority of model variants successfully by 
adjusting our implausibility thresholds and exceedance tolerances. 
 
CCN0.2% and CCN1% are used as observational constrains in the study. The measurement 
study in which these constraints were taken from measured CCN at more than two 
supersaturations. Why was a CCN spectra (or measured aerosol size distribution) not used 
from the observations to provide a tighter constraint on the model? 
 
It is reasonable to assume we would attain a stronger constraint if we had used the full CCN 
spectra. However, we showed in Johnson et al. (2018) that diverse measurements are more 



useful for constraint than additional measurements of a similar nature. Hence, we elected 
to combine measured concentrations of N700 and non-sea-salt sulfate with CCN 
concentrations at two supersaturatons that provide distinct information about the aerosol 
size distribution, rather than multiple supersaturations that would provide similar 
information and constraints.  
 
We actually found that the CCN0.2 and CCN1.0 measurements provide very similar constraints 
on the model parameters, so we do not have cause to believe additional CCN 
measurements at alternative supersaturations would improve the constraint. We have 
included an additional table (table S3) in the SI showing how individual measurement types 
constrain the parameters, so that the reader can appreciate the similarity of CCN constraints 
at different supersaturations. 
 
Please provide more detail on the observations used as constraints in the SI, linking 
clearly to Fig. 1 in the main article. For example, demonstrate a time-series of one of 
the observation dots in Fig. 1 graphically, including the variability (bars representing 
standard deviation), and colour of dotted time-series representing position. Clearly link 
this graphic to the mathematical construction of the model constraint e.g. implausibility 
metric in the SI. 
 
The measurements used in our constraint are publically available 
(https://zenodo.org/communities/spi-ace?page=1&size=20%20) and we reference the link 
to the dataset in Schmale et al. (2019), as well as here in the appendix on line 293. 
 
It is important to note that our implausibility metric relies on multiple sources of model-
measurement comparison uncertainty and the reviewer’s request highlights only one 
(limited) aspect of the uncertainty. However, we think showing how the high time 
resolutions data is degraded for comparison to model output warrants attention. Therefore, 
we have included an additional figure in the SI (Fig. S1) which gives an example of this 
process. We added this figure to the section “SI Methods: Model-measurement 
comparisons” on around line 132, so that the relevance of degrading measurements for 
comparison with model output using our implausibility metric is contextualised. 
 
The revised SI text referring to Fig. S1 reads:  
“The variance terms in the denominator of Eq. (1) are calculated uniquely for each measurement. Following 

Johnson et al. (2019), we use an instrument error of 10%, a spatial co-location uncertainty of 20% and a 

temporal co-location uncertainty of 10%. Fig. S1 shows an example of the degradation of data for comparison 

with monthly mean model output. Emulator uncertainty is calculated for each model-measurement combination 

using the error on the predicted mean from the emulator for the model variant. We use residuals in de-trended 

monthly mean output from a HadGEM-UKCA hindcast simulation over the period of 1980-2009 (Turnock et 

al., 2015) to estimate the inter-annual variability for each variable across all model gridboxes and months.” 

 
The authors use four measurements as a constraint (listed above). Which measurements 
provided the highest information content for model constraint? I would like to see some 
discussion on the relative constrain the individual measurement parameters provided o 
the model. This would help inform future measurement campaigns in this region on key 
measurement parameters. For example, the authors state (SI): “Non-sea-salt sulfate was 
calculated by subtracting this fraction from the total particulate sulfate”. How much extra 

https://zenodo.org/communities/spi-ace?page=1&size=20%20


constraint on the parameters (Fig. 3) is provided by using both N700 and Nss-sulfate as 
constraints, over just one of these 
 
We agree with the reviewer. The efficacy of individual measurement type constraints on 
model parameters and processes is important and could be used to motivate targeted 
measurement campaigns. This information could also help identify model development 
priorities. We have therefore included an additional table in the SI (table S3) that shows the 
effects of individual measurement type constraints on model parameters. Significant 
additional effort would be needed to quantify the 2-way and 3-way constraint 
combinations. Our research focus in this paper is on the benefits of the ACE-SPACE 
measurements over and above more readily available measurements, so we have only 
added the requested individual constraints, which we think will satisfy the curiosity of the 
vast majority of readers. In addition to table S3, we have added the following explanatory 
text in the SI: 
 
“In addition to the constraint achieved by combining remote marine aerosol measurements, 
table S3 shows the effect of individual measurement type constraints (table S2) on model 
parameters and how these translate into a combined constraint (Fig. 3).” 
 
The authors provide the unconstrained and constrained model PDFs of the aerosol 
properties. A uniform prior range is assumed in this method. How does this represent 
the observations? Please show a PDF of the observed distributions to see if this is a 
true representation of the ship observations. 
 
We think there has been some confusion. The uniform prior ranges are applied to individual 
uncertain model parameters (not variables) and are used to densely sample model 
uncertainty (one million model variants) uniformly across the multi-dimensional parameter 
space using our statistical emulators. This unconstrained sample results in pdfs of the 
output variables shown in Fig. 2. We make no assumptions about measurement 
distributions, except for the model-measurement comparison uncertainties included in 
equation S1. 
 
The authors have shown how the aerosol parameters are constrained using observations, 
and subsequently the reduction in forcing uncertainty from the original PPEs. The paper is 
missing some discussion on the linkage between the constraint of these parameters and 
forcing. Inclusion of this would be very beneficial to the community. For example, how has 
average cloud microphysical properties –e.g. cloud droplet concentrations been 
constrained following the constraints shown in Fig. 2? Do they compare better, or worse 
with satellite observations in the region? This would help inform whether the constrain on 
forcing represents a true constraint on the aerosol processes (i.e. is the constraint of CCN 
by scaling sea salt right for the right reasons, or should the results be 
presented/interpreted as a tuning...?). 
 
We agree that this is an important consideration, which will help the reader understand that 
our method leads to an actual constraint on model output, which a typical model tuning 
approach would not. Our method relies on ruling out implausible model variants (a true 
constraint), rather than identifying the best model (a tuning process). Therefore, processes 



are constrained as the reviewer suggests. We have described these results and added a new 
table to the main article (table 1). We also include an additional co-author (Daniel P. 
Grosvenor) who provided cloud droplet number concentration data for analysis. The text at 
around line 191 now reads: 
 
“Firstly, the magnitude of median RFaci weakens from -1.99 W m-2 to -1.88 W m-2 (-1.64 to -1.49 W m-2 for 

ERFaci). A weaker forcing is consistent with higher natural aerosol emissions, increased aerosol load and higher 

cloud droplet number concentrations in the early-industrial period. Table 1 shows that our constraint on natural 

emission parameters also constrains Southern Ocean cloud droplet number concentrations towards higher 

values, reducing the credible interval by around 50% and bringing mean values into closer agreement with 

MODerate Imaging Spectroradiometer (MODIS; Salomonson et al., 1989) instrument data (note that droplet 

number concentrations were not used to constrain the model). Thus, we conclude that the constraint on aerosol 

forcing towards weaker values is a genuine constraint and not the result of an arbitrary tuning.” 
 
We have also described how we processed the cloud droplet number concentrations in the 
SI section “SI Methods: Measurements” on line 108 of the SI: 
“We present monthly mean and annual cloud droplet number concentrations in table 1 from the model and from 

satellite data, over the region between 50oS and 60oS. Following Grosvenor et al., (2018), we calculated cloud 

droplet concentrations from the MODIS (MODerate Imaging Spectroradiometer) Collection 5.1 Joint Level-2 

(Aqua satellite) for the year 2008 (to correspond to the meteorological year used in our simulations). Our 

calculation used cloud optical depth and 3.7 micron effective radius values derived under the adiabatic cloud 

assumption (essentially, cloud liquid water increases linearly with height, droplet concentrations are constant 

throughout the cloud and the ratio of volume mean radius to effective radius is constant). We improved the 

cloud droplet concentration data (Grosvenor et al., 2018b) by excluding 1x1 degree data points for which the 

maximum sea-ice areal coverage over a moving 2-week window exceeded 0.001%. The sea-ice data used in this 

process were the daily 1x1 degree version of Cavalieri et al. (2016). As with other data used in our model-

measurement comparison, we degraded the cloud droplet number concentration data to the model gridbox and 

monthly mean spatial and temporal resolutions.” 

 

Finally, we state how the cloud droplet number concentration data can be accessed in the “Data availability” 

section: 

“The basis for our cloud droplet number concentration data are available from 

http://catelogue.ceda.ac.uk/uuid/cf97ccc802d348ec8a3b6f2995dfbbff.” 

 
What is the average supersaturation over the Southern Ocean simulated by the model? 
How does this correspond with the selected value of CCN0.2% as representative for 
(cloud-active aerosol, SI) in the region? 
 
Cloud supersaturation is not known from measurements. The measurements of CCN at 0.2 
and 1.0% supersaturation span a range of likely values. The key point here is that both CCN 
definitions constrain the model quite similarly (now made clear to the reader in table S3), so 
it is not vital that we know the actual supersaturation precisely. 
 
The authors make clear that they are targeting parametric uncertainty, and the 
method does not address model structural uncertainty. However, some of the conclusions 
presented rely too heavily on the information provided by the parametric uncertainty 
analysis alone, specifically in the comparison to Revell et al., (2019) (Line 166 and 
thereafter). The differences in conclusions related to over/underestimation of sea spray 
aerosol are attributed to a lack of sampling of aerosol processes by Revell et al., 2019. A 
discussion on the role of structural errors in the model used by the author would be is 
required. What are the key differences between the model configurations with respect to 
representation of marine aerosol sources and sinks? What is the relevant contribution to 

http://catelogue.ceda.ac.uk/uuid/cf97ccc802d348ec8a3b6f2995dfbbff


aerosol mass from secondary vs. primary marine aerosol sources in the two model 
configurations? 
 
We agree with the reviewer. Many readers will be interested in how repeating our analysis 
using a model that includes structural developments might affect our results. We encourage 
that sort of activity. Therefore, we have added detail to our description (in the discussion 
section) of the importance of interpreting our results in the context of single climate model 
uncertainty. We have also made it clear that our method neglects structural uncertainties. 
This adds to our discussion about the need to quantify both single model uncertainty and 
multi-model diversity in our conclusions. We have not contrasted the primary vs secondary 
contributions to marine aerosols in the models because this goes well beyond the scope of 
our article. However, we now highlight some of the structural advances most likely to affect 
our results in the paragraph starting on line 281 of the original manuscript.  
 
The revised text reads: 
“Our results are based on uncertainty in a single climate model. The model is structurally consistent in our 

experiments, so neglects uncertainty caused by choice of microphysical and atmospheric process 

representations. Our model also neglects some potentially important sources of remote marine aerosol, such as 

primary marine organic aerosol (Mulcahy et al., 2020) and methane-sulfonic acid (Schmale et al., 2019; 

Hodshire, et al., 2019; Revell et al., 2019). Model inter-comparison projects (such as CMIP6) can be used to 

quantify the diversity of RF (or ERF) output from models, but they lack information about single model 

uncertainty. Ideally, multi-model ensembles would contain a perturbed parameter component, so that model 

diversity and single model forcing uncertainty could be quantified simultaneously. But, computational costs 

prevent many modelling groups from engaging with this important aspect of uncertainty quantification, limiting 

our shared knowledge about the causes of aerosol forcing uncertainty. Studies like ours that quantify the 

remaining uncertainty in aerosol forcing and its components after constraint using multiple measurement types 

fill an important knowledge gap. This knowledge can be used to form a more complete understanding of the 

importance of historical and near-term aerosol radiative forcing which would reduce the diversity in equilibrium 

climate sensitivity across models. “ 

 
It has been brought to our attention that we misinterpreted the results in Revell et al. 
(2019), by misreading the seasonal effects described in the article. Revell et al. (2019) 
showed, using a more recent version of our model and using interactive chemistry, that 
simulated sea spray aerosol concentrations are higher than observed in Jun-Aug when wind 
speeds are relatively high. However, in Dec-Feb the model simulates too-low cloud droplet 
number concentrations and AOD compared with satellite observations. Our article text has 
been adapted to more accurately represent the consistency of our constraint with the 
findings of Revell et al. (2019), and to more transparently describe the seasonal specificity of 
our constraint on sea salt emissions using the Gong (2003) parametrisation.  
 
The adapted text on line 158 reads: 
 
“This suggests that sea spray emissions in our model need to be significantly higher than those calculated using 

the wind speed dependent Gong (2003) parametrisation in the Southern Hemisphere summer. The higher flux is 

consistent with Revell et al. (2019), who showed that a more recent version of our model simulates cloud 

droplet concentrations and aerosol optical depth values that are lower than observed over the Southern Ocean in 

the Southern Hemisphere summer. However, in the Southern Hemisphere winter Revell et al., (2019) simulated 

higher aerosol optical depths than observed, which they corrected by reducing the dependence of sea spray 

emissions on wind speed. Hence, our constraint on sea spray emission fluxes may only be appropriate for 

Southern Hemisphere summer when wind speeds are relatively low. We do not make any assumptions about the 

composition of these additional summertime sea spray particles. They may be rich in organic material as 

proposed by Gantt et al. (2011) which would alter the CCN activity of emitted particles. However, the 



consistency of constraint of CCN0.2 and N700 towards higher values (Fig. 2, table S3) implies that a general 

scaling of the existing sea spray flux is consistent with the measurements from December to April, without the 

need for an additional source of fine-mode, organic-rich particles.“ 

 
Given the use of an older configuration of the model HadGEM by the authors, 
the results should be presented in light of the latest configuration. Stars showing the 
values for the parameters overlaid on Fig.3/5 that represent the configuration used by 
Revell et al., 2019 should be included to aid the reader in understanding differences 
found between the two studies with regard to sea salt emissions. 
 
This suggested change is no longer pertinent, since our results are in better agreement with 
Revell et al., (2019) than we initially thought. We have not included the suggested alteration 
to our figures, because Revell et al. (2019) made structural changes to process 
representations, including to the Gong (2003) sea salt emission parameterisation and model 
chemistry. Thus, we believe highlighting parameter values used in a structurally different 
model would mislead the reader. The effect of including structural changes on model output 
is described in Revell et al. (2019) and in the model development papers cited within. 
 
How much of the constraints found in Fig.3 are due to compensating parameters 
across the multi-dimensional marginal probability distributions? For example, what is 
the relationship between the marginal distributions between dry deposition and sea 
salt? Could the authors also provide an investigation of the joint marginal histograms 
between DMS and sea salt emission. 
 
We agree that the joint constraint of key parameters may be of considerable interest to 
readers and thank the reviewer for the suggestion. In Fig. 13 of Regayre et al. (2018) we 
used 2-dimensional density plots to highlight the important role model equifinality plays on 
reducing constraint efficacy when single-model uncertainty is densely sampled. Here, we 
added figure S3 to the SI to show joint marginal densities of key parameters as suggested.  
  
We introduce the new figure (Fig. S3) in the SI section “SI Results: Constrained marginal 
parameter distributions”: 
“Constrained marginal parameter distributions in Fig. 3 and Fig. 5 of the main article tell a one-dimensional 

story. In Fig. S3, we show the effect of constraint to remote marine aerosol measurements, combined with the 

constraint from Johnson et al. (2019) on a subset of the marginal 2-dimensional parameter combinations.” 
 
We refer to this new figure on around line 153 of our revised article to highlight the 
consistency of constraint across the parameter space and on line 275 to emphasise how 
compensating parameter effects limit the efficacy of constraint. 
 
“These joint constraints (see also Fig. S3) suggest the model-measurement comparison is 
improved when aerosol number concentrations and mass are relatively high.” 
 
“Secondly, even within the considerably reduced volume of multi-dimensional parameter space 
there still exist many compensating parameter effects (Fig. S3), which limit the constraint on 
individual parameter ranges (Lee et al., 2016; Regayre et al., 2018).” 
 
It is stated that the “model-measurement comparison is improved when aerosol 



number concentrations and mass are relatively high”. Does the model configuration 
used have the same total sources of aerosol number/mass compared to the configuration 
of the model used by Revell et al., 2019? This could be included in the SI.  
 
We agree that it is important to make the reader aware of potentially important structural 
advances that may affect interpretation of our results, which we now do in the final 
paragraph of the discussion. However, we do not contrast our total aerosol and mass with 
those in Revell et al. (2019) for two main reasons. Firstly, our results are more consistent 
with those of Revell et al. (2019) than originally thought. Secondly, our article focuses on the 
single-model uncertainty constraint. Comparisons between model versions with structurally 
distinct process representations is beyond the scope of our article. This sort of analysis, 
based on multiple structural changes, is best presented using experiments designed for that 
specific purpose. 
 
The revised text reads: 
 
“Our results are based on uncertainty in a single climate model. The model is structurally consistent in our 

experiments, so neglects uncertainty caused by choice of microphysical and atmospheric process 

representations. Our model also neglects some potentially important sources of remote marine aerosol, such as 

primary marine organic aerosol (Mulcahy et al., 2020) and methane-sulfonic acid (Schmale et al., 2019; 

Hodshire, et al., 2019; Revell et al., 2019). Model inter-comparison projects (such as CMIP6) can be used to 

quantify the diversity of RF (or ERF) output from models, but they lack information about single model 

uncertainty. Ideally, multi-model ensembles would contain a perturbed parameter component, so that model 

diversity and single model forcing uncertainty could be quantified simultaneously. But, computational costs 

prevent many modelling groups from engaging with this important aspect of uncertainty quantification, limiting 

our shared knowledge about the causes of aerosol forcing uncertainty. Studies like ours that quantify the 

remaining uncertainty in aerosol forcing and its components after constraint using multiple measurement types 

fill an important knowledge gap. This knowledge can be used to form a more complete understanding of the 

importance of historical and near-term aerosol radiative forcing which would reduce the diversity in equilibrium 

climate sensitivity across models.” 
 
Are there any other potential marine aerosol sources currently missing in the model 
configuration used by the authors that would increase aerosol number/mass by a similar 
magnitude than scaling sea salt emissions to 3 times the default value? This requires 
discussion, in particular in light of the conclusions presented by the study cited for the 
source of the observations (Schmale et al., 2019) used by the authors, e.g.: 
Schmale et al., 2019: “The regions of highest underestimation are close to the coast 
of Antarctica during leg 2, close to South Africa and around 45_E during leg 1. These 
regions coincide with the highest concentrations of gaseous MSA… This preliminary 
model–measurement comparison suggests that the model may be missing an important 
source of high-latitude CCN.” 
 
We have highlighted the potential role of marine organic material, but also stated that 
consistency of constraint of CCN and N700 does not suggest the need for a special source into 
the accumulation mode. In Schmale et al. (2019) we drew attention to high MSA 
concentration measurements near the Antarctic coast. DMS emissions themselves were 
constrained near their central value, so do not appear to be the cause of the biases.  We are 
not aware of any other potential explanations for such large and consistent biases in CCN 
and N700. The additional text on line 281, which refers to additional sources of aerosol 
neglected by our experiments is: 



 
“The model is structurally consistent in our experiments, so neglects uncertainty caused by choice of 

microphysical and atmospheric process representations. Our model also neglects some potentially 
important sources of remote marine aerosol, such as primary marine organic aerosol 
(Mulcahy et al., 2020) and methane-sulfonic acid (Schmale et al., 2019; Hodshire, et al., 
2019; Revell et al., 2019).” 
 
SI: The authors state that the wind speed discrepancies do not affect the results 
presented. This is an important statement that deserves more detailed justification as 
I currently do not see how this is supported by the data or Korhonen et al., 2010. How 
do the differences in simulated and observed wind-speeds relate to the scaling of sea 
salt required to constrain CCN? 
 
Our reference to Korhonen et al. (2010) has now been removed. We agree that wind speeds 
are important for calculating sea spray emissions and did not intend to mislead the reader. 
We originally cited Korhonen et al. (2010) to point out that there are many factors other 
than sea spray which affect remote marine cloud condensation nuclei concentrations (52% 
of the CCN variability according to their research). Wind speeds measured during the 
ACESPACE campaign are only weakly correlated with measured N700 concentrations. The 
Pearson correlation coefficient is only 0.2 when degraded to the model gridbox scale used 
for comparison to model output. Also, our constraint method is designed to avoid the use of 
measurements where structural model errors are the cause of model-measurement 
discrepancies. Thus, when we pre-filter the data by removing all measurements where 
nudged and measured wind speeds differ meaningfully, the constraint on parameters is 
unaffected. We have adapted this section of the SI to give the reader a better appreciation 
of why wind speed discrepancies do not affect the constraint. 
 
The revised section “SI Results: Wind Discrepancies” reads: 
“Southern Ocean wind speeds during the ACE-SPACE expedition were often much lower than climatological 

mean values, but on average were higher than winds in our ensemble (Schmale et al., 2019). We account for the 

effects of inter-annual variability in the Var(R) term in equation S1. However, monthly mean differences 

between ERA-Interim wind speeds in the measurement year and the year used in the ensemble are less than 20% 

along the route taken by the ACE-SPACE campaign vessel (Fig. S4). The modest discrepancy in wind speeds 

may be important for constraining aerosol concentrations, because sea spray emissions in our model are strongly 

dependent on wind speeds (Gong, 2003). However, the measured wind speed and N700 values are only weakly 

correlated (Pearson correlation coefficient of around 0.2) when degraded to the resolution used for comparison 

with model output.  

 

Our constraint process has in-built functionality that prevents the use of measurements with large model-

measurement discrepancies. We tested the robustness of our constraint methodology to the discrepancy in wind 

speeds by neglecting around 50% of the measurements (those with the largest discrepancies between measured 

and AER-ATM PPE mean simulated winds) and repeating the constraint. The effects on marginal parameter and 

aerosol forcing constraints were negligible (not shown). The consistency of constraint, with and without 

measurements in locations with relatively large model-measurement wind speed discrepancies, suggests the 

constraint methodology is insensitive to wind speed discrepancies caused by daily wind speed variability and 

differences in meteorological years between model simulations and measurements.” 
 
b) SI: The authors nudge the models to 2008 meteorology from reanalysis data. 
A comparison between the meteorological data between the measurement years and 
that used in the model simulation should be provided in the SI, comparing both monthly 
averages and variability. 



 
We have included an additional figure (Fig. S4) to highlight the importance of the 
discrepancy in meteorology. We relate the difference in meteorology to the inter-annual 
variability uncertainty term included in our implausibility calculations. Monthly mean data 
are compared, since this is the reference scale used in our model-measurement comparison. 
The effects of differences in daily wind speed variability between measurement year and 
model simulation year are included in the inter-annual variability and temporal and spatial 
error terms in our implausibility metric. However, we have included an additional figure S1 
to exemplify the effect of degrading measurement data to the model gridbox resolution for 
model-measurement comparison. 
 
Fig. S4 is references in the revised section “SI Results: Wind Discrepancies” which now 
reads: 
“Southern Ocean wind speeds during the ACE-SPACE expedition were often much lower than climatological 

mean values, but on average were higher than winds in our ensemble (Schmale et al., 2019). We account for the 

effects of inter-annual variability in the Var(R) term in equation S1. However, monthly mean differences 

between ERA-Interim wind speeds in the measurement year and the year used in the ensemble are less than 20% 

along the route taken by the ACE-SPACE campaign vessel (Fig. S4). The modest discrepancy in wind speeds 

may be important for constraining aerosol concentrations, because sea spray emissions in our model are strongly 

dependent on wind speeds (Gong, 2003). However, the measured wind speed and N700 values are only weakly 

correlated (Pearson correlation coefficient of around 0.2) when degraded to the resolution used for comparison 

with model output.” 
 
c) SI “Marginal parameter distributions are constrained consistently when we remove 
measurements with average wind speed differences larger than 50% of the measured 
value from the model-measurement comparison.” How many results does this effect? 
Please show a global map where the grid-box colour represents a measure of how 
often this threshold is exceeded. 
 
We have added the requested detail to the SI text. However, at the resolution used for 
model-measurement comparison, the correlation between measured wind speed and N700 
is near-zero (Pearson correlation coefficient of 0.2). Furthermore, our constraint 
methodology is insensitive to large model-measurement discrepancies caused by model 
structural errors. This feature was our motivation for including an SI section on wind speed 
discrepancies, but was inadequately described in our original manuscript. Thus, we have not 
included the suggested figure, which could confuse the reader by leading them to assume 
the N700 measurements in these locations are less reliable than they are. Instead, we have 
refined the “SI Results: Wind Discrepancies” text: 
 
“Southern Ocean wind speeds during the ACE-SPACE expedition were often much lower than climatological 

mean values, but on average were higher than winds in our ensemble (Schmale et al., 2019). We account for the 

effects of inter-annual variability in the Var(R) term in equation S1. However, monthly mean differences 

between ERA-Interim wind speeds in the measurement year and the year used in the ensemble are less than 20% 

along the route taken by the ACE-SPACE campaign vessel (Fig. S4). The modest discrepancy in wind speeds 

may be important for constraining aerosol concentrations, because sea spray emissions in our model are strongly 

dependent on wind speeds (Gong, 2003). However, the measured wind speed and N700 values are only weakly 

correlated (Pearson correlation coefficient of around 0.2) when degraded to the resolution used for comparison 

with model output.  

 

Our constraint process has in-built functionality that prevents the use of measurements with large model-

measurement discrepancies. We tested the robustness of our constraint methodology to the discrepancy in wind 

speeds by neglecting around 50% of the measurements (those with the largest discrepancies between measured 



and AER-ATM PPE mean simulated winds) and repeating the constraint. The effects on marginal parameter and 

aerosol forcing constraints were negligible (not shown). The consistency of constraint, with and without 

measurements in locations with relatively large model-measurement wind speed discrepancies, suggests the 

constraint methodology is insensitive to wind speed discrepancies caused by daily wind speed variability and 

differences in meteorological years between model simulations and measurements.” 

 
Line 178: “The constraint on the scaled DMS emission flux is two-sided, 179 reducing 
the credible range of DMS emission scaling from 0.5 to 2.0 down to 0.54 to 1.9.” 
Could the authors please make clear what in the figure 0.54/1.9 corresponds to. 
 
We have now defined DMS as dimethylsulfide on line 152: 
“Several other parameters (related to cloud droplet pH, dimethylsulfide (DMS) emissions and wet deposition) 

are more modestly constrained.” 
 
We have also clarified that DMS is an aerosol precursor, and that this parameter is a scale 
factor on the default emissions (originally referred to as a scaling). We have now included 
references to the schemes used, since other modelling groups may use different seawater 
concentrations and/or emission flux representations. 
 
Revised text on line 178 now reads: 
“Other parameters are more modestly constrained. The constraint on the aerosol precursor DMS emission flux 

scale factor is two-sided, reducing the credible range of DMS emission scalings from 0.5 to 2.0 down to 0.54 to 

1.9. This constraint suggests the default surface sea water concentration (Kettle and Andreae, 2000) and 

emission parameterisation (Nightingale, et al., 2000) are consistent with measurements (including aerosol 

sulfate) and do not benefit from being scaled. Furthermore, ACE-SPACE measurements are consistent with 

less-efficient aerosol scavenging (55% likelihood of Rain_Frac, the parameter that controls the fractional area of 

the cloudy part of model grid boxes where rain occurs, being below the unconstrained median value 0.5) and 

less aqueous phase sulfate production (pH of cloud droplets has a 62% likelihood of being lower than the 

unconstrained median value). These combined constraints suggest, in agreement with sea spray and deposition 

parameter constraints, higher aerosol number and mass concentrations are consistent with measurements.” 

 
SI, Line 95: Grammar - “pdfs with centralised tendencies will by heavily weighted”. 
Change by to be. 
 
Done. 
 
SI, Line 63: “We make use of the ATM and AER-ATM perturbed parameter ensembles 
(PPEs)”. Following this the authors refer only to AER and AER-ATM. Should this 
read: “We make use of the AER and AER-ATM”? 
 
Yes, this has been corrected. 
 
Fig. 2: Should y-axis density not be labelled 0-1? Or are these not normalised 
marginal densities. 
 
Our description of these figures was inadequate. The purpose of this figure is to contrast the 
shape of the probability densities for the unconstrained and constrained sets of model 
variants. These are not normalised marginal densities. The density curve for each sample of 
model variants (unconstrained and constrained) is scaled such that the area under the curve 
integrates to one. This means that the densities can be compared visually on the same 



figure. The values on the y-axis are not helpful (or needed) for comparing the shape of 
probability density curves of the different samples, and have therefore not been included in 
the figure.  
 
We have added an extra sentence to the caption of figure 2 to make the scaling clear. 
 
“Densities for each sample of model variants are scaled so that the area under the curve 
integrates to one.”# 
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Abstract. Aerosol measurements over the Southern Ocean are used to constrain aerosol-18 
cloud interaction radiative forcing (RFaci) uncertainty in a global climate model. Aerosol 19 
fForcing uncertainty is quantified using one million climate model variants that sample the 20 
uncertainty in nearly 30 model parameters. Ship-based measurements of cloud condensation 21 

nuclei, particle number concentrations and sulfate mass concentrations from the Antarctic 22 
Circumnavigation Expedition: Study of Preindustrial-like Aerosols and Their Climate Effects 23 

(ACE-SPACE) are used to identify observationally implausible variants and thereby reduce 24 
the spread in the simulated forcing. Southern Ocean mMeasurements of cloud condensation 25 
nuclei and other aerosol properties from an Antarctic circumnavigation expedition strongly 26 

constrain natural aerosol emissions: default sea spray emissions in the model need to be 27 
increased by around a factor of 3 to be consistent with measurements. Aerosol fForcing 28 

uncertainty is reduced by around 7% using this set of several hundredese measurements, 29 
which is comparable to the 8% reduction achieved using an a diverse and extensive set of 30 

over 9000 predominantly Northern Hemisphere measurements. The radiative forcing due to 31 
aerosol-cloud interactions (RFaci) is constrained to -2.61 to -1.10 W m-2

 (95% confidence) and 32 
the effective radiative forcing from aerosol-cloud interactions (ERFaci) is constrained to -2.43 33 
to -0.54 W m-2.  When Southern Ocean and Northern Hemisphere measurements are 34 

combined, the uncertainty in RFaci is reduced by 21% and the strongest 20% of forcing values 35 
are ruled out as implausible. In this combined constraint the, observationally plausible RFaci 36 
is around 0.17 W m-2 weaker (less negative) with 95% credible values ranging from -2.51 to -37 
1.17 W m-2 and from (standard deviation -2.18 to -1.46 W m-2) when using one standard 38 
deviation to quantify the uncertainty. The Southern Ocean and Northern Hemisphere 39 

measurement datasets are complementary because they constrain different processes. These 40 
results highlight the value of remote marine aerosol measurements.  41 

 42 
 43 

1 Introduction 44 

The uncertainty in the magnitude of the effective radiative forcing caused by aerosol-cloud interactions (ERFaci) 45 
due to changing emissions over the industrial period is around twice that for CO2 (Stocker et al., 2013). It is 46 
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essential to reduce this uncertainty if global climate models are to be used to robustly predict near-term changes 47 
in climate (Andreae et al., 2005, Myhre et al., 2013, Collins et al., 2013, Tett et al., 2013, Seinfeld et al., 2016).  48 
 49 
Aerosol forcing uncertainty has persisted in climate models since the 1990s partly because there are no 50 
measurements covering the industrial period that can be used to directly constrain simulations of long-term 51 
changes in aerosol and cloud properties (Gryspeerdt et al., 2017; McCoy et al., 2017). Estimates of aerosol 52 
forcing over the industrial period therefore rely on models that have been evaluated against measurements made 53 
in the present-day atmosphere. However, it is known that the aerosol forcing (in particular the component 54 
caused by aerosol-cloud interactions) depends sensitively on the state of aerosols in the pre-industrial period 55 
(Carslaw et al., 2013; Wilcox et al. 2015) when natural aerosols were dominant (Carslaw et al., 2017). 56 
Observations of natural aerosols in the present-day atmosphere are therefore expected to help constrain the 57 
simulated forcing unless there have been significant changes in natural aerosol processes over the industrial 58 
period, for which there is little evidence (Carslaw et al., 2010).  59 
 60 
In this paper we address the questions: i) To what extent can measurements of aerosols in pristine (natural) 61 
environments help to constrain model simulations and thereby reduce the large uncertainty in aerosol forcing? 62 
ii) What is the relative importance of measurements in remote and polluted environments for constraining the 63 
forcing uncertainty? It is known that the abundance of natural aerosols affects the magnitude of forcing in a 64 
model (Spracklen and Rap, 2013; Carslaw et al., 2013). However, to assess the effect on the uncertainty in 65 
forcing it is necessary to explore how the spread of predictions of a set of models changes when constrained by 66 
measurements. The 5th Coupled Model Intercomparison Project is inadequate for this purpose because of 67 
insufficient aerosol diagnostics (Wilcox et al., 2015). Here we use large perturbed parameter ensembles (PPEs) 68 
of the UK Hadley Centre General Environment Model HadGEM3 (Hewitt et al, 2011). The PPEs were created 69 
by systematically perturbing numerous model parameters related to natural and anthropogenic emissions and 70 
physical processes (Yoshioka et al., 2019). The simulated aerosol forcings have uncertainty ranges that exceed 71 
those of multi-model ensembles (Yoshioka et al., 2019; Johnson et al., 2019). Instantaneous radiative forcing 72 
(RF) is quantified using the 26-parameter AER PPE in which just aerosol-related parameters were varied, and 73 
the effective radiative forcing (ERF) is quantified using the 27-parameter AER-ATM PPE in which aerosol and 74 
physical atmosphere parameters were varied (Yoshioka et al., 2019). We use these PPEs to quantify how the 75 
constraint provided by pristine aerosol measurements affects the spread of aerosol forcings simulated by the 76 
ensembles.  77 
 78 
Previous analysis of HadGEM3 PPEs showed that measurements of the present-day atmosphere in regions 79 
affected by anthropogenic emissions help to constrain have limited impact on the uncertainty in simulated 80 
aerosol-radiation interaction forcing (RFari) but not the component due to aerosol-cloud interactions (RFaci). For 81 
example, Regayre et al., (2018) showed that top-of-the-atmosphere shortwave radiation flux measurements 82 
reduce ERFaci uncertainty by only around 10%, despite the fluxes in the present-day and early-industrial 83 
environments sharing multiple causes of uncertainty. Johnson et al. (2019) showed that a much larger dataset of 84 
over 9000 (predominantly Northern Hemisphere) aerosol measurements constrained thereduced the uncertainty 85 
in global, annual mean aerosol RFari (neglecting rapid adjustments) uncertainty  by 35%, but RFaci uncertainty 86 
by only around 87%. These measurements reduce the uncertainty in a small number of parameters related to 87 
anthropogenic emissions and aerosol processing in polluted environments. However, important causes of 88 
uncertainty in RFaci, such as natural aerosol emission fluxes, were largely unconstrained. 89 
 90 
The Southern Ocean is one of the few regions on Earth (along with some boreal forests) in which the same 91 
processes are expected to affect cloud-active aerosol concentrations in the present-day and early-industrial 92 
atmospheres (Hamilton et al., 2014). In this study we make use of aerosol measurements from the Antarctic 93 
Circumnavigation Expedition: Study of Preindustrial-like Aerosols and Their Climate Effects (ACE-SPACE) 94 
campaign (Schmale et al., 2019). They offer a unique opportunity to constrain the early-industrial aspects of 95 
aerosol forcing uncertainty because the Southern Ocean is a source of natural aerosols that are relevant at the 96 
global scale and remains largely unaffected by anthropogenic aerosol and precursor emissions. 97 
 98 
We use near-surface measurements of cloud condensation nuclei concentrations at 0.2% and 1.0% 99 
supersaturations (CCN0.2 and CCN1.0; Tatzelt et al., 2019), as well as mass concentrations of non-sea-salt sulfate 100 
particles with dry aerodynamic diameters less than 10 µmin PM10 and number concentrations of particles with 101 
dry aerodynamic diameter larger than 700 nm (N700; corresponds to volume equivalent diameter larger than 102 
around 500 to 570 nm; Schmale et al., 2019a). The measurements are compared to output from 1 million 103 
variants of the HadGEM3 model that sample combinations of parameter settings in the model. These model 104 
variants are used to represent aerosol forcing uncertainty in our model using probability density functions (pdfs) 105 
and were generated by sampling from Gaussian Process emulators that were trained on the PPE model outputs 106 



3 
 

(see SI Methods). Model variants that were judged to be observationally implausible against the measurements 107 
were rejected, resulting in a set of plausible variants from which the uncertainty in aerosol forcing could be 108 
computed (see SI Methods). In the results shown below, we retained approximately 3% of model variants 109 
(following Johnson et al., 2019) that best match all four measured aerosol properties. 110 
 111 
 112 

2 Results 113 

 114 
Fig. 1 shows the CCN0.2 mean and standard deviation from the unconstrained and constrained model variants to 115 
exemplify the effect of constraint on model output. The mean concentrations in the unconstrained sample are 116 
much smaller than measured concentrations. However, the range of CCN0.2 values in the unconstrained sample 117 
spans the measurements in most locations (Fig. 1b). The measurement constraint increases CCN0.2 118 
concentrations (more than double the unconstrained mean in many locations; Fig. 1c) and greatly reduces the 119 
CCN0.2 uncertainty (by more than half everywhere to less than 50 cm-3; Fig. 1d).  120 
 121 

 122 

Fig. 1. a,c) Mean and b,d) standard deviation of CCN0.2 concentrations from the a,b) unconstrained sample and c,d) the 123 
sample constrained using concentration measurements of CCN0.2, CCN1.0, non-sea-salt sulfate and particles with dry 124 
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aerodynamic diameters numbers larger than 700 nm. Measured CCN0.2 values are plotted as dots. Means and standard 125 
deviations were calculated using samples taken from emulators trained using monthly mean values. December to March 126 
sample values were combined based on longitudinal agreement with measurements. 127 
 128 
Fig. 2 shows pdfs of the output from the model for the four variables used as constraints, calculated as means 129 
over the locations where measurements were taken. The constraint reduces the uncertainty in all measurement 130 
types (narrower pdfs) and the central tendency of the pdfs is closer to the regional mean of measurements after 131 
constraint. Rejecting around 97% of model variants as implausible compared to measurements greatly improves 132 
the model-measurement comparison. 133 
 134 

 135 
 136 
Fig. 2. Unconstrained (black) and observationally constrained (red) pdfs of aerosol properties: a) CCN0.2%, b) CCN1.0%, c) 137 
N700 and d) aerosol sulfate. The pdfs were calculated at locations where measurements were used for constraint across the 138 
months December to March. Densities for each sample of model variants are scaled so that the area under the curve 139 
integrates to one. The green dashed line shows the median of the measurements and the dotted green lines show the 140 
approximate uncertainty ranges due to multiple model-measurement comparison uncertainties that were accounted for in the 141 
constraint (See SI Methods).  142 
 143 
After constraint, the remaining model variants inhabit specific parts of the 26-dimensional parameter uncertainty 144 
space used to quantify the model uncertainty. We explore the effect of constraints on parameter values using 1-145 
dimensional marginal probability distributions (described in detail in Johnson et al., 2019) – see Fig. 3 and Fig. 146 
S1 S2 for equivalent AER-ATM results. The magnitude of the marginal probability distribution after constraint 147 
reflects the number of ways in which a particular value of a parameter can be combined with settings of all the 148 
other parameters to produce an observationally plausible model. The white space in the marginal pdfs shows 149 
where parameter value density has decreased.  150 
 151 
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 152 
 153 
Fig. 3. Marginal probability distributions for the 26 aerosol parameters after constraint using ACE-SPACE measurements. 154 
The density of parameter values in the unconstrained sample are shown as horizontal dashed lines (uniform sampling over 155 
the parameter space). Densities of constrained samples are shown in colour and are scaled so that the maximum densities in 156 
the constrained and unconstrained samples are aligned. The 25th, 50th and 75th percentiles of each marginal distribution are 157 
shown in the central boxes. Parameter values on the x-axes correspond to values used in the model (Yoshioka et al., 2019, 158 
table S3). 159 
 160 
The relative simplicity of aerosol emissions and processes over the Southern Ocean (compared to polluted 161 
continental regions) means that measurements can be used to tightly constrain uncertainty in the associated 162 
parameters. Two parameters,  (sea spray emissions and dry deposition velocity, ) are tightly constrained such 163 
that some parameter values are ruled out as implausible even when combined with uncertainties in all other 164 
parameters. Several other parameters (related to cloud droplet pH, dimethylsulfide (DMS) emissions and wet 165 
deposition) are more modestly constrained. These joint constraints (see also Fig. S3) suggest the model-166 
measurement comparison is improved when aerosol number concentrations and mass are relatively high. 167 
 168 
Sea spray emissions are tightly constrained to be around 3 times larger than the default model value. 169 
Observationally plausible values of the sea spray scaling parameter range from around 1.6 to 5.1 and all other 170 
values (including the default emission calculated in the model) are ruled out as implausible. This suggests that 171 
sea spray emissions in our model need to be significantly higher than those calculated using the wind speed 172 
dependent Gong (2003) parametrisation in the Southern Hemisphere summer.  The higher flux is consistent with 173 
Revell et al. (2019), who showed that a more recent version of our model simulates cloud droplet concentrations 174 
and aerosol optical depth values that are lower than observed over the Southern Ocean in the Southern 175 
Hemisphere summer. However, in the Southern Hemisphere winter Revell et al., (2019) simulated higher 176 
aerosol optical depths than observed, which they corrected by reducing the dependence of sea spray emissions 177 
on wind speed. Hence, our constraint on sea spray emission fluxes may only be appropriate for Southern 178 
Hemisphere summer when wind speeds are relatively low. We do not make any assumptions about the 179 
composition of these additional summertime sea spray particles. They may be rich in organic material as 180 
proposed by Gantt et al., (2011) which would alter the CCN activity of emitted particles. However, the 181 
consistency of constraint of CCN0.2 and N700 towards higher values (Fig. 21, table S3) implies that a general 182 
scaling of the existing sea spray flux is consistent with the measurements from December to April, without the 183 
need for an additional source of fine-mode, organic-rich particles. 184 
 185 
 186 
A better understanding of these conflicting results could be achieved using a multi-model experiment that 187 
sampled a range of atmospheric process representations. 188 
 189 
We do not make any assumptions about the composition of these additional sea spray particles. They may be 190 
rich in organic material as proposed by Gantt et al., (2011) which would alter the CCN activity of emitted 191 
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particles. However, the consistency of constraint of CCN0.2 and N700 towards higher values (Fig. 1) implies that 192 
a general scaling of the existing sea spray flux is consistent with the measurements without the need for an 193 
additional source of fine-mode, organic-rich particles. 194 
 195 
These results conflict with the findings of Revell et al. (2019) who suggest the relatively simple wind speed 196 
dependent nature of the Gong (2003) parametrisation produces too much sea spray aerosol over the Southern 197 
Ocean from December to February.  If Revell et al. (2019) had sampled a wider range of processes (such as 198 
deposition) as we have here, our results might be brought into agreement. A better understanding of these 199 
conflicting results could be achieved using a multi-model experiment that sampled a range of atmospheric 200 
process representations. 201 
 202 
The dry deposition velocity of accumulation mode aerosols (Dry_Dep_Acc) has an 84% likelihood of being 203 
lower than the default model value after applying the constraint. Furthermore, deposition velocities larger than 204 
around 3 times the default value are effectively ruled out. This constraint is consistent with the higher aerosol 205 
concentrations implied by constraint of the sea spray emission parameter.  206 
 207 
Other parameters are more modestly constrained. The constraint on the scaled aerosol precursor DMS emission 208 
flux scale factor is two-sided, reducing the credible range of DMS emission scalings from 0.5 to 2.0 down to 209 
0.54 to 1.9. This constraint suggests the default surface sea water concentrationemission inventory (Kettle and 210 
Andreae, 2000) and emission parameterisation (Nightingale, et al., 2000) is are consistent with measurements 211 
(including aerosol sulfate) and do esn’t not benefit from being scaled. Furthermore, ACE-SPACE measurements 212 
are consistent with less less-efficient aerosol scavenging (55% likelihood of Rain_Frac, the parameter that 213 
controls the fractional areaproportion of the cloudy part of model grid boxes where rain occurs, being below the 214 
unconstrained median value 0.5) and less aqueous phase sulfate production (pH of cloud droplets has a 62% 215 
likelihood of being lower than the unconstrained median value). These combined constraints suggest, in 216 
agreement with sea spray and deposition parameter constraints, higher aerosol number and mass concentrations 217 
are consistent with measurements. 218 
 219 
The effects of measurement constraint on pdfs of RFaci and ERFaci are shown in Fig. 4. Removing implausible 220 
model variants has reduced the uncertainty in several parameters including natural aerosol emission fluxes, 221 
which translates into a reduction in RFaci uncertainty (Carslaw et al., 2013). The measurement constraints have 222 
two important effects on aerosol forcing. Firstly, the magnitude of median RFaci weakens from -1.99 W m-2 to -223 
1.88 W m-2 (-1.64 to -1.49 W m-2 for ERFaci). A weaker forcing is consistent with higher natural aerosol 224 
emissions and, increased aerosol load and higher cloud droplet number concentrations in the early-industrial 225 
period. Table 1 shows that our constraint on natural emission parameters also constrains Southern Ocean cloud 226 
droplet number concentrations towards higher values, reducing the credible interval by around 50% and 227 
bringing mean values into closer agreement with MODerate Imaging Spectroradiometer (MODIS; Salomonson 228 
et al., 1989) instrument data (note that droplet number concentrations were not used to constrain the model). 229 
Thus, we conclude that the constraint on aerosol forcing towards weaker values is a genuine constraint and not 230 
the result of an arbitrary tuning. Secondly, the constrained forcing pdfs are approximately symmetric but have 231 
shorter tails (lower kurtosis). This suggests the constraints are selectively ruling out model variants that are 232 
outliers. The 95% credible range of RFaci values is reduced by around 9% (from -2.84 to -1.15 W m-2 down to -233 
2.64 to -1.10 W m-2) and around 9% for ERFaci (from -2.69 to -0.62 W m-2 down to -2.43 to -0.54 W m-2). The 234 
consistency of forcing constraint across two distinct PPEs suggests the results are insensitive to differences in 235 
meteorology, parameters perturbed in the PPEs, and the inclusion of rapid atmospheric adjustments. These 236 
results are also insensitive to additional constraint to ensure energy balance at the top of the atmosphere (Fig. 237 
S52). 238 
 239 
 240 
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  241 

 242 
 243 
Fig. 4. Probability distributions of a) RFaci and b) ERFaci. The distributions of the unconstrained sample of one million model 244 
variants from statistical emulators of each PPE are in black. Red lines show the distributions after constraint using ACE-245 
SPACE measurements (around 3% of the unconstrained sample). The 25th, 50th and 75th percentiles of each sample are 246 
shown as shaded boxes and dashed lines span the 2.5th and 97.5th percentiles. 247 
 248 
 249 
Table 1. Annual and monthly mean cloud drop number concentrations over the Southern Ocean (over the region between 250 
50oS and 60oS at around 1km altitude above sea level) in the original unconstrained sample and the sample of model variants 251 
constrained to ACESPACE campaign measurements. Mean values and 95% credible interval values are shown for each 252 
sample, with interquartile ranges in brackets. For comparison, we show cloud drop concentrations calculated from MODIS 253 
instrument data following Grosvenor et al., (2018) for the year 2008 (SI Methods: Measurements). 254 
 255 

 Annual December January February March April 

MODIS (cm-3) 73 89 91 90 82 63 

Unconstrained mean (cm-3) 38 39 39 41 42 39 

Unconstrained credible 

interval (cm-3) 

7-125 

(112) 

8-115 

(103) 

8-117 

(109) 

7-122 

(115) 

7-129 

(122) 

7-118 

(111) 

Constrained mean (cm-3) 66 67 69 72 76 70 

Constrained credible interval 

(cm-3) 

41-96 

(55) 

43-96 

(53) 

44-99 

(55) 

45-105 

(60) 

47-111 

(64) 

44-101 

(57) 

 256 
Johnson et al. (2019) reduced the global, annual mean RFaci uncertainty by constraining multiple anthropogenic 257 
emission and model process parameters (as well as some natural aerosol parameters) using over 9000 258 
predominantly Northern Hemisphere measurements of aerosol optical depth, PM2.5, particle number 259 
concentrations and mass concentrations of organic carbon and sulfate. We used the same methodology as 260 
Johnson et al. (2019) to rule out implausible model variants from the same original sample of one million model 261 
variants, so we can readily combine these constraints. Around 700 model variants (0.07%) are observationally 262 
plausible in both the Southern Ocean (ACE-SPACE) and Johnson et al. (2019) constraints. Although this is a 263 
relatively small percentage of the original sample, 700 observationally-plausible model variants is far more than 264 
are typically used to quantify model uncertainty or multi-model diversity (e.g. around 30 for CMIP6). The 265 
marginal parameter pdfs from this 700-member sample are shown in Fig. 5. Because Johnson et al. (2019) 266 
studied only the AER PPE (from which RFaci can be computed) we are unable to explore the effect of the 267 
combined constraint on ERFaci. 268 
 269 
 270 
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    271 

 272 
 273 
Fig. 5. Marginal probability distributions for the 26 aerosol parameters after constraint using around 250 Southern Ocean 274 
measurements and more than 9000 aerosol measurements in Johnson et al. (2019). Plotting features of this figure are 275 
identical to Fig. 3. 276 
 277 
The two measurement datasets constrain distinct groups of parameters. There are a few cases where the same 278 
parameters are constrained by both datasets and in these cases the parameter values are constrained consistently 279 
(e.g. cloud droplet pH) or more strongly through ACE-SPACE (e.g. sea spray emissions). The complementary 280 
nature of these constraints means that the combined constraint marginal parameter pdfs (Fig. 5) are remarkably 281 
similar to those in our Fig. 3e (for sea spray and DMS emission fluxes, as well as deposition and pH parameters) 282 
and in figure 6 of Johnson et al. (2019) for other parameters.  283 
 284 
The Johnson et al. (2019) constraint reduced the RFaci uncertainty by around 6% and our ACE-SPACE 285 
measurement constraint reduced the uncertainty by around 9%. However, the RFaci uncertainty is reduced by 286 
around 21% (Fig. 6a) after applying both constraints, meaning the combined constraint is stronger than the sum 287 
of individual constraints. 288 
 289 
 290 

 291 

 292 
Fig. 6. Probability distributions of a) RF, b) RFaci and c) RFari from the unconstrained (black line) and constrained (red line) 293 
samples of model variants. The constrained sample includes model variants that agree with our ACE-SPACE measurement 294 
constraint and the Johnson et al. (2019) constraint. Plotting features are identical to Fig. 4. 295 
 296 
The Johnson et al. (2019) constraint strengthened the RFaci by around 0.3 W m-2 (more negative) because the 297 
largest sea spray emission flux scaling and largest new particle formation rates were ruled out (Fig. 6 in Johnson 298 
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et al., 2019). Our ACE-SPACE constraint rules out the same large sea spray emission fluxes, but also rules out 299 
all emission flux scale factors lower than around 1.6 (Fig. 3), which increases the baseline aerosol concentration 300 
in the early-industrial atmosphere. The ACE-SPACE measurements also constrain several other parameters that 301 
collectively weaken RFaci weaken the median RFaci by around 0.18 W m-2. Therefore, using the combined 302 
measurement dataset, the highest and loweststrongest RFaci values have been ruled out as implausible and the 303 
credible range of observationally plausible RFaci values is reduced to around -2.51 to -1.17 W m-2

 (-2.18 to -1.46 304 
W m-2 , when using one standard deviation to quantify the uncertainty). Uncertainty in RFari is reduced by 305 
around 48% with observationally plausible values ranging from -0.27 to -0.09 W m-2 (-0.23 to -0.13 W m-2, 306 
when using one standard deviation), because the strongest RFari values are ruled out as observationally 307 
implausible.  308 
 309 

3 Discussion 310 

 311 
Our results show, as hypothesised from previous sensitivity analyses, that remote marine measurements are 312 
valuable for constraining the natural aerosol state of the atmosphere (Carslaw et al., 2013; Regayre et al., 2014; 313 
Regayre et al., 2018). Remote marine aerosol measurements provide new information about plausible model 314 
behaviour because they are closely related to model emissions and processes that measurements in polluted 315 
environments do not constrain.  316 
  317 
For the first time we have achieved a meaningful reduction of 21% in the RFaci uncertainty by constraining the 318 
aerosol properties in the model. The reduction in forcing uncertainty can still be improved by considering the 319 
following: Firstly, using measurements of cloud properties and cloud-aerosol relations, as well as measurements 320 
associated with primary sulfate and carbonaceous particle emission sizes, could constrain model parameters that 321 
there are several causes of RFaci uncertainty that but are not constrained by a combination of Northern 322 
Hemisphere and pristine Southern Ocean measurements. Identifying measurements associated with primary 323 
particle emission diameters (BB_diam and Prim_SO4_diam), Aitken mode aerosol removal rates 324 
(Dry_Dep_Ait) and model process parameters related to cloud droplet activation (Kappa_OC, Ait_width, 325 
Sig_W) and using them as additional constraints should further reduce the forcing uncertainty. Secondly, even 326 
within the considerably reduced volume of multi-dimensional parameter space there still exist many 327 
compensating parameter effects (Fig. S3), which limit the constraint on individual parameter ranges (Lee et al., 328 
2016; Regayre et al., 2018). The impact of these compensating effects could be greatly reduced by perturbing 329 
uncertain emissions regionally rather than globally as we do here.   330 
 331 
Our results are based on uncertainty in a single climate model. The model is structurally consistent in our 332 
experiments, so neglects uncertainty caused by choice of microphysical and atmospheric process 333 
representations. Our model also neglects some potentially important sources of remote marine aerosol, such as 334 
primary marine organic aerosol (Mulcahy et al., 2020) and methane-sulfonic acid (Schmale et al., 2019; 335 
Hodshire, et al., 2019; Revell et al., 2019). Model inter-comparison projects (such as CMIP6) can be used to 336 
quantify the diversity of RF (or ERF) output from models, but they lack information about single model 337 
uncertainty. Ideally, multi-model ensembles would contain a perturbed parameter component, so that model 338 
diversity and single model forcing uncertainty could be quantified simultaneously. But,but the computational 339 
costs prevents many modelling groups from engaging with this important aspect of uncertainty quantification, 340 
limiting our shared knowledge about the causes of aerosol forcing uncertainty. Studies like ours that quantify the 341 
remaining uncertainty in aerosol forcing and its components after constraint using multiple measurement types 342 
fill an important knowledge gap. This knowledge can be used to form a more complete understanding of the 343 
importance of historical and near-term aerosol radiative forcing which would reduce the diversity in equilibrium 344 
climate sensitivity across models.  345 
 346 
 347 
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The ACE-SPACE data are accessible from: https://zenodo.org/communities/spi-ace. The basis for our cloud 349 
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http://catelogue.ceda.ac.uk/uuid/cf97ccc802d348ec8a3b6f2995dfbbff
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SI Methods 17 

SI Methods: Model Version 18 

We use the Global Atmosphere 4 (GA 4.0; Walters et al., 2014) configuration of the Hadley Centre General 19 
Environment Model version 3 (HadGEM3; Hewitt et al., 2011), which incorporates the UK Chemistry and 20 
Aerosol (UKCA) model at version 8.4 of the UK Met Office's Unified Model (UM). UKCA simulates trace gas 21 
chemistry and the evolution of the aerosol particle size distribution and chemical composition using the GLObal 22 
Model of Aerosol Processes (GLOMAP-mode; Mann et al., 2010) and a whole-atmosphere chemistry scheme 23 
(Morgenstern et al., 2009; O’Connor et al., 2014). The model has a horizontal resolution of 1.25x1.875 degrees 24 
and 85 vertical levels. The aerosol size distribution is defined by seven log-normal modes: one soluble 25 
nucleation mode as well as soluble and insoluble Aitken, accumulation and coarse modes. The aerosol chemical 26 
components are sulfate, sea salt, black carbon (BC), organic carbon (OC) and dust.  Secondary organic aerosol 27 
(SOA) material is produced from the first stage oxidation products of biogenic monoterpenes under the 28 
assumption of zero vapour pressure and is combined with primary particulate organic matter after kinetic 29 
condensation. Use of the GLOMAP model to simulate aerosol size and composition changes reduces Southern 30 
Ocean radiative biases in HadGEM3 (Bodas-Salcedo et al., 2019). 31 
 32 
GLOMAP simulates new particle formation, coagulation, gas-to-particle transfer, cloud processing and 33 
deposition of gases and aerosols. The activation of aerosols into cloud droplets is calculated using globally 34 
prescribed distributions of sub-grid vertical velocities (West et al. 2014) and the removal of cloud droplets by 35 
autoconversion to rain is calculated by the host model. Aerosols are also removed by impaction scavenging of 36 
falling raindrops according to the collocation of clouds and precipitation (Lebsock et al., 2013; Boutle et al., 37 
2014). Aerosol water uptake efficiency is determined by kappa-Kohler theory (Petters and Kreidenweis, 2007) 38 
using composition-dependent hygroscopicity factors. 39 
 40 
We prescribe anthropogenic emissions using the emission inventory prepared for the Atmospheric Chemistry 41 
and Climate Model Inter-comparison Project (ACCMIP) and also prescribed in some of the CMIP Phase 5 42 
experiments. Present-day carbonaceous aerosol emissions were prescribed using a ten year average of 2002 to 43 
2011 monthly mean data from the Global Fire and Emissions Database (GFED3; van der Werf et al., 2010) and 44 
according to Lamarque et al. (2010) for 1850. We prescribe volcanic SO2SO2  emissions for continuously 45 
emitting and sporadically erupting volcanoes (Andres et al., 1998) and for explosive volcanic eruptions (Halmer 46 
et al., 2002). Surface ocean dimethyl-sulfide concentrations are prescribed using Kettle and Andreae (2000) and 47 
emitted into the atmosphere using a surface wind speed dependent parametrisation (following Nightingale et al., 48 
2000). Sea spray is emitted into the atmosphere using the Gong (2003) surface wind speed dependent 49 
parametrisation. 50 
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  51 
Several modifications were made to version 8.4 of UKCA to overcome known structural deficiencies in the 52 
model. An organically-mediated boundary layer nucleation parametrisation (Metzger et al., 2010) was included 53 
so that remote marine and early-industrial aerosol concentrations were not unrealistically low in the model. We 54 
also added a parametrisation for ice crystal suppression of precipitation known to bring remote marine aerosol 55 
concentrations in line with measurements (Browse et al., 2012). Dust in the base model is calculated using the 56 
CLASSIC bin scheme (Woodward et al., 2001), which we replaced in our model version so that dust is emitted 57 
using the GLOMAP modal scheme. This means interactions between dust and other aerosols are explicitly 58 
simulated. We better resolve the optical properties of aerosols across wavelengths by improving the resolution 59 
of the default look-up tables. Finally, we made minor adjustments to some process parametrisations so that 60 
parameter values could be perturbed globally. All changes to the model are described fully in Yoshioka et al. 61 
(2019). 62 
 63 

SI Methods: Perturbed Parameter Ensembles 64 

We make use of the ATM AER and AER-ATM perturbed parameter ensembles (PPEs) described in Yoshioka et 65 
al. (2019). Results in the main article make use of the AER PPE except for the quantification of aerosol ERF 66 
and its components. These two PPEs were designed to provide complementary insights into causes of 67 
uncertainty in the climate system. The 235 member AER PPE samples uncertainties in a set of 26 aerosol 68 
parameters, whilst the 191 member AER-ATM PPE samples uncertainties in 18 aerosol and 9 physical 69 
atmosphere parameters related to clouds, radiation and moisture. The effects of rapid atmospheric adjustments 70 
to aerosols are not included in AER, but are included in AER-ATM (although they have a relatively minor 71 
impact on aerosol forcing in this model (e.g. Mulcahy et al., 2018). Therefore, ERF is calculated for the AER-72 
ATM PPE and combined (in the “SI Results: Additional constraint to achieve radiative balance” section) with 73 
the CERES top-of-the-atmosphere constraint employed in Regayre et al. (2018), whilst RF is calculated for the 74 
AER PPE and combined (in the main article) with the predominantly Northern Hemisphere aerosol constraint 75 
employed in Johnson et al. (2019). 76 
 77 
Both PPEs were nudged towards European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-78 
Interim reanalyses. Nudging means that pairs of simulations have near-identical synoptic-scale features, which 79 
enables the effects of parameter perturbations to be quantified using single-year simulations, although the 80 
magnitude of forcing will vary with the chosen year (Yoshioka et al., 2019; Fiedler et al., 2019). We nudge well 81 
above the Earth’s surface in order to strike a balance between the computational cost of perturbing multiple 82 
parameters and the computational saving of using prescribed meteorology to overcome internal variability 83 
(Zhang et al., 2016). In the AER-ATM PPE only horizontal winds above the boundary layer (around 2km) for 84 
the year 2006 were prescribed, whilst in AER, horizontal winds and temperatures for 2008 were prescribed 85 
above around 1km. In each PPE the model was allowed to respond to parameter perturbations (a spin-up period) 86 
prior to simulating the data used here. Despite these differences, results in the main article are consistent across 87 
the PPEs. 88 
 89 
 90 

SI Methods: Sampling and uncertainty 91 
We sample uncertainty in model output using uniform pdfs across each parameter range. The uncertainty in 92 
individual parameters could be sampled in a more informed manner. For example, Yoshioka et al. (2019) used 93 
expert elicited information about likely parameter values to create parameter pdfs, which were used by Bellouin 94 
et al. (2019) and Watson-Paris et al. (2020submitted) to sample uncertainty in aerosol forcing uncertainty. The 95 
additional information provided by expert elicited parameter pdfs is invaluable for quantifying the causes of 96 
model uncertainty (e.g. Regayre et al., 2018) because the choice of pdfs affects the contributions to variance in 97 
model output. However, in nearly 30 dimensions, samples of combined parameter values using multiple pdfs 98 
with centralised tendencies will by be heavily weighted towards the centre of the parameter space. Since our 99 
intention in this article is to sample the range of model behaviour in response to the full spectrum of uncertain 100 
parameter combinations prior to constraint using measurements, we use uniform pdfs with maximum and 101 
minimum values from the expert elicited ranges. 102 
 103 
A set of around 200 model variants that make up the PPEs are much too small to allow statistical analysis of 104 
model performance across nearly 30 dimensions of parameter space. We therefore use output from the PPEs to 105 
train Gaussian Process emulators (e.g. Lee et al., 2012), which define how the model outputs vary continuously 106 
over the parameter space. Some additional uncertainty is caused by emulating (rather than simulating) model 107 



output and this uncertainty is incorporated into our model-measurement constraint process (SI Methods: Model-108 
measurement comparisons), despite being much smaller than other sources of uncertainty (Johnson et al., 2019). 109 
We sample Monte Carlo points from the emulated parameter space to produce the set of one million model 110 
variants. 111 
 112 

SI Methods: Measurements 113 

Measurements were collected during the ACE-SPACE campaign between December 2016 and March 2017. The 114 
measurement methodology is explained in Schmale et al. (2019) as well as in the metadata of the datasets cited 115 
below. We constrain the model uncertainty using near-surface measurements of cloud condensation nuclei 116 
concentrations at 0.2% and 1.0% supersaturations (CCN0.2 and CCN1.0; Tatzelt et al., 2019), as well as number 117 
concentrations of particles with dry aerodynamic diameter larger than 700 nm (N700; corresponds to volume 118 
equivalent diameter larger than around 500 to 570 nm; Schmale et al., 2019a) and mass concentrations of non-119 
sea-salt sulfate in PM10. We compare simulated and measured CCN0.2 concentrations because cloud-active 120 
aerosol concentrations are fundamentally important for RFaci. We use CCN1.0 measurements to challenge the 121 
model's ability to reproduce concentrations of relatively small aerosols that only activate to form cloud droplets 122 
at very high supersaturations. We target the highly uncertain sea spray emission flux scaling parameter by 123 
comparing concentrations of N700 to simulated concentrations of sea spray aerosol, approximated using our 124 
model’s soluble accumulation and coarse mode aerosol concentrations (Mann et al., 2010). This is not a like-for-125 
like comparison because our soluble accumulation mode includes aerosols with dry diameter larger than 100 nm 126 
(Mann et al., 2010; rather than around 500 to 570 nm). Additionally, our soluble accumulation and coarse modes 127 
include negligible contributions from sulfate, primary organic matter and aged carbonaceous and dust particles. 128 
However, , under the assumption that over the Southern Ocean, we think it is safe to assume that sea spray is the 129 
predominant (if not only) source of relatively large aerosols.  Finally, we compare non non-sea sea-salt sulfate 130 
concentrations (which omit primary sulfate in sea spray aerosol) in order to constrain the uncertainty in the 131 
emission flux of dimethyl-sulphide from the ocean surface. The sea salt fraction of sulfate was calculated using 132 
sodium as a tracer for the enrichment of sea salt in the aerosol phase (Sander et al., 2003). Non-sea-salt sulfate 133 
was calculated by subtracting this fraction from the total particulate sulfate as detected from PM10 PM10 filters.  134 

 135 
Data for all variables were averaged for comparison with monthly mean model values by taking the mean of all 136 
data points that were collected at locations corresponding to positions within model gridboxes. This spatial and 137 
temporal degradation introduces representation errors that we account for using our model-measurement 138 
comparison (next section). However, the reduction in data volume makes the model-measurement comparison 139 
over one million model variants tractable. 140 
 141 
We present monthly mean and annual cloud droplet number concentrations in table 1 from the model and from 142 
satellite data, over the region between 50oS and 60oS. Following Grosvenor et al., (2018), we calculated cloud 143 
droplet concentrations from the MODIS (MODerate Imaging Spectroradiometer) Collection 5.1 Joint Level-2 144 
(Aqua satellite) for the year 2008 (to correspond to the meteorological year used in our simulations). Our 145 
calculation used cloud optical depth and 3.7 micron effective radius values derived under the adiabatic cloud 146 
assumption (essentially, cloud liquid water increases linearly with height, droplet concentrations are constant 147 
throughout the cloud and the ratio of volume mean radius to effective radius is constant). We improved the 148 
cloud droplet concentration data (Grosvenor et al., 2018b) by excluding 1x1 degree data points for which the 149 
maximum sea-ice areal coverage over a moving 2-week window exceeded 0.001%. The sea-ice data used in this 150 
process were the daily 1x1 degree version of Cavalieri et al. (2016). As with other data used in our model-151 
measurement comparison, we degraded the cloud droplet number concentration data to the model gridbox and 152 
monthly mean spatial and temporal resolutions. 153 
  154 

SI Methods: Model-measurement comparisons 155 
Our constraint approach follows Johnson et al. (2019) and involves comparing output from model variants 156 
(parameter combinations) to a set of measurements and ruling out variants that are judged to be implausible. 157 
This method uses the statistical methodology of history matching, which has been effectively applied to 158 
complex models in a range of fields (Craig et al., 1997; Williamson et al., 2013; McNeall et al., 2016; Rodrigues 159 
et al., 2017 and Andrianakis et al., 2017). We account for emulator uncertainty, measurement uncertainty 160 
(instrument error) and representativeness uncertainties (caused by spatial and temporal mismatches in resolution 161 
and sampling between model and measurements). We do not include potential structural errors (e.g. from 162 
missing processes) in our constraint approach because such errors cannot be robustly quantified a priori. 163 



 164 
For each measurement we calculate a ‘measure of implausibility’ for each of the one million model variants, 165 
calculated as the model-measurement difference standardised by the combined emulator, measurement and 166 
representativeness uncertainties. Using this ‘implausibility measure’ we can identify implausible model variants 167 
and rule our out implausible parts of parameter space via the combination of the ‘closeness’ of the measurement 168 
and model output, and the size of the related uncertainties. The ‘implausibility metric’ is defined as: 169 
 170 
 171 

 
𝐼(𝒙) =  

| 𝑀 − 𝑂 |

√[𝑉𝑎𝑟(𝑀) + 𝑉𝑎𝑟(𝑂) + 𝑉𝑎𝑟(𝑅)]
 ,   

(1) 

 172 
where M is the model variant output and O is the observed value (the measurement). In the denominator Var(M) 173 
is the variance in the model estimate (caused by emulator uncertainty), Var(O) is the variance in the 174 
measurement (i.e., instrument or retrieval uncertainty) and the representativeness error, Var(R), is the variance 175 
associated with comparing model output to measurements at different spatial (Schutgens et al., 2016a; Weigum 176 
et al. 2016, Schutgens et al., 2017) and temporal (Schutgens et al., 2016b; Schutgens et al., 2017) resolutions. 177 
We compare the 2016-17 measurements to the models nudged towards 2008 meteorology for AER and 20068 178 
meteorology for AER-ATM because the measurements were not collected when the PPE was created. The 179 
Var(R) term therefore includes additional uncertainty due to inter-annual variability. According to the definition 180 
of the implausibility measure, model variants will not be ruled out if either the model-measurement difference is 181 
small or the uncertainty in the denominator is large. In other words, we retain model variants that are skilful and 182 
model variants whose skill cannot be adequately determined because the model-measurement comparison 183 
uncertainties are too large. 184 
 185 
The variance terms in the denominator of Eq. (1) are calculated uniquely for each measurement. Following 186 
Johnson et al., (2019), we use an instrument error measurement uncertainty of 10%, a spatial co-location 187 
uncertainty of 20% and a temporal co-location uncertainty of 2010%. Fig. S1 shows an example of the 188 
degradation of data for comparison with monthly mean model output. Emulator uncertainty is calculated for 189 
each model-measurement combination using the error on the predicted mean from the emulator for the model 190 
variant. We use residuals in de-trended monthly mean output from a HadGEM-UKCA hindcast simulation over 191 
the period of 1980-2009 (Turnock et al., 2015) to estimate the inter-annual variability for each variable across 192 
all model gridboxes and months. 193 
 194 

 195 
Fig S1: Measured CCN0.2 values between the 3rd and 10th January 2017, after filtering for possible ship stack contamination. 196 
The ACE-SPACE vessel transited through 5 model gridboxes during this period. We average all measurements collected in 197 
locations, over one or more days, within each model gridbox, for comparison with monthly mean model output. These 198 
average values and one standard deviation of the measurement data are shown in red at the central time for each 199 
measurement subset. From left to right, these values correspond to the five model gridboxes in Fig. 1 between around 60oE 200 
and 90oE, at the following latitude and longitudes: 1) 49.5oS, 65.5oE, 2) 49.5oS, 69.5oE, 3) 54oS, 77oE, 4) 54oS, 84.5oE and 5) 201 
56.5oS, 92oE. 202 
 203 
We calculate implausibility values for each of the one million model variants for every measurement. Deciding 204 
which model variants to retain would be trivial were we comparing the sample output to a single measurement. 205 
We would sequentially rule out the variant with the highest implausibility metric until some small fraction of the 206 
original sample remained. However, our task is more complex. We need to rule out model variants based on 207 
multiple implausibility metrics that are distinct for each measurement location and measurement type.  208 



 209 
A variant may compare well with a measurement type in one location and poorly in another because spatial and 210 
temporal features in the measurement data (e.g. changing aerosol sources) mean each measurement could 211 
provide different information about the plausibility of the models. To avoid prematurely ruling out model 212 
variants based on a few poor comparisons, we only rule out variants if their implausibility exceeds a defined 213 
threshold for more than a tolerable fraction of measurements. We choose threshold and tolerance values with a 214 
goal of retaining around 3% of the original sample. The subjective choice of 3% retention determines the results 215 
to some extent. Retaining a much smaller percentage of the model variants could potentially over-constrain the 216 
model. However, retaining a larger proportion risks weakening the constraint and retaining addition implausible 217 
variants.  218 
 219 
We set threshold and tolerance values for each variable distinctly for each month of data. This makes processing 220 
the implausibility data more efficient and allows for a degree of automation of the constraint process. We ensure 221 
that each measurement type on each leg of the journey (Schmale et al., 2019) affects the combined constraint. 222 
This requires quantification of the constraint of individual measurement types on parameter values at multiple 223 
combinations of threshold and implausibility exceedance tolerances. We avoid increasing the threshold and/or 224 
tolerance values in individual months for each measurement type, if the constraint efficacy of the measurement 225 
would saturate as a result. Otherwise, threshold and tolerances for each month are required to be as similar as 226 
possible.  227 
 228 
Although our analysis in the main article focusses on a combined measurement constraint, this analysis is 229 
informed by individual measurement type constraints. The threshold and exceedance tolerances for individual 230 
measurement type constraints are summarised in table S1. Only 0.004% of the one million model variants (40 231 
variants) are retained when these individual constraints are combined. Thus, we relax the threshold and 232 
tolerance criteria for each measurement type constraint when combining constraints (table S2). 233 
 234 
Table S1: Individual measurement type constraint threshold values and exceedance tolerance values for December to April, 235 
as well as the percentage of the one million member sample retained by each constraint. Exceedance tolerances values are 236 
percentages of the number of measurements in each month. 237 

 CCN0.2 CCN1.0 Nss-sulfate N700 

Implausibility 

Threshold  

3.5 3.5 3.5 3.5 

Exceedance 

tolerance (%) 

Dec-Apr 

15,15,20,20,10 2,2,2,5,2 15,20,20,15 20,20,25,20,20 

Percentage retained 3.3 3.0 6.2 3.0 

 238 

Table S2: Threshold values and exceedance tolerance values for December to April, as well as the percentage of the one 239 
million member sample retained by each constraint. Exceedance tolerances values are percentages of the number of 240 
measurements in each month. These constraints are combined to retain around 3% of the one million member sample of 241 
model variants, as described in the main article. 242 

 CCN0.2 CCN1.0 Nss-sulfate N700 

Implausibility 

Threshold  

4.5 4.5 4.0 4.5 

Exceedance 

tolerance (%)  

Dec-Apr 

30,30,30,30,10 25,30,30,15,5 20,20,20,15 25,25,25,30,25 

 

Percentage retained 20.6 18.1 29.9 24.2 

 243 
 244 
SI Results 245 
SI Results: Constrained marginal parameter distributions 246 
In Fig. 3 of the main article we show the marginal probability distributions for the 26 parameters in the AER 247 
PPE. These marginal distributions show the effect of measurement constraint on individual parameter 248 
likelihoods. Rejecting the majority of the model variants reduces the maximum density, so mMarginal densities 249 
for the constrained sample are scaled such that the tops of the constrained and unconstrained pdfs are aligned. 250 
Similar parameter constraints are found when constraining the AER-ATM PPE using the same constraint 251 



process and original set of measurements (Fig. S1S2). In addition to parameters that are perturbed in both PPEs, 252 
we show the effect of measurement constraint on the few physical atmosphere parameters (Rad_Mcica_Sigma 253 
and Fac_Qsat) that are constrained by our process as well as additional aerosol parameters that were perturbed 254 
in AER-ATM (BC_RI and OC_RI).  255 
 256 
 257 

 258 
 259 
Fig. S1S2. Marginal probability distributions for aerosol and physical atmosphere parameters from the AER-ATM PPE after 260 
constraint. The density of parameter values in the unconstrained sample are shown as dashed lines. Densities of constrained 261 
samples are shown in colour. The 25th, 50th and 75th percentiles of each marginal distribution are shown in the central boxes. 262 
Parameter values on the x-axes correspond to values used in the model (Yoshioka et al., 2019). 263 
 264 

In addition to the constraint achieved by combining remote marine aerosol measurements, table S3 shows the 265 
effect of individual measurement type constraints (table S2) on model parameters and how these translate into a 266 
combined constraint (Fig. 3).  267 

Table S3. Ranges and inter-quartile ranges of marginal parameter distributions from individual constraints using measured 268 
concentrations of CCN0.2, CCN1.0, non-sea-salt sulfate and N700, as well as for the combined constraint. These individual 269 
constraints are those described in table S2 and were combined to constrain the model and make Fig. 3. Values are marked in 270 
bold where the individual measurement type constraint moves the range, 25th or 75th percentile closer towards the range or 271 
percentiles of the combined constraint than other measurement types, relative to the unconstrained values.  272 

Parameter 

Name 

Unconstrained CCN0.2 CCN1.0 Non-sea-salt 

sulfate 
N700 Combined 

BL_Nuc 0.1,10.0 

[0.3,3.2] 

0.1,10.0 

[0.3,3.5] 
0.1,10.0 

[0.3,3.0] 
0.1,10.0 

[0.3,3.3] 
0.1,10.0 

[0.3,3.2] 
0.1,10.0 

[0.3,3.5] 
Ageing 0.3,10.0 

[2.7,7.6] 

0.3,10.0 

[3.0,7.9] 
0.3,10.0 

[2.5,7.5] 
0.3,10.0 

[2.7,7.6] 
0.3,10.0 

[2.6,7.5] 
0.3,10.0 

[2.7,7.6] 
Acc_ 

Width 
1.2,1.8 

[1.4,1.6] 

1.2,1.8 

[1.3,1.7] 
1.2,1.8 

[1.4,1.7] 
1.2,1.8 

[1.4,1.7] 
1.2,1.8 

[1.3,1.7] 
1.2,1.8 

[1.3,1.7] 
Ait_Width 1.2,1.8 

[1.3,1.6] 

1.2,1.8 

[1.3,1.7] 
1.2,1.8 

[1.3,1.6] 
1.2,1.8 

[1.3,1.7] 
1.2,1.8 

[1.3,1.7] 
1.2,1.8 

[1.3,1.6] 
Cloud_pH 4.6,7.0 

[5.2,6.4] 

4.6,7.0 

[5.1,6.4] 
4.6,7.0 

[5.1,6.2] 
4.6,7.0 

[5.2,6.4] 
4.6,7.0 

[5.2,6.4] 
4.6,7.0 

[5.1,6.2] 
Carb_FF_ 

Ems 
0.5,2.0 

[0.7,1.4] 

0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
Carb_BB_ 

Ems 
0.25,4.00 

[0.50,2.00] 

0.25,4.00 

[0.52,2.16] 
0.25,4.00 

[0.48,2.01] 
0.25,4.00 

[0.50,2.01] 
0.25,4.00 

[0.49,2.03] 
0.25,4.00 

[0.49,2.06] 
Carb_Res_ 

Ems 
0.25,4.00 

[0.50,2.00] 

0.25,4.00 

[0.45,1.78] 
0.25,4.00 

[0.48,2.02] 
0.25,4.00 

[0.49,2.00] 
0.25,4.00 

[0.50,2.02] 
0.25,4.00 

[0.48,1.94] 
Carb_FF_ 30,90 30,90 30,90 30,90 30,90 30,90 



Diam [45,75] [45,76] [44,75] [45,75] [45,75] [45,76] 
Carb_BB_ 

Diam 
90,300 

[143,248] 

90,300 

[141,250] 
90,300 

[140,249] 
90,300 

[142,248] 
90,300 

[141,248] 
90,300 

[141,249] 
Carb_Res_ 

Diam 
90,500 

[193,398] 

90,500 

[193,404] 
90,500 

[190,399] 
90,500 

[192,400] 
90,500 

[193,400] 
90,500 

[189,400] 
Prim_SO4_ 

Frac 
1.0e-6,1.0e-1 

[1.8e-5,5.6e-3] 

1.0e-6,1.0e-1 

[1.7e-5,6.5e-3] 
1.0e-6,1.0e-1 

[1.3e-5,4.2e-3] 
1.0e-6,1.0e-1 

[1.7e-5,5.6e-3] 
1.0e-6,1.0e-1 

[1.6e-5,6.0e-3] 
1.0e-6,1.0e-1 

[1.6e-5,5.2e-3] 
Prim_SO4_ 

Diam 
3,100 

[27,76] 

3,100 

[26,75] 
3,100 

[29,78] 
3,100 

[27,76] 
3,100 

[26,77] 
3,100 

[28,77] 
Sea_ 

Spray 
0.1,8.0 

[0.4,2.8] 

1.5,8.0 

[2.7,3.8] 
1.9,8.0 

[3.8,5.7] 
0.1,8.0 

[0.3,2.8] 
1.5,5.2 

[2.5,3.6] 
1.6,5.1 

[2.6,3.7] 
Anth_SO2 0.6,1.5 

[0.8,1.2] 

0.6,1.5 

[0.8,1.2] 
0.6,1.5 

[0.7,1.2] 
0.6,1.5 

[0.8,1.2] 
0.6,1.5 

[0.8,1.2] 
0.6,1.5 

[0.8,1.2] 
Volc_SO2 0.7,2.4 

[1.0,1.8] 

0.7,2.4 

[1.0,1.8] 
0.7,2.4 

[1.0,1.8] 
0.7,2.4 

[1.0,1.8] 
0.7,2.4 

[1.0,1.8] 
0.7,2.4 

[1.0,1.8] 
BVOC_ 

SOA 
0.8,5.4 

[1.3,3.4] 

0.8,5.4 

[1.3,3.5] 
0.8,5.4 

[1.4,3.5] 
0.8,5.4 

[1.3,3.4] 
0.8,5.4 

[1.3,3.4] 
0.8,5.4 

[1.3,3.4] 
DMS 0.5,2.0 

[0.7,1.4] 

0.5,2.0 

[0.7,1.5] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.8,1.5] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.8,1.3] 
Dry_Dep_ 

Ait 
0.5,2.0 

[0.7,1.4] 

0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.3] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
Dry_Dep_ 

Acc 
0.1,10.0 

[0.3,3.2] 

0.1,9.3 

[0.2,0.9] 
0.1,6.7 

[0.2,1.0] 
0.1,10.0 

[0.3,1.9] 
0.1,10.0 

[0.3,3.2] 
0.1,6.4 

[0.2,0.8] 
Dry_Dep_ 

SO2 
0.2,5.0 

[0.4,2.2] 

0.2,5.0 

[0.4,2.2] 
0.2,5.0 

[0.4,2.4] 
0.2,5.0 

[0.4,2.2] 
0.2,5.0 

[0.4,2.2] 
0.2,5.0 

[0.4,2.2] 
Kappa_ 

OC 
0.1,0.6 

[0.2,0.5] 

0.1,0.6 

[0.2,0.5] 
0.1,0.6 

[0.2,0.5] 
0.1,0.6 

[0.2,0.5] 
0.1,0.6 

[0.2,0.5] 
0.1,0.6 

[0.2,0.5] 
Sig_W 0.1,0.7 

[0.3,0.5] 

0.1,0.7 

[0.2,0.6] 
0.1,0.7 

[0.2,0.6] 
0.1,0.7 

[0.2,0.6] 
0.1,0.7 

[0.2,0.6] 
0.1,0.7 

[0.2,0.6] 
Dust 0.5,2.0 

[0.7,1.4] 

0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
Rain_Frac 0.3,0.7 

[0.4,0.6] 

0.3,0.7 

[0.4,0.6] 
0.3,0.7 

[0.4,0.6] 
0.3,0.7 

[0.4,0.6] 
0.3,0.7 

[0.4,0.6] 
0.3,0.7 

[0.4,0.6] 
Cloud_Ice_ 

Thresh 
0.1,0.5 

[0.2,0.4] 

0.1,0.5 

[0.2,0.3] 
0.1,0.5 

[0.2,0.4] 
0.1,0.5 

[0.2,0.4] 
0.1,0.5 

[0.2,0.4] 
0.1,0.5 

[0.2,0.4] 

 273 

 274 
Constrained marginal parameter distributions in Fig. 3 and Fig. 5 of the main article are tell a one-dimensional 275 
story. In Fig. S3, we show the effect of constraint to remote marine aerosol measurements, combined with the 276 
constraint from Johnson et al. (2019) on a subset of the marginal 2-dimensional parameter combinations.   277 
 278 



 279 
Fig. S3. Two-dimensional marginal probability density distributions for a) sea spray emission flux scale factor (Sea_Spray) 280 
and the Accumulation aerosol mode dry deposition velocity scale factor (Dry_Dep_Acc), b) sea spray emission flux scale 281 
factor and dimethylsulfide surface water concentration scale factor (DMS), c) sea spray emission flux scale factor and cloud 282 
droplet pH (Cloud_pH), and d) Accumulation aerosol mode dry deposition velocity scale factor and dimethylsulfide surface 283 
water concentration scale factor. Individual parameter ranges are plotted according to their constrained values (table S3), not 284 
the full range of values used in the original sample of model variants as shown in Fig. 3, Fig. 5 and Fig. S2. 285 
 286 
SI Results: Wind Speed discrepancies 287 
Southern Ocean wind speeds during the ACE-SPACE expedition were often much lower than climatological 288 
mean values, but on average were higher than winds in our ensemble (Schmale et al., 2019). We account for the 289 
effects of inter-annual variability in the Var(R) term in equation S1. However, monthly mean differences 290 
between ERA-Interim wind speeds in the measurement year and the year used in the ensemble are less than 20% 291 
along the route taken by the ACE-SPACE campaign vessel (Fig. S4). The modest discrepancy in wind speeds 292 
may be important for constraining aerosol concentrations, because sea spray emissions in our model are strongly 293 
dependent on wind speeds (Gong, 2003). However, the measured wind speed and N700 values are only weakly 294 
correlated (Pearson correlation coefficient of around 0.2) when degraded to the resolution used for comparison 295 
with model output.  296 
 297 
Our constraint process has in-built functionality that prevents the use of measurements with large model-298 
measurement discrepancies. We tested the robustness of our constraint methodology to the discrepancy in wind 299 
speeds by neglecting around 50% of the measurements (those with the largest discrepancies between measured 300 
and AER-ATM PPE mean simulated winds) and repeating the constraint. The effects on marginal parameter and 301 
aerosol forcing constraints were negligible (not shown). The consistency of constraint, with and without 302 
measurements in locations with relatively large model-measurement wind speed discrepancies, suggests the 303 
constraint methodology is insensitive to wind speed discrepancies caused by daily wind speed variability and 304 
differences in meteorological years between model simulations and measurements. 305 
 306 
Wind speed discrepancies do not affect our results, possibly because differences in the resulting wave heights 307 
cause compensating effects between sea spray emission fluxes and the removal rate of aerosols by the ocean 308 
(Korhonnen et al., 2010). Marginal parameter distributions are constrained consistently when we remove 309 
measurements with average wind speed differences larger than 50% of the measured value from the model-310 
measurement comparison 311 



  312 
 313 

 314 
Fig. S4. Ratio of ERA-Interim wind speed differences (between measurement and simulated years) to the measurement year. 315 
Monthly mean winds from 2006 (matching the AER PPE) were subtracted from monthly mean winds for December 2016 to 316 
April 2017 (matching the ACE-SPACE campaign) to calculate the differences. The map is an assimilation of data between 317 
months, where data is presented at each location for months corresponding to the timing of the ACE-SPACE measurement 318 
campaign. 319 
 320 
 321 
, possibly because differences in the resulting wave heights cause compensating effects between sea spray 322 
emission fluxes and the removal rate of aerosols by the ocean (Korhonnen et al., 2010). Marginal parameter 323 
distributions are constrained consistently when we remove measurements with average wind speed differences 324 
larger than 50% of the measured value from the model-measurement comparison. 325 
 326 
SI Results: Additional constraint to achieve radiative balance  327 
We additionally test the effect of ruling out model variants that differ from the Clouds and the Earth's Radiant 328 
Energy System (CERES; Loeb et al., 2009) measurement of global, annual mean top-of-the-atmosphere 329 
outgoing shortwave radiative flux of 98.3 98.3 W m-2 by more than 0.25 W m-2, which was the constraint used 330 
applied in Regayre et al., (2018). The constraint on ERF using the CERES-derived top-of-the-atmosphere fluxes 331 
in addition to the ACE-SPACE measurement dataset weakens the reduction in aerosol ERF from 8% to 7%. Fig. 332 
S2 S5 (for comparison with Fig. 4a) shows the effect of this additional constraint on aerosol ERF. Retaining 333 
only model variants that agree with top-of-the-atmosphere radiative flux measurements does not noticeably 334 
affect the constraint on aerosol ERF (as shown in Regayre et al., 2018). Furthermore, the marginal parameter 335 
pdfs are unaffected by the additional constraint (not shown). 336 
 337 
 338 



 339 

 340 

Fig. S25. Probability distribution of ERFaci from the AER-ATM PPE. Values from the unconstrained sample of one million 341 
model variants are in black. Red lines show the values constrained by ACE-SPACE measurements and additionally 342 
constrained using CERES top-of-the-atmosphere measurements. Plotting features are identical to Fig. 4. 343 

 344 
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