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Abstract. Regional-scale air quality models are being used for studying the sources, composition, transport, 10 

transformation, and deposition of fine particulate matter (PM2.5). The availability of decadal air quality simulations 11 

provides a unique opportunity to explore sophisticated model evaluation techniques rather than relying solely on 12 

traditional operational evaluations. In this study, we propose a new approach for process-based model evaluation of 13 

speciated PM2.5 using improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (improved 14 

CEEMDAN) to assess how well version 5.0.2 of the coupled Weather Research and Forecasting model - Community 15 

Multiscale Air Quality model (WRF-CMAQ) simulates the time-dependent long-term trend and cyclical variations in 16 

the daily average PM2.5 and its species, including sulfate (SO4), nitrate (NO3), ammonium (NH4), chloride (Cl) organic 17 

carbon (OC) and elemental carbon (EC) . The utility of the proposed approach for model evaluation is demonstrated 18 

using PM2.5 data at three monitoring locations. At these locations, the model is generally more capable of simulating 19 

the rate of change in the long-term trend component than its absolute magnitude. Amplitudes of the sub-seasonal and 20 

annual cycles of total PM2.5, SO4 and OC are well reproduced. However, the time-dependent phase difference in the 21 

annual cycles for total PM2.5, OC and EC reveal a phase shift of up to half year, indicating the need for proper temporal 22 

allocation of emissions and for updating the treatment of organic aerosols compared to the model version used for this 23 

set of simulations. Evaluation of sub-seasonal and inter-annual variations indicates that CMAQ is more capable of 24 

replicating the sub-seasonal cycles than inter-annual variations in magnitude and phase.  25 

Keywords 26 

Model evaluation, coupled WRF-CMAQ, improved Complete Ensemble Empirical Mode Decomposition (EMD) 27 

with Adaptive Noise, Speciated PM2.5, Scale Separation, Seasonality, Trend 28 

  29 

https://doi.org/10.5194/acp-2019-1079
Preprint. Discussion started: 2 March 2020
c© Author(s) 2020. CC BY 4.0 License.



2 

 

1 Introduction 30 

It is well recognized that inhalable fine particulate matter (PM2.5) adversely impacts human health and the 31 

environment. Regional-scale air quality models are being used in health impact studies and decision-making related 32 

to PM2.5. Long-term model simulations of PM2.5 concentrations using regional air quality models are essential to 33 

identify long-term trends and cyclical variations such as annual cycles in areas larger than what is covered by in-situ 34 

measurements. However, total PM2.5 concentrations are challenging to predict because of the dependence on the 35 

contributions from individual PM2.5 components, such as sulfates, nitrates, carbonaceous species, and other natural 36 

species. In this context, a detailed process-based evaluation of the simulated speciated PM2.5 must be carried out to 37 

ensure acceptable replication of observations so model users can have confidence in using regional air quality models 38 

for policy-making. Furthermore, process based information can be useful for making improvements to the model. 39 

Some of the trend or step change evaluations of regional air quality models in the past have focused on specific pairs 40 

of years (Kang et al., 2013; Zhou et al., 2013; Foley et al., 2015). These studies do not properly account for the sub-41 

seasonal and inter-annual variations between those specific periods. Trend evaluation is commonly done by linear 42 

regression of indexes such as the annual mean or specific percentiles, assuming linearity and stationarity of time series 43 

(Civerolo et al., 2010; Hogrefe et al., 2011; Banzhaf et al., 2015; Astitha et al., 2017). The problem with the linear 44 

trend evaluation is that there is no guarantee the trend is actually linear during the period of the study because the 45 

underlying processes are in fact nonlinear and nonstationary (Wu et al., 2007).  46 

Seasonal variations are usually studied and evaluated by investigating the monthly or seasonal means (Civerolo et al., 47 

2010; Banzhaf et al., 2015; Yahya et al., 2016; Henneman et al., 2017). Evaluation of ten-year averaged monthly mean 48 

of PM2.5 simulated with WRF/Chem against the Interagency Monitoring of Protected Visual Environments 49 

(IMPROVE) by Yahya et al. (2016) shows that the model captures the observed features of summer peaks in PM2.5 50 

with a phase shift of few months. However, according to the analysis (Fig. 10) in Henneman et al. (2017), the 51 

seasonality shown in monthly-averaged PM2.5 time series is much less distinguishable compared with that of ozone 52 

and CMAQ (version 5.0.2) does not replicate the monthly PM2.5 quite well with large underestimation in the summer 53 

months. In these studies, the seasonality might not be well represented by the preselected averaging window size of 54 

one or three months. In addition, averaging of those monthly or seasonal means across multiple years may conceal the 55 

long-term trends or interannual variations driven by climate change, emission control policies or other slow varying 56 

processes. 57 

To address the above-mentioned problems, we propose a new method for conducting air quality model evaluation for 58 

PM2.5 using improved CEEMDAN. Improved CEEMDAN is an Empirical Mode Decomposition (EMD)-based, data-59 

driven intrinsic mode decomposition technique that can adaptively and recursively decompose a nonlinear and 60 

nonstationary signal into multiple modes called intrinsic mode functions (IMFs) and a residual (trend component) 61 

(Huang et al., 1998; Wu and Huang, 2009; Yeh et al., 2010; Torres et al., 2011; Colominas et al., 2014). It does not 62 

require any preselection of the temporal scales or assumptions of linearity and stationarity for the data, thereby 63 

providing some insights into time series of PM2.5 concentrations and its components. Decomposed PM2.5 long-term 64 

trend components and annual cycles from observed and simulated PM2.5 serve as the intuitive carrier of the trend and 65 
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seasonality evaluation. In the meantime, several other IMFs with characteristic time scales ranging from multiple days 66 

to years are also decomposed, enabling model evaluation of the less studied sub-seasonal and inter-annual variations.  67 

Section 2 describes the coupled WRF-CMAQ model simulations and corresponding observations from multiple 68 

speciated PM2.5 networks. Section 3 presents an overview of the EMD and improved CEEMDAN technique and the 69 

statistical metrics accompanying model evaluation, including the time-dependent intrinsic correlation (TDIC) on the 70 

decomposed IMFs (Chen et al., 2010; Huang and Schmitt, 2014; Derot et al., 2016). Section 4 describes the findings 71 

on the long-term trend and seasonality in total PM2.5 and its components, as resolved by the improved CEEMDAN 72 

technique and includes a discussion on the sub-seasonal, seasonal, and inter-annual variability. The conclusions from 73 

this work are presented in section 5. 74 

2 Coupled WRF-CMAQ PM2.5 Simulations and Observations 75 

The two-way coupled WRF-CMAQ (version 5.0.2) is configured with a 36 km horizontal grid spacing over the 76 

contiguous United States (CONUS) with 35 vertical layers of varying thickness extending from the surface to 50 mb 77 

(Wong et al., 2012; Gan et al., 2015). Time-varying chemical lateral boundary conditions were derived from the 108 78 

km resolution hemispheric WRF-CMAQ (Mathur et al., 2017) simulation for the 1990-2010 period (Xing et al., 2015). 79 

The simulations are driven by a comprehensive emission dataset which includes the aerosol precursors and primary 80 

particulate matter (Xing et al., 2013, 2015). The readers can refer to Gan et al. (2015) for additional model information 81 

and the trend evaluation against seven pairs of sites from the CASTNET (Clean Air Status and Trend Network) and 82 

IMPROVE networks for 1995-2010. We obtained the 2002-2010 daily average PM2.5 and its speciated time series 83 

from the set of simulations with direct aerosol feedback. The earlier years of 1990-2001 are not included in this 84 

evaluation because of the limited availability of speciated PM2.5 observations.  85 

To avoid misinterpretation of data due to the presence of missing values, only sites with continuous complete long-86 

term record for total PM2.5 and its speciation including SO4, NO3, NH4, OC, EC, and Cl are studied (Fig. 1). All of the 87 

selected sites have data coverage above 90% each year for at least six consecutive years between 2002 and 2010 88 

(equivalent to 30% for 1-in-3 days sampling sites). This strict data selection led to the sparsity of this type of 89 

observations for the study period. QURE, a rural site carrying out 1-in-3 days sampling of total and speciated PM2.5 90 

of SO4, NO3, OC, EC, and Cl, is located in Quabbin Summit, MA. It is one of the three sites from the IMPROVE 91 

network that has at least six continuous years of speciated observations and was selected here to demonstrate the 92 

application of the proposed method in rural areas. It should be noted that the majority of the observed Cl in 2002 and 93 

2003 is negative due to a filter issue problem which was not addressed until 2004 (White, 2008). Thus, simulations of 94 

Cl are only evaluated during 2004-2007 at this site. Station RENO, located in urban Reno, NV, is also a 1-in-3 days 95 

sampling site of total and speciated PM2.5 of SO4, NO3, NH4, OC, and EC, and it is the only Chemical Speciation 96 

Network (CSN) site that fulfills this data coverage requirement. The third site ATL in the Southeastern Aerosol 97 

Research and Characterization Study (SEARCH) network is located 4.2 km northwest of downtown Atlanta, GA. It 98 

is the only long-term site available with daily sampling rate (Hansen et al., 2003; Edgerton et al., 2005) that meets the 99 

data coverage requirement. The best-estimate (BE), a calculated concentration intended to represent what is actually 100 
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in the atmosphere (Edgerton et al., 2005), of the total PM2.5 and SO4, NO3, NH4, and EC components are retrieved for 101 

the evaluation. OC component is a direct measurement. These three sites have a continuous record covering at least 6 102 

years (2002 – 2007 for QURE and ATL and 2002 – 2010 for RENO) that allows an evaluation of long-term trends.  103 

 104 

Fig. 1. Location and data coverage of the PM2.5 monitoring sites QURE, RENO and ATL. 105 

3 Methodology 106 

3.1 Empirical Mode Decomposition 107 

The Empirical Mode Decomposition (EMD) technique, proposed in the late 1990s, is capable of adaptively and 108 

recursively decomposing a signal into multiple modes called intrinsic mode functions (IMFs), where each mode has 109 

a characteristic frequency, and a residual with at most one extremum (Huang et al., 1998). The decomposed signal 110 

then is expressed as the summation of all IMFs and the residual: 111 

� = ∑ �� +�
��	 
                                         (1) 112 

where � is the original signal, �� is the ith IMF, � is the number of the IMFs and 
 is the final residual. Each IMF has 113 

the following properties (Huang et al., 1998): 114 

1) The number of extrema (maxima and minima) and the number of zero-crossings must be equal or differ at most by 115 

one;  116 

2) The local mean at any point, the mean of the envelope defined by local maxima and the envelope defined by local 117 

minima, must be zero.  118 

Nevertheless, “mode mixing” where oscillations with very disparate scales can be present in one mode or vice versa 119 

is commonly reported. To cope with this issue, multiple noise assisted EMD have been developed successively (Wu 120 

and Huang, 2009; Yeh et al., 2010; Torres et al., 2011; Colominas et al., 2014). It is evident that the latest improved 121 

Complete Ensemble EMD with Adaptive Noise (improved CEEMDAN) manages to alleviate the problem of mode 122 

mixing with the benefit of reducing the amount of noise presented and avoiding spurious modes (Colominas et al., 123 
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2014). Moreover, the end effects or boundary effects have been addressed by its predecessor EEMD (Ensemble 124 

Empirical Mode Decomposition) by extrapolating the maxima and minima, and behaved well in numerous time series 125 

with dramatically variant characteristics (Wu and Huang, 2009). The extrapolation of maxima and minima is proven 126 

to be more effective compared with the extrapolation of the signal itself such as repetition or reflection (Rato et al., 127 

2008).  128 

Given the EMD’s ability to deal with real-world nonstationary and nonlinear time series data, it is widely used in 129 

engineering, economics, earth and environmental sciences (e.g., Huang et al., 1998; Chang et al., 2003; Yu et al., 2008; 130 

Colominas et al., 2014; Derot et al., 2016). We use the most up-to-date noise-assisted improved CEEMDAN technique 131 

with at least hundreds of noise realizations to decompose observed and simulated PM2.5 time series. Readers can refer 132 

to Colominas et al. (2014) for detailed description of the technique and access to the corresponding MATLAB code. 133 

Trial and error attempts are made in setting the input of the improved CEEMDAN function to achieve best mode 134 

separation. 135 

The impact of boundaries on the decomposed annual cycles and the residual is assessed by the variations (standard 136 

deviation) of hypothetical decomposed boundaries by cutting a continuous eighteen-year total PM2.5 observation 137 

(North Little Rock, AR) 48 times at different years and times of the year (Fig. S1). The standard deviation is found to 138 

largely diminish within half the annual cycles and could be negligible within one year for the annual cycle. This could 139 

very possibly expand to IMFs with other characteristic scales. Yet, trend components (residuals) show variability 140 

depending on the available time period after cutting. Most of the time, they follow the reference long-term trend 141 

reflected either by the residual or the summation of the residual and the IMF with longest temporal scale decomposed 142 

from the eighteen-year PM2.5 (Fig. S1c). This is in line with our expectations as a trend should exist within a given 143 

time span, following the definition in Wu et al. (2007): “The trend is an intrinsically fitted monotonic function or a 144 

function in which there can be at most one extremum within a given data span”. Although very strict data completeness 145 

requirement is employed for this study, it should not be conceived as a limitation of the method itself. A sensitivity 146 

test based on a period of nine years of total PM2.5 observation at the same site with 99% data coverage shows that even 147 

though variability of annual cycles and long-term trends increases with decreased data availability (100%, 90%,..., 148 

10%), the structure of those components is consistent. The average of 40 realizations of annual cycles and long-term 149 

trend components in each data-completeness scenario is in perfect alignment with that of 100% data completeness 150 

(Fig. S2 and S3). Given the fact that those 40 realizations in each scenario are based on independent random samplings 151 

of the original observations, the increased variability could very possibly result from the difference in the sampled 152 

data itself rather than the method. Thus, the robustness of improved CEEMDAN decomposed annual cycles and long-153 

term trend is justified. In fact, EMD has been proven to be an effective tool for data gap-filling (Moghtaderi et al., 154 

2012). 155 

 156 

 157 
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 158 

Fig. 2. Decomposition of observed (blue) and simulated (red) 24-hour average total PM2.5 into 7 IMFs and a 159 

residual component (trend) at Quabbin Summit, MA using the improved CEEMDAN: (a) Time series of total 160 

PM2.5, IMFs and the residual component (all with unit of  µg/m3); (b) Power spectrum of the corresponding 161 

time series. The colored numbers on the right side of time series are the mean period �
 in days, while the ones 162 

on the right side of the power spectrum are the peak period �� in days, which are also indicated by the dashed 163 

vertical lines on the power spectrum. Note that the scales for the time series are not all the same. Also, all power 164 

spectra are in the log scale and those of the IMFs are zoomed in with a range of 100 to 104 on the y-scale for 165 

better visual clarity (compared with 10-2 to 107 for total PM 2.5 and the residual component). 166 

 167 

The characteristic period of each IMF can be estimated by the peak period �� (days) where the power spectrum 168 

of the IMF peaks: 169 

�� = 	
��

              (2) 170 

in which �� is the frequency that the power spectrum peaks in the unit of number of cycles per day. The peak estimates 171 

can be biased if more than one high-power frequency is located close to each other in one IMF. Thus, power spectrum 172 
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is only used as a fast screening tool to determine if a desired decomposition is accomplished. As an alternative 173 

approach, the mean period �� can be estimated by: 174 

�� = ���� ����
(������� !��"#$%)/(              (3) 175 

where )��*  , )���  and )+�,-  are the number of maxima, minima and zero-crossings, respectively, during the 176 

./01 234) (days). As the frequency decreases, the mean period estimates become less accurate because of the limited 177 

time span compared with the length of the cycle and should be carefully interpreted. 178 

An example of the total PM2.5 decomposition with improved CEEMDAN at the QURE site shows modes ranging from 179 

very high frequency to very low frequency (IMF1 to IMF7) and a residual (Fig. 2). Mean (��) and peak (��) 180 

estimations of the characteristic periods of each IMF are presented on the right side of each mode. Annual cycles and 181 

long-term trend components are well represented by IMF6 and the residual, with the remaining IMFs carrying weekly, 182 

sub-seasonal, seasonal, and inter-annual variations, respectively, for both observed and simulated PM2.5 (Fig. 2). We 183 

have noticed that in some rare cases, a spurious mode in the last IMF with synchronous signal and very close scales 184 

to its previous IMF exists. This is possibly due to the fact that the characteristic periods of those IMFs are in proximity 185 

to the span of the studied time span. In these cases, the last two modes are merged by adding those two modes together 186 

to conduct a detailed evaluation as discussed in Section 4. 187 

3.2 Statistical metrics 188 

EMD-decomposed IMFs and trend components allow for a detailed time-dependent evaluation of PM2.5 and provide 189 

a novel opportunity to trace the performances of specific scales back to the corresponding speciated components. Note 190 

that the trend component is the decomposed residual component from the PM2.5 in the unit of µg/m3 and it is not the 191 

traditional concept of trend in concentration per time. In addition to a direct evaluation of its magnitude, we also 192 

calculated its derivative to identify the periods with higher or lower rate of change (concentration per time). Time-193 

dependent intrinsic correlation (TDIC) is utilized to study the evolvement of the model performance for cyclic 194 

variations throughout time (Chen et al., 2010; Huang and Schmitt, 2014; Derot et al., 2016). It is a set of correlations 195 

calculated for IMFs over a local period of time 5 centered around time �: 196 

5(�) = [� − 89
: , � + 89

: ]              (4) 197 

in which � is the center time for the calculation of the correlation and �= is the moving window length. The minimum 198 

of �= is set to be the local instantaneous period of the IMF (larger of that in observation or simulation) using the 199 

general zero crossing method to ensure that at least one instantaneous period is included in calculating the local 200 

correlation coefficient (Chen et al., 2010). The maximum of �= is the entire data period with a traditional overall 201 

correlation being calculated. The empty spaces in the pyramids used to depict the TDIC are an indication that the 202 

correlation is not statistically significantly different from zero. With both decomposed observed and modeled 203 

concentrations in a narrow scale range, the correlation would no longer be contaminated by coexisting signals of 204 

different scales (Chen et al., 2010).  205 
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In order to summarize the performance of the decomposed trend component and IMFs, the ratio of the mean 206 

magnitudes of the trend components is defined as: 207 


8,��> = ?���@ABC
?���%DE#$F�G %!

            (5) 208 

where H14)I?JK  and H14)-L��,M�8�-�  represent the mean of simulated and observed residual components 209 

respectively. The ratio of the mean amplitude of each IMF is defined by Equation 6, where an example for the annual 210 

cycles is provided: 211 


���N�O = P?Q@ABC,�!!R�S
P?Q%DE#$F�G %!,�!!R�S

            (6) 212 

where THU-L��,M�8�-�,���N�O and THUI?JK,���N�O represent the root mean square of observed and simulated annual 213 

cycles respectively. Finally, the phase shift of an IMF ) is defined to be days an IMF decomposed from modeled time 214 

series has to shift in order to achieve the highest correlation (T��*)  with the corresponding IMF with similar scale 215 

from observed PM2.5 time series. In practice, ) could be as much as a few cycles of the mean period, ��. Here, we 216 

limit the absolute number of shift days to not exceed a half cycle as a reference for the phase shift of an IMF. Thus, ) 217 

satisfies − V�� 2X Y ≤ ) ≤ (�� 2X ) with ��  being the larger mean period in observation or simulation. It becomes 218 

−0.5 ≤ ) ��X ≤ 0.5 in terms of number of cycles.  219 

4 Results and Discussion 220 

4.1 Temporal scales  221 

Temporal scales in PM2.5 resolved by EMD depend solely on the intrinsic properties of the data itself. These properties 222 

include underlying characteristics of specific PM2.5 concentrations, the data sampling frequency, which determines the 223 

scales that can be resolved in the high frequency IMFs, and the time span for the data coverage, which could possibly 224 

play an important role in differentiating the low frequency IMFs from the trend component. Here, we first evaluate 225 

the scales represented by the mean period in the speciated PM2.5 time series. Note that the mean period is only one 226 

indication of the model evaluation against observations, and it does not indicate any information on the magnitude or 227 

the phase of the time series, which will be further discussed in Sections 4.3 to 4.4. 228 

Fig. 3a presents the characteristic scales of IMFs in observed and simulated total and speciated PM2.5 of QURE. The 229 

CMAQ model compares well with the observations for IMFs 1 through 6 with cycles of 9, 19, 37, 78, 158 and 347 230 

days (average of all observed and simulated total and speciated PM2.5). Among all these IMFs, IMF6, which represents 231 

the annual cycles, shows the least variations in the characteristic scale (Fig. 3a) and highest peak energy from the 232 

power spectrum such as Fig. 2b for total PM2.5, except for observed EC and OC where the power of half-year cycles 233 

is more dominant (Fig. S4). These two features demonstrate a clear seasonality in both observed and simulated total 234 

and speciated PM2.5, which would otherwise be concealed by practices such as monthly averaging. This can be further 235 

confirmed by the statistically significant annual cycles (except for observed EC and OC) (Fig. S5) based on a Monte 236 

Carlo verified relationship between the energy density and mean period of IMFs (Wu and Huang, 2004; Wu et al., 237 
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2007). To explore the inter-annual cycles in more detail, mean periods of IMFs with scales longer than a year are 238 

being displayed in the top left panel of Fig. 3a. Some variability exists between the observation and model simulation 239 

to the extent that not all IMFs from observation are being simulated and vice versa. The estimated mean periods of 240 

the inter-annual cycles and the differences in the presence of slow varying cycles with the long characteristic scales 241 

are likely to be influenced by their proximity to the data time span of 6 years (4 years for Cl). This implies that the 242 

model evaluation shouldn’t go beyond 3 years (2 years for Cl) given the current data coverage. CMAQ captured the 243 

3-year cycles in EC and total PM2.5 and 2-year cycles in OC and Cl, despite an overestimation in the scales of 2-year 244 

cycles in observed SO4 and NO3.  245 

 246 

Fig. 3. The characteristic scales resolved in the IMFs of observed and simulated total and speciated PM 2.5 for 247 

(a) QURE, (b) RENO and (c) ATL. IMF1 to the last pair of IMFs with increasing characteristic periods are 248 

shown from bottom left to top right. Top left panel in each subplot shows characteristic scales in the unit of 249 

years (y-axis) of all IMFs with inter-annual cycles (the x-axis represents the IMF number). In the subplots, 250 

species decomposed from observations are connected by solid lines, while species decomposed from simulations 251 

are represented by smaller markers in darker shades connected by dashed lines. 252 

Similar features in observed and simulated total and speciated PM2.5 concentrations at RENO are presented in Fig. 3b. 253 

Likewise, the highest peaks in the power spectrum also sit in the annual cycles of IMF6 except for the observed OC 254 

and total PM2.5 which have higher peak power at half-year cycles. All annual IMFs are statistically significant except 255 

for simulated NH4 (Fig. S5). The small variation in the estimated characteristic period of IMF6 is because this 256 

monitoring site is located in a wildfire prone region on the border of Nevada and California. Clear evidence can be 257 

seen from Fig. 4a that an extra annual cycle in the IMF6 of observations in the summer of 2008 is depicted, which is 258 

very possibly driven by the 2008 California Wildfires spanning from May until November. Unlike the diversified 259 

scales in IMF7 at QURE, IMF7 at RENO features universal 2-year cycles of all species as well as total PM2.5 and all 260 

of them are well replicated by the model. However, variations in time scales are present in IMF8 possibly because of 261 

the limited data coverage. Thus, only species with time scales less than 4 years in both observations and model 262 

simulations are evaluated. It is evident that CMAQ has reproduced the 3-year cycles in SO4 and NH4.  263 
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 264 

Fig. 4. Same as Fig. 2 but for the RENO site with 8 IMFs. 265 

 266 

ATL is the only speciated site with daily data coverage. Observed and simulated total and speciated PM2.5 267 

concentrations at the ATL site are decomposed into 9 or 10 IMFs (Fig. 3c). Because of the change in data frequency, 268 

high frequency scales such as weekly cycles can be evaluated and the significance tested (Fig. S5) annual cycles with 269 

the highest peak power is represented by IMF8(IMF7 for SO4 and NO3). Annual cycles of SO4 and NO3 appeared in 270 

the earlier stage of decomposition in IMF7 because of their relatively weak half-year cycles, which largely led to the 271 

mixed signal of half year and annual cycles in IMF7 in total PM2.5 as in Fig. 5b. This is more visible in the observed 272 

IMF7 where the energy of the one-year period surpasses that of the half year. Yet, clues can be seen from Fig. 5 that 273 

the amplitude and the energy of annual cycles leaked into IMF7 is very limited compared to that remaining in IMF8, 274 

indicating that it is still safe to conduct model evaluation on the seasonality using IMF8 with an underestimation in 275 
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the amplitude of observation. On the other hand, inferences should be made with caution for IMF7 because of the 276 

mixed modes. Scales up to 3 years are relatively well reproduced by the model. 277 

 278 

Fig. 5. Same as Fig. 2 but for the ATL site with 10 IMFs. 279 

4.2 Long-term trend 280 

The EMD-decomposed long-term trend components for the observed and simulated total and speciated PM2.5 281 

concentrations are presented in Fig. 6. To better visualize the non-linearity of the trend component, the rates of change 282 

(temporal derivative of a trend component, which is the change in the consecutive concentration divided by the 283 
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sampling rate of 1 or 3 days and converted to the unit of µg/m3/year by multiplying 365 day/year) are added with a 284 

separate y-axis on the right side in each panel (gray colored scale). It is evident that PM2.5 is changing at a varying 285 

rate, forming either a monotonic trend component or a trend component with one extremum, which cannot be fully 286 

represented by a single constant number using a traditional linear regression approach. Given that there are chemical 287 

species other than the ones studied in the total PM2.5, not all performance issues can be fully explained by the five 288 

available species. 289 

 290 

Fig. 6. Trend components of observed and simulated total and speciated PM2.5 for (a) QURE, (b) RENO and (c) 291 

ATL in µg/m 3 with dashed lines representing the rate of the change (temporal derivative of the trend component 292 

converted to µg/m3/year) against the right-side y axis, with a reference line of no change in dark gray line in 293 

the center.  294 

At the QURE site, CMAQ captures the general decreasing trend in observed total PM2.5 which can mainly be traced 295 

back to NO3 and OC, while both observed and simulated trend components in SO4 and EC are relatively constant (Fig. 296 

6a). Moreover, the periods with highest decreasing rate in observed total PM2.5 during 2003-2004 with a decreasing 297 

rate of -0.44 µg/m3/year is also well replicated by the model. Nevertheless, the slightly increasing PM2.5 level in the 298 

later years is simulated to be decreasing at a much higher rate, which is partly due to the overestimated decreasing rate 299 

in OC and species other than the five studied ones. The trend component of simulated Cl shows a cyclic-like feature 300 

because of proximity between the existence of a cycle of 4-5 years (by decomposing the simulation during the 6-year 301 

study period) and 4-year period limited by the available quality assured observations. The rate of change in the 302 

simulated trend component by decomposing the simulation during the 6-year study period would mimic that from the 303 
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4-year observation, both with a negligible negative value throughout 2004-2007. However, the magnitude of the trend 304 

component is almost doubled (1.8 times compared with observation) in the model with contribution from all species 305 

except for SO4. A quantitative summary of the magnitude of the trend component can be found in Table 1.  306 

Table 1. The ratio of mean magnitude of the trend component 
8,��> (CMAQ/observation). Boldface values indicate 307 

a relatively good estimate of the magnitude (0.7 - 1.3). “-” indicates the data is not available (same applies for Tables 308 

2 and 3). 309 

  TOT SO4 NO3 NH4 OC EC Cl 

QURE 1.8 0.9 3.5 - 1.4 1.7 1.3 

RENO 0.8 1.3 0.3 0.4 0.5 0.6 - 

ATL 1.2 1.0 2.1 1.0 0.9 1.4 - 

 310 

RENO is located close to the border with California and is affected by large wildfire breakouts in the western U.S. as 311 

can been seen in the spikes of the observed total PM2.5 (Fig. 4a). The model simulates large increasing rate up to 1.03 312 

µg/m3/year and decreasing rate up to -0.80 µg/m3/year before and after the 2006-2007 winter season and fails to 313 

reproduce the relative stable condition seen in the observations with only -0.09 µg/m3/year decreasing in 2004-2005 314 

and 0.04 µg/m3/year  increasing in 2008-2009 (Fig. 6b). Similar feature is found for combustion related OC and EC 315 

species. The observed slightly decreasing trends in SO4 and NH4 during 2005-2009 are not being captured in the model 316 

simulations. The magnitude of the trend component is slightly underestimated with 
8,��> of 0.8 with contribution 317 

from all species except for SO4 as well (Table 1). 318 

During the period of 2002-2007, observations at ATL reveal a slightly increasing PM2.5 trend that cannot be explained 319 

by the five listed PM2.5 components trend (Fig. 6c), possibly indicating a contribution of the remaining species such 320 

as the non-carbonaceous portion of organic matter. Non-carbonaceous organic matter can account for more than half 321 

of total organic matter, which, in turn, can account for a large portion of the total PM2.5 mass (Edgerton et al., 2005). 322 

In contrast, the model shows a slight decreasing trend with a peak decreasing rate in 2003 and misses the peak 323 

increasing rate of 0.23 µg/m3/year in the winter season of 2005. Similarly, reversed trends are also simulated for SO4, 324 

OC and EC, while the change rate in NO3 is well captured. Unlike the previous sites, magnitude of trend components 325 

in total and speciated PM2.5 are well simulated except for EC (1.4 times the observation) and NO3 (2.1 times).    326 

To sum up, the long-term trend at QURE is well simulated by the model. The occurrence of large wildfires lasting for 327 

several months have significantly impacted the long-term trend component at RENO and the model failed to capture 328 

those combustion-related species and total PM2.5 primarily due to limitations in the historical data used to specify day-329 

specific wildfire emissions (Xing et al., 2013). Slightly increasing levels of PM2.5 and its species observed at ATL are 330 

simulated to be slightly decreasing, except for NO3 which is well simulated. The magnitude of the long-term trend 331 

components of total PM2.5 and SO4 are well represented by CMAQ (Table 1). The model performs differently across 332 

the sites in terms of the magnitudes of the trend component in NO3, NH4, Cl, OC and EC. Species other than those in 333 
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the available dataset may also play a considerable role in driving the agreements or disagreements between model 334 

simulations and observations of total PM2.5. 335 

4.3 Seasonality 336 

The EMD-assisted seasonality evaluations utilize the decomposed IMF with characteristic period of one year to 337 

evaluate the amplitude and phase of the model simulation, both of which are time- dependent. We first demonstrate 338 

the evaluation for total PM2.5 at QURE (Fig. 7a). The top panel shows the annual cycle components and the bottom 339 

panel shows its TDIC pyramid. The decreasing amplitude of the annual cycles throughout 2002-2007 is almost 340 

perfectly represented with an overall ratio 
���N�O  being 1.0 (Table 2). Each pixel in the TDIC pyramid is the 341 

correlation (color-coded) calculated during a period of time 5(�) with width of �= days (y-axis) centered at a specific 342 

day (x-axis) as introduced in Section 3.2. The annual cycle mean periods are identical between CMAQ and 343 

observations (350 days, Fig. 2a IMF6), but there is a phase shift for all years with the entire TDIC pyramid being close 344 

to -1. By shifting the CMAQ annual cycles backward 159 days (almost half year), the overall correlation of the annual 345 

component can reach up to a peak of 0.9 (Table 3).  346 

 347 

Fig. 7. Decomposed annual cycles (IMF6) from observed (blue) and simulated (red) concentrations (µg/m3) of 348 

(a) total PM2.5, (b) SO4, (c) NO3, (d) Cl, (e) OC and (f) EC and their corresponding TDIC at Quabbin Summit, 349 

MA. The window size �^ indicates the width of the window used to calculate a specific correlation centered at 350 

the day represented in x-axis.  351 

What are the driving factors for the above phase shift in modeled total PM2.5 at Quabbin Summit, MA? The illustrations 352 

in Fig. 7a for total PM2.5 alone cannot provide useful information that will allow the modeler to improve the model’s 353 

performance. This is accomplished by applying the EMD method to the PM2.5 speciated components (Fig. 7b-f). Traces 354 
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of the semi-annual phase shift (-159 days) of annual cycles or large overestimation in the winter and underestimation 355 

in the summer is because of the largely overestimated amplitude of NO3 (4.3 times that of observation) which peaks 356 

in the winter and the almost semi-annual shifted OC (-147 days), as well as contributions from EC and Cl. NO3 has a 357 

mean amplitude reaching almost half of that of the total PM2.5. OC directly drives both the observed and simulated 358 

annual components to be negatively correlated. EC follows the feature of OC in the first four years or so and the 359 

feature of NO3 in 2006 and 2007 and contributes to the half year shifted total PM2.5. The magnitude of winter-peaking 360 

Cl cycles are overestimated with a phase shift of one month. However, the contribution of Cl is very limited because 361 

of the tiny amplitude in both observed and simulated annual cycles. In addition, annual cycles in SO4 are well 362 

reproduced for the entire time span with an amplitude ratio of 0.7. A quantitative summary of the evaluation of the 363 

annual cycles at this site can be found in Tables 2 and 3. 364 

 365 

Fig. 8. Same as in Fig. 7 for Reno, NV, except that (d) represents NH4 rather than Cl. 366 

Both observed and simulated annual cycles at the RENO site are largely contaminated by the extreme events lasting 367 

for several months that are not properly simulated, indicating the need for more appropriate emissions allocation. 368 

Overall, annual variations for total and speciated PM2.5 are largely underestimated except for the total PM2.5 and 369 

combustion-driven EC and OC from 2005 to 2007 (Fig. 8). The modeled phase of SO4, NO3, NH4 and OC agrees with 370 

that of observation with exception for a length of about two years in each that missed the phasing: 2009-2010 for SO4, 371 

summer 2005-summer 2007 for NO3, 2006-2007 for NH4 and 2004-2005 for OC. It is also notable that the TDIC 372 

pyramid of EC mimics that of total PM2.5, implying the existence of errors in modeled EC in processes such as 373 

emissions, transport, and deposition that affected the model performance for total PM2.5. In comparison, SO4 and OC 374 

are relatively well simulated with a mean amplitude ratio of 0.5 and 1.5 and a phase shift of 36 and 33 days, 375 

respectively. 376 

https://doi.org/10.5194/acp-2019-1079
Preprint. Discussion started: 2 March 2020
c© Author(s) 2020. CC BY 4.0 License.



16 

 

Observed annual cycles of total PM2.5 at the ATL site features a slightly increasing amplitude of annual variations 377 

from 2002 to 2006 which then decreased to the original state in 2007 (Fig. 9a). Conversely, model-simulated annual 378 

cycles became weaker throughout the period, with an overall 
���N�O of 0.5. As at the QURE site, the simulated annual 379 

components at the ATL site also show a shift of several months (-132 days). Specifically, traces of these phase shifts 380 

or large overestimation in the winter and underestimation in the summer can be seen from the more than doubled 381 

amplitude of NO3 which peaks in winter and underestimated SO4 and NH4 in the warm seasons as well as the -54 days 382 

shifted EC. The anti-correlated remaining species other than those in the available dataset clearly played a role in 383 

driving the discrepancies seen in the total PM2.5 annual cycles (Fig. 10). Specifically, the anti-correlation likely points 384 

to an inaccurate representation of the seasonal variation of the non-carbonaceous portion of organic matter due to an 385 

improper representation of organic aerosols in the model version analyzed here; this problem has since been corrected 386 

in more recent releases of the CMAQ model. The underestimated annual variations in the remaining components 387 

closely resemble that of the annual variation in total PM2.5. The phase of simulated SO4, NO3, NH4, and OC species is 388 

in good agreement with those in observations and the amplitude of simulated annual cycles in SO4, OC and EC agree 389 

well with that in the observations (Tables 2 and 3).  390 

In sum, annual cycles of PM2.5 are also time-dependent and the phase in the annual cycles for total PM2.5, OC and EC 391 

reveal a general shift of up to half a year (Table 3); this indicates a potential problem in the allocation of emissions 392 

during this study period and/or the treatment of organic aerosols in this version of the model. CMAQ generally 393 

simulated the phase in SO4, NO3, Cl and NH4 quite well but did not always capture the magnitude of their variations 394 

(Table 2).  395 

 396 
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Fig. 9. Same as in Fig. 7 for Atlanta, GA, except that the annual component is resolved in IMF8 (IMF7 for SO4 397 

and NO3) because of the difference in sampling rate and characteristic embedded in the time series at ATL and 398 

(d) represents NH4 rather than Cl.  399 

 400 

 401 

Fig. 10. Decomposed annual cycles in Atlanta, GA for the remaining components presented in total PM2.5 other 402 

than the five species in Fig.9. 403 

Table 2. The ratio of mean amplitude of the annual component 
���N�O (CMAQ/observation). Boldface values indicate 404 

a magnitude with a ratio close to 1 (0.7 -1.3).  405 

  TOT SO4 NO3 NH4 OC EC Cl 

QURE 1.0 0.7 4.3 - 1.6 3.1 1.6 

RENO 1.2 0.5 0.1 0.2 1.5 0.9 - 

ATL 0.5 0.7 2.4 0.4 1.2 1.0 - 

 406 

Table 3. Phase shift ()) of CMAQ simulated annual cycle components in days. The background color indicates the 407 

maximum correlation (T��* ) that can be reached by shifting the CMAQ time series )  days with respect to 408 

observations: white = [0.8, 1], light grey = [0.6, 0.8), grey = [0.4, 0.6), dark grey = (0.2, 0.4). The bold shows number 409 

of shifts less than a month while the italic shows shifts longer than three months.  410 

  TOT SO4 NO3 NH4 OC EC Cl 

QURE -159 -6 3 - -147 -105 -30 

RENO 78 36 12 -21 33 96 - 

ATL -132 0 8 -17 -24 -54 - 

 411 
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4.4 Sub-seasonal and inter-annual variability 412 

In this section, model performance at multiple sub-seasonal and inter-annual scales with cycles less than 3 years, 413 

presented in the total and speciated PM2.5, is evaluated following an approach similar to that for the annual cycles in 414 

Section 4.3 (Fig. 11). First, IMFs from observations and model simulations are paired based on their characteristic 415 

periods following the discussion in Section 4.1. Then, the magnitude of specific scales is evaluated using 
_?`� 416 

following Equation 6 of the 
���N�O  for annual cycles. The phase shifts of the time series are assessed by the proportion 417 

of shifted days relative to the mean characteristic scales of the corresponding observed and simulated IMFs () ��X ). 418 

For example, a phase shift of 0.1 cycles in the 2-year cycles is approximately 73 days while it would be 18 days for 419 

the half-year cycles. 420 

The performance of the simulated amplitude of the sub-seasonal and inter-annual cycles is relatively stable from a few 421 

days to semi-annual scales and 
_?`� is close to 1 in most cases (Fig. 11a-c). CMAQ captures the features seen in the 422 

observations at QURE, except for the large overestimation of NO3 (
_?`� ranges from 2.6 to 3.7 at the sub-seasonal 423 

scale and reaches up to 13.8 for the 3-year cycles). Similar overestimation of NO3 is also found at ATL (
_?`� ranges 424 

from 2.0 to 3.4, except for the 2-year cycles). In contrast, NO3 at RENO is strongly underestimated with 
_?`� ranging 425 

from 0.1 to 0.3 and reaching its minimum at the 2-year cycles. Likewise, all time scales of NH4 at RENO are also 426 

being underestimated with 
_?`�  decreasing from 0.4 to only 0.1 at the 3-year cycles. The coexistence of 427 

underestimation of NO3 and NH4 variability, as well as their trend component, likely points to the insufficient grid 428 

resolution in representing ammonium nitrate episodes associated with stagnant meteorology in the mountainous 429 

regions as illustrated by Kelly et al. (2019). To sum up, model has simulated the magnitude of features across all scales 430 

in most of the studied cases. However, fluctuations in NO3 are constantly being largely over- or under-estimated and 431 

improvements to the model are required to better replicate its variability (Fig. 11a-c). 432 

A high T��* of corresponding IMFs can only be achieved when the characteristic scales of those from observations 433 

and model simulations are close, there is minimal mode mixing, and negligible irregular change of amplitude exists 434 

during the study period. Thus, T��* tends to be small for all oscillations at RENO because of the irregular impact 435 

from events such as wildfires. Thus, the interpretation of phase shift is focused on the components and time scales 436 

having correlations above 0.4 only.  437 

Results show that the sub-seasonal cycles at QURE all have a negligible phase shift of less than 0.1 cycles (Fig. 11d). 438 

The semi-annual cycles at RENO have around 0.2 cycle phase shifts in total PM2.5 (-0.2), NH4(0.2), OC (-0.2), and 439 

EC (-0.2) while negligible phase shifts of less than 0.1 cycles are simulated in SO4 ranging from 9 days to semi-annual 440 

in scale. As at QURE, multiple sub-seasonal cycles at ATL all have a negligible phase shift of less than 0.1 cycles, 441 

with the exception of semi-annual OC which has a phase shift of nearly -0.4 cycles with a marginal correlation of 442 

around 0.4. Unlike the relatively stable T��* throughout the time scales within each of the species for QURE and 443 

RENO, the T��* at ATL tends to be much higher (roughly 0.6-0.8) in the scales of 6 to 25 days, except for NO3, 444 

indicating the model’s success in simulating those weather-induced air quality fluctuations at this site as reflected by 445 

their negligible phase shifts.  446 
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However, the physical meaning of each sub-seasonal IMF is not yet fully understood and requires further study. 447 

Synoptic scale IMFs (IMFs with scale less than/around a month) usually have large variance and are not statistically 448 

significant different from white noise except for observed SO4 and NH4 (Fig. S5). Yet, observed and simulated total 449 

and some speciated PM2.5 at QURE and ATL (except IMF1) can achieve moderate to high T��* at these time scales 450 

(Fig. 11 g-i), indicating a potential physical explanation of those time scales using meteorological variables. IMFs 451 

with scales longer than a month but less than half year possess much less variance and are usually not statistically 452 

significant different from noise. Exceptions are also found at the Atlanta site where observed IMFs are mostly 453 

significant different from noise. Whereas semi-annual cycles are mostly statistically significant (note that semi-annual 454 

SO4 and NO3 at ATL are too weak to be decomposed into a separate IMF). In a previous study, He et al. (2014) found 455 

semi-annual oscillations in the corrected AErosol RObotic NETwork (AERONET) Aerosol Optical Depth (AOD) and 456 

PM10 mass concentrations are primarily caused by the change of wind directions in Hong Kong.  457 

 458 

Fig. 11. Model performance at all temporal scales for sites QURE, RENO and ATL. (a-c) ratio of mean 459 

amplitude of corresponding IMFs with similar characteristic mean periods (ideal ratio=1.0); (d-f) the phase 460 

shift a  in the number of mean periods (average mean period of corresponding IMFs decomposed from 461 

observation and model simulation); (g-i) maximum correlation b
cd can be achieved by shifting the modeled 462 

time series. The average mean period of corresponding IMFs decomposed from observations and CMAQ of 463 

total and speciated PM2.5 are represented on the x-axis; all metrics on the y-axis are unitless. Horizontal 464 
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reference lines are drawn at 0.7 and 1.3 in (a-c). Weekly, annual and inter-annual (2- to 3-year) scales are 465 

marked with vertical dashed lines.  466 

The evaluation and interpretation of inter-annual cycles are constrained by the limited available speciated observations 467 

for a period of 6 to 9 years (4 years for Cl at QURE). Thus, only 2- to 3-year cycles are presented (Fig. 11) and 468 

evaluated. Among the 2- to 3-year inter-annual cycles at QURE, there is minimal phase shift for total PM2.5, SO4, Cl, 469 

and EC with moderate to high T��*. At RENO, the model presents negligible shifts in 2-year cycles of OC and NH4 470 

while phase shifts of 0.3 and -0.5 cycles are simulated in the 3-year cycles for SO4 and NH4. At ATL, the phase shift 471 

of -0.2 to -0.4 cycles are simulated for PM2.5, NH4, OC, and EC with periods of 2- to 3-year cycles; while 2- to 3-year 472 

SO4 cycles have a half-year cycle shift.  473 

5 Conclusions 474 

The main advantage for using EMD to evaluate PM2.5 and its speciated components is that it decomposes nonlinear 475 

and nonstationary signals into multiple modes and a residual trend component. It does not require any preselection of 476 

the temporal scales and assumptions of linearity and stationarity for the data, thereby providing insights into time 477 

series of PM2.5 concentrations and its components. Using improved CEEMDAN, we are able to assess how well 478 

regional-scale air quality models like CMAQ can simulate the intrinsic time-dependent long-term trend and cyclic 479 

variations in daily average PM2.5 and its species. This type of coordinated decomposition and evaluation of total and 480 

speciated PM2.5 provides a unique opportunity for modelers to assess influences of each PM2.5 species to the total 481 

PM2.5 concentration in terms of time shifts for various temporal cycles and the magnitude of each component including 482 

the trend.  483 

A demonstration of how improved CEEMDAN could be applied to time series data at three sites over CONUS that 484 

provide speciated PM2.5 data reveals the presence of the annual cycles in PM2.5 concentrations and time-dependent 485 

features in all decomposed components. At these three sites, the model generally is more capable of simulating the 486 

change rate in the trend component than the absolute magnitude of the long-term trend component. However, the 487 

magnitude of SO4 trend components is well represented across all three sites. Also, the model reproduced the amplitude 488 

of the annual cycles for total PM2.5, SO4 and OC. The phase difference in the annual cycles for total PM2.5, OC and 489 

EC reveal a shift of up to half-year, indicating the need for proper allocation of emissions and an updated treatment 490 

of organic aerosols compared to the earlier model version used in this set of model simulations. The consistent large 491 

under/over-prediction of NO3 variability at all temporal scales and magnitude in the trend component, as well as the 492 

abnormally low correlations of synoptic scale NO3 at ATL, calls for better representation of nitrate partitioning and 493 

chemistry. Wildfires have the potential to elevate PM2.5 for months and can alter its variability at scales from few days 494 

to the entire year. Thus, more accurate fire emission data should be incorporated to improve model simulation, 495 

especially in those fire-prone regions. 496 

Data availability . Paired observations and CMAQ model data used in the analysis will be made available at 497 

https://edg.epa.gov/metadata/catalog/main/home.page. Raw CMAQ model outputs are available on request from the 498 

U.S EPA authors. 499 
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