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Abstract. Regional-scale air quality models are being usedstadying the sources, composition, transport,
transformation, and deposition of fine particulatatter (PM.s). The availability of decadal air quality simutais
provides a unique opportunity to explore sophiséidamodel evaluation techniques rather than relgiolgly on
traditional operational evaluations. In this studs, propose a new approach for process-based ravdklation of
speciated PMs using improved Complete Ensemble Empirical Modeddeposition with Adaptive Noise (improved
CEEMDAN) to assess how well version 5.0.2 of thepted Weather Research and Forecasting model - Coiityn
Multiscale Air Quality model (WRF-CMAQ) simulatelse time-dependent long-term trend and cyclicalatams in
the daily average PMand its species, including sulfate (§itrate (NQ), ammonium (NH), chloride (CI) organic
carbon (OC) and elemental carbon (EC) . The utilftthe proposed approach for model evaluatioreimahstrated
using PMsdata at three monitoring locations. At these laradj the model is generally more capable of sirmgat
the rate of change in the long-term trend compotiert its absolute magnitude. Amplitudes of the-sedisonal and
annual cycles of total PM, SQ and OC are well reproduced. However, the time-deeet phase difference in the
annual cycles for total PM, OC and EC reveal a phase shift of up to half yiedicating the need for proper temporal
allocation of emissions and for updating the treathof organic aerosols compared to the model wenssed for this
set of simulations. Evaluation of sub-seasonal iatet-annual variations indicates that CMAQ is moapable of
replicating the sub-seasonal cycles than inter-anvariations in magnitude and phase.

Keywords

Model evaluation, coupled WRF-CMAQ, improved ContplEnsemble Empirical Mode Decomposition (EMD)
with Adaptive Noise, Speciated BM Scale Separation, Seasonality, Trend



https://doi.org/10.5194/acp-2019-1079 Atmospheric
Preprint. Discussion started: 2 March 2020 Chemistry
(© Author(s) 2020. CC BY 4.0 License. and Physics

30

31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65

Discussions

1 Introduction

It is well recognized that inhalable fine partidelamatter (PMs) adversely impacts human health and the
environment. Regional-scale air quality modelsksimg used in health impact studies and decisiokingarelated

to PMps. Long-term model simulations of Blconcentrations using regional air quality models essential to
identify long-term trends and cyclical variationgh as annual cycles in areas larger than whatvisred by in-situ
measurements. However, total Pioncentrations are challenging to predict becadstheo dependence on the
contributions from individual Pscomponents, such as sulfates, nitrates, carbonacgmcies, and other natural
species. In this context, a detailed process-basatliation of the simulated speciated RMhust be carried out to
ensure acceptable replication of observations steimgsers can have confidence in using regionajaitity models
for policy-making. Furthermore, process based mfatfon can be useful for making improvements tortioelel.

Some of the trend or step change evaluations @dmeabair quality models in the past have focusedpecific pairs
of years (Kang et al., 2013; Zhou et al., 2013gk@t al., 2015). These studies do not properlpaacfor the sub-
seasonal and inter-annual variations between thpseific periods. Trend evaluation is commonly dbgdinear
regression of indexes such as the annual meareoffisgpercentiles, assuming linearity and statiapaf time series
(Civerolo et al., 2010; Hogrefe et al., 2011; Baafzét al., 2015; Astitha et al., 2017). The probheith the linear
trend evaluation is that there is no guarantedrtha is actually linear during the period of thedy because the

underlying processes are in fact nonlinear andtatinsary (Wu et al., 2007).

Seasonal variations are usually studied and ewaduat investigating the monthly or seasonal me&nse(olo et al.,
2010; Banzhaf et al., 2015; Yahya et al., 2016;ri¢eman et al., 2017). Evaluation of ten-year avetagenthly mean

of PMys simulated with WRF/Chem against the Interagency ioimg of Protected Visual Environments
(IMPROVE) by Yahya et al. (2016) shows that the elathptures the observed features of summer paaRblis
with a phase shift of few months. However, accagdio the analysis (Fig. 10) in Henneman et al. 30the
seasonality shown in monthly-averaged £2kime series is much less distinguishable compariéu that of ozone
and CMAQ (version 5.0.2) does not replicate the thigrPM, squite well with large underestimation in the summer
months. In these studies, the seasonality mighbeatell represented by the preselected averagindow size of
one or three months. In addition, averaging of¢hmenthly or seasonal means across multiple yeaysconceal the
long-term trends or interannual variations drivgncbmate change, emission control policies or o#ilew varying

processes.

To address the above-mentioned problems, we prapose method for conducting air quality model easibn for
PM:susing improved CEEMDAN. Improved CEEMDAN is an Emigal Mode Decomposition (EMD)-based, data-
driven intrinsic mode decomposition technique tbah adaptively and recursively decompose a nonliaea
nonstationary signal into multiple modes callediingic mode functions (IMFs) and a residual (trexxnponent)
(Huang et al., 1998; Wu and Huang, 2009; Yeh et8ll0; Torres et al., 2011; Colominas et al., 20t4loes not
require any preselection of the temporal scaleassumptions of linearity and stationarity for thetad thereby
providing some insights into time series of AMoncentrations and its components. DecomposegsRivig-term

trend components and annual cycles from observediamulated Pisserve as the intuitive carrier of the trend and

2
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seasonality evaluation. In the meantime, sevehardMFs with characteristic time scales rangirogrfrmultiple days

to years are also decomposed, enabling model gi@iuat the less studied sub-seasonal and intevanmariations.

Section 2 describes the coupled WRF-CMAQ model kitians and corresponding observations from muatipl
speciated PMsnetworks. Section 3 presents an overview of the EMiD improved CEEMDAN technique and the
statistical metrics accompanying model evaluatiocluding the time-dependent intrinsic correlat{@DIC) on the
decomposed IMFs (Chen et al., 2010; Huang and Sct20il4; Derot et al., 2016). Section 4 describesfindings
on the long-term trend and seasonality in totabPa&hd its components, as resolved by the improved MIEAN
technique and includes a discussion on the sulmsahseasonal, and inter-annual variability. Theotusions from

this work are presented in section 5.

2 Coupled WRF-CMAQ PMzs Simulations and Observations

The two-way coupled WRF-CMAQ (version 5.0.2) is figared with a 36 km horizontal grid spacing oviee t
contiguous United States (CONUS) with 35 vertiegilrs of varying thickness extending from the sigfa 50 mb
(Wong et al., 2012; Gan et al., 2015). Time-varythgmical lateral boundary conditions were derifrech the 108
km resolution hemispheric WRF-CMAQ (Mathur et aD]17) simulation for the 1990-2010 period (Xingkt2015).
The simulations are driven by a comprehensive éamsataset which includes the aerosol precurswispaimary
particulate matter (Xing et al., 2013, 2015). Téaders can refer to Gan et al. (2015) for additiovalel information
and the trend evaluation against seven pairs @ §giom the CASTNET (Clean Air Status and Trendwéek) and
IMPROVE networks for 1995-2010. We obtained the 22010 daily average PMand its speciated time series
from the set of simulations with direct aerosoldieack. The earlier years of 1990-2001 are not deduin this

evaluation because of the limited availability pésiated PMs observations.

To avoid misinterpretation of data due to the pmeseof missing values, only sites with continuoamplete long-
term record for total Pl and its speciation including NOs, NHs, OC, EC, and Cl are studied (Fig. 1). All of the
selected sites have data coverage above 90% eacHoyeat least six consecutive years between 20122010
(equivalent to 30% for 1-in-3 days sampling siteBiis strict data selection led to the sparsitytto$ type of
observations for the study period. QURE, a rurt@l sarrying out 1-in-3 days sampling of total apdcated PMs

of SOy, NOs, OC, EC, and Cl, is located in Quabbin Summit, MtAis one of the three sites from the IMPROVE
network that has at least six continuous yeargpetisted observations and was selected here tordgrate the
application of the proposed method in rural arahould be noted that the majority of the obsdr@éin 2002 and
2003 is negative due to a filter issue problem Wiias not addressed until 2004 (White, 2008). Thiasulations of
Cl are only evaluated during 2004-2007 at this Station RENO, located in urban Reno, NV, is @sbin-3 days
sampling site of total and speciated BMf SQ,, NOs, NHs, OC, and EC, and it is the only Chemical Specmtio
Network (CSN) site that fulfills this data coveragsjuirement. The third site ATL in the Southeastéerosol
Research and Characterization Study (SEARCH) nétvgolocated 4.2 km northwest of downtown Atlar®. It

is the only long-term site available with daily galing rate (Hansen et al., 2003; Edgerton et 8052 that meets the

data coverage requirement. The best-estimate @E&aJculated concentration intended to represeat ghactually
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101 in the atmosphere (Edgerton et al., 2005), of dked PMes and SQ, NOs, NHs, and EC components are retrieved for
102 the evaluation. OC component is a direct measureméese three sites have a continuous record icgvat least 6
103  years (2002 — 2007 for QURE and ATL and 2002 — 20t RENO) that allows an evaluation of long-temends.

50

45 -

RENO
2002-2010
|

40+

35

25

104
105 Fig. 1. Location and data coverage of the Pbsmonitoring sites QURE, RENO and ATL.

106 3 Methodology
107 3.1 Empirical Mode Decomposition

108 The Empirical Mode Decomposition (EMD) techniquepgmsed in the late 1990s, is capable of adaptigaly
109 recursively decomposing a signal into multiple n®dalled intrinsic mode functions (IMFs), where leatode has
110 a characteristic frequency, and a residual witmast one extremum (Huang et al., 1998). The decsetbgignal

111 then is expressed as the summation of all IMFstlaadesidual:
112 x =Y di+r @

113 wherex is the original signalg; is thei™" IMF, k is the number of the IMFs ands the final residual. Each IMF has
114  the following properties (Huang et al., 1998):

115 1) The number of extrema (maxima and minima) aechilmber of zero-crossings must be equal or diffenost by
116  one;

117 2) The local mean at any point, the mean of thelape defined by local maxima and the envelopenddfby local

118 minima, must be zero.

119 Nevertheless, “mode mixing” where oscillations witry disparate scales can be present in one modeeoversa
120 is commonly reported. To cope with this issue, ipldtnoise assisted EMD have been developed sueebséNu
121 and Huang, 2009; Yeh et al., 2010; Torres et al1,12 Colominas et al., 2014). It is evident that ldtest improved
122 Complete Ensemble EMD with Adaptive Noise (improv@8EMDAN) manages to alleviate the problem of mode
123 mixing with the benefit of reducing the amount afise presented and avoiding spurious modes (Coksren al.,
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124 2014). Moreover, the end effects or boundary effdeve been addressed by its predecessor EEMD r{iblese
125 Empirical Mode Decomposition) by extrapolating thaxima and minima, and behaved well in numerous series
126  with dramatically variant characteristics (Wu andarg, 2009). The extrapolation of maxima and minisrngroven
127 to be more effective compared with the extrapofatbthe signal itself such as repetition or reftaT (Rato et al.,
128  2008).

129  Given the EMD’s ability to deal with real-world nstationary and nonlinear time series data, it idelyi used in
130 engineering, economics, earth and environmentahses (e.g., Huang et al., 1998; Chang et al.,;2008t al., 2008;
131 Colominas et al., 2014, Derot et al., 2016). Wetheanost up-to-date noise-assisted improved CEEMBskhnique
132 with at least hundreds of noise realizations tmdgmse observed and simulated-Rkme series. Readers can refer
133  to Colominas et al. (2014) for detailed descriptidtthe technique and access to the correspondihgLMB code.
134  Trial and error attempts are made in setting tipaitirof the improved CEEMDAN function to achieve bewde

135  separation.

136 The impact of boundaries on the decomposed aniyaidscand the residual is assessed by the varsafgiandard
137 deviation) of hypothetical decomposed boundariesciiying a continuous eighteen-year total B2Mbservation
138 (North Little Rock, AR) 48 times at different yeansd times of the year (Fig. S1). The standardadievi is found to
139 largely diminish within half the annual cycles aralild be negligible within one year for the anneyale. This could
140  very possibly expand to IMFs with other characteriscales. Yet, trend components (residuals) shamability
141 depending on the available time period after cgttiost of the time, they follow the reference letlegm trend
142 reflected either by the residual or the summatiothe residual and the IMF with longest temporaledecomposed
143 from the eighteen-year PM (Fig. S1c). This is in line with our expectaticss a trend should exist within a given
144  time span, following the definition in Wu et al.0@7): “The trend is an intrinsically fitted monotorfunction or a
145  function in which there can be at most one extrematimin a given data span”. Although very strictalaompleteness
146 requirement is employed for this study, it shoutd lbe conceived as a limitation of the method fitgklsensitivity
147 test based on a period of nine years of totaj RiMservation at the same site with 99% data coveshges that even
148  though variability of annual cycles and long-tements increases with decreased data availabil@@%d, 90%,...,
149 10%), the structure of those components is comgistdne average of 40 realizations of annual cyaleslong-term
150 trend components in each data-completeness scasan@erfect alignment with that of 100% data pteteness
151 (Fig. S2 and S3). Given the fact that those 40zatbns in each scenario are based on indeperaighdm samplings
152 of the original observations, the increased valitghéould very possibly result from the differentcethe sampled
153 data itself rather than the method. Thus, the rimtess of improved CEEMDAN decomposed annual cyareklong-
154  term trend is justified. In fact, EMD has been movo be an effective tool for data gap-filling (yfgaderi et al.,
155  2012).

156
157
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159 Fig. 2. Decomposition of observed (blue) and simutd (red) 24-hour average total PMsinto 7 IMFs and a
160 residual component (trend) at Quabbin Summit, MA uing the improved CEEMDAN: (a) Time series of total
161 PMzs, IMFs and the residual component (all with unit of ug/m?); (b) Power spectrum of the corresponding
162  time series. The colored numbers on the right sidef time series are the mean period,, in days, while the ones
163 on the right side of the power spectrum are the péaperiod ¢, in days, which are also indicated by the dashed
164  vertical lines on the power spectrum. Note that thecales for the time series are not all the samelsé, all power
165 spectra are in the log scale and those of the IMFae zoomed in with a range of 10to 10* on the y-scale for
166 better visual clarity (compared with 102 to 10’ for total PM 25 and the residual component).

167
168 The characteristic period of each IMF can be eg#thay the peak periag (days) where the power spectrum

169 of the IMF peaks:

170 ty =— )

171 in which £, is the frequency that the power spectrum pealtseiminit of number of cycles per day. The peakrestits

172 can be biased if more than one high-power frequeniocated close to each other in one IMF. Thosygr spectrum
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is only used as a fast screening tool to deterrfiredesired decomposition is accomplished. As kerrative
approach, the mean periog can be estimated by:

Time span (3)

tp,=—7""—"-—""—
(Mmax+Nmin+Nzero)/4

wheren,, o, , Npin @ndn,,,, are the number of maxima, minima and zero-crossimgspectively, during the
Time span (days). As the frequency decreases, the meandpestonates become less accurate because of ftexlim
time span compared with the length of the cycle gvalild be carefully interpreted.

An example of the total PMdecomposition with improved CEEMDAN at the QUREEshows modes ranging from
very high frequency to very low frequency (IMF1 ildF7) and a residual (Fig. 2). Mean,() and peak )
estimations of the characteristic periods of edh are presented on the right side of each modauaincycles and
long-term trend components are well representdd/if¥ and the residual, with the remaining IMFs garg weekly,
sub-seasonal, seasonal, and inter-annual variatiespectively, for both observed and simulated. R[Hig. 2). We
have noticed that in some rare cases, a spuriode inahe last IMF with synchronous signal and vepgse scales
to its previous IMF exists. This is possibly dughe fact that the characteristic periods of tHd#es are in proximity
to the span of the studied time span. In thesesctise last two modes are merged by adding thosertwdes together

to conduct a detailed evaluation as discussedadtid®es.

3.2 Statistical metrics

EMD-decomposed IMFs and trend components allovafdetailed time-dependent evaluation of 2énd provide
a novel opportunity to trace the performances et#jt scales back to the corresponding speciatetponents. Note
that the trend component is the decomposed residuaponent from the PM in the unit of pg/hand it is not the
traditional concept of trend in concentration peret In addition to a direct evaluation of its magde, we also
calculated its derivative to identify the periodighahigher or lower rate of change (concentratien fime). Time-
dependent intrinsic correlation (TDIC) is utilizéd study the evolvement of the model performanaecielic

variations throughout time (Chen et al., 2010; Huand Schmitt, 2014; Derot et al., 2016). It igaaf correlations

calculated for IMFs over a local period of titheentered around time
tw tw
I(t)z[t—7,t+7] (4)

in whicht is the center time for the calculation of the clatien andt,, is the moving window length. The minimum
oft,, is set to be the local instantaneous period ofilthié (larger of that in observation or simulatiorging the
general zero crossing method to ensure that at ¢ees instantaneous period is included in caloutpthe local
correlation coefficient (Chen et al., 2010). Theximaum oft,, is the entire data period with a traditional overal
correlation being calculated. The empty spacesénplyramids used to depict the TDIC are an indicathat the
correlation is not statistically significantly déffent from zero. With both decomposed observed randeled
concentrations in a narrow scale range, the cdivelavould no longer be contaminated by coexissignals of
different scales (Chen et al., 2010).
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In order to summarize the performance of the decm®g trend component and IMFs, the ratio of thermea

magnitudes of the trend components is defined as:

r _ MeancmaqQ (5)
trend —
Mean,pservation

where Meancy o and Mean,yservarion fepresent the mean of simulated and observed uasicomponents
respectively. The ratio of the mean amplitude ahedF is defined by Equation 6, where an examptelie annual
cycles is provided:

r _ RMSCMAQ,annual (6)
annual —
RMSopservation,annual

WhereRMS,pservation,annuat ANVARMScy a0, annuar FEPresent the root mean square of observed andatéd annual
cycles respectively. Finally, the phase shift of i n is defined to be days an IMF decomposed from neatiéme
series has to shift in order to achieve the highestelation R,,,,) with the corresponding IMF with similar scale
from observed Plktime series. In practice, could be as much as a few cycles of the mean getjo Here, we

limit the absolute number of shift days to not eda half cycle as a reference for the phase afefh IMF. Thusn
satisfies— (tm/z) <n< (tm/z) with t,,, being the larger mean period in observation oruktion. It becomes

-05< n/tm < 0.5 in terms of number of cycles.

4 Results and Discussion
4.1 Temporal scales

Temporal scales in PMresolved by EMD depend solely on the intrinsic mmies of the data itself. These properties
include underlying characteristics of specific Rjdoncentrations, the data sampling frequency, witéthrmines the
scales that can be resolved in the high frequeéis| and the time span for the data coverage, wéocid possibly
play an important role in differentiating the lovequency IMFs from the trend component. Here, wst évaluate
the scales represented by the mean period in #gadépd PMs time series. Note that the mean period is only one
indication of the model evaluation against obséovet and it does not indicate any information loa tnagnitude or

the phase of the time series, which will be furttiecussed in Sections 4.3 to 4.4.

Fig. 3a presents the characteristic scales of IMEdbserved and simulated total and speciated #MQURE. The
CMAQ model compares well with the observationsIfdFs 1 through 6 with cycles of 9, 19, 37, 78, 1581 347
days (average of all observed and simulated tothkpeciated PM). Among all these IMFs, IMF6, which represents
the annual cycles, shows the least variations enctiaracteristic scale (Fig. 3a) and highest peakgy from the
power spectrum such as Fig. 2b for total-RBMexcept for observed EC and OC where the powbalifyear cycles

is more dominant (Fig. S4). These two features destnate a clear seasonality in both observed andlaied total
and speciated PM, which would otherwise be concealed by practices &is monthly averaging. This can be further
confirmed by the statistically significant annugities (except for observed EC and OC) (Fig. S5¢tam a Monte
Carlo verified relationship between the energy dgrend mean periodf IMFs (Wu and Huang, 2004; Wu et al.,
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2007). To explore the inter-annual cycles in moeéati, mean periods of IMFs with scales longer thayear are
being displayed in the top left panel of Fig. 3am® variability exists between the observation model simulation
to the extent that not all IMFs from observatior Aeing simulated and vice versa. The estimatedrpedods of
the inter-annual cycles and the differences inpitesence of slow varying cycles with the long cbtastic scales
are likely to be influenced by their proximity toet data time span of 6 years (4 years for Cl). Thigies that the
model evaluation shouldn’t go beyond 3 years (2y/&a Cl) given the current data coverage. CMAQtaeed the
3-year cycles in EC and total BMand 2-year cycles in OC and Cl, despite an ovienagibn in the scales of 2-year
cycles in observed S@nd NQ.

(a) QURE, 2002-2007, 1-in-3 (b) RENO, 2002-2010, 1-in-3 (c) ATL, 2002-2007, daily

g ]
81> y 8 Q*D{ﬁ 8> A
7o / 7 Mo %
3l ol R A sle S 3l 6w F<
10 : S A 9§ 10 : y 10 : 3 6
Za A P
3&/ annual - #> 3 annual - 3{p 7 'ZA annual -
o 2| ke 2 _— 2 "
> 26 IMF # % S |2 ¥ = 2 IMF # ok
s L7 8 9 P 3102 . 3102 8 9 10 !ﬁ
10 <
g - : e * : = *
< Tor TOT TOT
© & 16 SO, © & A so, © & A SO,
4 ‘ ;4 /
; y < No, , ) <] No, ; & <] NO,
10 10 ® > NH 10 > NH
]
; ” 5 o T oc e weekly oc
o0 Ec P O Ec #* O Ec
10' 102 10° 10’ 102 10° 10 10? 10°
OBS (day) OBS (day) OBS (day)

Fig. 3. The characteristic scales resolved in théMIFs of observed and simulated total and speciatedMP2.sfor
(a) QURE, (b) RENO and (c) ATL. IMF1 to the last par of IMFs with increasing characteristic periods ae
shown from bottom left to top right. Top left panelin each subplot shows characteristic scales in thenit of
years (y-axis) of all IMFs with inter-annual cycles(the x-axis represents the IMF number). In the suplots,
species decomposed from observations are connectdsolid lines, while species decomposed from simatibns
are represented by smaller markers in darker shadesonnected by dashed lines.

Similar features in observed and simulated totdlspeciated Pikconcentrations at RENO are presented in Fig. 3b.
Likewise, the highest peaks in the power spectrism sit in the annual cycles of IMF6 except for timserved OC
and total PMs which have higher peak power at half-year cyoMisannual IMFs are statistically significant ex¢ep
for simulated NH (Fig. S5). The small variation in the estimatedirelateristic period of IMF6 is because this
monitoring site is located in a wildfire prone region the border of Nevada and California. Cleadence can be
seen from Fig. 4a that an extra annual cycle irlMe6 of observations in the summer of 2008 is digal, which is
very possibly driven by the 2008 California Wildfir spanning from May until November. Unlike theedsified
scales in IMF7 at QURE, IMF7 at RENO features ursae2-year cycles of all species as well as t8hl s and all

of them are well replicated by the model. Howevarjations in time scales are present in IMF8 fgrgiecause of
the limited data coverage. Thus, only species itle scales less than 4 years in both observatimdsmodel
simulations are evaluated. It is evident that CMW&3 reproduced the 3-year cycles in86d NH.
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Fig. 4. Same as Fig. 2 but for the RENO site with BAFs.

ATL is the only speciated site with daily data cage. Observed and simulated total and speciatedsPM
concentrations at the ATL site are decomposeddrio 10 IMFs (Fig. 3c). Because of the change a @i@quency,
high frequency scales such as weekly cycles cavakeated and the significance tested (Fig. S5yalntycles with
the highest peak power is represented by IMF8(INtFFSQ: and NQ). Annual cycles of SPand NQ appeared in
the earlier stage of decomposition in IMF7 becafdbeir relatively weak half-year cycles, whichdaly led to the
mixed signal of half year and annual cycles in IMirfotal PM2.5 as in Fig. 5b. This is more visibieghe observed
IMF7 where the energy of the one-year period sugmthat of the half year. Yet, clues can be seen Fig. 5 that
the amplitude and the energy of annual cycles ake IMF7 is very limited compared to that remagin IMF8,
indicating that it is still safe to conduct modghbkiation on the seasonality using IMF8 with anenedtimation in
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276 the amplitude of observation. On the other hanfigrémces should be made with caution for IMF7 bseaaf the
277 mixed modes. Scales up to 3 years are relativelyregroduced by the model.

100 (a) Time Series at ATL (b) Power
3‘ " T T i 5 i i
2 ng/m 10

10° OBS CMAQ ]

10° 14
1 i3

10 )

103 17

10"} 16

10° 115

10" 115

108 133

101 125

10° 149

10" 143

10% 187
10'r . . AN~ 87
\ | 237 10%] w. {341

] 195 441 ik {186

2k 1351 10° 1372

= ar 1351 4ot} 1372
gl

P 05| 797 10°F . 11024

= 730 4o} m 1683

2 0-8' 1096 10%§ 11365

= 05f {1252 41 / {1365

20 ] 10° | 1
o 10l ] 101 M -
0 1 1 1 L L /1 L
2002 2003 2004 2005 2006 2007 10" 102 10°

Period (day)

278
279 Fig. 5. Same as Fig. 2 but for the ATL site with 10MFs.

280 4.2 Long-term trend

281  The EMD-decomposed long-term trend components lier dbserved and simulated total and speciatedsPM
282  concentrations are presented in Fig. 6. To betseialize the non-linearity of the trend componém,rates of change
283 (temporal derivative of a trend component, whictthis change in the consecutive concentration dividy the
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284 sampling rate of 1 or 3 days and converted to tlieai pg/n¥/year by multiplying 365 day/year) are added with a
285 separate y-axis on the right side in each panaly(golored scale). It is evident that Pdik changing at a varying
286  rate, forming either a monotonic trend componerd trend component with one extremum, which caiweofully
287 represented by a single constant number usinglditmaal linear regression approach. Given thatdlee chemical
288 species other than the ones studied in the totalsPit all performance issues can be fully explaibgdhe five

289 available species.
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290

201 Fig. 6. Trend components of observed and simulatedtal and speciated PMsfor (a) QURE, (b) RENO and (c)
292  ATLin pg/m?3with dashed lines representing the rate of the cimge (temporal derivative of the trend component
293 converted to pg/ni/year) against the right-side y axis, with a refenace line of no change in dark gray line in
294  the center.

295 At the QURE site, CMAQ captures the general de@ngasend in observed total BMwhich can mainly be traced
296  backto NQand OC, while both observed and simulated tremapoments in S@and EC are relatively constant (Fig.
297  6a). Moreover, the periods with highest decreasittg in observed total PMduring 2003-2004 with a decreasing
298 rate of -0.44 pg/ffyear is also well replicated by the model. Nevelghs, the slightly increasing BMevel in the
299 later years is simulated to be decreasing at a rigtter rate, which is partly due to the overestedalecreasing rate
300 in OC and species other than the five studied ofles.trend component of simulated Cl shows a cylillie feature
301 because of proximity between the existence of eayc4-5 years (by decomposing the simulationmtythe 6-year
302 study period) and 4-year period limited by the Elde quality assured observations. The rate ofigkan the
303  simulated trend component by decomposing the siialduring the 6-year study period would mimicttiram the
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4-year observation, both with a negligible negatiakie throughout 2004-2007. However, the magnitfdbe trend
component is almost doubled (1.8 times comparel @iservation) in the model with contribution frathspecies

except for S@ A quantitative summary of the magnitude of tlett component can be found in Table 1.

Table 1.The ratio of mean magnitude of the trend compongpt, (CMAQ/observation). Boldface values indicate
a relatively good estimate of the magnitude (QL73). “-” indicates the data is not available (sapelies for Tables
2 and 3).

TOT SQ NOs NH4 ocC EC Cl
QURE 1.8 0.9 3.5 - 1.4 1.7 1.3
RENO 0.8 1.3 0.3 0.4 0.5 0.6 -
ATL 1.2 1.0 2.1 1.0 0.9 14 -

RENO is located close to the border with Califoraial is affected by large wildfire breakouts in thestern U.S. as
can been seen in the spikes of the observed thtak{Fig. 4a). The model simulates large increasing ugtto 1.03
pg/mé/year and decreasing rate up to -0.80 |#year before and after the 2006-2007 winter seasahfails to
reproduce the relative stable condition seen irotigervations with only -0.09 pgfiyear decreasing in 2004-2005
and 0.04 pg/ffyear increasing in 2008-2009 (Fig. 6b). Simikatfire is found for combustion related OC and EC
species. The observed slightly decreasing tren88irmand NH, during 2005-2009 are not being captured in theehod
simulations. The magnitude of the trend componsmightly underestimated with,.,,, of 0.8 with contribution

from all species except for 2@s well (Table 1).

During the period of 2002-2007, observations at A&\eal a slightly increasing RMtrend that cannot be explained
by the five listed PM2.5 components trend (Fig., @ossibly indicating a contribution of the remamispecies such
as the non-carbonaceous portion of organic matien-carbonaceous organic matter can account foe ithan half
of total organic matter, which, in turn, can accofan a large portion of the total PAdmass (Edgerton et al., 2005).
In contrast, the model shows a slight decreasiegdtiwith a peak decreasing rate in 2003 and mitsepeak
increasing rate of 0.23 pgdfyear in the winter season of 2005. Similarly, rsed trends are also simulated for,SO
OC and EC, while the change rate in N®well captured. Unlike the previous sites, magie of trend components
in total and speciated PMare well simulated except for EC (1.4 times theeobation) and N@(2.1 times).

To sum up, the long-term trend at QURE is well dated by the model. The occurrence of large wigdfilasting for
several months have significantly impacted the {tergn trend component at RENO and the model fadechpture
those combustion-related species and total fivimarily due to limitations in the historical dataed to specify day-
specific wildfire emissions (Xing et al., 2013)idditly increasing levels of Pptand its species observed at ATL are
simulated to be slightly decreasing, except forsNich is well simulated. The magnitude of the ldagm trend
components of total PM and SQare well represented by CMAQ (Table 1). The moaefqyms differently across
the sites in terms of the magnitudes of the tremdponent in N@ NH,, Cl, OC and EC. Species other than those in
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the available dataset may also play a consideralidein driving the agreements or disagreementedxt model

simulations and observations of total PM

4.3 Seasonality

The EMD-assisted seasonality evaluations utilize decomposed IMF with characteristic period of gear to
evaluate the amplitude and phase of the model ationl both of which are time- dependent. We filstnonstrate
the evaluation for total PpMat QURE (Fig. 7a). The top panel shows the anngEeacomponents and the bottom
panel shows its TDIC pyramid. The decreasing amnbditof the annual cycles throughout 2002-2007 nsoat
perfectly represented with an overall ratjQ,,., being 1.0 (Table 2). Each pixel in the TDIC pyrdnis the
correlation (color-coded) calculated during a petidd timel(t) with width oft,, days (y-axis) centered at a specific
day (x-axis) as introduced in Section 3.2. The ahraycle mean periods are identical between CMA@ an
observations (350 days, Fig. 2a IMF6), but thegepbase shift for all years with the entire TDMgmid being close
to -1. By shifting the CMAQ annual cycles backwaf® days (almost half year), the overall correfatbthe annual

component can reach up to a peak of 0.9 (Table 3).
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Fig. 7. Decomposed annual cycles (IMF6) from obsesd (blue) and simulated (red) concentrations (ug/f of
(a) total PMzs, (b) SOy, (c) NG, (d) Cl, (e) OC and (f) EC and their correspondinglDIC at Quabbin Summit,
MA. The window sizet,, indicates the width of the window used to calcul& a specific correlation centered at
the day represented in x-axis.

What are the driving factors for the above phageishmodeled total P¥sat Quabbin Summit, MA? The illustrations
in Fig. 7a for total Pl¥lsalone cannot provide useful information that wilbe the modeler to improve the model's
performance. This is accomplished by applying thtbEnethod to the Pisspeciated components (Fig. 7b-f). Traces
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of the semi-annual phase shift (-159 days) of ahey@es or large overestimation in the winter amdierestimation
in the summer is because of the largely overestichamplitude of Ng(4.3 times that of observationwhich peaks
in the winter and the almost semi-annual shifted(€@7 days), as well as contributions from EC @&hd\NO; has a
mean amplitude reaching almost half of that ofttital PMys. OC directly drives both the observed and simdlate
annual components to be negatively correlated. @ovs the feature of OC in the first four yearssar and the
feature of NQin 2006 and 2007 and contributes to the half gkifted total PMs. The magnitude of winter-peaking
Cl cycles are overestimated with a phase shifinef month. However, the contribution of Cl is vergited because
of the tiny amplitude in both observed and simuda#mnual cycles. In addition, annual cycles ins &@ well
reproduced for the entire time span with an amgéteatio of 0.7. A quantitative summary of the emadion of the

annual cycles at this site can be found in Tables®3.

(a) RENO, TOT (b) SO, (c)NO,
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Fig. 8. Same as in Fig. 7 for Reno, NV, except théd) represents NH rather than CI.

Both observed and simulated annual cycles at tHeQREite are largely contaminated by the extremesviasting
for several months that are not properly simulatedicating the need for more appropriate emissiliaration.
Overall, annual variations for total and specia®d, s are largely underestimated except for the totab Pand
combustion-driven EC and OC from 2005 to 2007 (B)gThe modeled phase of ®IO;, NHs and OC agrees with
that of observation with exception for a lengtlabbut two years in each that missed the phasir@-2010 for S@
summer 2005-summer 2007 for jQ006-2007 for N& and 2004-2005 for OC. It is also notable that TRHC
pyramid of EC mimics that of total P} implying the existence of errors in modeled EQomocesses such as
emissions, transport, and deposition that affetiednodel performance for total BM In comparison, S£and OC
are relatively well simulated with a mean amplitud¢io of 0.5 and 1.5 and a phase shift of 36 aBdl&ys,

respectively.
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Observed annual cycles of total Pkt the ATL site features a slightly increasing atoge of annual variations
from 2002 to 2006 which then decreased to the malgitate in 2007 (Fig. 9a). Conversely, model-$atea annual
cycles became weaker throughout the period, wittvenallr,,,,....; of 0.5. As at the QURE site, the simulated annual
components at the ATL site also show a shift oesalvmonths (-132 days). Specifically, traces esthphase shifts
or large overestimation in the winter and undenestion in the summer can be seen from the more doabled
amplitude of N@ which peaks in winter and underestimated, 8@l NH,in the warm seasons as well as the -54 days
shifted EC. The anti-correlated remaining specibermthan those in the available dataset cleadyqud a role in
driving the discrepancies seen in the totabRdhnual cycles (Fig. 10). Specifically, the anti+edaition likely points

to an inaccurate representation of the seasongtiear of the non-carbonaceous portion of organatter due to an
improper representation of organic aerosols imtbéel version analyzed here; this problem has siee@ corrected

in more recent releases of the CMAQ model. The tegdienated annual variations in the remaining comepts
closely resemble that of the annual variation taltBM s. The phase of simulated S0, NHs4, and OC species is
in good agreement with those in observations aadthplitude of simulated annual cycles in,SOC and EC agree

well with that in the observations (Tables 2 and 3)

In sum, annual cycles of PMare also time-dependent and the phase in the aopelak for total PMls, OC and EC
reveal a general shift of up to half a year (Ta&)lethis indicates a potential problem in the alban of emissions
during this study period and/or the treatment afaoic aerosols in this version of the model. CMA€nherally
simulated the phase in NOs, Cl and NH quite well but did not always capture the magretodi their variations
(Table 2).
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Fig. 9.Same as in Fig. 7 for Atlanta, GA, except that thannual component is resolved in IMF8 (IMF7 for SQ
and NOgs) because of the difference in sampling rate and aehacteristic embedded in the time series at ATL and
(d) represents NH rather than CI.
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Fig. 10.Decomposed annual cycles in Atlanta, GA for the reaining components presented in total PMs other
than the five species in Fig.9.

Table 2.The ratio of mean amplitude of the annual compongh.... (CMAQ/observation). Boldface values indicate
a magnitude with a ratio close to 1 (0.7 -1.3).

TOT SO NG NH4 ocC EC Cl
QURE 1.0 0.7 4.3 - 1.6 3.1 1.6
RENO 1.2 0.5 0.1 0.2 15 0.9 -
ATL 0.5 0.7 2.4 0.4 1.2 1.0 -

Table 3. Phase shiftr{) of CMAQ simulated annual cycle components in ddys background color indicates the
maximum correlation R, ) that can be reached by shifting the CMAQ timeieser days with respect to
observations: white =[0.8, 1], light grey = [0068), grey = [0.4, 0.6), dark grey = (0.2, 0.4)eTdold shows number
of shifts less than a month while the italic shahits longer than three months.

TOT SQ NOs NH4 ocC EC Cl
QURE -159 -6 3 - -147 -105 -30
RENO - 36 12 -21 33 96 -
ATL -132 0 8 -17 -24 -54 -
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4.4 Sub-seasonal and inter-annual variability

In this section, model performance at multiple sebsonal and inter-annual scales with cycles hess 3 years,
presented in the total and speciated,BN& evaluated following an approach similar tot tiea the annual cycles in
Section 4.3 (Fig. 11). First, IMFs from observataand model simulations are paired based on theiracteristic
periods following the discussion in Section 4.1efhthe magnitude of specific scales is evaluatgdgu; g,
following Equation 6 of the,,,,,,,..; for annual cycles. The phase shifts of the tierees are assessed by the proportion

of shifted days relative to the mean characterstales of the corresponding observed and simuliMéd (”/tm).

For example, a phase shift of 0.1 cycles in the&rygycles is approximately 73 days while it wolokd18 days for
the half-year cycles.

The performance of the simulated amplitude of tiieseasonal and inter-annual cycles is relativialgle from a few
days to semi-annual scales apg-, is close to 1 in most cases (Fig. 11a-c). CMAQuags the features seen in the
observations at QURE, except for the large overegion of NQ (1, ranges from 2.6 to 3.7 at the sub-seasonal
scale and reaches up to 13.8 for the 3-year cyc@@sijlar overestimation of NQs also found at ATL{,, ranges
from 2.0 to 3.4, except for the 2-year cyclesadntrast, NQat RENO is strongly underestimated witf),, ranging
from 0.1 to 0.3 and reaching its minimum at thee2tycycles. Likewise, all time scales of N&t RENO are also
being underestimated with,,, decreasing from 0.4 to only 0.1 at the 3-year eyclThe coexistence of
underestimation of N@and NH, variability, as well as their trend componentglik points to the insufficient grid
resolution in representing ammonium nitrate episodgsociated with stagnant meteorology in the nzoumis
regions as illustrated by Kelly et al. (2019). Torsup, model has simulated the magnitude of feataceoss all scales
in most of the studied cases. However, fluctuatio$O; are constantly being largely over- or under-estadatnd

improvements to the model are required to betigia&te its variability (Fig. 11a-c).

A high R,,,, of corresponding IMFs can only be achieved whenctfaracteristic scales of those from observations
and model simulations are close, there is minimadlenmixing, and negligible irregular change of atode exists
during the study period. Thug,, ., tends to be small for all oscillations at RENO duese of the irregular impact
from events such as wildfires. Thus, the intergietaof phase shift is focused on the componentstame scales

having correlations above 0.4 only.

Results show that the sub-seasonal cycles at QURE\e a negligible phase shift of less than §des (Fig. 11d).
The semi-annual cycles at RENO have around 0.2 qylehse shifts in total PM(-0.2), NH,(0.2), OC (-0.2), and
EC (-0.2) while negligible phase shifts of lesatlfal cycles are simulated in §@nging from Yays to semi-annual
in scale. As at QURE, multiple sub-seasonal cyateATL all have a negligible phase shift of lesartl0.1 cycles,
with the exception of semi-annual OC which has asphshift of nearly -0.4 cycles with a marginalretation of
around 0.4. Unlike the relatively stalitg,,, throughout the time scales within each of the msefor QURE and
RENO, theR,,,, at ATL tends to be much higher (roughly 0.6-0:8)tie scales of 6 to 25 days, except forsNO
indicating the model’s success in simulating thesather-induced air quality fluctuations at thig sis reflected by
their negligible phase shifts.
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However, the physical meaning of each sub-seaddffalis not yet fully understood and requires furtlstudy.
Synoptic scale IMFs (IMFs with scale less than/atba month) usually have large variance and aretatistically
significant different from white noise except fdrserved S®@and NH (Fig. S5). Yet, observed and simulated total
and some speciated B¥at QURE and ATL (except IMF1) can achieve modetatkighR,,,, at these time scales
(Fig. 11 g-i), indicating a potential physical eaphtion of those time scales using meteorologiaahbles. IMFs
with scales longer than a month but less than yedf possess much less variance and are usualbtatitically
significant different from noise. Exceptions arecafound at the Atlanta site where observed IMFes rapstly
significant different from noise. Whereas semi-alrmycles are mostly statistically significant @éhat semi-annual
SOy and NQat ATL are too weak to be decomposed into a sep#vt). In a previous study, He et al. (2014) found
semi-annual oscillations in the corrected AErosobietic NETwork (AERONET) Aerosol Optical Depth (AQBnd
PMio mass concentrations are primarily caused by thegd of wind directions in Hong Kong.
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Fig. 11. Model performance at all temporal scalesof sites QURE, RENO and ATL. (a-c) ratio of mean
amplitude of corresponding IMFs with similar characteristic mean periods (ideal ratio=1.0); (d-f) thephase
shift n in the number of mean periods (average mean periodf corresponding IMFs decomposed from
observation and model simulation); (g-i) maximum corelation R,,,, can be achieved by shifting the modeled
time series. The average mean period of correspomdj IMFs decomposed from observations and CMAQ of
total and speciated PMs are represented on the x-axis; all metrics on the-gixis are unitless. Horizontal
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reference lines are drawn at 0.7 and 1.3 in (a-cyWeekly, annual and inter-annual (2- to 3-year) scaks are
marked with vertical dashed lines.

The evaluation and interpretation of inter-annyales are constrained by the limited available gged observations
for a period of 6 to 9 years (4 years for Cl at @)RThus, only 2- to 3-year cycles are presenteg. (F1) and
evaluated. Among the 2- to 3-year inter-annualeyelt QURE, there is minimal phase shift for t&fsk. s, SQ;, Cl,
and EC with moderate to hidh,.,. At RENO, the model presents negligible shift@ipear cycles of OC and NH
while phase shifts of 0.3 and -0.5 cycles are sited in the 3-year cycles for $&nd NH. At ATL, the phase shift
of -0.2 to -0.4 cycles are simulated for PdWNH,, OC, and EC with periods of 2- to 3-year cyclebjlev2- to 3-year
SO cycles have a half-year cycle shift.

5 Conclusions

The main advantage for using EMD to evaluate,Pihd its speciated components is that it decompuoselinear
and nonstationary signals into multiple modes anesalual trend component. It does not require@egelection of
the temporal scales and assumptions of linearity sationarity for the data, thereby providing gigs into time
series of PMs concentrations and its components. Using impra®BEMDAN, we are able to assess how well
regional-scale air quality models like CMAQ can slate the intrinsic time-dependent long-term tremd cyclic
variations in daily average Pidand its species. This type of coordinated decontipasand evaluation of total and
speciated PMs provides a unique opportunity for modelers to sssefluences of each Bl species to the total
PM:sconcentration in terms of time shifts for varioemporal cycles and the magnitude of each compdéneting
the trend.

A demonstration of how improved CEEMDAN could beplgd to time series data at three sites over COMaS
provide speciated PM2.5 data reveals the presehitee @annual cycles in PMconcentrations and time-dependent
features in all decomposed components. At these thites, the model generally is more capablenofilsiing the
change rate in the trend component than the alesaftaignitude of the long-term trend component. Harethe
magnitude of S@rend components is well represented across aktsites. Also, the model reproduced the amplitude
of the annual cycles for total BN SQ: and OC. The phase difference in the annual cyoletmtal PMs, OC and
EC reveal a shift of up to half-year, indicating theed for proper allocation of emissions and atatgu treatment
of organic aerosols compared to the earlier modedion used in this set of model simulations. Ttweststent large
under/over-prediction of NQvariability at all temporal scales and magnitudé¢hie trend component, as well as the
abnormally low correlations of synoptic scale N&d ATL, calls for better representation of nitrggtitioning and
chemistry. Wildfires have the potential to eleviadd. s for months and can alter its variability at scdiesn few days

to the entire year. Thus, more accurate fire emssiata should be incorporated to improve modelkition,
especially in those fire-prone regions.

Data availability. Paired observations and CMAQ model data usechénanalysis will be made available at
https://edg.epa.gov/metadata/catalog/main/home.f2@e CMAQ model outputs are available on requeshfthe
U.S EPA authors.
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Discussions

Author contribution. "HL and MA designed the methodology; RM, CH and@Rtributed in the assessment of the
outcomes and were consulted on necessary reviditode! simulations were performed by the US EPA.gi&pared

the manuscript with contributions from all co-authd
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